Describing Ul Screenshots in Natural Language
Supplementary Materials

Luis A. Leiva, Asutosh Hota, Antti Oulasvirta

This document provides supplementary information about the different design, development, and im-
plementation choices of the different components of XUI’s processing pipeline. In our research paper,
several Ul input formats and models have been tested, together with their combinations. The following
document provides more details about those models and their architectures.

Figure 1 shows a few examples of the evaluated UI screenshots, their corresponding semantic wire-
frames, and the reconstructions of the semantic wireframes using a deep convolutional autoencoder
trained on the Enrico dataset [3], which is a curated version of the Rico dataset [4]. The encoder part,
shown in Figure 2, takes as input a 256x128x3 dimensional UI wireframe (RGB-based image) and gen-
erates a 32x16x32 dimensional UI embedding as output. This embedding is later used along with other
UI inputs (RGB screenshots and semantic wirerames) to try out how different model configurations
perform in the Topic classification task.

Figures 3 to 6 show the different combinations of Ul inputs and their respective model architectures
that we tested, aimed at finding the best possible combination for the topic classification task. The
individual models (not show in this report, for brevity’s sake) can be noticed in each of the individual
branches of the combined models.

To find the visual saliency of the UI screenshot, we use a gradient-based localization technique [5]
to compute the salient regions that our ConvNet looks at during topic classification. The backbone
arhcitecture used for this purpose is based on the popular VGG16 architecture [6]. We compared this
saliency model against other comparable approaches, namely GBVS [1] and the feature maps produced
by ResNet50 [2]. GBVS is a classical model that requires no training for prediction of saliency regions
in an image and achieves reasonable performance. It works in two stages, first forming activation
maps on certain feature channels, and then normalizing them in a way which highlights conspicuity
and admits combination with other maps [1]. On the other hand, ResNet is a deep learning model
used in image classification tasks, very popular because of its generalization capabilities (thanks to
transfer learning). Figure 7 shows its architecture. There are 5 blocks, each with an identity and a
convolutional block. Each block consists of 3 convolutional layers.

Screenshot

Wireframe

Reconstruction

|

Figure 1: Reconstructions of semantic wireframes using the model depicted in Figure 2. The dataset
provides semantic wireframes for their corresponding original screenshot, which inform about the
structure of the UI.

input_1 input: | [(None, 256, 128, 3)]
InputLayer | output: | [(None, 256, 128, 3)]

y
convZd | input: | (None, 256, 128, 3)

Conv2D | output: | (None, 256, 128, 8)

max_pooling2d | input: | (None, 256, 128, 8)
MaxPooling2D | output: | (None, 128, 64, 8)

dense | input: | (None, 128, 64, 8)
Dense | output: | (None, 128, 64, 8)

y
convZd 1 | input: (None, 128, 64, 8)

Conv2D | output: | (None, 128, 64, 16)

max_pooling2d_1 | input: | (None, 128, 64, 16)
MaxPooling2D output: | (None, 64, 32, 16)

dense 1 | input: | (None, 64, 32, 16)
Dense | output: | (None, 64, 32, 16)

y
convZd 2 | input: | (None, 64, 32, 16)

Conv2D | output: | (None, 64, 32, 32)

max_pooling2d 2 | input: | (None, 64, 32, 32)
MaxPooling2D output: | (None, 32, 16, 32)

dense 2 | input: | (None, 32, 16, 32)
Dense | output: | (None, 32, 16, 32)

Figure 2: Encoder architecture to generate semantic embeddings from UI wireframes.

input_1 input: | [(None, 256, 128, 3)] input 2 input: | [(None, 256, 128, 3)]
InputLayer | output: | [(None, 256, 128, 3)] Inputlayer | output: | [(None, 256, 128, 3)]
conv2d | input: (None, 256, 128, 3) conv2d 4 | input: (None, 256, 128, 3)
Conv2D | output: | (None, 254, 126, 64) Conv2D | output: | (None, 254, 126, 64)
conv2d 1 | input: | (None, 254, 126, 64) conv2d 5 | input: | (None, 254, 126, 64)
Conv2D | output: | (None, 252, 124, 64) Conv2D | output: | (None, 252, 124, 64)
max_pooling2d | input: | (None, 252, 124, 64) max _pooling2d 3 | input: | (None, 252, 124, 64)
MaxPooling2D | output: | (None, 126, 62, 64) MaxPooling2D output: | (None, 126, 62, 64)
y
dropout | input: | (None, 126, 62, 64) dropout_3 | input: | (None, 126, 62, 64)
Dropout | output: | (None, 126, 62, 64) Dropout | output: | (None, 126, 62, 64)
conv2d 2 | input: (None, 126, 62, 64) conv2d_6 | input: (None, 126, 62, 64)
Conv2D | output: | (None, 124, 60, 128) Conv2D | output: | (None, 124, 60, 128)

l |

max_pooling2d_1 | input: | (None, 124, 60, 128) max_pooling2d_4 | input: | (None, 124, 60, 128)
MaxPooling2D output: | (None, 62, 30, 128)

MaxPooling2D output: | (None, 62, 30, 128)

r
dropout_1 | input: | (None, 62, 30, 128) dropout_4 | input: | (None, 62, 30, 128)
Dropout | output: | (None, 62, 30, 128) Dropout | output: | (None, 62, 30, 128)
conv2d_3 | input: [(None, 62, 30, 128) conv2d_7 | input: | (None, 62, 30, 128)
Conv2D | output: | (None, 60, 28, 256) Conv2D | output: | (None, 60, 28, 256)

l

max pooling2d 2 | input: | (None, 60, 28, 256) max pooling2d 5 | input: | (None, 60, 28, 256)
MaxPooling2D output: | (None, 30, 14, 256) MaxPooling2D output: | (None, 30, 14, 256)
dropout 2 | input: | (None, 30, 14, 256) dropout 5 | input: | (None, 30, 14, 256)
Dropout | output: | (None, 30, 14, 256) Dropout | output: | (None, 30, 14, 256)
flatten | input: | (None, 30, 14, 256) flatten 1 | input: | (None, 30, 14, 256)
Flatten | output: (None, 107520) Flatten | output: (None, 107520)

concatenate | input: | [(None, 107520), (None, 107520)]
Concatenate | output: (None, 215040)

|

flatten_3 | input: | (None, 215040)
Flatten | output: | (None, 215040)

dense | input: | (None, 215040)
Dense | output: (None, 512)

dense 1 | input: | (None, 512)
Dense | output: | (None, 256)

|

dense 2 | input: | (None, 256)
Dense | output: | (None, 20)

Figure 3: Model architecture for the combined input of Screenshot and Wireframe (denoted as S + W

in our paper).

input_1 input: | [(None, 256, 128, 3)]
InputLayer | output: | [(None, 256, 128, 3)]

conv2d | input: (None, 256, 128, 3)
Conv2D | output: | (None, 254, 126, 64)

conv2d 1 | input: | (None, 254, 126, 64)
Conv2D | output: | (None, 252, 124, 64)

l

max_pooling2d | input: | (None, 252, 124, 64)
MaxPooling2D | output: | (None, 126, 62, 64)

dropout | input: | (None, 126, 62, 64)
Dropout | output: | (None, 126, 62, 64)

conv2d 2 | input: (None, 126, 62, 64)
Conv2D | output: | (None, 124, 60, 128)

I

max_pooling2d_1 | input: | (None, 124, 60, 128)
MaxPooling2D output: | (None, 62, 30, 128)

A
dropout_1 | input: | (None, 62, 30, 128)

Dropout | output: | (None, 62, 30, 128)

conv2d_3 | input: | (None, 62, 30, 128)
Conv2D | output: | (None, 60, 28, 256)

!

max pooling2d 2 | input: | (None, 60, 28, 256)
MaxPooling2D output: | (None, 30, 14, 256)

I
dropout 2 | input: | (None, 30, 14, 256) input 3 input: | [(None, 32, 16, 32)]

Dropout | output: | (None, 30, 14, 256) InputLayer | output: | [(None, 32, 16, 32)]

flatten | input: | (None, 30, 14, 256) flatten 2 | input: | (None, 32, 16, 32)
Flatten | output: (None, 107520) Flatten | output: (None, 16384)

.,

concatenate | input: | [(None, 107520), (None, 16384)]
Concatenate | output: (None, 123904)

|

flatten_3 | input: | (None, 123904)
Flatten | output: | (None, 123904)

dense | input: | (None, 123904)
Dense | output: (None, 512)

dense 1 | input: | (None, 512)
Dense | output: | (None, 256)

|

dense 2 | input: | (None, 256)
Dense | output: | (None, 20)

Figure 4: Model architecture for the combined input of Screenshot and Embedding (denoted as S + &
in our paper).

input_2 input: | [(None, 256, 128, 3)]
InputLayer | output: | [(None, 256, 128, 3)]

conv2d 4 | input: (None, 256, 128, 3)
Conv2D | output: | (None, 254, 126, 64)

conv2d 5 | input: | (None, 254, 126, 64)
Conv2D | output: | (None, 252, 124, 64)

|

max_pooling2d 3 | input: | (None, 252, 124, 64)
MaxPooling2D output: | (None, 126, 62, 64)

/
dropout_3 | input: | (None, 126, 62, 64)

Dropout | output: | (None, 126, 62, 64)

conv2d 6 | input: (None, 126, 62, 64)
Conv2D | output: | (None, 124, 60, 128)

I

max_pooling2d_4 | input: | (None, 124, 60, 128)
MaxPooling2D output: | (None, 62, 30, 128)

4
dropout_4 | input: | (None, 62, 30, 128)
Dropout | output: | (None, 62, 30, 128)

conv2d_7 | input: | (None, 62, 30, 128)
Conv2D | output: | (None, 60, 28, 256)

!

max pooling2d 5 | input: | (None, 60, 28, 256)
MaxPooling2D output: | (None, 30, 14, 256)

I
dropout 5 | input: | (None, 30, 14, 256) input 3 input: | [(None, 32, 16, 32)]

Dropout | output: | (None, 30, 14, 256) InputLayer | output: | [(None, 32, 16, 32)]

flatten 1 | input: | (None, 30, 14, 256) flatten 2 | input: | (None, 32, 16, 32)
Flatten | output: (None, 107520) Flatten | output: (None, 16384)

.

concatenate | input: | [(None, 107520), (None, 16384)]
Concatenate | output: (None, 123904)

|

flatten_3 | input: | (None, 123904)
Flatten | output: | (None, 123904)

dense | input: | (None, 123904)
Dense | output: (None, 512)

dense 1 | input: | (None, 512)
Dense | output: | (None, 256)

|

dense 2 | input: | (None, 256)
Dense | output: | (None, 20)

Figure 5: Model architecture for the combined input of Wireframe and Embedding (denoted as W+ &
in our paper).

[(None, 256, 128, 3)] input_2 input: | [(None, 256, 128, 3)]

input_1 input:
[(None, 256, 128, 3)] InputLayer | output: | [(None, 256, 128, 3)]

InputLayer | output:

conv2d | input: (None, 256, 128, 3) conv2d_4 | input: (None, 256, 128, 3)
(None, 254, 126, 64) Conv2D | output: | (None, 254, 126, 64)

Conv2D | output:

conv2d_1 | input: | (None, 254, 126, 64) conv2d 5 | input: | (None, 254, 126, 64)
Conv2D | output: [(None, 252, 124, 64) Conv2D | output: | (None, 252, 124, 64)
max_pooling2d | input: | (None, 252, 124, 64) max_pooling2d_3 | input: | (None, 252, 124, 64)
MaxPooling2D | output: | (None, 126, 62, 64) MaxPooling2D output: | (None, 126, 62, 64)

A
dropout | input: | (None, 126, 62, 64) dropout_3 | input: | (None, 126, 62, 64)
Dropout | output: | (None, 126, 62, 64) Dropout | output: | (None, 126, 62, 64)

conv2d 2 | input: (None, 126, 62, 64) convZd_6 | input: (None, 126, 62, 64)
(None, 124, 60, 128) Conv2D | output: | (None, 124, 60, 128)

I |

max_pooling2d_1 | input: | (None, 124, 60, 128) max_pooling2d 4 | input: | (None, 124, 60, 128)
MaxPooling2D output: | (None, 62, 30, 128)

Conv2D | output:

MaxPooling2D output: | (None, 62, 30, 128)

dropout_1 | input: | (None, 62, 30, 128) dropout_4 | input: | (None, 62, 30, 128)
Dropout | output: | (None, 62, 30, 128) Dropout | output: | (None, 62, 30, 128)
conv2d_3 | input: | (None, 62, 30, 128) conv2d_7 | input: | (None, 62, 30, 128)
Conv2D | output: [(None, 60, 28, 256) Conv2D | output: | (None, 60, 28, 256)
max_pooling2d_2 | input: | (None, 60, 28, 256) max_pooling2d_5 | input: | (None, 60, 28, 256)
MaxPooling2D | output: | (None, 30, 14, 256) MaxPooling2D | output: | (None, 30, 14, 256)
dropout_2 | input: | (None, 30, 14, 256) dropout 5 | input: | (None, 30, 14, 256) input 3 input: | [(None, 32, 16, 32)]
Dropout | output: | (None, 30, 14, 256) Dropout | output: | (None, 30, 14, 256) InputLayer | output: | [(None, 32, 16, 32)]
flatten | input: | (None, 30, 14, 256) flatten_1 | input: | (None, 30, 14, 256) flatten_2 | input: | (None, 32, 16, 32)
Flatten | output: (None, 107520) Flatten | output: (None, 107520) Flatten | output: (None, 16384)

[(None, 107520), (None, 107520), (None, 16384)]
(None, 231424)

flatten 3 | input: | (None, 231424)
Flatten | output: | (None, 231424)

concatenate | input:

Concatenate | output:

Y
dense | input: | (None, 231424)

Dense | output: (None, 768)

dense_1 | input: | (None, 768)
Dense | output: | (None, 256)

)

dense_2 | input: | (None, 256)

Dense | output: | (None, 20)

Figure 6: Model architecture for the combined input of Screenshot, Wireframe, and Embedding (de-
noted as S + W + £ in our paper).

ResNet50 Model Architecture

Input Output

Max Pool
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block

Zero Padding
Avg Pool
Flattening
FC

RV S

Stage 1 Stage 2 Stage3 Stage4 Stage5

Figure 7: Model architecture of ResNet50. Source: https://commons.wikimedia.org/wiki/File:
ResNet50.png.

https://commons.wikimedia.org/wiki/File:ResNet50.png
https://commons.wikimedia.org/wiki/File:ResNet50.png

References

[1]

2]

Jonathan Harel, Christof Koch, and Pietro Perona. Graph-based visual saliency. In Bernhard
Scholkopf, John C. Platt, and Thomas Hofmann, editors, Proc. NIPS, pages 545-552, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. Enrico: A high-quality dataset for topic
modeling of mobile UI designs. In Proc. MobileHCI, 2020.

Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha Kumar.
Learning design semantics for mobile apps. In Proc. UIST, pages 569-579, 2018.

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh,
and Dhruv Batra. Grad-CAM: Why did you say that? visual explanations from deep networks via
gradient-based localization. CoRR, abs/1610.02391, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proc. ICLR, 2015.

