
1

Describing UI Screenshots in Natural Language

LUIS A. LEIVA, University of Luxembourg, Luxembourg
ASUTOSH HOTA and ANTTI OULASVIRTA, Aalto University, Finland

Being able to describe any user interface (UI) screenshot in natural language can promote understanding of
the main purpose of the UI, yet currently it cannot be accomplished with state-of-the-art captioning systems.
We introduce XUI, a novel method inspired by the global precedence effect to create informative descriptions
of UIs, starting with an overview and then providing fine-grained descriptions about the most salient elements.
XUI builds upon computational models for topic classification, visual saliency prediction, and natural language
generation. XUI provides descriptions with up to three different granularity levels that, together, describe
what is in the interface and what the user can do with it. We found that XUI descriptions are highly readable,
are perceived to accurately describe the UI, and score similarly to human-generated UI descriptions. XUI is
available as open source software.

CCS Concepts: · Computing methodologies→ Natural language generation; Probabilistic reasoning; ·
Human-centered computing→ Interaction design process and methods.

Additional Key Words and Phrases: Captioning; Visual Saliency; Deep Learning; Natural Language Processing

ACM Reference Format:
Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. 2022. Describing UI Screenshots in Natural Language. ACM
Trans. Intell. Syst. Technol. 1, 1, Article 1 (January 2022), 28 pages. https://doi.org/10.1145/3564702

1 INTRODUCTION
Being able to describe any user interface (UI) screenshot in natural language can promote under-
standing of the main purpose of the UI, so there is quite a range of applications and user groups
that can benefit from such descriptions. First-time users, for example, may struggle to navigate the
UI, therefore they could be offered an introductory help message describing the main UI parts or an
overview of the overall functions before allowing the user to dive in and explore. Similarly, textual
descriptions of UI screenshots can be incorporated as ALT text on websites and app marketplaces,
thereby providing semantic information that can help search engines to better rank the app and
support accessibility, for example, for users with vision impairments. Technical documentation,
such as user manuals or API specifications, may improve understandability by including relevant
descriptions of their screenshots, automatically. Finally, one could argue that artificial intelligence
(AI) systems also need some human-like understanding of the UI. In this regard, natural language
descriptions could be used by interactive AI systems to help users for example by tutoring them or
suggesting them how to explore the UI.

Pareddy et al. [61] noticed that screenshots are frequently shared on social media and in academic
papers, however screenshot tools strip away semantics useful for understanding the UI contents,
leaving only pixels. Optical character recognition (OCR) technology is not enough for describing

Authors’ addresses: Luis A. Leiva, University of Luxembourg, Luxembourg, name.surname@uni.lu; Asutosh Hota; Antti
Oulasvirta, Aalto University, Finland, name.surname@aalto.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2157-6904/2022/1-ART1
https://doi.org/10.1145/3564702

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:2 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

XUI Caption: ‘A menu screen with an icon component at the top-left part.’
XUI Simple: ‘This screen is a menu app with an icon at the top-left area of the screen. You
can see a list of selectable options.’
XUI Detailed: ‘The interface must be a menu app. It shows a list of selectable options. You
may notice an icon ubicated at the top-left part.’
Microsoft Cognitive Services: ‘A screenshot of a cell phone screen with text.’

Fig. 1. Examples of the actual descriptions provided by our method, from less to more verbosity about the
layout design topic and the most salient element. Current state-of-the-art image captioning systems, such as
the Microsoft Cognitive Services API (bottom example), are unable to provide a meaningful UI description.
See Figure 11 for additional outputs and the Appendix for outputs by other image captioning systems.

the UI, since it does not capture semantics about the structure of the UI. While text is an important
component in UIs, not all UIs comprise worthy text for a usable description. Furthermore, OCR
does not work if the UI has no text.
Thanks to recent advances in AI research, and more concretely in deep learning (DL) based

captioning, computers can describe objects, people, and scenery in images [17, 18, 66, 77]. However,
current automatic image captioning tools are far from being usable in the context of UIs, since
these tools are trained on natural images, which are quite different from UIs. For example, UIs
are typically highly structured, colorful, make heavy use of icons and text, present navigation
elements, buttons, etc. In addition, DL models trained on natural images are strongly biased towards
recognising textures rather than shapes [23]. Furthermore, DL captioning approaches often require
a large amount of training data and still produce unpredictable results that are difficult to control
in terms of phrasing or content [46, 78]. Early work proposed to rely on human crowdworking
to provide accurate descriptions [6], but in practice it is both expensive and burdensome [7]. So
currently either we use an imperfect DL model and accept that UI captions will be hardly useful, or
we have to pay crowdworkers and forget about generating captions in real-time.

In this article, we propose XUI, a novel method to automatically generate informative descriptions
of a given UI screenshot without having to rely on human-authored text nor DL based captioning
models. For practical reasons (Section 4), we will focus on mobile UIs to showcase the value of our
method. Note that XUI does not only generate captions, but also describes what is in the interface
and what the user can do with it. In other words, what role it plays for interaction and what it
affords. This, we believe, is a more natural and information-efficient approach to describing a UI
than simply listing elements on it. To achieve this, XUI builds upon computational models for
layout design topic classification and element saliency prediction (łwhat to sayž) and a template-
based natural language generation engine (łhow to say itž). Our approach considers a declarative
representation that provides full control over the generated text, ranging from string manipulation
rules, nested calls to other templates, to conditional expressions within a template to determine
how a text should be generated based on the values defined in template slots.
XUI is inspired by the global precedence effect [58] from human perception: it begins with

an overview of the screen with defining higher-level features, and then ‘zooms in’ to individual
elements in a selective fashion. Global precedence is closely related to the Gestalt principles of
grouping [76], in that humans naturally perceive objects as organized patterns and objects. As
observed in Figure 1, XUI can describe a UI screenshot in different ways, providing from less
to more verbose information. In ‘caption’ mode, XUI provides a succinct description of the UI,

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:3

informing about the class of interface layout, or topic, and the most salient UI element. In ‘simple’
mode, XUI provides an additional sentence that describes further the topic, thereby providing more
context to the user about the overall purpose of the UI. Finally, in ‘detailed’ mode XUI provides a
systematic set of short sentences informing about: topic classification, topic description, salient
element description, and, if the element is interactive, an additional sentence informing that the
element can be clicked (or, in the context of mobile UIs, tapped). More examples of the descriptions
delivered by XUI are provided in Figure 11.

The development of better UI descriptions is not only a machine learning problem, but poses an
exciting problem for human-computer interaction researchers. Some exciting research questions
we aimed to answer are the following: Can we generate UI descriptions without training datasets?
Can we control such descriptions in terms of phrasing or content? Are such generated descriptions
readable? Are they perceived as useful by end users? Eventually, the key question is how to generate
automatic descriptions that quickly but accurately provide the ‘gist’ of the UI. To approach this
question, we need to understand what people ‘see’ in interfaces, how they perceive the information
therein, and how they represent it conceptually. The contributions of this article are summarized
as follows:

• A data-driven method to create informative descriptions of UI screenshots in natural language.
• Validation of the method via objective and subjective evaluations.
• A set of reusable software libraries and computational models, to facilitate further research
and applications.

2 RELATED WORK
Producing a human-interpretable outcome for a given machine learning model outcome is a very
active and a relatively new research field. Comprehensive surveys are provided by Miller [54] and
Adadi et al. [1]. XUI is mainly informed by three key areas in computer science: image captioning,
natural language generation, and reverse-engineering of UIs. In the following we discuss how these
have informed the design of XUI.

2.1 Image Captioning
Captioning tools have the potential to empower end-users to know more about any image without
having to rely on human-authored text, which is time consuming and burdensome to produce [7, 24,
55]. However, automatically generating a natural language description of an image is a hard problem.
It has recently received a lot of attention not only in Computer Vision but also in Natural Language
Processing and Machine Learning communities, yet it still remains as a grand challenge [82]. A
survey paper by Hossain et al. [28] agglutinates recent research in this regard.

Modern approaches to image captioning and scene understanding rely on a DL based encoding-
decoding framework: first a convolutional neural net identifies key concepts in the image, then a
recurrent neural net generates the text for the identified concepts. It is extremely hard for these
models to generate rich descriptions, because vanishing gradients often occur in the decoding
process [25] and there is an exposure bias between training and testing [49, 67]. Finally, as neural
systems begin tomove toward generating longer outputs in response to longer andmore complicated
inputs, the generated texts begin to display reference errors, sentence incoherence, and a lack
of fidelity to the source material [78]. Among these, the lack of compositionality (i.e., producing
syntactically correct but semantically irrelevant language structures) is still considered particularly
challeging and an open issue [15].

UI captioning with end-to-end supervised learning models is further challenged by the fact that
currently there is no dataset that includes UI screenshots and associated ground-truth descriptions,

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:4 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

authored by humans. The reference datasets for benchmarking image captioning systems are MS-
COCO [47] and Flickr30K [62]. They comprise mostly natural images, which are quite different from
UIs (see Section 1). Other popular datasets include restaurant reviews [59], weather reports [46], and
author biographies [38], which cannot be leveraged to generate UI descriptions either, because the
data belong to a completely different domain. The recent Widget Captioning dataset [45] includes
natural language descriptions of individual UI elements, which is also insufficient to generate
descriptions for full screenshots.

2.2 Data-to-text Generation
Data-to-text (or table-to-text) generation is a subfield of Natural Language Generation (NLG)
aimed at translating structured data into unstructured text [22, 68]. A core task of NLG is to
generate textual descriptions of knowledge base records. A common approach is to use hand-
engineered templates [52, 53] but there has also been interest in creating templates in an automated
manner [4, 19, 34, 43]. Recently, the NLG community has investigated the concept of łneural
templatesž [30, 79], where a machine learning model learns template-like latent objects (discrete
structures) for conditional text generation. Generative models have produced impressive results in
NLG, however they are still unpredictable, largely uninterpretable, and difficult to control in terms
of their phrasing or content, resulting in linguistic mistakes.
Morash et al. [55] proposed to generate image descriptions by slotting worker answers into

a template: a set of predesigned sentences and a table with appropriate łblanksž to be filled in
by worker answers. Additionally, worker answers could determine whether certain sentences
are included or omitted from the template’s text description, and determine the number of rows
and columns in the table description. XUI uses a similar template-based approach, but no human
intervention is required.
Finally, Kulkarni et al. [37] developed a system to automatically generate natural language

descriptions from images that exploits both data-driven statistics from larg-scale text analysis and
Computer Vision. The system used object detection, modifiers (adjectives), and spatial relationships
(prepositions) to generate descriptions. The main limitations are that (1) it is difficult to enforce
grammatically correct sentences and (2) the system ignores discourse structure (coherency among
sentences), as each sentence in a description is generated independently of the previous one.

2.3 Reverse Engineering of UIs
Another line of work loosely related to XUI is that of reverse engineering tools that can repurpose a
UI or build upon it. For example, systems like Graphstract [31] and HILC [32] can quickly summarize
the steps required to complete a tutorial by taking a screenshot and masking non-relevant parts.
This kind of łvisual tutorialsž has been shown effective for creating contextual help [81] and could
be considered an alternative form of describing a UI. However, creating graphically illustrated
documentation can be time consuming and expensive. Further, natural language descriptions can
be easily indexed, searched, copied, and translated.

Moriyon et al. [56] proposed a technique to generate hypertext help messages from a UI design
model, and Pangoli et al. [60] demonstrated how to generate task-oriented help from user interface
specification. However, these generators assume the knowledge of the UI design model, which
requires expert designers. Sikuli [80] addressed this shortcoming by allowing end-users to search
UI documentation using screenshots as input. Rather than describing UIs, Sikuli is more focused on
visual scripting, which is outside the scope of this article.

Waken [5] leverages computer vision techniques to extract usage information from tutorial
videos. It can identify UI elements such as icons, menus, and tooltips. However, Waken can only
recognize UI elements the user has interacted with; i.e., if an icon is never clicked, or a tooltip is

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:5

never shown, then it will not be recognized. Further, UI elements must provide some visual hint
informing about their affordability; for example, the recognition of clickable elements requires those
elements to become highlighted when the cursor enters, and to provide an additional highlight
when the element is clicked.

Prefab Layers and Annotations [14] help developers write interpretation logic from UI screen-
shots, and can be used to label UI elements with metadata needed to enable runtime enhancements.
Interestingly, Prefab can reconstruct a UI hierarchy from raw pixels. Unfortunately, it relies on
a well-defined widget library, with predictable visual styles that can be recognized using pat-
tern matching [13]. This is critical because not all interfaces are created entirely from standard
widgets [12]. This is especially true for websites and mobile UIs.

Finally, in line with this research topic, previous work has been directed at making UIs more
accessible. X-Ray [61] stores the view hierarchy tree of a UI as Exif tags when taking a screenshot,
allowing to preserve some semantics that can be recovered later by e.g. screen readers. Screen
Recognition [84] is an on-device object detection model that extracts UI elements from raw pixels in
a screenshot and creates accessibility metadata, such as navigation hints for screen readers. While
these works are not really focused on describing UIs using natural language, they nevertheless
highlight the importance of being able to annotate the UI semantics, even if using an alternative
communication medium such as Exif tags and metadata.

3 THE XUI METHOD
Essentially, XUI focuses on both content selection (łwhat to sayž) and surface realization (łhow to say
itž). Figure 2 provides an overview of the processes and computations involved. Content selection is
determined by computational models for topic classification and visual saliency prediction, whereas
surface realization is achieved by means of a template-based NLG engine. We assume that both
visual and structural information about the UI is given, though XUI can generate descriptions using
visual information only, as hinted in the previous section and discussed further in Section 8. The
structural information is any suitable representation of the visible UI elements (type, position, and
size), since the most salient pixels are mapped to actual UI elements. In this article, this structural
information will be a semantic wireframe image (see Section 4 for more details) In the following we
describe the three key components of the processing pipeline.

3.1 Topic Classification
The main key component of XUI is a classifier that predicts the type of screen design; e.g. login,
news, chat (see Figure 6 for a complete list). The classifier is a deep convolutional network (ConvNet)
that processes visual information from the UI screenshot, denoted as ConvNetv in Figure 2, which
is complemented with the output from another ConvNet that processes the associated structural
information, denoted as ConvNets in Figure 2. Then, a softmax layer selects the most probable UI
topic and the corresponding template is populated with information about the topic, to be explained
later.

On the one hand, the architecture of the ConvNet that processes the visual information (i.e. the
UI screenshot) is similar to the popular VGG16 architecture [73]. We chose this architecture as a
starting reference because it promotes small receptive fields and a homogeneous architecture. One
of the most important design decisions in CNN architectures is the size of the receptive fields [50].
We use adaptive filters of size 3×3, which make it possible for different hidden neurons to become
highly specialized in specific regions of the input screenshot.

On the other hand, the architecture of the ConvNet that processes the structural information (i.e.
the semantic wireframe) is a deep convolutional autoencoder similar to Leiva et al. [39], where the
bottleneck layer of the encoder network creates a latent vector, also known as semantic embedding,

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:6 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

Fig. 2. XUI processing pipeline. Our solution dynamically extends template-based natural language generation
with general information about the UI (visual processing part, top) and particular information about the most
salient element (structural processing part, bottom). XUI takes as input a UI screenshot and its semantic
wireframe to decide what is the main purpose of the UI and what are the most salient elements. This
information is then processed by a template-based NLG engine.

that is concatenated with the feature maps computed by the visual ConvNet. Such a bottleneck
layer has a dimensionality of 32×16×32 and all convolutional layers use a small receptive field of
size 3×3. We experimented with other models and input representations, and the combination of
these two ConvNets delivered the most promising results; see Section 5.

Following the example from Figure 1, at this point XUI can generate descriptions like ‘A tutorial
app.’, ‘Thismust be a tutorial screen.’, or ‘This is a tutorial app. This screenhas information
about the functionality of the app.’. In the latter case, the additional sentence is derived from a
knowledge base. Notice that structural information is not embedded yet into the textual description,
since at this point it is only used to improve classification performance. In the next section we
describe how the UI structure is leveraged further in the final textual description.

3.2 Element Saliency Prediction
Another key component of XUI is a saliency model1 that estimates which UI elements are more
visually important. Such importance is computed as the number of łfixationsž (convolutional
attention maps) that a UI element would receive, informed by the Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) [70]. Essentially, Grad-CAM uses the feature maps from the last
convolutional layer of our visual ConvNet (Figure 2) and produce a coarse localization map 𝐿 (i.e.
the saliency map) highlighting important regions in the image that led to the UI topic classification.
Formally, Grad-CAM is computed as a linear combination of the feature map activations of any

1Saliency refers to the ability of an object to attract visual attention in a scene.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:7

convolutional layer 𝐴𝑘 :

𝐿 = ReLU
(∑

𝑘

𝛼𝑐𝑘𝐴
𝑘

)
(1)

with
𝛼𝑐𝑘 =

1
𝑍

∑
𝑖

∑
𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

(2)

where 𝛼𝑐
𝑘
is the 𝑘-th neuron weight for class 𝑐 , 𝑍 is the number of pixels in the feature map, with 𝑖

and 𝑗 denoting the index of width and height dimensions, and𝑦𝑐 is the predicted UI topic. The ReLU
function is applied in Equation 1 to remove negative gradient values, since we are only interested
in the features that have a positive influence on the UI topic of interest.
The resulting saliency map is discretized to speed up computations using a fixed bin size of 10,

proportional to the screenshot width and height; see Figure 3. Discretization is achieved in two
steps: first downsampling the map (up to the aforementioned bin size) using bilinear interpolation
and then upsampling it using nearest-neighbour interpolation. Then each UI element is assigned a
saliency score, proportional to the number of intersections between each discrete region and the
element’s bounding box. The top-ranked element is selected and the corresponding template is
populated with information about the element, such as type, size, and position. This process is
illustrated in the bottom part of Figure 2.

(a) (b) (c) (d)

Score Element type
44.60 Background Image
9.28 Text
5.95 Text
5.52 Text Button
4.95 Text
4.89 Text Button
3.25 Image
3.25 Text
2.81 Icon
1.22 Text Button

Fig. 3. The UI screenshot (a) is processed with our visual ConvNet, and the Grad-CAM of its last convolutional
layer produces a saliency map (b), which is discretized (c) and aligned with the semantic wireframe (d) to
rank each element according to the attended regions of the saliency map.

We should note that other computational models could be used to process the screenshots and
later compute the Grad-CAM saliency maps, since our pipeline is quite modular, however reusing
the feature maps from our visual ConvNet not only is more accurate (see Section 5) but also allows
for a more coherent architecture overall.

3.3 Natural Language Generation
The last key component of XUI is an NLG engine that composes the final UI description, by
combining the visual and structural information processed so far. Given that our focus is on
generating informative textual descriptions, the engine operates on top of a knowledge base.
Following standard notation [4, 46, 78], let 𝒙 = {𝑟1 . . . 𝑟 𝐽 } be a UI knowledge base, or collection of
UI records. A record is made up of a UI topic (r.t) or domain, a UI element (r.e) or entity, and
one or more values (r.v). In our case, a UI knowledge base might have a record with r.t = "login
interface", r.e = "button", and r.v = ["sign up", "sign in"]. Currently XUI comprises

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:8 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

|𝑡 | = 20 UI topics and |𝑒 | = 23 UI elements. The aim is to generate an adequate text description
𝑦1:𝑇 = 𝑦1 . . . 𝑦𝑇 of each 𝑟 𝑗 ∈ 𝒙 . However, since there is no public dataset with (𝑟 𝑗 , 𝑦1:𝑇) pairs worth
of training data, it is not possible to learn a plausible data distribution via maximum likelihood
estimation. Therefore, we use instead a domain-independent template-based engine acting on local
decisions.
Our approach to generating UI descriptions exploits the so-called global precedence effect [58]

(see Kimchi [33] for a review), and begins with an overview of the screen with defining higher-level
features, and then ‘zooms in’ to individual elements in a selective fashion. As shown in Figure 1,
following the aforementioned global precedence effect, our NLG engine first emits a sentence
describing the UI topic and its main purpose, and then emits one or more sentences exemplifying
some interaction that can be performed with the most salient UI element.
Our NLG engine is similar in soul to previous work [4, 53], where templates are defined by a

knowledge expert to capture the range of syntactic structures that are needed. However, unlike
previous work, our template system is probabilistic and straightforward to maintain. Currently
XUI has three main templates (caption, simple, detailed) and five sub-templates (opener, location,
action, confidence, component). Table 1 and Table 2 show some examples of such sub-templates,
respectively. The three main templates use a combination of these sub-templates. For example, the
template of XUI caption is ła {topic} {what} {with} a {size} {element} {location}", where each slot {·}
is filled in at runtime. This is the simplest template, as it has no opener text, no confidence-based
verbs, nor an element description. Note that łconfidencež is a construct derived from the probability
distribution of the topic classifier, as explained later, so different phrasings can be provided to the
user accordingly; see Figure 4.

Each template is composed of two main parts: template slots and template rules. Template slots
are parameters or variables that are filled with values at runtime. Template rules are declarative
statements that define how inputs to the template should be realized as text. A breakdown example
of the resulting realization is shown in Figure 4. The text realization steps include resolving
concordances (e.g. a/an determinants) and other linguistic conventions such as ensuring the first
letter at the beginning of every sentence is capitalized and that all sentences end with a dot.

Type Template

Caption a {topic} {what} {with} a [{size}] {element} {location}
Simple [{opener}] a {topic} {what} {with} a {size} {element} {location}.↷

{has} {class}
Detailed {opener} a {topic} {screen}. {has} {class}.↷

{exists} a {size} {element} {location} {action}.↷
[{component}]

Table 1. Examples of XUI main templates. Entities in braces {·} denote slots to be filled in at runtime. Entities
in square brackets [·] denote optional realizations. Sub-templates are denoted in italic font. The↷ symbol
denotes sentence concatenation.

‘The interface must be a tutorial screen. It has introductory information about the app.
You may notice a large image placed at the center part.’

Fig. 4. Breakdown of the ‘detailed’ description shown in Figure 1, informing about confidence, overall topic
and topic description, sizing, positioning, and salient element.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:9

Type Template Realization example

Opener {it} {what} {verb} ‘this interface is’
Location {verb} at the {position} {action} ‘placed at the center of the screen’
Action {conj} you can {do} ‘which you can go and click’
Confidence {verb} ‘could be’
Component a {type} {description} ‘a web view displays website contents’

Table 2. Examples of XUI sub-templates. Entities in braces {·} denote slots to be filled in at runtime. The
three main templates (caption, simple, detailed) use a combination of these sub-templates. The ‘confidence’
sub-template is actually a reusable sub-sub-template. Note: Realization examples here are not final (e.g. no
capitalization rules are incorporated).

An example of the flexibility of XUI is illustrated as follows. The topic classification probability
informs about the classification confidence of the model, which is leveraged to create different
verbs accordingly. For example, when the probability distribution is flat, the description begins with
‘This might be ...’ or ‘This could be ...’. Conversely, when the probability distribution is sharp,
the description begins with ‘This is ...’ or ‘This must be ...’. To decide how confident is our topic
classifier, we compute the kurtosis of the softmax vector for any prediction. Kurtosis is a measure
of whether a distribution is heavy-tailed (high confidence) or light-tailed (low confidence).
Similarly, XUI derives information about sizing and positioning by inspecting the structural

properties of the UI elements. In the former case, a previous analysis of the width and height
distributions helped us determine how ‘small’ and ‘large’ elements are considered; see Figure 5(a).
In the later case, the UI screen is divided in a 6-cell grid and the centroid of the element’s bounding
box will determine if the object is positioned at the top, bottom, center, left, or right part of the
screen; see Figure 5(b). Note that these rules are quite flexible and developers could change the
values chosen here. We should point out that XUI templates, while currently tailored to mobile UIs,
they are agnostic to the mobile Operating System. This means that XUI can work with Android or
iOS screenshots, for example. We will release our software upon publication of this article so that
others can inspect our implementation in detail.

width

c
o

u
n

t

0 500 1000 1500

0
2

0
0

0
4

0
0

0
6

0
0

0

100 px

height

c
o

u
n

t

0 500 1000 2000

0
5

0
0

0
1

0
0

0
0

200 px

(a) Element size distributions

h
ei
gh

t/
3

width/2

(x, y)

(b) Element position

Fig. 5. The distribution of element sizes (a) determines which elements should be considered ‘small‘ (width >
100 px) or ‘large‘ (width > 500 px and height > 200 px). The position of any element is described according to
its bounding box coordinate with regards to a 6-cell grid (b).

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:10 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

4 UI DATASET
XUI relies on appropriate structural information about the UI to produce compelling descriptions,
so it is important to ensure that this information is of high-quality. Such a UI structure does not
need to be the same as the actual, logical UI structure, as long as it indicates the visible UI elements
in a machine-readable format.
In this article, we use the Enrico dataset [39], a curated version of Rico [10]. Enrico comprises

1460 mobile user interfaces categorized according to a design taxonomy of 20 UI layout categories;
e.g. news, login, settings, tutorial, etc. See Figure 6 for some examples. Each user interface comprises
a screenshot with associated metadata such as annotations of element types, visual and structural
data, and interactive design properties.

Bare Dialer Camera Chat Editor Form Gallery List Login Maps

Mediaplayer Menu Modal News Other Profile Search Settings Terms Tutorial

Fig. 6. Examples of Enrico categories. The łOtherž category is considered a łrejectionž or out-of-distribution
class; useful to categorize unkown UIs or UIs that have not been yet defined.

Enrico provides semantic annotations for more than 30K UI elements, classified into 25 categories,
such as icon, button, text, navigation, etc. These annotations include the structural and functional
roles that UI elements play in the screen design [48]. Finally, Enrico also provides semantic wire-
frames, where each UI element is rendered as a bounding box with an associated color code; see
Figure 7.

Fig. 7. Examples of Enrico UIs, shown here together with their associated semantic wireframes. Note that
the latter are not classic UI wireframes, but structural hints about the UI contents, where each color denotes
a different UI component.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:11

5 PERFORMANCE EVALUATION
In this section we evaluate the machine learning modules of XUI individually (UI topic classification
and element saliency prediction), to inform about their practical performance. On the one hand,
the identified UI topic will guide the final description at the overview level. On the other hand, the
identified salient element will guide the final UI description at the detail level. In the next section
we evaluate XUI as a whole, including its NLG capabilities, via a formal user study followed by a
readability analysis in a later section.

5.1 Topic Classification
We test different data representations and up to seven computational models to handle those:
three basic models and their four combinations. Here we provide an overview of these models.
The Supplementary Materials on our companion website describe each model in detail. These
experiments helped us to decide the final model for visual processing, discussed in Section 3.

5.1.1 Models. The first basic model is a ConvNet that processes UI screenshots, for which we use a
simplified version of the VGG16 architecture [73], with smaller receptive fields, batch normalization
and 0.2 dropout after each convolutional block, and only one fully connected layer before the output
softmax layer. The second basic model is a ConvNet that processes UI wireframes, which are much
simpler than screenshots, for which we use the same architecture of the visual ConvNet but without
batch normalization and fewer convolutional blocks. The third basic model is a deep convolutional
autoencoder that processes UI wireframes, with a 32×16×32 bottleneck layer followed by a softmax
layer. The decoder network is not needed for topic classification, but is very useful to verify the
quality of the resulting UI embeddings. As previously hinted in Section 3.1, a UI embedding is the
latent vector created by the bottleneck layer of the encoder network. Finally, the combined models
use two (or all) basic models as input (see Table 3), by concatenating their outputs and connecting
two fully connected layers followed by the output softmax layer.

5.1.2 Data and Optimizer. The screenshot and wireframe images are encoded as RGB vectors of
256×128 px resolution, to speed up training. We train all models with the popular Adam optimizer
using a learning rate 𝜂 = 0.001 and decay rates 𝛽1 = 0.9, 𝛽2 = 0.99. The loss function is categorical
cross-entropy, since the task is multi-class classification.2

5.1.3 Procedure. We randomly split the 1460 UIs into three data partitions: 80% of the data is used
for training (with 15% of the training data used as model validation) and the remaining 20% is used
for testing. We use stratified sampling to ensure that our partitions are well balanced. Further, we
compute class weights to avoid that some topics predominate the others, given that some of them
are more frequent [39].

We train each model for 200 epochs at most, using early stopping (10 epochs patience) to retain
the best model weights, and monitor its performance on the validation set. We do not apply any
data augmentation technique (e.g. cropping or flipping) since UIs should be assessed according to
the original layout design in any case.

5.1.4 Results. Table 3 summarizes the results of these experiments. Top rows report individual
input representations and bottom rows report combined representations. As can be seen in the
top-𝑘 accuracy columns, our model is able to identify the right topic most of the time. As a reference,
a random classifier would be 1/20 = 5% accurate. To illustrate model performance further, we also

2The autoencoder uses the mean squared error as loss function, since its job is to reconstruct an input image, but once
trained we use the output of the bottleneck layer (the UI embedding) as a feature vector for classification.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:12 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

report the usual retrieval-based metrics (Precision, Recall, and F-measure) and the Area Under the
Curve (AUC) score, which measures the discriminative power of any classifier [63].

Top-𝒌 Accuracy

Input 𝒌 = 1 𝒌 = 3 𝒌 = 5 Prec. Rec. 𝑭1 AUC

S: Screenshot 75.8 88.4 92.9 76.6 75.8 75.4 95.1
W: Wireframe 39.4 66.1 78.7 50.1 39.4 40.2 85.3
E: Embedding 50.9 73.6 84.3 60.2 50.9 51.1 89.5
S + E 85.5 89.5 94.1 86.3 58.5 85.6 97.3
W + E 81.7 90.7 93.3 82.9 81.7 81.7 96.5
S +W 55.8 75.3 83.7 60.3 55.8 56.4 91.3
S +W + E 83.2 90.3 94.0 83.9 83.2 83.3 96.5

Table 3. Performance results of different UI design representations for multi-class classification (20 classes).
All metrics are reported in percentage. The best result (column-wise) is denoted in bold typeface, both for
individual and combined models.

We can see that the individual input representation that achieves the best classification perfor-
mance is Screenshot (75% Top-1 accuracy, 95% AUC), followed by Embedding (50% Top-1 accuracy,
89% AUC), and Wireframe (39% Top-1 accuracy, 85% AUC). These results are quite competitive,
considering that a random classifier would achieve 5% accuracy and 50% AUC, however there is
room for improvement when it comes to using semantic wireframes as input data. We argue that
the poor performance of the wireframes is probably due to the chosen color scheme to represent
each UI element, which was inherited from the Rico dataset. For example, ‘Image’ and ‘Date Picker’
have a very similar (red-based) color, so both UI elements may become indistinguishable to any
classifier that considers color as discriminative feature. Interestingly, all model combinations im-
prove performance but it is the combination of Screenshot + Embedding that achieves the best
classification results, with 85% Top-1 accuracy and 97% AUC. We conclude that our UI embeddings
improve classification performance. We should note, however, that the Screenshot + Wireframe +
Embedding combination achieved better recall overall, so depending on the task at hand it may
be more interesting to consider this model over the simpler Screenshot + Embedding combina-
tion where recall is more important than precision. In our current implementation, XUI uses the
Screenshot + Embedding model for topic classification.

5.2 Element Saliency Prediction
We evaluate the performance of our saliency model for predicting the key parts of a UI. We test
also a pre-trained DL model and a classic computer vision model as baseline conditions. Here we
provide an overview of these models. The Supplementary Materials on our companion website
describe each model in detail. These experiments helped us to decide the final model for structural
processing we implemented in Section 3.

5.2.1 Models. We compare the Grad-CAM distributions derived from our visual ConvNet against
the Grad-CAM distributions derived from ResNet50 [27] and GBVS [26]. On the one hand, ResNet
is the most popular pre-trained deep network used in visual saliency prediction, though it was
trained on the ImageNet database [11], which comprises mostly natural/general-purpose images,
so it is unclear if it would generalize to UIs. On the other hand, GBVS is a classic computer vision
model that requires no training data and achieves reasonable performance [40].

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:13

5.2.2 Data. We evaluate the three models over the webpage saliency dataset [72] since it is the
closest public resource of UIs that includes visual hierarchies (source code) and accompanying
eye fixation data. The dataset has 149 webpage screenshots from various domains rendered with
the Chrome browser in full-screen mode at a resolution of 1360×768 px. The dataset includes eye
fixation data from 11 users (7 female, 4 male) recorded with a monocular eyetracker at a sampling
rate of 1000Hz.

5.2.3 Procedure. First we resized the screenshots to 256×128 px, which is the same screen size
used in our previous experiments. The fixation data were scaled accordingly. Then we generated
fixation heatmaps by convolving a 2D Gaussian filter of 𝜎 = 25 px on each fixation point center
𝜇𝑖 = (𝑥𝑖 , 𝑦𝑖). This size approximates the size of the foveal region in the human vision system [72].
We compute the mutual information score between the ground-truth saliency maps (i.e., the

fixation heatmaps) and the predicted saliency maps (i.e. the Grad-CAM activation maps) of each
model. The mutual information quantifies the amount of information obtained about one random
variable through observing the other random variable [35]. The minimum value occurs when both
distributions are independent, i.e. when they do not share information. Therefore the higher the
score, the better.

5.2.4 Results. Figure 8(e) summarizes the results of these experiments. As can be observed, the Grad-
CAM saliency maps derived from our visual ConvNet correlate better with ground-truth fixation
data. To precisely quantify the differences between models, we aggregate the data per condition
and ran a Kruskal-Wallis rank sum test as a non-parametric omnibus test. (The Shapiro-Wilk test of
normality was non-significant but the Bartlett test of sphericity was significant, therefore violating
one of the ANOVA assumptions and suggesting that a non-parametric test is more appropriate.)
The test was statistically significant: 𝜒2 (2, 𝑁 = 433) = 67.02, 𝑝 < .001, 𝜙 = 0.393; so we ran pairwise
comparisons using the non-parametric Wilcoxon rank sum test (Bonferroni-Holm corrected) and
found that our model outperformed both GBVS (𝑝 < .001) and ResNet (𝑝 < .05). The effect size 𝜙
is large [8], suggesting a practical importance of these differences. We refer the interested reader
to the publications of the American Psychological Association (APA) [2, 83] to gain a deeper
understanding in these statistical methods and their suitability for this kind of analysis.

In sum, our visual ConvNet model has learned to attend to salient regions of the screenshots after
topic classification training. Therefore, we are confident that it can provide an accurate estimation
of the most salient UI elements. Figure 8 provides an example of each model’s predictions.

(a) Reference (b) Ours (c) ResNet (d) GBVS

●

●

●

●

●

●

●

●

0.6

0.8

1.0

1.2

GBVS ResNet Ours

M
u
tu

a
l
in

fo
rm

a
ti
o
n

(e) Mutual information scores

Fig. 8. Visual saliency predictions from various machine learning models against ground-truth fixations (a)
and boxplots comparing the mutual information score (e) between predicted and ground-truth saliency maps.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:14 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

6 USER EVALUATION
We conducted a crowdsourcing study to assess the quality of the descriptions delivered by our XUI
method, which would determine eventually how end-users perceive XUI in practice. In addition to
the three types of XUI descriptions (caption, simple, detailed), we also considered the state-of-the-
art captioning service provided by the Microsoft Cognitive Services API.3 In what follows, we will
refer to this method as ‘MS caption’ which, to our knowledge, it is presumably based on the work
of Tran et al. [77] and Hu et al. [29]; although Microsoft has never disclosed the actual captioning
system they offer in their Cognitive Services API. We also collected human-generated descriptions,
as explained in the next section.

For this evaluation, we used the same test partition of the Enrico dataset from our previous topic
classification experiments (Section 5.1) as input stimuli. As discussed in Section 2.1, currently there
is no computational model to provide automatic captions of user interfaces. However, a production-
level captioning service such as the Microsoft Cognitive Services API is already available, so it is
valuable to use it as a baseline condition. In addition, using such an API fosters replicability efforts,
since many open source image captioning implementations are very difficult to use in practice.
Critically, most of them require complex environment setups and non-trivial data preprocessing
pipelines to work with custom images.

6.1 Participants
We recruited 146 participants (64 female, 80 male, 2 other) aged 18ś76 (M=30 years) via Prolific,4 a
crowsourcing platform with a large pool of workers, mostly from US and UK. All participants had
a worker approval rate of 95% and could complete the study only once. Participants were proficient
English speakers, had normal or corrected-to-normal vision, and had not been diagnosed as having
any reading disorder. The study took 15 minutes on average to complete and participants were
paid £2.5 (3.28 US dollars), which corresponds to an hourly wage of £8.61/h ($11.31/h).
In order to collect human-generated data for later comparisons, we first ran the study with 48

participants (28 female, 20 male) aged 18ś72 and recorded 706 human descriptions. Each UI screen-
shot was described by two different participants on average, following the procedure described
later. Then we ran the study with the remaining 98 participants (36 female, 60 male, 2 other) aged
18ś76. Participants from the initial group were not allowed to participate in this second round.

In sum, the 48 participants from the initial group assessed four automatic UI captioning methods
(the three types of XUI description and the MS captions) whereas the other 98 participants assessed,
in addition, the human descriptions generated by the initial group of participants. These human
descriptions were shown at random to the participants in the later group.

6.2 Materials
Our study was made available via a web-based application. Participants had to assess UI descriptions
for the screenshots in the test partition of the Enrico dataset. Therefore, the UIs were not seen
by XUI before and thus reflect a practical, real-world scenario. Participants were shown one UI
description at a time, randomly sampled from the available data. Figure 9 shows a stimulus condition
example.
Since participants completed the study remotely, we introduced control descriptions as an

additional quality control mechanism, to be described later. The total number of ratings received
by each condition is depicted in Table 4.

3https://azure.microsoft.com/en-us/services/cognitive-services/
4https://www.prolific.co/

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:15

Fig. 9. Stimulus condition example, showing how a ‘XUI caption’ did look like on a desktop browser (left)
and on a mobile phone (right). The user is prompted to look at the UI screenshot and read the accompanying
description, then rate it and describe it using their own words.

Condition Initial group (N=48) Later group (N=98) Total (N=146)

XUI Caption 152 255 407
XUI Simple 150 269 419
XUI Detailed 150 246 396
MS Caption 153 251 404
Control 101 169 270
Human Ð 255 255

Table 4. Number of ratings collected for each of the evaluated UI captioning methods.

6.3 Procedure
Participants were asked to rate each UI description using a 5-point Likert scale, with 1 denoting
‘strongly disagree’, 3 denoting ‘neutral‘, and 5 ‘strongly agree’. Each participant had to assess 3
descriptions from each method plus 2 control descriptions. We ensured that no duplicated cases
(i.e. a combination of screenshot and captioning method) were shown to the same participant.

6.4 Design
The study is a within-subjects repeated-measures design; i.e. the same participant was exposed to
all conditions (5 types of UI description plus 1 control condition) and had to rank each of them more
than once (3 ratings per description plus 2 control ratings). Statistical significance was considered
at the 𝛼 = .05 level. The dependent variables of this experiment are:
(1) Contents: It describes well what the screenshot shows.
(2) Actions: It helps me understand how I could use this app.

We chose these variables because, together, they assess the fundamental properties of any UI
description; i.e., a good description should inform about what is shown on the interface and should
do it in a way that it promotes understandability about the UI usage.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:16 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

To ensure that participants would take the study seriously, we introduced dummy sentences
(lorem ipsum text)5 as control conditions, which should score low in all measures. Twenty partici-
pants rated higher than 2 some of the control descriptions, so we did not consider these participants
for our subsequent analysis.

6.5 Results
Figure 10 shows the score distributions segregated by each of the experiment conditions. As
expected, the Human descriptions scored higher than any other method, both in terms of Contents
(𝑀 = 3.52) and Actions (𝑀 = 3.05). All XUI descriptions scored higher than those provided by the
Microsoft Cognitive Services API. Out of the three XUI description types, ‘simple’ scored slightly
higher than ‘detailed’ in terms of Contents (𝑀simple = 3.22 vs 𝑀detailed = 3.15) and vice versa in
terms of Actions (𝑀simple = 2.67 vs 𝑀detailed = 2.69). As observed, we can conclude that XUI and
Human descriptions performed similarly.

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

XUI Caption XUI Simple XUI Detailed MS Caption Human

a
s
s
e
s
s
m

e
n
t
s
c
o
re

variable

●

●

Contents
Actions

Fig. 10. Boxplot of user study results. Thick lines denote median values. Dots denote mean values. ‘MS
caption’ refers to the descriptions provided by the Microsoft Cognitive Services API.

We investigated whether there is any difference between each of the five conditions, for which
we use a linear mixed-effects (LME) model where each dependent variable (either Contents or
Actions) is explained by each condition and participants are considered random effects. An LME
model is appropriate here because the dependent variables are discrete. In addition, LME models
are quite robust to violations of several distributional assumptions [69].
We fit the LME models and compute the estimated marginal means for specified factors. We

then run pairwise comparisons (also known as contrasts in LME parlance) with Bonferroni-Holm
correction to guard against multiple comparisons. The difference between MS captions and any
of the other methods was significant with regards to both dependent variables (𝑝 < .001 in all
cases). This was so for XUI captions (𝑝 < .01 in all cases). The difference between XUI simple and
Human descriptions was non-significant for both dependent variables (𝑝 > .05). The difference
between XUI simple and detailed descriptions was non-significant for both dependent variables. All
other comparisons were statistically significant. We conclude therefore that (1) the three types of
XUI descriptions are perceived to describe the contents of the UI similarly, but only XUI’s ‘simple’
descriptions are on par with Human descriptions in this regard, and (2) ‘simple’ descriptions are
perceived to be as actionable as Human descriptions.

7 READABILITY ANALYSIS
We further evaluated our XUI method via objective readability measures, by analyzing the five
methods assessed in our user evaluation: XUI Caption, XUI simple, XUI detailed, MS Caption, and
Human.
5Lorem ipsum is a Latin-like placeholder text commonly used in web design, see https://www.lipsum.com/.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:17

Given the lack of ground-truth UI descriptions,6 we compute the usual metrics in NLG to assess
text diversity: running words (number of total words, including duplicates), number of unigrams
(unique words), and number of bigrams (sequences of two words). We also compute the uniqueness
score attained by each method, defined as the proportion of unique UI descriptions generated. This
score informs about the text variability of any captioning method, whether human or automatic.
We argue that the higher the uniqueness the better since, all things being equal, it indicates that
the method was able to generate a diverse set of UI descriptions. A uniqueness score of 100% means
that all the generated descriptions were different.
We then compute the Automated Readability Index (ARI) [71] attained by each method. ARI

is one of the most popular measures to assess comprehension of reading material. Concretely,
ARI was designed to gauge the understandability of any English text by estimating the US grade
level required to comprehend such text. ARI has better test-retest reliability than other readability
indices [75] and is calculated with the following formula:

ARI =
⌈
4.71 𝐶

𝑊
+ 0.5𝑊

𝑆
− 21.43

⌉
(3)

where𝐶,𝑊 , 𝑆 are the number of characters, words, and sentences, respectively, and ⌈·⌉ denotes the
ceiling operation. For this analysis, all sentences produced by each method are concatenated so
that we can consider a single text source per method, since ARI is not apt for very short texts, let
alone single sentences. The results of this experiment are reported in Table 5.

Method Running words Unigrams Bigrams Uniqueness Words/sentence Chars/word ARI

XUI Caption 4164 72 198 99.26 15.56 4.19 7
XUI simple 6605 143 356 98.88 24.78 4.32 12
XUI detailed 8132 158 364 100.0 30.23 4.09 13
MS Caption 1638 81 135 14.13 6.65 3.74 0
Human 7786 1620 4540 99.13 14.59 4.41 7
Table 5. Readability analysis results. ‘MS caption’ refers to the descriptions provided by the Microsoft
Cognitive Services API.

We can see that XUI descriptions are both diverse and variable, as indicated by the number of
generated words, whether total (running words) or unique (unigrams count), as well as the bigrams
count in the generated descriptions. We can also see that XUI descriptions perform similarly to
human-generated data, although human descriptions are more diverse than any automatic method,
which is understandable because XUI generates template-based descriptions and MS captions are
rather short. We can conclude, however, that our participants were not influenced by the system-
provided descriptions (i.e. they did not serve as a priming effect) and thus our user evaluation
procedure was adequate.
The similarity between XUI and human descriptions in terms of text variability is further

reflected by the uniqueness proportion scores, which range between 98ś100%. Note that none of the
evaluated methods optimize for uniqueness or diversity, as it would be straightforward to generate
(unintelligible) arbitrary strings and achieve a 100% score.

The unigrams/bigrams ratio has been reported as a proxy measure for evaluating the degree of
diversity in generative models in natural language processing [41], with a lower unigrams/bigrams
6Even if we could use our crowdsourced human captions, they must undergo manual revision to filter out potentially
low-quality contributions and clean up the texts.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:18 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

ratio indicating more diversity. The ratio is 0.39 for XUI on average (caption: 0.36, simple: 0.4,
detailed: 0.43), whereas it is 0.35 for human descriptions and 0.60 for MS captions. A chi-square
test of independence showed a significant association between the type of description generated
and the unigrams/bigrams ratio: 𝜒2 (4, 𝑁 = 1518) = 9.59, 𝑝 < .05, 𝜙 = 0.08. A post-hoc pairwise
test of proportions (Bonferroni-Holm corrected) revealed that the MS captions had a significantly
higher ratio than any other method (𝑝 < .05), indicating that MS captions are less diverse overall.
All other comparisons were not statistically significant.

We noticed that the Microsoft Cognitive Services API is unable to actually describe the UI
contents, and most of the time returns ‘A screenshot of a cell phone’. These results evidence that
state-of-the-art computational models of image captioning do not work for UIs. On the other hand,
XUI’s underlying template-based NLG engine is quite flexible when it comes to producing distinct
descriptions. A chi-square test of independence showed a significant association between the type
of description generated and the uniqueness score: 𝜒2 (4, 𝑁 = 1518) = 70.56, 𝑝 < .001, 𝜙 = 0.21. A
post-hoc pairwise test of proportions (Bonferroni-Holm corrected) revealed that the MS captions
had a significantly lower uniqueness score than any of the other methods (𝑝 < .001). All other
comparisons were not statistically significant.
As further evidenced by the computed readability indices, XUI descriptions are easy to under-

stand. There is a significant association between the type of description generated and ARI scores:
𝜒2 (4, 𝑁 = 1518) = 13.69, 𝑝 < .01, 𝜙 = 0.09. A post-hoc pairwise test (Bonferroni-Holm corrected)
revealed that the MS captions are the easiest to read overall (𝑝 < .01) but no difference was found
between MS and XUI captions. However, we should remind the reader that MS captions do not
really describe the UI. As a reference, an ARI score of 0 relates to a reading comprehension level
for Kindergarten children [71]. An ARI score of 7 relates to seventh grade students (12 years old)
whereas an ARI score of 13 relates to a reading level of college students (18 years old). Interest-
ingly, despite the fact that XUI’s ‘detailed’ descriptions have more words per sentence on average
than XUI’s ‘simple’ descriptions, their reading difficulty is only one level above. No statistically
significant difference between any of the three XUI methods and Human descriptions was found.
This experiment demonstrates that XUI descriptions are easily understandable, on par with

human descriptions. It also validates the need for new technical solutions to provide meaningful
descriptions of graphical user interfaces, since state-of-the-art captioning systems are unable to
fulfill this goal at present. Of course, all automated readability indices have some limitations,
and ARI is not an exception. For example, the intent of the reader7 is a key factor not taken
it into consideration by any readability index. Therefore, a formal user evaluation like the one
we conducted in the previous section is recommended to complement any automatic readability
analysis.

8 DISCUSSION, LIMITATIONS, AND FUTUREWORK
This work addresses the generation of user interface descriptions more deeply than the casual
descriptions a general image captioning model might produce, even with specialized training sets
that might appear in the future. To the best of our knowledge, this work is the first UI captioning
system that delivers understandable descriptions about what is in the UI (contents) and what can be
done (actions), without the need of machine learning datasets. Ultimately, XUI could have interesting
applications beyond the examples hinted in the Introduction section, namely: assisting first-time
users, ALT text generation, interactive AI, and describing screenshots in technical documentation.
For example, since our software is open source, we envision many applications to be developed
with XUI or its modules, including the following ones.

7In recreational reading, for example, a low readability index is preferred.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:19

XUI Caption: ‘A list app having a large image element placed at the top part of the screen.’
XUI Simple: ‘A list app with a large image element placed at the top area. You can see a list of elements,
typically arranged in rows.’
XUI Detailed: ‘The screenshot is a list screen. It shows a list of elements, typically arranged in rows. You
may notice a large image located at the top area.’
MS Caption: ‘A screenshot of a cell phone.’
Human: ‘List of elements about the song you’re hearing.’

XUI Caption: ‘A mediaplayer screen having a large background image element located at the center part
of the screen.’
XUI Simple: ‘The interface looks like a mediaplayer app with a large background image component
located at the center area of the screen. You can see a music or video playback functionality.’
XUI Detailed: ‘That app must be a mediaplayer screen. It can be noticed a music or video playback
functionality. You are likely to see a large background image placed at the center area of the screen.’
MS Caption: ‘Mike Zito talking on a cell phone screen with text.’
Human: ‘It’s the screenshot of a mediaplayer where you can see the singer and the image of the album.’

XUI Caption: ‘This screen must be a modal app having a large image element located at the left area.’
XUI Simple: ‘A modal app having a large image component ubicated at the left part. It shows a popup
window with additional content.’
XUI Detailed: ‘This interface must be a modal app. You can see a popup window with additional content.
You are likely to see a large image placed at the left area of the screen that you can possibly click.’
MS Caption: ‘A close up of text on a white background.’
Human: ‘The images are across the whole of the background of the app - the app is for beauty shopping.’

XUI Caption: ‘This screen must be a gallery app having a large image element located at the right area.’
XUI Simple: ‘The interface looks like a gallery screen having a large image element located at the right
part of the screen. It shows a grid-like layout with multiple images and text.’
XUI Detailed: ‘This screenshot must be a gallery app. It shows a grid-like layout with multiple images and
text. You are likely to see a large image located at the right area of the screen.’
MS Caption: ‘Taylor Swift, Usher, Jason Aldean are posing for a picture.’
Human: ‘It is clear and nice.’

XUI Caption: ‘That interface is a news screen with a large image element ubicated at the center area.’
XUI Simple: ‘This screen looks like a news app with a large image component situated at the center part.
It shows information about events.’
XUI Detailed: ‘The screenshot is a news screen. It shows information about events. You are likely to see a
large image situated at the center area of the screen.’
MS Caption: ‘A screenshot of a cell phone screen with text.’
Human: ‘Screenshot of a news screen with large images forming the bulk of each news item.’

XUI Caption: ‘The app looks like a terms app with a large text placed at the center area of the screen.’
XUI Simple: ‘This screen is a terms screen with a large text located at the center part. You can see a wall of
text, mostly likely describing legal conditions.’
XUI Detailed: ‘This interface is a terms screen. It can be noticed a wall of text, mostly likely describing
legal conditions. There is a large text situated at the center part of the screen.’
MS Caption: ‘A screenshot of a cell phone.’
Human: ‘The screenshot is of the terms and conditions for a trip, and gives different tariffs.’

Fig. 11. UI description examples from the test partition of our dataset. None of these UIs were used while
training XUI’s computational models. We also show the descriptions provided by the Microsoft Cognitive
Services API and our crowdsourcing participants. All examples were selected pseudo-randomly for a handful
of UI topics, removing duplicates, aimed at providing a diverse set of sample outputs for all the systems being
compared.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:20 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

Interactive captioning: XUI may be useful to understand interactive applications that dynam-
ically change their elements. Since the UI structure is already available at runtime, it is just
needed an additional pixel-based representation that can be acquired programmatically (e.g.
using the Canvas API, which is available both for Android and iOS apps as well as HTML5
websites).

Improved search and retrieval: Query-by-image retrieval models [10, 48] can be enhanced
by incorporating explicit information about the UI design, their contents, or the interactive
properties. This information should help disambiguate and improve search.

Smart tutorials: The concept of łUI toursž is very popular in web design [21], as a means to
provide contextual help. XUI could be used to describe individual elements and present this
information as tooltips, for example, in order to inform the users about the functional role of
each element in the UI.

Automatic UI tagging: Designers could query XUI’s underlying topic classifier and request
e.g. the top-3 most likely labels of a given UI layout design, in order to display that information
as inline tags in a web gallery.

Annotation interfaces: Our topic classifier can speed up the annotation process for new
UIs [39] by arranging the topics list from higher to lower probability (𝑛-best list), better
assisting the human annotator.

Tag cloud visualization: Designers can communicate graphically the 𝑛-best list of topics with
a tag cloud, where each tag is rendered with a font size proportional to the design topic
probability, so that larger tags would indicate higher importance.

Currently XUI is implemented as a command-line interface program written in Python. We
believe that XUI could potentially generalize to other graphical interfaces, since in most cases
the semantic information of the UI is either available by default (e.g. web pages) or can be easily
obtained by traversing the view hierarchy (e.g. mobile apps), usually represented by a document
object model tree. It could even be possible to use pixel-based methods to reverse engineer the
UI structure [13]. Nevertheless, if the semantic information is not available or cannot be reliably
computed, XUI can deliver a fallback description using only information from our topic classifier,
which just requires a UI screenshot as input. For example, the ‘simple’ description example shown
in Figure 1 would become: ‘This is a menu screen. It has a list of selectable options.’
One limitation of XUI is that the UI topic predictions are limited to 20 different categories,

therefore, if the design layout topic is not classified correctly, a wrong template would be populated
with data that eventually could confuse the user. This is an inherent limitation of any system
or method relying on a ‘chain of responsibility’ modules, since, ultimately, cascading errors are
likely to negatively impact the final UI descriptions. For XUI to cope with this issue, the verbs are
phrased in a way that hopefully inform the user about the likelihood of the descriptions, leaving
thus some room for flexibility. Figure 12 shows some examples of what could be considered as bad
descriptions.
Relying on templates instead of a learned decoder backbone can be seen as a rather rigid

approach to text generation. However, our templates do not rely on a slot-filling mechanism only,
but considers a declarative representation that provides more control over the generated text
while ensuring diversity. These capabilities were shown to produce understandable descriptions, as
evidenced by our readability experiments (Section 7), yet we cannot claim that XUI descriptions
would fit everyone. According to the achieved readability scores, XUI descriptions are likely to be
understandable to people aged 12ś18 and above, so there could be room for improvement regarding

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:21

XUI Caption: ‘A bare screen with a large background image element ubicated at the center part of the
screen.’
XUI Simple: ‘This screenshot could be a bare screen with a large background image located at the center
part. It has a largely empty area on screen.’
XUI Detailed: ‘The interface might be a bare screen. You should see a largely empty area on screen. You
can find a large background image located at the center area.’

XUI Caption: ‘Unknown screenshot.’
XUI Simple: ‘The interface is unknown.’
XUI Detailed: ‘That interface is unknown, however you are likely to see a large background image
ubicated at the center area of the screen which you can try to click.’

Fig. 12. Bad XUI description examples from the test partition of our dataset. Top: the UI is misclassified as a
‘bare’ screen. Bottom: the UI is classified as ‘other’, so no topic description is available, however, even in this
failure case, the detailed description provides an affordability hint.

how XUI templates are phrased. Further, the templates are fully customizable, so they can be
easily translated to any language, thereby providing support for an international audience. We
acknowledge, however, that some languages have challenging grammatical inflections so we leave
this translation task as an opportunity for future work.

Another exciting line of future work includes investigating few-shot and transfer learning using
the latest efforts in image captioning using cross-modal vision-and-language pre-training [29, 44, 51],
which have been trained on millions of images with accompanying captions. It should be possible
to fine-tune these kind of models with a small dataset such as the crowdsourced annotations we
have collected in our user study. We could even try to use the XUI templates for creating better
prompts that can guide large language models such as T5 [20] and the GPT family [9, 65].
We believe there is potential for our method to serve more specific target users, such as, for

example, the elderly or visually impaired users. As a first step, we deliberately decided to provide
the most generic application of our technique, which is high-level and task-free. Previous work
has investigated what do people with vision impairments expect to find in descriptions of natural
images [57, 74], however the UI domain has been largely overlooked. Additionally, we note there
is only a single screenshot to describe a given UI, however humans may provide different (and
better) captions when the available information increases. For example, users or developers of an
application have more context than a single screenshot to describe more informative UI captions.
Therefore, for future work, we plan to run different formative engagement tasks with specific user
groups in order to help us adapt XUI to their specific needs.

Finally, we plan to improve the actionability hints of XUI descriptions, since currently they only
inform whether an element is clickable/tappable, which may be insufficient information for some
users. Providing additional interactions with the UI, for example, could promote understandability
further. Additionally, describing the actual contents of an image could be important for contextual-
izing an interaction as well, thereby providing the user with more precise information about the
tasks that can be performed with the UI. Going forward, maybe XUI can be extended to take actual
eye fixations into account, in case a user is actively looking at the interface and the system can
interactively react on that kind of fixation, delivering an description that is tailored to the user’s
visual context, in real-time.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:22 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

9 CONCLUSION
We have introduced XUI, a novel automatic captioning method to create informative descriptions
of UIs that is fully controllable and does not rely on training datasets. Being able to describe any UI
screenshot in natural language is important to several user groups and applications, yet until now
it was not possible to do so successfully.
XUI builds upon computational models for topic classification and element saliency prediction

(łwhat to sayž) and template-based natural language generation (łhow to say itž). Together, these
capabilities allows XUI to provide high-level and task-free descriptions, making it thus the first
workable general-purpose technique to describe UIs in natural language automatically.

We found that the descriptions delivered by XUI are highly readable and perceived to accurately
describe the UI. Overall, based on our results, XUI’s ‘simple’ descriptions represent the best com-
promise solution between descriptive accuracy (Section 6) and readability (Section 7). Nevertheless,
we believe that we have barely scratched the surface of what is possible with XUI. Our software,
data, and computational models are available at https://luis.leiva.name/xui/.

ACKNOWLEDGMENTS
We acknowledge the computational resources provided by the Aalto Science-IT project. We thank
Homayun Afrabandpey, Daniel Buschek, Jussi Jokinen, and Jörg Tiedemann for reviewing an
earlier draft of this article. This work has been supported by the Horizon 2020 FET program of
the European Union through the ERA-NET Cofund funding (grant CHIST-ERA-20-BCI-001), the
European Innovation Council Pathfinder program (SYMBIOTIK project), and the Academy of
Finland (grants 291556, 318559, 310947).

REFERENCES
[1] A. Adadi and M. Berrada. 2018. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI).

IEEE Access 6 (2018).
[2] American Psychological Association. 2020. Publication Manual of the American Psychological Association (7th ed.).

American Psychological Association (APA).
[3] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. 2018. Bottom-Up and Top-Down

Attention for Image Captioning and Visual Question Answering. In Proc. CVPR.
[4] G. Angeli, P. Liang, and D. Klein. 2010. A simple domain-independent probabilistic approach to generation. In Proc.

EMNLP.
[5] N. Banovic, T. Grossman, J. Matejka, and G. Fitzmaurice. 2012. Waken: reverse engineering usage information and

interface structure from software videos. In Proc. UIST.
[6] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C. Miller, R. Miller, A. Tatarowicz, B. White, S. White, and T. Yeh.

2010. VizWiz: Nearly Real-Time Answers to Visual Questions. In Proc. UIST.
[7] J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M. Danielsson, and G. L. Hempton. 2006. WebInSight: Making Web

Images Accessible. In Proc. ASSETS.
[8] M. Borenstein. 2009. Effect sizes for continuous data. In The handbook of research synthesis and meta-analysis (2nd ed.),

H. Cooper, L. V. Hedges, and J. C. Valentine (Eds.). Sage Foundation.
[9] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S.

Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D.
Amodei. 2020. Language Models are Few-Shot Learners. In Proc. NeurIPS.

[10] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and R. Kumar. 2017. Rico: A Mobile App
Dataset for Building Data-Driven Design Applications. In Proc. UIST.

[11] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In
Proc. CVPR.

[12] M. Dixon and J. Fogarty. 2010. Prefab: Implementing Advanced Behaviors Using Pixel-based Reverse Engineering of
Interface Structure. In Proc. CHI.

[13] M. Dixon, D. Leventhal, and J. Fogarty. 2011. Content and Hierarchy in Pixel-based Methods for Reverse Engineering
Interface Structure. In Proc. CHI.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:23

[14] M. Dixon, A. Nied, and J. Fogarty. 2014. Prefab Layers and Prefab Annotations: Extensible Pixel-based Interpretation
of Graphical Interfaces. In Proc. UIST.

[15] P. L. Dognin, I. Melnyk, Y. Mroueh, J. Ross, and T. Sercu. 2019. Adversarial Semantic Alignment for Improved Image
Captions. In Proc. CVPR.

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly, J. Uszkoreit, and N. Houlsby. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In Proc. ICLR.

[17] A. Dutta, Y. Verma, and C. V. Jawahar. 2018. Automatic Image Annotation: The Quirks and What Works. Multimedia
Tools Appl. 77, 24 (2018).

[18] H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollar, J. Gao, X. He, M. Mitchell, J. Platt, L. Zitnick, and G.
Zweig. 2015. From captions to visual concepts and back. In Proc. CVPR.

[19] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier, and D. Forsyth. 2010. Every Picture
Tells a Story: Generating Sentences from Images. In Proc. ECCV.

[20] W. Fedus, B. Zoph, and N. Shazeer. 2021. Switch Transformers: Scaling to Trillion Parameter Models with Simple and
Efficient Sparsity. arXiv:2101.03961. (2021).

[21] J. Garcia. 2011. Ext JS in Action (2nd ed.). Manning Publications.
[22] A. Gatt and E. Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications

and evaluation. J. Artif. Intell. Res. 61 (2018).
[23] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. 2019. ImageNet-trained CNNs are

biased towards texture; increasing shape bias improves accuracy and robustness. In Proc. ICML.
[24] C. Gleason, A. Pavel, E. McCamey, C. Low, P. Carrington, K. M. Kitani, and J. P. Bigham. 2020. Twitter A11y: A Browser

Extension to Make Twitter Images Accessible. In Proc. CHI. 1ś12.
[25] J. Gu, J. Cai, G. Wang, and T. Chen. 2018. Stack-captioning: Coarse-to-fine learning for image captioning. In Proc.

AAAI.
[26] J. Harel, C. Koch, and P. Perona. 2007. Graph-Based Visual Saliency. In Proc. NIPS.
[27] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. In Proc. CVPR.
[28] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga. 2019. A Comprehensive Survey of Deep Learning for Image

Captioning. ACM Comput. Surv. 51, 6 (2019).
[29] X. Hu, X. Yin, K. Lin, L. Wang, L. Zhang, J. Gao, and Z. Liu. 2021. VIVO: Visual Vocabulary Pre-Training for Novel

Object Captioning. In Proc. AAAI.
[30] X. Hua and L. Wang. 2019. Sentence-Level Content Planning and Style Specification for Neural Text Generation. In

Proc. EMNLP.
[31] J. Huang and M. B. Twidale. 2007. Graphstract: Minimal Graphical Help for Computers. In Proc. UIST.
[32] T. Intharah, D. Turmukhambetov, and G. J. Brostow. 2017. Help, It Looks Confusing: GUI Task Automation Through

Demonstration and Follow-up Questions. In Proc. IUI.
[33] R. Kimchi. 1992. Primacy of wholistic processing and the global/local paradigm: a critical review. Psychol. Bull. 112

(1992).
[34] R. Kondadadi, B. Howald, and F. Schilder. 2013. A Statistical NLG Framework for Aggregated Planning and Realization.

In Proc. ACL.
[35] A. Kraskov, H. Stögbauer, and P. Grassberger. 2004. Estimating mutual information. Phys. Rev. E 69 (2004).
[36] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. S. Bernstein,

and F.-F. Li. 2017. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations.
Int. J. Comput. Vision 123 (2017).

[37] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L. Berg. 2011. Baby Talk: Understanding and
Generating Image Descriptions. In Proc. CVPR.

[38] R. Lebret, D. Grangier, and M. Auli. 2016. Neural Text Generation from Structured Data with Application to the
Biography Domain. In Proc. EMNLP.

[39] L. A. Leiva, A. Hota, and A. Oulasvirta. 2020a. Enrico: A High-quality Dataset for Topic Modeling of Mobile UI Designs.
In Proc. MobileHCI.

[40] L. A. Leiva, Y. Xue, A. Bansal, H. R. Tavakoli, T. Köroğlu, N. R. Dayama, and A. Oulasvirta. 2020b. Understanding
Visual Saliency in Mobile User Interfaces. In Proc. MobileHCI.

[41] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. 2016. A Diversity-Promoting Objective Function for Neural
Conversation Models. In Proc. NAACL.

[42] J. Li, D. Li, C. Xiong, and S. Hoi. 2022. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language
Understanding and Generation. arXiv:2201.12086. (2022).

[43] S. Li, G. Kulkarni, T. L. Berg, A. C. Berg, and Y. Choi. 2011. Composing simple image descriptions using web-scale
N-grams. In Proc. ACL.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:24 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

[44] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu, L. Dong, F. Wei, Y. Choi, and J. Gao. 2020. Oscar:
Object-Semantics Aligned Pre-training for Vision-Language Tasks. In Proc. ECCV.

[45] Y. Li, G. Li, L. He, J. Zheng, H. Li, and Z. Guan. 2020. Widget Captioning: Generating Natural Language Description
for Mobile User Interface Elements. In Proc. EMNLP.

[46] P. Liang,M. Jordan, andD. Klein. 2009. Learning Semantic Correspondences with Less Supervision. In Proc. ACL/IJCNLP.
[47] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár.

2014. Microsoft COCO: Common Objects in Context. In Proc. ECCV.
[48] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. 2018. Learning Design Semantics for Mobile Apps. In Proc.

UIST.
[49] J. Lu, C. Xiong, D. Parikh, and R. Socher. 2017. Knowing When to Look: Adaptive Attention via A Visual Sentinel for

Image Captioning. In Proc. CVPR.
[50] W. Luo, Y. Li, R. Urtasun, and R. Zemel. 2016. Understanding the Effective Receptive Field in Deep Convolutional

Neural Networks. In Proc. NIPS.
[51] Z. Luo, Y. Xi, R. Zhang, and J. Ma. 2022. VC-GPT: Visual Conditioned GPT for End-to-End Generative Vision-and-

Language Pre-training. arXiv:2201.12723. (2022).
[52] K. R. McKeown. 1985. Text Generation: Using Discourse Strategies and Focus Constraints to Generate Natural Language

Text. Cambridge University Press.
[53] S. W. McRoy, S. Channarukul, and S. S. Ali. 2000. YAG: A Template-Based Generator for Real-Time Systems. In Proc.

INLG.
[54] T. Miller. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267 (2019).
[55] V. S. Morash, Y.-T. Siu, J. A. Miele, L. Hasty, and S. Landau. 2015. Guiding Novice Web Workers in Making Image

Descriptions Using Templates. ACM Trans. Access. Comput. 7, 4 (2015).
[56] R. Moriyon, P. Szekely, and R. Neches. 1994. Automatic generation of help from interface design models. In Proc. UIST.
[57] M. R. Morris, A. Zolyomi, C. Yao, S. Bahram, J. P. Bigham, and S. K. Kane. 2016. łWith Most of It Being Pictures Now, I

Rarely Use Itž: Understanding Twitter’s Evolving Accessibility to Blind Users. In Proc. CHI.
[58] D. Navon. 1977. Forest before trees: The precedence of global features in visual perception. Cogn. Psychol. 9, 3 (1977).
[59] J. Novikova, O. Dušek, and V. Rieser. 2017. The E2E Dataset: New Challenges For End-to-End Generation. In Proc.

SIGDIAL.
[60] S. Pangoli and F. Paternó. 1995. Automatic generation of task-oriented help. In Proc. UIST.
[61] S. Pareddy, A. Guo, and J. P. Bigham. 2019. X-Ray: Screenshot Accessibility via Embedded Metadata. In Proc. ASSETS.
[62] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier, and S. Lazebnik. 2017. Flickr30K Entities:

Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. Int. J. Comput. Vis. 123, 1 (2017).
[63] D. Powers. 2011. Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation.

J. Mach. Learn. Technol. 2, 1 (2011).
[64] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger,

and I. Sutskever. 2021. Learning Transferable Visual Models From Natural Language Supervision. In Proc. ICML.
[65] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language Models are Unsupervised Multitask

Learners. Technical Report. OpenAi.
[66] K. Ramnath, S. Baker, L. Vanderwende, M. El-Saban, S. N. Sinha, A. Kannan, N. Hassan, M. Galley, Y. Yang, D. Ramanan,

A. Bergamo, and L. Torresani. 2014. AutoCaption: Automatic caption generation for personal photos. In Proc. WACV.
[67] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. 2016. Sequence level training with recurrent neural networks. In

Proc. ICLR.
[68] E. Reiter and R. Dale. 2000. Building natural language generation systems. Cambridge University Press.
[69] H. Schielzeth, N. J. Dingemanse, S. Nakagawa, D. F. Westneat, H. Allegue, C. Teplitsky, D. Réale, N. A. Dochtermann,

L. Z. Garamszegi, and Y. G. Araya-Ajoy. 2020. Robustness of linear mixed-effects models to violations of distributional
assumptions. Methods Ecol. Evol. 11, 9 (2020).

[70] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. 2019. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. Int. J. Comput. Vision 128, 2 (2019).

[71] R. J. Senter and E. A. Smith. 1967. Automated Readability Index. Technical Report AMRL-TR-6620. Wright-Patterson
Air Force Base.

[72] C. Shen and Q. Zhao. 2014. Webpage Saliency. In Proc. ECCV.
[73] K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proc.

ICLR.
[74] A. Stangl, M. R. Morris, and D. Gurari. 2020. łPerson, Shoes, Tree. Is the Person Naked?ž What People with Vision

Impairments Want in Image Descriptions. In Proc. CHI.
[75] G. Thomas, R. D. Hartley, and J. P. Kincaid. 1975. Test-Retest and Inter-Analyst Reliability of the Automated Readability

Index, Flesch Reading Ease Score, and the Fog Count. J. Lit. Res. 7, 2 (1975).

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:25

[76] D. Todorovic. 2008. Gestalt principles. Scholarpedia 3, 12 (2008).
[77] K. Tran, X. He, L. Zhang, J. Sun, C. Carapcea, C. Thrasher, C. Buehler, and C. Sienkiewicz. 2016. Rich Image Captioning

in the Wild. In Proc. CVPR.
[78] S. Wiseman, S. Shieber, and A. Rush. 2017. Challenges in Data-to-Document Generation. In Proc. EMNLP.
[79] S. Wiseman, S. M. Shieber, and A. M. Rush. 2018. Learning Neural Templates for Text Generation. In Proc. EMNLP.
[80] T. Yeh, T.-H. Chang, and R. C. Miller. 2009. Sikuli: Using GUI Screenshots for Search and Automation. In Proc. UIST.
[81] T. Yeh, T.-H. Chang, B. Xie, G. Walsh, I. Watkins, K. Wongsuphasawat, M. Huang, L. S. Davis, and B. B. Bederson. 2011.

Creating Contextual Help for GUIs Using Screenshots. In Proc. UIST.
[82] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. 2016. Image Captioning with Semantic Attention. In Proc. CVPR.
[83] S. Zedeck (Ed.). 2013. APA Dictionary of Statistics and Research Methods (1st ed.). American Psychological Association

(APA).
[84] X. Zhang, L. de Greef, A. Swearngin, S. White, K. I. Murray, L. Yu, Q. Shan, J. Nichols, J. Wu, C. Fleizach, A. Everitt,

and J. P. Bigham. 2021. Screen Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels. In
Proc. CHI.

A ALTERNATIVE CAPTIONING MODELS
In the following we analyze and provide example outputs of other image captioning models that
could be used instead of the Microsoft Cognitive Services API. All these models have reported state-
of-the-art results on a wide range of vision-language tasks, including image captioning, therefore
they are considered strong baselines worth of investigation for UI captioning.

A.1 Models overview
A.1.1 BLIP. This is a new Vision-Language Pre-training (VLP) model which transfers flexibly to
both vision-language understanding and generation tasks [42]. BLIP effectively utilizes a large-scale
but noisy web dataset by bootstrapping the captions, as explained next.
BLIP is jointly trained on 129M images with three vision-language objectives: image-text con-

trastive learning (captioning), image-text matching, and image-conditioned language modeling. To
improve captioning performance, a captioner produces synthetic captions given web images, and a
filter removes noisy captions from both the original web texts and the synthetic texts.

A.1.2 CLIP. Contrastive Language-Image Pre-Training (CLIP) is a deep generative model trained
on a variety of <image,text> pairs [64]. It can be instructed in natural language to predict the most
relevant text snippet, given an image, without directly optimizing for the task, similarly to the
zero-shot capabilities of the GPT famiy [65] and GPT-3 [9].

CLIP is trained on 400M image-text pairs from the internet. The implementation we have tested
uses a dual encoder for representation learning comprising a ResNet-based image encoder and
a Transformer-based text encoder. Then, it uses GPT-2 [65] as the language model decoder to
generate captions for a given input image.

A.1.3 VC-GPT. Visual Conditioned GPT (VC-GPT) is a new model for generative vision-and-
language using pre-trained models [51]. It is fine-tuned to the Visual Genome image-caption
corpus, which comprises 110k distinct images [36]. The implementation we have tested uses a
Vision Transformer (ViT) [16] as the image encoder and GPT-2 [65] as the language model decoder.
This model has shown to outperform previous state-of-the-art image captioning models such as
BUTD [3] and Oscar [44].

A.2 Readability analysis
We performed the same analysis as in Section 7, to better compare the performance of these
alternative captioning systems with the results provided in Table 5. That is, we captioned all the UIs
in the same test partition of the Enrico dataset from our topic classification experiments (Section 5.1)
and computed the same evaluation metrics.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:26 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

Method Running words Unigrams Bigrams Uniqueness Words/sentence Chars/word ARI

BLIP 2616 400 821 87.36 9.74 3.75 2
CLIP 2736 460 965 98.51 10.18 3.71 2
VC-GPT 2719 167 379 50.93 9.83 3.75 2

Table 6. Readability analysis results of the alternative image captioning models.

As can be observed, the three captioning systems produce more diverse and unique outputs than
MS Captions, however, as shown in the next section, they are unable to describe properly what
is in the interface (what role does the UI plays for interaction) and what the user can do with it
(what does the UI afford). The ARI of these systems is 2, suggesting that the generated captions are
suitable to first grade students. Remember that Human captions had an ARI of 7, whereas XUI’s
ARI ranged between 7 and 13.

A.3 Sample outputs
In the following we provide a series of output examples for different UI topics in the Enrico dataset,
aimed at covering a wide range of the UI classes we have considered in our work; see Figure 6.
All examples were chosen at random, using 42 as RNG seed and shuffling the test partition of the
Enrico dataset to get the UI identifiers. Then, the images corresponding to these UI identifiers were
captioned with the three systems previously described. Since the resulting automated captions were
all lowercased, we applied the following post-processing: (1) uppercase the first letter of the first
word in the caption and (2) ensure there the last word the caption ends with a dot. As a reference,
in the following figures we provide the output of ‘XUI Simple’, to ease comparisons.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Describing UI Screenshots in Natural Language 1:27

BLIP: ‘A cell phone with a text message on the screen.’
CLIP: ‘A picture of a person using a phone.’
VC-GPT: ‘A computer screen with a picture of a penguin on it.’

XUI Simple: ‘A chat screen with an icon component placed at the top-left part. It shows a messaging
functionality to chat with friends.’

BLIP: ‘A cell phone with a bunch of news on it.’
CLIP: ‘A picture of a person using a phone.’
VC-GPT: ‘A laptop computer sitting on top of a desk.’

XUI Simple: ‘The app is a news app having a text placed at the center area of the screen. It has information
about events.’

BLIP: ‘A pair of gold bracelets on a cell phone.’
CLIP: ‘A display of a variety of sweet and savory treats.’
VC-GPT: ‘A poster with a picture of a cat on it.’

XUI Simple: ‘This screenshot looks like an editor app with a large image component located at the center
part of the screen. You may notice a functionality to edit or create content.’

BLIP: ‘A music player with a guitar in front of a lake.’
CLIP: ‘A man playing a guitar in front of a distorted picture.’
VC-GPT: ‘A man is playing a video game on a tv.’

XUI Simple: ‘The interface looks like a mediaplayer app with a large background image component
located at the center area of the screen. You can see a music or video playback functionality.’

BLIP: ‘A cell phone with the text super beam send on it.’
CLIP: ‘A picture of a bunch of items on a desk.’
VC-GPT: ‘A computer screen with a picture of a person on it.’

XUI Simple: ‘A menu app having a large image component located at the top area. You may notice a list of
selectable options.’

BLIP: ‘A cell phone with the name wandelo on it.’
CLIP: ‘A picture of a computer screen with a price tag.’
VC-GPT: ‘A computer screen with a picture of a person on it.’

XUI Simple: ‘A login screen having a large text button located at the center area. You may notice some
input fields that you must fill in to access the app.’

BLIP: ‘A close up of a cell phone on a table.’
CLIP: ‘A black computer keyboard with a screen of a computer.’
VC-GPT: ‘A black and white tv sitting on top of a table.’

XUI Simple: ‘A camera app having a large image placed at the bottom part of the screen. It shows a
functionality to take photos.’

Fig. 13. Examples of alternative captioning models. As a reference, the output of ‘XUI Simple’ is also provided
in each case, to ease comparisons.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

1:28 Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta

BLIP: ‘A cell phone with a picture of a woman’s lips.’
CLIP: ‘A series of photographs showing a woman brushing her teeth.’
VC-GPT: ‘A collage of photos of a woman using a cell phone.’

XUI Simple: ‘This interface must be a gallery app having a large image located at the top area. You may
notice a grid-like layout with multiple images and text.’

BLIP: ‘The colourgo pro app on a smartphone.’
CLIP: ‘A meter with numbers on it that say "F." and "K."’
VC-GPT: ‘A computer screen with a picture of a penguin on it.’

XUI Simple: ‘The interface looks like a form screen having a text component located at the top area of the
screen. You may notice some input fields to enter data.’

BLIP: ‘A cell phone with a text message on it.’
CLIP: ‘A picture of a man on a computer.’
VC-GPT: ‘A blurry picture of a person typing on a computer.’

XUI Simple: ‘That screen must be a terms app with a large image located at the center part. You may
notice a wall of text, mostly likely describing legal conditions.’

BLIP: ‘A wooden table with a keyboard and a phone.’
CLIP: ‘A picture of a keyboard and a menu.’
VC-GPT: ‘A computer screen with a picture of a person on it.’

XUI Simple: ‘That app must be a search screen having a large background image situated at the center
part of the screen. You may notice a search functionality.’

BLIP: ‘A cell phone with a message on the screen.’
CLIP: ‘A picture of a coffee cup with a picture of a person on it.’
VC-GPT: ‘A computer screen with a picture of a person on it.’

XUI Simple: ‘A tutorial screen with a large image component situated at the left part. It shows introductory
information about the app.’

BLIP: ‘A picture of a city street at night.’
CLIP: ‘A cell phone with a clock and arrow keys.’
VC-GPT: ‘A blurry photo of a city street.’

XUI Simple: ‘That screen must be a dialer screen having a text placed at the top area of the screen. It
shows a keypad to enter numbers.’

BLIP: ‘A picture of a red sports car in a garage.’
CLIP: ‘A picture of a cell phone with a picture of a person holding it.’
VC-GPT: ‘A close up of a picture of a refrigerator.’

XUI Simple: ‘That screenshot looks like a profile screen having a large image component ubicated at the
center area. You can see information about a user or a product.’

Fig. 14. Examples of alternative captioning models (cont.) As a reference, the output of ‘XUI Simple’ is also
provided in each case, to ease comparisons.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

