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Abstract—Alzheimer’s disease (AD) is a cognitive disorder,
marked by memory loss and impaired reasoning, that requires
early detection methods to better manage and potentially slow
down the disease’s progression. Recent advances in machine
learning have offered new possibilities for AD detection using
handwriting analysis, however previous work has considered only
one type of input source, e.g. clock or pentagon drawings. Here
we propose to develop an efficient method for detecting AD’s
early symptoms using Deep Feature Concatenation (DFC) models
considering multiple handwriting sources: pentagon drawings,
self-reported sentences, and signatures. Substantial performance
improvements were observed when considering all input sources
together with data augmentation techniques. For example, clas-
sification accuracy increased from 60% (best model, without
data augmentation) to 80% (DFC and data augmentation). Our
findings show that the use of diverse input sources can lead to
an efficient and cost-effective method for early AD detection.
Looking forward into the future, our study highlights the
potential of DFC in supporting home-based healthcare diagnoses
which is a crucial step in integrating artificial intelligence into
healthcare practices.

Index Terms—Deep Learning; Convolutional Neural Networks;
deep feature concatenation; dementia; image processing.

I. INTRODUCTION AND RELATED WORK

Dementia is a condition primarily characterized by a gradual
and irreversible decline in cognitive ability, which results in
memory loss and language impairment that negatively affect
the daily lives of the elderly [1]. The loss of neurons in various
regions of the nervous system causes this neurodegenerative
disorder, among which Alzheimer’s disease (AD) is the most
prevalent form.

Since currently there is no known cure for AD, the im-
portance of an accurate and timely diagnosis of dementia
cannot be overstated, as it is the cornerstone for implement-

ing effective treatment and providing necessary support for
patients and their families. Traditional diagnostic methods,
on the other hand, can be subjective and time-consuming,
since they require multiple tests, including expensive imaging
techniques such as magnetic resonance imaging, invasive tests
such as serological or cephalorachidian fluid analysis, and
neuropsychological tests by a highly trained professional.

In light of these challenges, the development of automated,
objective screening methods for dementia is a priority in the
quest for efficient and precise diagnosis of dementia. Notably,
the most beneficial methods would be non-invasive and user-
friendly in order to minimize any additional burden on the
individuals undergoing the diagnosis.

In digital medicine, there is growing interest in using deep
learning (DL) models, in particular Convolutional Neural Net-
works (CNNs), to automatically score cognitive impairment
tests instead of traditional manual methods. More concretely,
transfer learning has been shown to enhance the performance
of pre-trained CNNs in image classification tasks [2], [3], thus
suggesting its potential for clinical applications.

Recent studies [4]–[6] have demonstrated the effectiveness
of CNNs in analyzing patients’ cognitive function assessment
over various popular tests, including e.g. the Pentagon Draw-
ing Test (PDT) [7], the Clock Drawing Test (CDT) [8]–[10],
and the Rey–Osterrieth Complex Figure Test-copy (RCFT) [6].
Recent work proposed a CNN-based method for the automatic
diagnosis of cognitive impairment based on CDT drawings [5]
that were classified into healthy and non-healthy categories,
demonstrating its potential for implementation in hospitals and
clinics, particularly in resource-limited settings.

The ability of CNNs to learn complex image features and
patterns associated with cognitive functioning makes these
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Fig. 1: Final output of image preprocessing which shows in the blue box (left side): a) prompting pentagon on top with
participants’ drawings at the bottom; b) final images after preprocessing. Structure of the proposed method on the red box
(right side).

algorithms promising tools for developing objective and effi-
cient diagnostic methods for dementia screening. Despite the
drawing tests’ proven ability to accurately predict cognitive
impairment, they are not sufficient on their own to provide a
comprehensive assessment of the user’s overall cognitive state.

Despite the substantial progress made in this field on
single input sources (e.g. CDT [5], [9] and PDT [4], [7]),
to our knowledge, concatenation-based models (i.e. models
considering multiple input sources) have not been considered
so far in AD screening contexts. Concatenation-based models
have primarily been used in clinical work that involves the
analysis of medical images such as fMRI [11]. However,
handling multiple input sources present unique challenges due
to their variability in terms of styles, shapes, etc. Addition-
ally, they may contain irrelevant or noisy information that
could affect classification accuracy. It is therefore essential
to develop methods for effectively extracting and combining
relevant features from these images in order to ensure accurate
classification.

In response to this need, we propose a deep feature concate-
nation (DFC) method which enables the efficient combination
of features derived from various CNN models. Addition-
ally, since clinical datasets are typically very small for DL
standards, we propose simple data augmentation techniques
to handle various handwriting data sources, and the use

of the Structural Similarity Index Measure (SSIM) [12] to
quantify the quality of the augmented data. Our experiments
show significant improvements in classification performance
in several scenarios, as presented and discussed later. Taken
together, our contributions represent a potential pathway to
assist practitioners in better detecting early symptoms of AD
using handwriting data, potentially reducing the variability
linked to human subjectivity when interpreting clinical data,
and ultimately supporting home-based healthcare diagnosis.

II. METHOD

We studied state-of-the-art DL models (pre-trained CNNs
and a custom CNN) for classifying AD disease according
to various handwriting tasks. Building on previous work
that showed the effectiveness of DFC in other medical do-
mains [13], [14], we studied this approach in the context of
handwriting. Figure 1 summarizes our method. In a nutshell,
we use various CNN models to automatically extract features
from handwritten images and then concatenate those features
via DFC. The concatenated feature vectors are finally classified
via a softmax function that predicts a probability distribution,
followed by the argmax operation that selects the class with
the highest probability.
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A. CNN architectures

CNNs have been remarkably successful across a range of
image-based classification tasks, particularly in the health-
care domain(e.g., [15]). Transfer learning, particularly fea-
ture transfer wherein features are extracted from pre-trained
models, is a common approach for adopting these models
for specific tasks [16]. For our study, we selected four pre-
trained models that have proven their efficacy in the medical
domain [17]. Further, to broaden the versatility of our ap-
proach, we also added a custom CNN model that we describe
below.

• VGG-16 [18]: Developed by the Visual Geometry Group
(VGG) in Oxford, VGG-16 is a deep neural network
comprising 16 CNN layers with a 3x3 kernel, followed by
three fully connected (FC) layers. Noted for its simplicity
and effectiveness in feature extraction.

• ResNet-152 [19]: This is a deep architecture, with 152
CNN layers. It achieves an error rate of 3.5% and uses
skip connections between CNN layers to achieve its
excellent performance [19].

• DenseNet-121 [20]: This is a 121-layer deep CNN model
that uses a “dense” connectivity pattern between layers.
This configuration allows each layer to have direct access
to the output of all preceding layers. The architecture
includes CNN layers with 7x7 kernels and DenseBlocks
containing interconnected CNN layers with 1x1 and 3x3
kernels.

• EfficientNet [21]: This is a CNN architecture that em-
ploys a scaling technique to harmonize depth, width,
and resolution, leading to improved performance and
efficiency. With its ability to outperform with fewer
parameters, EfficientNet is frequently chosen for appli-
cations with limited computational resources [21].

• Custom CNN: It comprises five CNN layers, each with
32 filters of size 5, followed by a pooling layer, an
FC layer, and Rectified Linear Unit (RelU) layers for
all layers except the output layer, which uses linear
activation. To avoid overfitting, a dropout rate of 0.1 was
implemented after each CNN layer. We explored various
model configurations during our research, however, most
of them did not show satisfactory results. For example,
removing one or two layers did not result in better
performance, it even led to overfitting issues, which we
resolved by introducing the Dropout layers.

III. EXPERIMENTS

A. Participants

We recruited 85 participants from the Memory Unit of
the Hospital Clinico San Carlos (HCSC) in Madrid. The
participants’ ages ranged from 61 to 88 years, with a mean of
73.92 ± 6.78 years. Statistical analysis revealed no significant
differences in age between the healthy group, the mild AD
group, and the moderate AD group (p > .05). The study
included 35 female and 50 male participants.

TABLE I: Demographics of Study Participants (mean±SD).

Attr. Healthy Mild AD Moderate AD

Pentagon 30 3 3

Sentence 30 3 3

Signature 29 22 15

Total 89 28 21

Age 72.4 ± 6.07 81.33 ± 4.62 81.66 ± 2.32

MMSE 28.17 ± 2.15 23 ± 2.65 19 ± 2.01

Gender Female = 35, Male = 50

Following the National Institute of Neurological and Com-
municative Disorders and Stroke (NINCDS), the Alzheimer’s
Disease and Related Disorders Association (ADRDA) work-
group [22], and the Statistical Manual of Mental Disorders
V (DSM V) guidelines [23], cognitively impaired patients
were divided into two groups: mild AD and moderate AD.
The demographic information, which included age and gender,
along with the clinical information for each participant and
Mini-Mental State Examination (MMSE) [24] scores, are
presented in Table I.

Participants with MMSE scores above 26 were considered
cognitively healthy. The MMSE scores for participants di-
agnosed with cognitive impairment ranged from 25 to 17.
Following standard practice [25], we excluded participants
with a medical history of neurological or psychiatric disorders,
serious medical conditions, or systemic disorders affecting
vision. Additionally, we excluded those with ophthalmological
conditions such as glaucoma or suspected glaucoma, media
opacity, or retinal diseases to avoid biases caused by the vision
problems of the participants.

B. Datasets

During the cognitive assessment tests, neuropsychologists
used various tools to evaluate the cognitive performance of the
participants. Among these, we rely on the PDT subtest of the
MMSE results, which assessed visuoconstructional skills and
cognitive impairment. The total number of collected images is
138, of which 30 images from the pentagon and sentence parts
were removed from the healthy group because of the very low
quality of the scanned images (see Figure 2).

Following the PDT protocol, participants were instructed to
copy two overlapping pentagons with interlocking shapes to
form a rhombus. In order to gain a more holistic understanding
of the participants’ cognitive abilities, the cognitive assess-
ment incorporated further handwriting data (e.g., sentence and
signature) from the same participant. Below each pentagon
drawing, participants were requested to write a sentence of
their choice and provide a signature on an A4-size blank paper
(see Figure 1a).

The paper-and-pencil drawings of both healthy subjects and
patients were scanned in PDF format and saved as PNG files.
Subsequently, we converted the PNG images to grayscale
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(a) Pentagon

(b) Sentence

Fig. 2: Example of badly scanned images.

format, resized them to the standard dimensions of 224×224
pixels, and removed noise using the “pad” (to get them in the
same shape) and “canny” (for edge detection of images) oper-
ations as provided by the OpenCV library (see Figure 1b). We
then removed low-quality images by manual inspection and the
remaining images were labeled as either ’healthy’, ’mild AD’,
or ’moderate AD’. The last two categories correspond to AD
patients, which allows us to conduct two kinds of experiments:
binary (patient vs healthy) and multiclass (healthy vs mild AD
vs moderate AD) classification tasks.

One of the challenges in clinical settings is the lack of
large datasets, which may potentially hinder the success of DL
models. To address this limitation, we used the Albumentations
open-source toolkit [26] to augment the handwritten images
for model training and evaluation. We applied the following
data augmentation techniques: elastic transformations, grid
distortions, horizontal flipping, translation, and rotations to the
image (see Figure 3). Note that not all data augmentations
make sense in our data, given the nature of our grayscale
handwritten images. For example, changing hue or inverting
colors would do more harm than good.

The resulting dataset, after data augmentation, was parti-
tioned into the train, validation, and test splits using stratified
sampling, to ensure that each partition reflects the same data
distribution as in the original dataset. The total size of our
dataset increased to 240 images: 120 corresponding to healthy
individuals and 120 to patients, among whom 66 represented
mild AD and 54 moderate AD.

We used SSIM [12] to measure the quality between original
and augmented images. This method uses sliding windows to
compare structural distortions between two images. An SSIM
value of 1 indicates that the two images are identical, whereas
a value of 0 indicates that the two images are completely
dissimilar. In our case, a high SSIM value between the original
and augmented images implies that the augmentation process
has successfully preserved the original images’ structural
information and visual quality. In contrast, a low SSIM value
would suggest that the augmented image differs significantly
from the original image and may not be of sufficient quality
for the intended use.

As shown in Figure 4, our results reported SSIM values
between 0.6 and 0.8, suggesting that the augmented images
were reasonable variants (not near-duplicates) of the original
data. In contrast, when using all available augmentation tech-
niques provided by the Albumentations toolkit, the distribution
of SSIM values is comprised of values between 0.1 and 0.7,
indicating that the augmented images are much more different
than the original images, which is not desirable in our research.

As hinted previously, it is important to note that not all
data augmentation techniques will provide advantages. Each
technique has its own strengths and weaknesses, and its utility
often depends on the specific dataset and the task at hand. As
illustrated in Figure 4 some augmentation methods produce
images that correlate better with the original images. This
usually enhances the learning process and potentially leads
to more accurate and generalizable models [27]. Conversely,
other methods might introduce noise or misleading patterns
into the data, confounding the learning process and potentially
leading to poorer performance. This shows that the chosen
augmentation positively influences model learning and per-
formance, while simultaneously reducing the likelihood of
adverse or neutral impacts.

C. Model training

All models were trained on the training set for 100 epochs,
using early stopping with 10 epochs as a form of regular-
ization. Early stopping prevents overfitting, maintaining the
optimal model weights before the model starts memorizing
the training data. We used the popular Adam optimizer with
variable learning rates (see next section) and categorical cross-
entropy as a loss function in multiclass classification exper-
iments. For binary classification experiments, we used the
binary cross-entropy loss function.

D. Evaluation

The performance of our models was measured using two
metrics: Accuracy and area under the receiver operating char-
acteristic curve (AUC). On the one hand, Accuracy refers to
the ratio of correctly classified patients to the overall number
of participants. It serves as a straightforward measure of the
overall performance of the classification models. On the other
hand, AUC illustrates the relationship between sensitivity (the
true positive rate) and specificity (the true negative rate) for
any given classification model. High AUC values indicate that
the model possesses a strong discriminatory capacity between
classes (e.g., healthy subjects vs patients).

Continuing our discussion about the selected metrics, it is
essential to note that each of them brings forth unique insights
into the performance of our models. While Accuracy offers a
general view of the model’s capability to differentiate between
classes, AUC provides a deeper understanding of the model’s
reliability across various classification thresholds, proving in-
valuable in scenarios where the cost of misclassification can be
substantial. Hence, the integration of these two metrics serves
as a comprehensive approach to evaluating and interpreting
the performance of our models in a robust manner.
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Fig. 3: Examples of applying selected data augmentation techniques on different input sources. From left to right: Horizontal
Flip, Elastic transform, Rotation, Grid distortion, and Translation offset.

Fig. 4: SSIM distributions. Dashed plots correspond to the results considering all the augmentation techniques collectively (All
aug.). The selected augmentation (Sel. aug.) techniques are Elastic transform (e), Rotation (r), Grid distortion (g), Horizontal
flip (f), and Translation offset (t). We used e+g+r+f+t for Pentagon, e+g+t for Sentence, and e+t for Signature.

IV. RESULTS AND DISCUSSION

We discuss the experimental results for both binary and
multiclass classification settings. The results are based on CNN
models that were trained with the following hyperparameters:
number of epochs (100), batch size (16), dropout (0.1), weight
decay (0.01), and learning rate (0.0001 to 0.1).

Figure 5 and Table II show the results for different model
combinations. We use the following nomenclature: “model A
+ model B” to indicate that “model A” was used to process
Pentagon images and that “model B” was used to process
both sentences and signatures. As can be observed, it is clear
that our DFC approach of concatenating all input sources is
significantly superior to any model that considers fewer input
sources; see Table II.

Overall, most of our DFC models are considered to improve
substantially after data augmentation, except VGG-16 for both
binary and multiclass classification, as observed in Figure 5.
On the other hand, we can see that the combination of our
custom CNN (for processing Pentagon images) and Efficient-
Net (for processing sentences and signatures) is the one that
achieves the highest accuracy: 93% and 80% for binary and
multiclass classification, respectively. In terms of AUC, the
combination of EfficientNet models (EffNet+EffNet) is the

best performer, although it is only 6 percentual points higher
than our Custom+EffNet model.

Our results show that concatenated-based CNN models
with augmented data outperform previous studies that did not
use concatenated-based models with augmentation (e.g., [7]).
These findings suggest that the combination of custom CNN
and EfficientNet (Custom + EffNet) is a promising option for
automatically evaluating handwriting tasks.

Overall, our findings have the potential to improve the ac-
curacy of AD detection and treatment outcomes. Importantly,
our DFC model does not need a large number of data, which
means that we can reach a robust classifier for detecting AD
patients. These findings underline the substantial role data
augmentation plays in boosting model performance and further
demonstrate the benefits of using diverse input sources in the
performance of the models.

V. CONCLUSION AND FUTURE WORK

We have successfully developed a robust and efficient
model, capable of accurately classifying handwritten images
into healthy individuals and AD patients ranging from mild to
moderate severity. Our research primarily focused on evalu-
ating the potential improvement in classification performance
through the incorporation of handwriting data from diverse
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Fig. 5: Accuracy and AUC results before and after data augmentation considering all input sources (pentagon, sentence,
and signature), both for binary (2 classes, leftmost plot) and multiclass (3 classes, rightmost plot) classification experiments.
Dashed lines denote the performance of a random classifier, as a way to illustrate the empirical lower bound in classification
performance.

TABLE II: Performance results of other input source combinations before and after data augmentation: Pentagon+Sentence
(abbreviated as Pen+Sen), Pentagon+Signature (Pen+Sig), and Sentence+Signature (Sen+Sig). We use the following nomen-
clature: “model A + model B” to indicate that “model A” was used to process the first input source (e.g. Pentagon) and “model
B” was used to process the second input source (e.g. Sentence).

Custom +
VGG

Custom +
ResNet

Custom +
DenseNet

Custom +
EffNet

VGG +
VGG

ResNet +
ResNet

DenseNet +
DenseNet

EffNet +
EffNet

Acc. | AUC Acc. | AUC Acc. | AUC Acc. | AUC Acc. | AUC Acc. | AUC Acc. | AUC Acc. | AUC

B
in

ar
y B

ef
or

e Pen+Sen 0.67 | 0.66 0.6 | 0.6 0.4 | 0.4 0.66 | 0.67 0.6 | 0.61 0.6 | 0.6 0.8 | 0.89 0.67 | 0.76

Pen+Sig 0.6 | 0.83 0.6 | 0.6 0.8 | 0.83 0.8 | 0.79 0.6 | 0.59 0.6 | 0.6 0.73 | 0.73 0.93 | 0.92

Sen+Sig 0.6 | 0.78 0.6 | 0.6 0.4 | 0.4 0.87 | 0.85 0.6 | 0.64 0.6 | 0.6 0.4 | 0.4 0.8 | 0.84

A
ft

er

Pen+Sen 0.8 | 0.79 0.6 | 0.64 0.4 | 0.4 0.87 | 0.93 0.4 | 0.4 0.93 | 0.93 0.8 | 0.8 0.93 | 0.93

Pen+Sig 0.1 | 0.1 0.93 | 0.93 0.87 | 0.86 0.93 | 0.92 0.6 | 0.6 0.6 | 0.6 0.93 | 0.92 0.4 | 0.4

Sen+Sig 0.4 | 0.43 0.53 | 0.51 0.93 | 0.93 0.93 | 0.92 0.6 | 0.6 0.47 | 0.42 0.6 | 0.6 0.93 | 0.93

M
ul

tic
la

ss B
ef

or
e Pen+Sen 0.2 | 0.52 0.6 | 0.7 0.2 | 0.40 0.6 | 0.74 0.4 | 0.58 0.2 | 0.4 0.6 | 0.7 0.8 | 0.89

Pen+Sig 0.27 | 0.48 0.6 | 0.7 0.2 | 0.59 0.73 | 0.78 0.53 | 0.63 0.2 | 0.4 0.6 | 0.72 0.87 | 0.9

Sen+Sig 0.2 | 0.4 0.6 | 0.7 0.6 | 0.69 0.93 | 0.94 0.6 | 0.7 0.6 | 0.7 0.6 | 0.72 0.73 | 0.83

A
ft

er

Pen+Sen 0.6 | 0.78 0.73 | 0.81 0.87 | 0.91 0.87 | 0.92 0.8 | 0.89 0.8 | 0.88 0.93 | 0.95 0.93 | 0.96

Pen+Sig 0.4 | 0.57 0.8 | 0.87 0.93 | 0.95 0.93 | 0.96 0.8 | 0.89 0.8 | 0.88 0.93 | 0.96 0.93 | 0.96

Sen+Sig 0.4 | 0.58 0.8 | 0.87 0.8 | 0.9 0.93 | 0.95 0.8 | 0.89 0.8 | 0.88 0.93 | 0.95 0.93 | 0.95

sources and feature concatenation. Our findings put forward
the efficacy of the combination of DFC and data augmentation
techniques in developing more holistic and precise models for
AD screening.

The potential implications of our study are manifold, with
particularly important implications within clinical settings.
The developed DFC model enhances healthcare providers’
decision-making capabilities, especially for untrained profes-
sionals, fostering improved patient care and mitigating the

likelihood of unnecessary procedures or subjective diagnoses.
As a screening method, it can be used anywhere from primary
care settings to daycare facilities. Looking forward, we suggest
future research should focus on creating a smartphone app,
grounded in the established framework, that can collect and
analyze handwritten data on the go. This app could potentially
integrate multiple models (e.g. binary and multiclass classi-
fiers) in order to account for different practitioners’ needs.
Furthermore, our methodology exhibits promising potential for
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the classification of other handwriting tasks, such as CDT or
RCFT drawings. Hence, future work should focus on exploring
and validating the model’s proficiency in these tasks.
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