
Error Auto-Correction Mechanisms
on Tiny QWERTY Soft Keyboards

Luis A. Leiva∗

PRHLT, Universitat Politècnica de València
llt@acm.org

Alireza Sahami
hciLab, Universität Stuttgart
{name.surname}@vis.uni-stuttgart.de

Alejandro Catalá
ISSI-DSIC, Universitat Politècnica de València
acatala@dsic.upv.es

Niels Henze
hciLab, Universität Stuttgart
{name.surname}@vis.uni-stuttgart.de

Albrecht Schmidt
hciLab, Universität Stuttgart
{name.surname}@vis.uni-stuttgart.de

∗ Work done while visiting the hciLab in Stuttgart.

This work is part of the Valorization and I+D+i Resources program

of VLC/CAMPUS and has been funded by the Spanish MECD as part

of the International Excellence Campus program. This work is also

supported by the Spanish MINECO (TIN2014-37475 and TIN2010-

20488) and the GVA VALi+d program (APOSTD/2013/013).

Copyright is held by the owner/author(s).
CHI 2015, April 18–23, 2015, Seoul, Republic of Korea.
Workshop on Text entry on the edge.

Abstract
Wearable devices (e.g., smartwatches, smartglasses, and
digital jewelry) featuring a touchscreen are becoming
widely available to consumers. On these devices, entering
text with a qwerty soft keyboard is troublesome mainly
because of the very small screen space. We investigate 3
simple mechanisms to auto-correct typing errors as they go,
at the word level: spell checker with n-best lists, language
models, and a combination of both. These mechanisms
have potential for wearable devices, which have limited
autonomy and limited computing capabilities, even when
paired to a smartphone.

Author Keywords
Text Entry; Small Screens; Small Devices; QWERTY

ACM Classification Keywords
H.5.2 [User Interfaces]: Prototyping; Screen design

Introduction and Related Work
With the ongoing breakthrough of wearables, such as
smartwatches or digital jewelry, text entry on devices with
tiny touchscreens (1” wide or less) becomes a relevant and
timely topic for HCI. While many approaches have been
proposed to enter text on very small devices, every
technique or keyboard layout based on a touchscreen has
to compete with qwerty [6].

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

For a long time, spell checkers [4] and character
probabilities [2, 7] have been used to correct typing errors
on mobile devices. Other approaches have considered
typing databases [1] and language models [3], even
combined with models of pen/touch placement. More
recently, researchers have explored optimization techniques
to predict ambiguous text entry on smartwatches [5] and
tablets [9]. Among these, we wondered which ones would
be suitable for use as error auto-correction mechanisms on
very small devices.(a) ZoomBoard

(b) Callout

(c) ZShift

Figure 1: Our qwerty soft key-
board prototypes on a 1” screen.

Until very recently, ZoomBoard [8] was the only qwerty
soft keyboard tailored to diminutive touchscreens. Then,
we showed that there are other feasible (qwerty-based)
alternatives [6]. In the following we describe the keyboard
prototypes that we have studied in previous work.

ZoomBoard Keyboard: To increase the accuracy with
which a key can be acquired, instead of immediate
selection, the keyboard zooms in (Figure 1a). Then, the
user can enter a character with an additional tap.
Afterward, the keyboard goes back to the initial zoom level.

Callout Keyboard: Inspired by the soft keyboards used on
current smartphones, when the user touches a key, a
callout showing the character is created in a non-occluded
location (Figure 1b). The user can refine the key to be
entered by slightly moving the finger on the keyboard, and
then enter the character by lifting up the finger.

ZShift Keyboard: The Callout keyboard has the drawback
that once the finger has landed on the screen, it occludes
most (if not all) of the keyboard. Based on the Shift
pointing technique [10], ZShift creates a callout showing a
zoomed copy of the occluded screen area (Figure 1c).

Study
Twenty participants submitted 888 phrases (copy-text
tasks) with our keyboard prototypes [6]. Participants were
allowed to correct mistakes as they went, however we
observed that 160 phrases had one or more transcription
errors, either because of typos (Typo, 110 cases), because
a different word—although grammatically correct—was
entered (Diff, 69), or because fewer words (Less, 31) or
more words (More, 15) than the reference phrase were
entered. Figure 2 shows a histogram of the error
distribution on a per-phrase basis. Table 1 shows some
examples of the errors committed by the users.

Error type Example (reference text above transcribed phrase)

Typo
do not lie in court or else

do not lie in coiurt or else

Diff
a yard is almost as a meter

a yard is almost like a meter

Less
consequences of a wrong turn

consequences of wrong turn

More
keep receipts for all your expenses

keep receipts for all of your expenses

Table 1: Examples of transcription errors (underlined).

Since typos were the most common typing errors, we
studied 3 approaches to automatically amend these, with
the aim to produce the correct transcriptions: spell checker
with n-best lists, language models, and a combination of
both. These techniques have potential for wearable devices,
as these devices have limited autonomy and limited
computing capabilities, even when paired to a smartphone.
Thus, we should aim for simple, tried-and-true approaches.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Spell Checker
We used GNU Aspell,1 the open source spell checker.
Aspell suggests possible replacements for each misspelled
word, by looking for soundslikes within two edit distance
apart of the misspelled word. Then, a typo was replaced by
the n-best Aspell suggestion, n ∈ {1, . . . , 5}.

1 2 3 4
0

50

100

150

Transcription errors per phrase

A
b
s.

F
re
q
u
en

cy

ZoomBoard Callout ZShift

Figure 2: Histogram of phrases
containing transcription errors. As
observed, all keyboard prototypes
achieved similar performance, Call-
out performing slightly worse.

As shown in Figure 3, increasing the n-best lists beyond 3
items did not improve the results substantially. Concretely,
using 3-best lists, 71 typos (64.5%) could be transformed
into the words that had to be transcribed, amending 54
phrases and thus resulting in an overall improvement of
33%. This suggests that, considering the very limited
screen space of the devices we are dealing with, at most
3-best lists should be displayed to the user at a time.

Language Models
We built a bigram language model using the NLTK
toolkit.2 The bigram model approximates the probability of
a word given all the previous words by the conditional
probability of the preceding word. In order to set an upper
bound for this technique, the language model was trained
with the same phrase set used as input stimuli in our study,
and was tested against the phrases that had transcription
errors. Unsurprisingly, this “perfect” language model
turned out to be far superior to the other alternatives, see
dashed lines Figure 3, although not all transcription errors
could be fixed because the non-Typo cases made it difficult
to estimate the likelihood of the entered words with regard
to the reference words.

We repeated the same experiment with a small but
general-purpose training dataset (the Brown corpus, 57K
sentences, 50K unique words), in order to set a lower

1http://aspell.net/
2http://nltk.org/

bound for this technique. We observed that 26% of the
erroneous words could be corrected, resulting in 24% of
fixed phrases. Notice that this outcome is comparable to
using Aspell with 1-best lists.

Spell Checker + Language Model
Aspell results can be further improved by reordering the
spelling suggestions according to a probability estimator
and suggesting thus always the highest-probability
correction. We used the “perfect” language model as said
probability estimator, shown in Figure 3 as solid lines, and
observed that it performed slightly better than Aspell with
5-best lists. This is interesting for devices where n-best lists
are not an option, e.g. when there is no space to display
word suggestions onscreen. Anecdotally, the small language
model provided the same results as Aspell with 1-best lists.

1 2 3 4 5
0

20

40

60

80

N-best list size

%
C
o
rr
ec
te
d
er
ro
rs

Words SC Words LM Words SC+LM

Phrases SC Phrases LM Phrases SC+LM

Figure 3: Error auto-correction of words (red) and, as a result,
phrases (green). We compare n-best lists of a spell checker (SC)
against a “perfect” bigram language model (LM) and a spell
checker plus language model (SC+LM).

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Discussion and Future Work
The best results were achieved with a “perfect” language
model, trained on the phrases used as input stimuli.
However, for obvious reasons this cannot be extrapolated to
real-world scenarios. Instead, we observed that most of the
typos committed by the users could be auto-corrected using
Aspell with 3-best lists. If n-best lists is not an option, e.g.
because of the limited space onscreen to display word
suggestions, then the combination of Aspell and a language
model would allow for similar, competitive results.

As a result of these experiments, we have incorporated
error auto-correction to our prototypes. Whenever a space
is entered, the last typed word is checked against Aspell.
By default, all misspelled words are automatically corrected
as shown in Figure 4b. However, the user may want to
supervise all errors manually, so automatic corrections can
be disabled, in which case the misspelled words are
highlighted in red after entering a space, as shown in
Figure 4a. Then the cursor automatically goes back one
character, to allow the user amend the error more easily.
(Actually this behavior is customizable.)

Hi ther Hi ther
" "

Hi there Hi there
"e" " "

Hi ther
" "

Hi there

(a)

(b)

Figure 4: Two error correcting interfaces have been imple-
mented in our prototypes. (a) Error highlighting: aimed at
manually correcting misspelled words. (b) Automatic correction
of misspelled words.

These error auto-correction techniques were developed as a
web service, so that further enhancements can be easily
incorporated. These are in fact our current plans for future
work. Our prototypes are open source, so that anyone can

contribute to improving them or build alternatives by
reusing parts of the code.3

References
[1] Clawson, J., Lyons, K., Rudnick, A., Jr., R. A. I., and

Starner, T. Automatic whiteout++: Correcting
mini-QWERTY typing errors using keypress timing. Proc.
CHI (2008).

[2] Golding, A. R., and Schabes, Y. Combining trigram-based
and feature-based methods for context-sensitive spelling
correction. Proc. ACL (1996).

[3] Goodman, J., Venolia, G., Steury, K., and Parker., C.
Language modeling for soft keyboards. Tech. Rep.
MSR-TR-2001-118, Microsoft Research, 2001.

[4] Hodge, V. J., and Austin, J. A comparison of standard
spell checking algorithms and a novel binary neural
approach. IEEE TKDE 15, 5 (2003).

[5] Komninos, A., and Dunlop, M. Text input on a smart
watch. Pervasive Computing 13, 4 (2014).

[6] Leiva, L. A., Sahami, A., Catalá, A., Henze, N., and
Schmidt, A. Text entry on tiny QWERTY soft keyboards.
Proc. CHI (2015).

[7] MacKenzie, I. S., Kober, H., Smith, D., Jones, T., and
Skepner, E. LetterWise: prefix-based disambiguation for
mobile text input. Proc. UIST (2001).

[8] Oney, S., Harrison, C., Ogan, A., and Wiese, J.
ZoomBoard: a diminutive QWERTY soft keyboard using
iterative zooming for ultra-small devices. Proc. CHI
(2013).

[9] Oulasvirta, A., Reichel, A., Li, W., Zhang, Y.,
Bachynskyi, M., Vertanen, K., and Kristensson, P. O.
Improving two-thumb text entry on touchscreen devices.
Proc. CHI (2013).

[10] Vogel, D., and Baudisch, P. Shift: A technique for
operating pen-based interfaces using touch. Proc. CHI
(2007).

3http://personales.upv.es/luileito/tinyqwerty/

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

