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Fig. 1. Integrating radar-based gesture recognition in consumer devices requires the signal to pass through a
covering material twice (a). To help application designers select suitable materials for interaction, we provide
an ample catalogue of 75 everyday materials that is agnostic to the underlying gesture classifier. Designers
can evaluate their own recognisers against just 3 reference materials (b), enter the observed performance

measures into a simple web tool1 (c) and get updated performance estimates for all materials in the catalogue.

Gesture recognition with miniaturised radar sensors has received increasing attention as a novel interaction
medium. The practical use of radar technology, however, often requires sensing through materials. Yet, it is
still not well understood how the internal structure of materials impacts recognition performance. To tackle
this challenge, we collected a large dataset of 14,090 radar recordings for 6 paradigmatic gesture classes sensed
through a variety of everyday materials, performed by humans (6 materials) and a robot system (75 materials).
Next, we developed a hybrid CNN+LSTM deep learning model and derived a robust indirect method to
measure signal distortions, which we used to compile a comprehensive catalogue of materials for radar-based
interaction. Among other �ndings, our experiments show that it is possible to estimate how di�erent materials
would a�ect gesture recognition performance of arbitrary classi�ers by selecting just 3 reference materials.
Our catalogue, software, models, data collection platform, and labeled datasets are publicly available.

CCS Concepts: • Hardware → Sensor devices and platforms; • Human-centered computing → Gestural

input; Interaction design process and methods.

1Web tool: https://solidsonsoli.famnit.upr.si/.
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1 INTRODUCTION

In recent years, gesture recognition with miniaturised radar sensing has received increased attention
in academia and industry. Two factors have fuelled this trend: the emergence of low-cost low-power
radar chips and the impressive breakthroughs in deep learning, which allows to interpret radar
signals very accurately for interaction. However, there are still several unsolved research problems
in order to enable practical applications of this technology.
First and foremost, real-world interaction with radar devices often requires sensing through

materials. This not only includes interaction e.g. with a mobile phone while in our pocket, but
also interaction with other devices (e.g. infotainment systems or smart homes) through a radar
sensor that is integrated in nearby objects such as clothing accessories, car dashboards, seats, doors,
indoor furniture, and walls. Nevertheless, it is still not well understood how di�erent materials
a�ect gesture recognition performance. Ideally, application designers would speed up development
with a convenient method for determining which materials would perform best for a recogniser of
their choice.

To make radar-based gesture recognition practical on di�erent materials, we �rst need to under-
stand how the radar signal degrades when passing through them. This seemingly straightforward
problem is rather challenging in reality. To measure signal degradation with high precision, one
would need to acquire an expensive vector network analyser and operate it in a shielded envi-
ronment, preventing electromagnetic interference. Another problem arises from the plethora of
potential materials and various thicknesses one would like to evaluate. Together with di�erent
gesture sets and custom classi�ers, this would result in a vast number of measurements to perform.
Lastly, if we were able to overcome all these aforementioned problems, how could we conveniently
predict gesture recognition performance on untested materials when only signal characteristics
(e.g. transmission coe�cient) for the materials are known?

To address these challenges we (i) used Google Soli, a millimetre-wave (mm-wave) radar sensor,
to record range Doppler images and time series data for 11 core features as well as 9 meta-features;
(ii) developed a state-of-the-art hybrid CNN+LSTM deep learning model to test recognition perfor-
mance on 75 materials; and (iii) derived a robust method to measure signal distortions, which we
used to compile a catalogue of materials, and predict recognition performance on arbitrary gesture
classi�ers (all data, software and models are openly available in our repository2).

Even though a few tabulations of material properties are available in the literature [16, 34], to the
best of our knowledge none exist for a large variety of everyday materials in the mm-wave band.

2 PROBLEM STATEMENT AND CONTRIBUTIONS

Radar technology uses radio-frequency (RF) electromagnetic waves to detect nearby objects. Es-
sentially, a radar device has a transmitter antenna (Tx) that emits an RF pulse to the environment,
and a receiving antenna (Rx) that captures the echoed pulse. The received signal is analysed to
determine object properties, such as their radar cross-section and velocity [51].

RF waves can be a�ected by a variety of phenomena such as: absorption, refraction, di�raction,
polarisation, scattering, and re�ection [45]. Since these phenomena happen simultaneously and

2Solids on Soli repository: https://gitlab.com/hicuplab/solids-on-soli
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Fig. 2. Lightwave analogy (a) to characterise signal distortions [3]. When no occluding material is present (b),
the transmi�ed RF pulse gets reflected by the user’s hand (referred to as incident signal). When an occluding
material is present (c), the reflected signal needs to pass though the material (referred to as transmi�ed

signal).

interact with one another, a simpli�ed model based on the lightwave analogy (Figure 2) is used to
characterise the signal, where only the incident, re�ected, and transmitted components are consid-
ered. This model is typically employed in network analysis, where designers and manufactures of
networking components characterise how such components distort the input signal over a desired
frequency range [3].
When radar sensing is used for interaction through materials, the RF signal needs to pass

through them twice. Since di�erent materials have di�erent characteristics, which depend on their
thickness and their dielectric properties, these characteristics will signi�cantly a�ect how the signal
propagates through them. This opens up the following research questions:

(1) How to accurately characterise radar signal distortions through materials without using an
expensive equipment?

(2) How would such distortions a�ect gesture recognition?
(3) Can we predict performance of arbitrary classi�ers when only the characteristics of signal

distortions for a given material are known?

While it may appear obvious that the contrast of an RF signal degrades while it passes through
materials, thereby a�ecting recognition accuracy, our work is the �rst one to precisely quantify
this degradation. As previously discussed, such a quanti�cation is non-trivial yet critical when
designing radar-based gesture interaction systems.

Among other �ndings, we observed a strong inverse correlation of signal amplitude and material
thickness for several Soli core features that we describe in Section 3.5. We validate our �ndings on
di�erent material types, showing that our proposed measurement method is adequate and reveals
that some materials are more apt for interaction than others. As a result, we have compiled an
extensive catalogue of everyday materials for radar sensing that we make publicly available (see
Supplementary Materials).

3 RELATEDWORK

We analyse previous research according to our main areas of interest: gesture interaction, RF sensing
technologies, mm-wave radar sensors (including Google Soli), and sensing through materials.

3.1 Gesture interaction

Gesture interaction is an active research topic with a history dating back to the 1960s with Suther-
land’s Sketchpad project [55] and his far reaching vision of the Ultimate Display essay [56]. Today,
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gesture interaction can be categorised into 2 broad groups: (i) mid-air, used for example in con-
sumer electronics such as gaming consoles, and (ii) stroke-based, used for example in devices with
touchscreens such as smartphones. We focus on the former group, given the increasing importance
it has gained recently.
Mid-air gesture interaction has been extensively researched as an alternative to other modes

or as a complementary mode of interaction in a variety of settings such as entertainment [6, 44,
47], automotive industry [19, 28, 39, 46, 50], medical applications [10, 26, 31, 43, 54], wearable
computing [4, 14, 15, 17], smart home control [18, 60, 64], virtual reality manipulation [23, 65],
and art installations [36, 37]. Such interaction is particularly interesting where other modes are
dangerous, hard, or impossible to use.

3.2 RF sensing technologies

Despite popular technologies used for implementing gesture recognisers such as RGB [27, 52, 58] or
infrared (IR) [11, 15, 21, 53, 54] cameras, RF-based solutions including radar [29, 40], Wi-Fi [2, 41, 69],
GSM [68], and RFID [14] o�er several advantages. Above all, RF sensing technologies are insensitive
to light, which usually a�ects camera and, especially, IR based solutions (both cannot be used in
bright sunlight). RF sensing does not require an elaborate setup of various sensors on or around
users. In addition, the RF signal can penetrate non-metallic surfaces and can sense objects and their
movements through them.
RF sensing has been used for analysing walking patterns or gait [7, 33, 62], tracking sleep

quality and breathing patterns [43, 70], and recognising movements of body parts such as hands for
interactive purposes [14, 25, 28, 36, 37, 41, 60]. The radars used in these studies operated at various
frequencies, ranging from 2.4 GHz [60, 70] to 24GHz [28, 43].

3.3 Millimeter-wave radar-on-chip sensors

To detect and recognise �ne-grained interactions, it is necessary to increase the radar’s spatial
resolution. For this, radar chips working at even higher frequencies, around 50–70GHz, have been
recently used [29, 63]. Such chips open up the path to precise close-range gesture interactions
in a variety of applications, including wearable, mobile, and ubiquitous computing. Since these
sensors operate in the millimeter range, they allow for tighter integration of the circuit due to
the reduced size of di�erent passive (non-moving) components and low-power requirements [29].
These properties also allow manufacturing them inexpensively at scale.

Radar sensing is very e�ective in detecting close-proximity, subtle, nonrigid motion mostly
articulated with hands and �ngers (e.g. rubbing, pinching, or swiping) [22, 61] or with small objects
(e.g. pens) [63]. It can also recognise large gestures in 3D space [35] with remarkable accuracy.
Recent research has explored radar-based interaction with everyday objects and in augmented
reality scenarios [9, 59], as well as creating music [5, 48]. A mm-wave radar can also distinguish
various materials when placed on top of it [25, 66]. What is missing, however, is an investigation of
gesture recognition performance through various materials present on and around us, which is the
focus of our work.
We should note that there are essentially two standard approaches to mm-wave gesture recog-

nition: one feeds the raw signals or derived images (e.g. Doppler images) directly into a clas-
si�er [20, 22], while the other approach applies di�erent beamforming vectors to extract/track
location before feeding it to a classi�er [35, 42]. The results of the characterisation in this work are
primarily focused on the �rst approach, since we use the Google Soli sensor. The second approach is
possible with other mm-wave sensors like the IWR1443 board from Texas Instruments, for example.
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3.4 Sensing through materials

The fact that RF signals can penetrate non-metallic materials makes them particularly interesting
for interaction. Alas, sensing through materials has been barely explored. Notable examples include
tracking people through walls [1, 8] and gesture recognition through walls [41] and above an o�ce
desk [25]. All these approaches have focused on coarse gestures instead of �ne-grained ones, have
considered only one material, and have not used radar-on-chip sensors.

Leiva et al. [20] investigated radar-based gesture recognition on wearable devices, but they did
not characterise signal distortions nor estimated recognition performance on arbitrary gesture
classi�ers. Now that mm-wave radar technology is available on consumer products, it is expected
that it will be further integrated in a variety of objects in the near future.

3.5 Google Soli

Soli is a 60GHz 4-channel receiver (Rx antennas) 2-channel transmitter (Tx antennas) radar-on-chip
that has become available in consumer electronics such as the Pixel 4 smartphone. Complemented
with time-varying micro-Doppler frequency features analysis [7], the sensor o�ers detection of
movements with near-millimeter precision [29]. Soli comes with an SDK that can represent the
radar signal with range Doppler images as well as a variety of low-level core features [22]:

(F1) Range: Overall distance of the moving targets to the sensor.
(F2) Acceleration: Overall acceleration of the moving targets.
(F3) Energy total: Amount of re�ected energy overall.
(F4) Energy moving: Amount of re�ected energy from the moving targets.
(F5) Velocity: Overall velocity of the moving targets.
(F6) Velocity dispersion: Dispersion of energy over the Doppler space.
(F7) Spatial dispersion: Dispersion of energy over the range space.
(F8) Energy strongest component: Amount of re�ected energy from the most dominant moving

target.
(F9) Movement index: Moving target identi�er.
(F10) Fine displacement: Instantaneous velocity of each moving target.
(F11) Velocity centroid: Weighted average of the overall velocity.

These core features essentially characterise the energy distribution across the radar transformation
space, which have been shown to accurately describe relative �nger dynamics [5, 22] as well as
end-e�ector trajectories [28, 67].

4 GESTURE RECOGNITION EXPERIMENTS

We describe the gesture recogniser we developed under a control condition (no occluding material).
It will be our baseline classi�er to analyse radar sensing performance through di�erent materials
later on.

4.1 Gesture set

We surveyed previous work that used mm-wave radar sensing for interaction [61] as well as
gestures supported by the Soli sensor in consumer devices. From these gesture sets, we chose the
ones that are relatively easy for a mechanical system to replicate. Eventually, a set of 6 distinct
gestures was selected (Figure 3).
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Fig. 3. Experimental gesture set. Filled and dashed circles denote, respectively, the initial and final position of
the ball.

4.2 Experimental system

To explore the e�ect of di�erent materials on gesture classi�cation performance, we should be
able to execute as many times as needed the gestures with minimal articulation variation. For this
reason, we �rst built a robot system and then recruited human participants.

Fig. 4. Experimental platform setup and model arhitecture. Le�: robot setup. Middle: human setup, Right:
Hybrid deep learning model architecture. Range Doppler images (1) are processed with a CNN (2) that
extracts feature maps followed by max pooling (3) and spatial dropout (4) layers. Then, a fully connected
layer (5) creates the feature vectors for a recurrent LSTM layer with dropout (6) and finally a so�max layer (7)
outputs the gesture class prediction (~̂).

4.2.1 Robot system. We followed the setup proposed by Leiva et al. [20]. It consists of (i) a robot-
based gesture simulator based on the GoPiGo3, to which an empty plastic ball of 5 cm diameter is
attached; (ii) an aluminium-shielded frame placed on the table, on which di�erent materials can
be placed (the frame prevents the radar signal from escaping around the analysed material); and
(iii) the Soli radar sensor placed in the frame and connected to a computer (see Figure 4 left). The
distance between the sensor and the ball in its lowest position is 5 cm.
This system is designed to generate two types of movements: pendulum-like (e.g. swing or

swipe movements) and vertical movements along the I-axis. The pendulum movement is gener-
ated by manually releasing the ball from a limiter position, whereas the vertical movements are
automatically generated by the robot.

4.2.2 Human system. This setup is identical to the robot system, but instead of a bouncing ball,
a human hand executes the gestures (Figure 4 right). The user is sitting in front of a computer
display that instructs what gesture to perform and when to perform it. Besides visual indicators,
the system also plays a sound to help the user executing the gesture systematically within a �xed
time window. For this setup, we recruited six participants (5 males, 1 female) aged 24–34.
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4.3 Data collection setup

Gestures are stored in two data formats: (i) a sequence of frames of 32×32 px range Doppler images;
and (ii) a time series of 11 core features, computed with the Soli SDK. We use the range Doppler
images for developing our classi�ers, since they enable robust recognition [20, 61]. The extracted
core features are used to characterise signal distortions.
The Soli sensor is con�gured to record at 1000Hz, Doppler range sensitivity is set to [-2,0] dB

(based on pilot trials with our robot system), and the built-in adaptive clutter �lter is disabled. Note
that 1000Hz sampling represents an upper bound, which can be conveniently downsampled as
needed.

We collected 20 repetitions of the 6 gestures for 75 materials with the robot system (9,000 record-
ings) and 200 trials of each gesture in the baseline condition (1,200 recordings). Each participant
performed 10 repetitions of the 6 gestures for 6 materials (2,160 recordings), and 300 trails (50 per
participant) for each gesture in the baseline condition, totalling 1,800 recordings. Some recordings
were �agged as inappropriate by the experimenter (e.g. the user articulated a di�erent gesture or it
was performed sloppily) and thus were removed, reducing the total number of baseline recordings
performed by the participants to 1,730.
Since Soli computes range Doppler images for each Rx antenna, we averaged them to ensure a

robust frame representation. Further, images were grayscaled and sequences were resampled to
100 or 200Hz and padded to 400 timesteps, which is large enough to accommodate for arbitrary
gesture articulations. As a reference, each recorded gesture took 1.5 seconds on average.

4.4 Model architecture

Our model, depicted in Figure 4, is a hybrid deep CNN+LSTM (convolutional neural network +
long short-term memory) model, inspired by previous work [12, 22, 30, 32, 61]. We also tested a
Conv3D architecture (see Appendix) but it did not match the excellent performance of the hybrid
CNN+LSTM architecture. See Table 5 for a comparison. Note that by having such an excellent
baseline performance, we can attribute the subsequent recognition performance degradation to
the occluding materials. Otherwise, the recogniser would become a confounder variable in our
experiments.
Each frame (Doppler image) is processed by a stack of 32 × 64 × 128 convolutional layers with

3 × 3 �lters to capture spatial information. The resulting frame sequence is further processed
in a recurrent fashion by means of an LSTM layer (embedding size of 128) to capture temporal
information, and eventually classi�ed with a softmax layer. Our model has 2.4M weights, which is
rather small for today’s standards.

Each convolutional layer automatically extracts feature maps from input frames that are further
processed by max pooling and spatial dropout layers. The max pooling layers (pool size of 2)
downsample the feature maps by taking the largest value of the map patches, resulting in a local
translation invariance.
Crucially, the spatial dropout layer (drop rate of 0.25) removes entire feature maps at random,

instead of individual neurons (as it happens in regular dropout layers), which promotes indepen-
dence between feature maps, thus improving performance. The LSTM layer uses both a dropout
rate and a recurrent dropout rate of 0.25. The softmax layer has dimensionality of 6, since we have
6 gestures.

4.5 Model training and evaluation

We created random splits comprising 50% of the data for model training, 20% for model validation,
and the remaining 30% for model testing. The test data are held out as a separate partition, which
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simulates unseen data. The model was trained only with data from ‘no material’ condition in
batches of 10 sequences using categorical cross-entropy as loss function.

We used the Adam optimiser with learning rate [ = 0.0005 and decay rates V1 = 0.9, V2 = 0.999.
The maximum number of epochs was set to 200, but we also set an early stopping criteria of 50
epochs. That is, training stopped if the validation loss did not improve after 50 consecutive epochs,
and the best model weights were retained.

We built 7 classi�ers for each data source (robot and humans), totaling 14 classi�ers. As shown in
Table 1, all classi�ers were built for di�erent gesture combinations (6/6 and all possible combinations
of 5/6 gestures), to demonstrate that our �ndings are agnostic to the recogniser and data source.
Finally, each classi�er is evaluated on the baseline (no material) condition as well as on 75 materials
for the robot system and on 6 materials for the human system, respectively.

4.6 Results

Table 1 shows that our model architecture performs really well for di�erent combinations of
gestures: accuracy is 98% on average for the robot and around 96% for human participants. G0
denotes no action, which is used as a “rejection class”. Further evaluation on all materials are
provided in Table 5 in the Appendix.

Performance is slightly better in the robot condition (Table 1 top), as expected, since the variation
in gesture articulation is lower as compared to that of the humans, as the robot movements are
systematically executed the same way.

Table 1. Gesture recognition performance metrics for the baseline (no material) condition, using both our
robot system (top table) and aggregated data from six users (bo�om table).

Classifier Gesture set Recordings ACC AUC Precision Recall F1

Robot A [G0 G1 G2 G3 G4 G5] 1,200 97.35 98.42 97.40 97.35 97.35

Robot B [G1 G2 G3 G4 G5] 1,000 96.07 97.57 96.20 96.07 96.10

Robot C [G0 G1 G2 G3 G4] 1,000 99.29 99.55 99.31 99.29 99.29

Robot D [G0 G1 G2 G3 G5] 1,000 96.55 97.88 96.75 96.55 96.56

Robot E [G0 G1 G2 G4 G5] 1,000 98.97 99.35 98.97 98.97 98.97

Robot F [G0 G1 G3 G4 G5] 1,000 98.57 99.11 98.60 98.57 98.57

Robot G [G0 G2 G3 G4 G5] 1,000 99.29 99.55 99.29 99.29 99.29

Mean 98.01 98.78 98.07 98.01 98.02

Humans A [G0 G1 G2 G3 G4 G5] 1,730 93.33 96.00 94.05 93.33 93.30

Humans B [G1 G2 G3 G4 G5] 1,428 92.36 95.25 92.58 92.36 92.38

Humans C [G0 G1 G2 G3 G4] 1,440 97.00 98.12 97.02 97.00 96.99

Humans D [G0 G1 G2 G3 G5] 1,451 97.22 98.27 97.41 97.22 97.22

Humans E [G0 G1 G2 G4 G5] 1,450 98.96 99.34 98.96 98.96 98.96

Humans F [G0 G1 G3 G4 G5] 1,451 95.33 97.08 95.37 95.33 95.34

Humans G [G0 G2 G3 G4 G5] 1,440 95.83 97.38 96.32 95.83 95.80

Mean 95.72 97.35 95.96 95.72 95.71

Gestures:

G0 - No action 

G1 - Swing right 

G2 - Swing left 

G3 - Away 

G4 - Towards 

G5 - Wiggle 

ACC: Accuracy

AUC: Area Under the ROC

F1: F1 score

5 MODELING SIGNAL DISTORTION

To characterise distortion of electromagnetic waves as they pass though materials, we need to
measure the di�erence between incident and transmitted signal across the frequency range of the
radar sensor. As discussed in Section 1, one approach is to use a vector network analyser, which is
an expensive equipment that needs to be operated in an isolated environment. As an alternative,
we propose to perform indirect measurements using only information from the radar sensor and
our robot system. The incident signal can be measured when no material is present, whereas the
transmitted signal can be measured when di�erent materials occlude the sensor. Therefore, we
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can measure distortions in the Amplitude and Signal-to-Noise Ratio (SNR). We formulated the
following hypotheses:

• H1: Distortions in amplitude of the radar signal should be detectable using indirect measure-
ments of core features.

• H2: Distortions in SNR should be detectable using indirect measurements also available
through core features.

5.1 Data collection

We recorded the radar signal passing through 7 di�erent materials (Oriented strand board, Paper,
Drywall, Acrylic, Polycarbonate, Polyethylene, and Styrofoam) each of various thicknesses (26 mate-
rials in total) as our robot performed 2 pendulum swings over the sensor. We chose this particular
gesture as it induces a signal that is sinusoidal in nature with a clear amplitude, period, and phase,
which should be easy to notice visually. To make our observations robust to measurements error,
we repeated the recording 20 times for each material (520 recordings in total).

5.2 Data analysis

5.2.1 Detecting amplitude distortions with indirect measures (H1). Since we completed multiple
recordings of the pendulum swing gesture for each material, we aggregated the data prior to
visualisation. Then, we synchronised the �rst peak or valley on the same time series. In sum, our
aggregation procedure followed these steps:

(1) Downsample the recording frame rate from 1000 to 200Hz, which is more than enough to
capture �ne-grained variations of Soli core features.

(2) Apply Dynamic Time Warping with barycenter averaging.
(3) Smooth the time series by calculating the mean over a sliding window of 10 frames.
(4) Apply Savitzky-Golay �nite impulse response (FIR) �lter with polynomial order 3 and frame

length of 21.

We opted for a barycentric averaging method because the arithmetic mean depends on the order
of frame aggregation, which can be problematic when tying to create reliable descriptors [38].
Further, we selected a relatively small window size and small polynomial order to avoid aggressive
�ltering [49].

We note that core feature F10 (Fine Displacement) requires additional preprocessing to compen-
sate for measurement drifts caused by the sensor, therefore we performed 2 additional steps:

(1) Outlier removal using a Hampel �lter with a window size of 100 frames and removal criteria
of 3 standard deviations.

(2) O�set the signal to zero using the minimum value in the whole time series.

With this setup, we should observe a drop in signal amplitude with increasing material thickness.
We also should observe a periodic behaviour of the extracted features (e.g. distinct peaks at a
constant period). To reinforce the visual observation of amplitude and material thickness, we ran a
correlation analysis between peak-to-peak amplitude of time series data between core features and
the thickness of a given material.

5.2.2 Detecting distortions in SNR (H2). Similar to signal amplitude, we expect to observe a distor-
tion in SNR when the signal passes through various materials. We also expect to see an inverse
correlation betwewn SNR and material thickness (the greater the thickness, the smaller the SNR).
SNR is de�ned as the ratio of the power of a signal to the power of background noise. We

performed an indirect computation of SNR, as follows. First, instead of considering signal power
we considered signal amplitude. Second, the amplitude measured in the “no action” gesture cases
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(Figure 3), in which the ball is stationary above the sensor, is considered background noise. To get a
reliable estimation, we took 20 measurements from each of the above-mentioned 26 materials, and
aggregated these measurements by averaging at each frame of each time series. We also performed
frame outlier removal with the interquartile range technique [57] to ensure consistent estimates.
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Fig. 5. Time series of the radar signal as the ball swings past the sensor. Each plot represents one Soli core
feature for the baseline (no material) condition and 3 di�erent thicknesses of Paper material (10, 100, and 200
sheets of paper). See our Supplementary Materials for additional results.

Fig. 6. Correlation between peak-to-peak amplitude and Signal-to-Noise Ratio against material thickness for
Soli core features F3, F4, and F8.

5.3 Results

As an example, the visualisation of time series data for Paper materials (10, 100, and 200 sheets
of paper) is provided in Figure 5. We can see that peak-to-peak amplitude drops with increased
material thickness for core features Energy total (F3), Energy moving (F4), and Energy strongest

component (F8). These features follow the periodic behaviour of a pendulum swing. On the other
hand, the time series data for more transparent materials such as Styrofoam, Polyethylene, or
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Acrylic, only follow periodic swing behaviour whereas a drop in amplitude was not observed (see
Supplementary Materials).
The correlation analysis of Amplitude and SNR with material thickness (Figure 6) con�rmed

our research hypotheses H1 and H2. Except for more transparent materials to the radar signal,
the correlation is very strong overall (mean -0.92 for amplitude and mean -0.82 for SNR). We can
conclude that, to select appropriate material candidates, we can use Soli core features F3, F4, and
F8, since their signal distortions correlate best with material thickness.

6 MODELING MATERIAL PERFORMANCE

As the quality of the transmitted radar signal decreases due to signal distortions caused by occluding
materials, we expect to see a performance drop in our gesture classi�ers. We hypothesise:

• H3: Distortions of the signal amplitude and SNR caused by materials should result in a drop
of recognition performance.

• H4: Performance drop can be modeled by indirect measurements of material properties based
on the incident and transmitted signal.

6.1 Material properties

We de�ne (physical) material properties as a set of meta-features that can be derived from Soli
core features. Considering the nature of our experimentation system (e.g. our method cannot
measure phase shift) we chose Transmission coe�cient ()2 ) and Insertion loss (!) to measure material
properties. Following standard measures in time series analysis, we chose these descriptive statistics
as meta-features: Mean, Median, Maximum, Asum (absolute sum across all values in the time series),
and Energy (sum of squares across the whole time series).
Transmission coe�cient is de�ned as the transmitted voltage divided by the incident voltage. If

the absolute value is larger than 1, a system is said to have gain; otherwise it has attenuation [3]. We
make the assumption that occluding materials can only induce insertion loss, hence it is reasonable
to limit their )2 to 1, which we will refer to as ) ′

2
. As our system cannot directly measure voltage,

we use signal Amplitude to calculate )2 . Insertion loss (in dB) is a pseudo-feature based on the
transmission coe�cient [3]: ! = −20 log10 |)2 |. Only values larger than 0 are physically possible,
which we will refer to this limited insertion loss as !′.

6.2 Modeling performance drop

We build linear regression models of performance drop, where performance is de�ned as Perf =
(Accuracy + AUC)/2 to get a single prediction outcome. The procedure follows these steps:

(1) Determine which core features are good candidates for the task at hand, by conducting a
correlation analysis of average performance against each material’s meta-features.

(2) Fit a linear regression model of recognition performance given the statistically signi�cant
predictors (model coe�cients) of material properties. We repeat this step for all the 14 gesture
classi�ers (Section 4.5).

(3) Choose the strongest predictor (with the highest ?-value) and �t a simple linear regression
model. We also repeat this step for all the 14 gesture classi�ers.

6.3 Results

6.3.1 Correlation analysis for all core features. Figure 7 shows that the best overall correlating
core feature is Energy moving (F4). The results also indicate that Acceleration (F2), Velocity (F5),
Movement index (F9), and Fine displacement (F10) are not good predictors. For these core features,
the absolute mean and absolute median values across all material meta-features are either low
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or have a high standard deviation; see the 3 bottom rows in Figure 7. Based on these results, we
conclude that core features F1, F3, F4, F6, F7, F8, and F11 should be used for building multi-predictor
linear regression model. The high correlation between performance, amplitude, and SNR (rows
5 and 9 in Figure 7) con�rms H3: Distortions of the amplitude and SNR caused by an occluding
material will result in a substantial degradation of recognition performance.
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Fig. 7. Correlation analysis between gesture recognition performance and material meta-features of Soli core
features. Features F2, F5, F9, and F10 are weakly correlated and so they were excluded from MEAN, MEDIAN,
and STDEV row-wise calculations.

The results also show that the best correlating meta-features are Transmission coe�cient and
Insertion loss, where the two can be further enhanced if capped to 1 and 0, respectively. This capping
of values makes sense because, as previously hinted, they cannot induce gain when measured with
an occluding material. For this reason, ) ′

2
and !′ should be considered for building multi-predictor

linear regression models.

6.3.2 Linear regression models. We chose all high-correlation core features (F1, F3, F4, F6, F7,
F8, and F11), however we noticed that the Energy strongest component (F8) is linearly dependent
to other core features. Thus, we excluded it and built a multi-predictor linear regression model
with 54 predictors (9 material properties for each selected core feature, marked as bold on the left
margin in Figure 7). This linear regression model exhibits an excellent �t (Adj.'2

= 0.94, Figure 8
left). However, we can build a simpler regression model using only the most relevant material’s
meta-feature — ) ′

2
for core feature Energy Total (F3) — and still get a very good �t (Adj.'2

= 0.85,
Figure 8 right).
Table 2 shows how well linear regression models can predict performance of our 14 gesture

classi�ers. Single and multi-predictor regression models are built in the same way as in Figure 8.
The results show a good �t for all models, with an excellent Adj.'2 for the multi-predictor model
(mean=0.91, std=0.03) and a high Adj.'2 for the single-predictor model (mean=0.81 with std=0.03
for robot and mean=0.85 with std=0.09 for human data). This con�rms H4: it is possible to build a
linear regression model of gesture detection performance drop using material properties that are
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of core feature Energy Total (F3).

based on indirect measurement of incident and transmitted signal. This was validated for classi�ers
trained on di�erent combinations of gestures. Further, to show that recognition performance can
also be estimated with other model architectures, we repeated the same set of experiments with a
Conv3D architecture (see Table 4 in Appendix).

Table 2. Linear regression models (LRMs) to predict performance of Hybrid architecture for di�erent gesture
classifiers trained on both robot and human data with di�erent gestures sets. The results show strong
correlation across all conditions.

C
la

ss
ifi

er
 

(T
ab

le
 1

)

Single LRM
Perf ~ Trans. coef. limited (F3)

Multiple LRM
Perf ~ 54 coefficients

Single LRM
Perf ~ Trans. coef. limited (F3)

M
at

er
ia

ls

D
oF

R
M

SE

M
A

E

R
²

A
dj

. R
²

p-
va

lu
e

M
at

er
ia

ls

D
oF

R
M

SE

M
A

E

R
² A
dj

.R
²

p-
va

lu
e

C
la

ss
ifi

er
 

(T
ab

le
 1

)

M
at

er
ia

ls
D

oF

R
M

SE

M
A

E

R
² A
dj

.R
²

p-
va

lu
e

Robot A 75 73 6.78 5.09 0.85 0.85 <.001 75 20 4.20 1.64 0.99 0.94 <.001 Humans A 6 4 4.04 3.20 0.85 0.82 <.01
Robot B 75 73 6.49 4.73 0.82 0.81 <.001 75 20 4.90 1.92 0.97 0.89 <.001 Humans B 6 4 3.15 2.40 0.93 0.91 <.01
Robot C 75 73 8.63 6.70 0.83 0.83 <.001 75 20 4.88 1.85 0.99 0.94 <.001 Humans C 6 4 4.50 3.39 0.91 0.89 <.01

Robot D 75 73 8.18 6.39 0.77 0.77 <.001 75 20 4.60 1.78 0.98 0.93 <.001 Humans D 6 4 4.46 3.19 0.85 0.81 <.01

Robot E 75 73 9.30 7.48 0.79 0.79 <.001 75 20 5.74 2.21 0.98 0.92 <.001 Humans E 6 4 3.31 2.49 0.93 0.91 <.01

Robot F 75 73 6.06 4.59 0.78 0.78 <.001 75 20 4.68 1.87 0.97 0.87 <.001 Humans F 6 4 4.93 3.83 0.75 0.69 <.05

Robot G 75 73 6.63 4.91 0.85 0.85 <.001 75 20 6.05 2.39 0.97 0.87 <.001 Humans H 6 4 2.43 1.73 0.94 0.92 <.01

Mean 7.44 5.70 0.81 0.81 5.01 1.95 0.98 0.91 Mean 3.83 2.89 0.88 0.85

Acronyms: Perf: (ACC + AUC)/2  DoF: Degrees of Freedom   RMSE: Room Mean Square Error   MAE: Mean Absolute Error  R²: R-squared   Adj. R²: Adjusted R²

7 PERFORMANCE ON ARBITRARY CLASSIFIERS

The main goal of our catalogue is to conveniently predict performance of a gesture classi�er when
only characteristics of signal distortions for a givenmaterial are known. This would enable designers
to make more informed decisions when deciding on their own gesture sets, model architectures,
and operational conditions for their sensing systems.
We evaluate how well our catalogue of materials can support the above-mentioned claim for

situations where performance (measured by the geometric average of Accuracy and AUC, see
Section 6.2) of a given gesture classi�er is known for at least 3 materials from our catalogue. For
simplicity, we use only one predictor (transmission coe�cient); however, we have shown that it is
possible to improve the model �t by considering more predictors (Section 6.2). At the same time,
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adding more predictors implies additional e�ort since more data points are required to build the
model, hence a small number of predictors is preferable.
Note that 3 is the minimum number of materials to derive reasonable results, in order to cover

the whole range of our catalogue: one material should come from the low opacity range () ′
2
∈

[0.8, 1]), one from the middle opacity range () ′
2
∈ [0.3, 0.5]), and one from the high opacity range

() ′
2
∈ [0, 0.2]). We �tted the linear regression model with this single coe�cient as in Section 6.3.2

and repeated this process 4 times, each time with a di�erent combination of 3 materials.
Table 3 reports the results of these experiments. Material combinations were randomly chosen,

following the procedure described above. The results show Adj.'2 ranging from 0.75 to 0.81 and
mean absolute error (MAE) ranging from 5.36% and 6.57%, which suggest that it is possible to
estimate how di�erent materials would a�ect gesture recognition performance by considering
just 3 reference materials. Designers can thus predict gesture recognition performance for all the
materials in the catalog for their own classi�ers, provided that their set of gestures is similar to the
one we have investigated. In the next section we elaborate more on this discussion.

We o�er an interactive web tool3 that provides a convenient way to build various linear regression
models and visualise the list of material recommendations based on predicted performance, as
highlighted in Figure 1c. Our catalogue is designed as a guide book, is color coded, and has cards
that include factual data about material properties together with microscope images at various
magni�cations (1x, 50x, 200x). We also provide in our software repository a simple step-by-step
guide to expand the catalogue with new materials.

Table 3. Single-predictor linear regression models using ) ′
2
of Energy total (F3) and observations from 3

materials to predict gesture recognition performance on all other materials.
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Material 1 Material 2 Material 3
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RMSE MAE R² Adj.R²id
name 
(thickness mm) id

name 
(thickness mm) id

name 
(thickness mm) DoF Gesture classifier:

   Gesture set: [G0 G1 G2 
                        G3 G4 G5]        
   Dataset: Robot
   Material:  none
  Recordings: 1,200

14 Eva Fome (40) 51 Deb Cerovy.(10) 82 Picea Abies (17) 3 1 0.96 0.52 1.00 1.00 72 72 7.26 5.82 0.81 0.81
42 Silk (<1) 60 Wood Populus (10) 32 Chipboard (32) 3 1 0.25 0.13 1.00 1.00 72 72 8.43 6.11 0.75 0.75
10 MDF (10) 21 Ceramic tiles (6) 75 Dywall (24) 3 1 9.83 5.20 0.91 0.82 72 72 7.59 5.36 0.80 0.80
35 Paper (10 sheets) 79 Paper (200 sheets) 80 Paper (300 sheets) 3 1 1.79 0.96 1.00 0.99 72 72 8.04 6.57 0.79 0.78

Acronyms: DoF: Degrees of Freedom    RMSE: Room Mean Square Error    MAE: Mean Absolute Error    R²: R-squared    Adj. R²: Adjusted R-squared

8 DISCUSSION, LIMITATIONS, AND FUTUREWORK

Our work can inform application designers interested in estimating a-priori performance of ma-
terials for mid-air gesture interaction. The results for Oriented strand board, Paper, and Drywall

(Section 5) provide evidence for the validity of our proposed approach, showing a high correlation
between material thickness and both peak-to-peak amplitude and SNR (Figure 5). We can conclude
that our proposed indirect measurement method is suitable for describing signal distortions as the
radar signal passes though various materials. However, our results also indicate that the proposed
method fails to accurately describe signal distortions for materials that are transparent to the radar
signal, such as Styrofoam, Polyethylene, Acrylic, and Polycarbonate. One confounding factor can
be attributed to the fact that we tested only thicknesses up to 5 cm for these materials, for which
small changes in amplitude and SNR are di�cult to detect by our experimental setup. This could be
addressed by testing more thicknesses, although the operational range of mm-wave radar is bound
to close proximity (up to 30 cm).

3Web tool: https://solidsonsoli.famnit.upr.si/. Source code available in our repository.
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To make our evaluation agnostic to the data source, recogniser, and architecture, we tested up to
28 di�erent classi�ers (Table 2 and Table 4). The results show a good �t in all cases, which allows
us to conclude that our catalogue can be used for predicting gesture recognition performance for
new materials and similar gesture sets.
As the ultimate test, we have shown how to conveniently estimate gesture recognition perfor-

mance when only characteristics of signal distortions for a few materials are known. This is possible
to achieve by �tting a simple linear regression model based on performance estimates of just 3
materials from our catalogue. We argue that further improvements are possible if more reference
materials are considered, but at the same time we acknowledge that it would take additional e�ort
to do so. Overall, our companion tool provides a reasonable ballpark in a matter of minutes, if not
seconds.

For the curious reader, our linear regression models to predict recognition performance have an
analytical form. For example, Perf = 42.3 + 52.7) ′

2
for the simple model, where ) ′

2
is the limited

transmission coe�cient of the material. The intercept and slope values were averaged over the
7 robot-based classi�ers considered (Table 1) across all the materials from our catalogue. This
expression can be used to provide a rough estimate without having to use our companion tool,
provided that the designer is using a similar classi�er to the ones we have developed in this work.
In the Supplementary Materials we provide the analytical expression of the full regression model,
which has 54 coe�cients and provides more accurate estimates than the simple model.

Our catalogue currently holds 75 materials of various types and thicknesses, but there are many
more materials one could envision for radar sensing applications. Due to the low complexity of
our experimental setup, one could easily expand the existing catalogue. In principle, this is limited
to those users who have access to the Soli sensor and the SDK. However, it is important to note
that this does not preclude the usage of our catalogue, since the extracted Soli core features are
hardware-agnostic [22]. As such, it should be possible to predict gesture recognition performance
for untested materials with other radar-on-chip sensors that operate in the same frequency range
as Soli. We believe this would make for an interesting future work.

Another avenue for future work would be to use a vector network analyser and extend our cata-
logue with direct measurements of material properties. Researchers with access to such equipment
could further analyse the in�uence of signal distortion on gesture recognition performance using
our datasets. Perhaps most interesting would be to investigate distortions in signal phase, which
is not possible to measure with our method. Signal phase is important for modeling distortion in
electronics [3] and it may be useful to predict gesture recognition performance as well.

9 CONCLUSION

We have studied how di�erent materials occluding a mm-wave radar sensor would a�ect gesture
recognition performance. Our proposed method is suitable for understanding signal degradation as
it passes through various materials. Critically, our method uses indirect measurements of radar
signal properties, requiring only a radar-on-chip sensor and optionally a DIY robot system for
automating gesture articulation. As a result, we have compiled a catalogue of everyday materials
that can support designers to determine which materials and gesture sets will perform best in their
particular situation. Finally, it is possible to predict gesture recognition performance on any material
similar to the ones we have analysed. Our catalogue is diverse enough to cover a reasonably large
range of materials, and we hope others will �nd it useful and build upon our work.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 156. Publication date: June 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



156:16 Klen Čopič Pucihar, Nuwan T. A�ygalle, Matjaž Kljun, Christian Sandor, and Luis A. Leiva

ACKNOWLEDGMENTS

We thank Birte Malz for helping us with the data collection, Hongbo Fu for reviewing and early
draft of this paper, Google Inc. for donating a Soli sensor, and Pui Chung Wong, Jiaming Liao, Dávid
Maruscsák, Fonny Phan, and Ran Ju for their help with graphics production.

This research was supported by the Horizon 2020 FET program of the European Union through
the ERA-NET Cofund funding (grant CHIST-ERA-20-BCI-001) and European Commission through
the InnoRenew CoE project (Grant Agreement 739574) under the Horizon2020Widespread-Teaming
program and the Republic of Slovenia (investment funding of the Republic of Slovenia and the
European Union of the European Regional Development Fund). We also acknowledge support from
the Slovenian research agency ARRS (program no. P1-0383, J1-9186, J1-1715, J5-1796, and J1-1692).

REFERENCES

[1] Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand. 2015. Capturing the Human Figure through a
Wall. ACM Trans. Graphics 34, 6 (2015).

[2] Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C Miller. 2014. 3D tracking via body radio re�ections. In Proc. NSDI.
317–329.

[3] Agilent 1997. Understanding the Fundamental Principles of Vector Network Analysis. Agilent AN 1287-1.
[4] Shaikh Shawon Are�n Shimon, Courtney Lutton, Zichun Xu, Sarah Morrison-Smith, Christina Boucher, and Jaime

Ruiz. 2016. Exploring non-touchscreen gestures for smartwatches. In Proc. CHI. 3822–3833.
[5] Francisco Bernardo, Nicholas Arner, and Paul Batchelor. 2017. O soli mio: exploring millimeter wave radar for musical

interaction. In Proc. NIME. 283–286.
[6] Amit Bleiweiss, Dagan Eshar, Gershom Kutliro�, Alon Lerner, Yinon Oshrat, and Yaron Yanai. 2010. Enhanced

interactive gaming by blending full-body tracking and gesture animation. In ACM SIGGRAPH ASIA 2010 Sketches. 1–2.
[7] Victor C Chen, Fayin Li, S-S Ho, and Harry Wechsler. 2006. Micro-Doppler e�ect in radar: phenomenon, model, and

simulation study. IEEE Trans. Aerosp. Electron. Syst 42, 1 (2006), 2–21.
[8] Kevin Chetty, Graeme E Smith, and Karl Woodbridge. 2011. Through-the-wall sensing of personnel using passive

bistatic wi� radar at stando� distances. IEEE Trans. Geosci. Remote Sens. 50, 4 (2011), 1218–1226.
[9] Barrett Ens, Aaron Quigley, Hui-Shyong Yeo, Pourang Irani, Thammathip Piumsomboon, and Mark Billinghurst. 2017.

Exploring mixed-scale gesture interaction. In ACM SIGGRAPH Asia 2017 Posters. 1–2.
[10] Luigi Gallo, Alessio Pierluigi Placitelli, and Mario Ciampi. 2011. Controller-free exploration of medical image data:

Experiencing the Kinect. In Proc. CBMS. 1–6.
[11] Brook Galna, Gillian Barry, Dan Jackson, Dadirayi Mhiripiri, Patrick Olivier, and Lynn Rochester. 2014. Accuracy of

the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait & posture 39, 4 (2014),
1062–1068.

[12] Nils Y. Hammerla, Shane Halloran, and Thomas Plotz. 2016. Deep, Convolutional, and Recurrent Models for Human
Activity Recognition Using Wearables. In Proc. IJCAI. 1533–1540.

[13] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2010. 3D Convolutional Neural Networks for Human Action Recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 495–502.

[14] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. 2014. Bringing gesture recognition to all devices. In Proc. NSDI.
303–316.

[15] Jungsoo Kim, Jiasheng He, Kent Lyons, and Thad Starner. 2007. The gesture watch: A wireless contact-free gesture
based wrist interface. In Proc. ISWC. 15–22.

[16] Tarmo Koppel, Andrei Shishkin, Heldur Haldre, N. Toropov, and Piia Tint. 2017. Re�ection and Transmission Properties
of Common Construction Materials at 2.4 GHz Frequency. Energy Procedia 113 (2017), 158–165.

[17] Sven Kratz and Michael Rohs. 2009. HoverFlow: expanding the design space of around-device interaction. In Proc.

MobileHCI. 1–8.
[18] Christine Kühnel, Tilo Westermann, Fabian Hemmert, Sven Kratz, Alexander Müller, and Sebastian Möller. 2011. I’m

home: De�ning and evaluating a gesture set for smart-home control. Int. J. Hum. Comput. Stud. 69, 11 (2011), 693–704.
[19] David R Large, Kyle Harrington, Gary Burnett, and Orestis Georgiou. 2019. Feel the noise: Mid-air ultrasound haptics

as a novel human-vehicle interaction paradigm. Appl. Ergon. 81 (2019), 102909.
[20] Luis A. Leiva, Matjaž Kljun, Christian Sandor, and Klen Čopič Pucihar. 2020. The Wearable Radar: Sensing Gestures

Through Fabrics. In Proc. MobileHCI. 1–4.
[21] Yi Li. 2012. Hand gesture recognition using Kinect. In Proc. CSAE. 196–199.

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 156. Publication date: June 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Solids on Soli 156:17

[22] Jaime Lien, Nicholas Gillian, M Emre Karagozler, Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim Raja, and
Ivan Poupyrev. 2016. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graphics 35, 4 (2016),
1–19.

[23] Gan Lu, Lik-Kwan Shark, Geo� Hall, and Ulrike Zeshan. 2012. Immersive manipulation of virtual objects through
glove-based hand gesture interaction. Virtual Reality 16, 3 (2012), 243–252.

[24] Daniel Maturana and Sebastian Scherer. 2015. VoxNet: A 3D Convolutional Neural Network for real-time object
recognition. 922–928.

[25] Jess McIntosh, Mike Fraser, Paul Worgan, and Asier Marzo. 2017. DeskWave: Desktop Interactions Using Low-Cost
Microwave Doppler Arrays. In Proc. CHI EA. 1885–1892.

[26] Andre Mewes, Bennet Hensen, Frank Wacker, and Christian Hansen. 2017. Touchless interaction with software in
interventional radiology and surgery: a systematic literature review. Int. J. Comput. Assist. Radiol. Surg. 12, 2 (2017),
291–305.

[27] Pranav Mistry and Pattie Maes. 2009. SixthSense: a wearable gestural interface. In ACM SIGGRAPH ASIA 2009 Art

Gallery & Emerging Technologies: Adaptation. 85–85.
[28] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Kari Pulli. 2015. Short-range FMCW monopulse radar for hand-

gesture sensing. In Proc. RadarCon. 1491–1496.
[29] Ismail Nasr, Reinhard Jungmaier, Ashutosh Baheti, Dennis Noppeney, Jagjit S Bal, Maciej Wojnowski, Emre Karagozler,

Hakim Raja, Jaime Lien, Ivan Poupyrev, et al. 2016. A highly integrated 60 GHz 6-channel transceiver with antenna in
package for smart sensing and short-range communications. IEEE J. Solid-State Circuits 51, 9 (2016), 2066–2076.

[30] J.Y.H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. 2015. Beyond short snippets:
Deep networks for video classi�cation. In Proc. CVPR.

[31] Kenton O’Hara, Gerardo Gonzalez, Abigail Sellen, Graeme Penney, Andreas Varnavas, Helena Mentis, Antonio
Criminisi, Robert Corish, Mark Rounce�eld, Neville Dastur, et al. 2014. Touchless interaction in surgery. Commun.

ACM 57, 1 (2014), 70–77.
[32] Francisco J. Ordóñez and Daniel Roggen. 2016. Deep Convolutional and LSTM Recurrent Neural Networks for

Multimodal Wearable Activity Recognition. Sensors 16, 1 (2016).
[33] Michael Otero. 2005. Application of a continuous wave radar for human gait recognition. In Proc. SPIE, Vol. 5809.

538–548.
[34] C.H. Oxley, J. Williams, R. Hopper, H. Flora, D. Eibeck, and C. Alabaster. 2007. Measurement of the re�ection and

transmission properties of conducting fabrics at milli-metric wave frequencies. IET Science, Measurement & Technology

1, 3 (2007), 166–169.
[35] Sameera Palipana, Dariush Salami, Luis A. Leiva, and Stephan Sigg. 2021. Pantomime: Mid-Air Gesture Recognition

with Sparse Millimeter-Wave Radar Point Clouds. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 1 (2021),
27:1–27:27.

[36] Joseph Paradiso, Craig Abler, Kai-yuh Hsiao, and Matthew Reynolds. 1997. The magic carpet: physical sensing for
immersive environments. In Proc. CHI EA. 277–278.

[37] Joseph A Paradiso. 1999. The brain opera technology: New instruments and gestural sensors for musical interaction
and performance. J. New Music Res. 28, 2 (1999), 130–149.

[38] François Petitjean, Alain Ketterlin, and Pierre Gançarski. 2011. A global averaging method for dynamic time warping,
with applications to clustering. Pattern Recognit. 44, 3 (2011), 678–693.

[39] Carl A Pickering, Keith J Burnham, and Michael J Richardson. 2007. A research study of hand gesture recognition
technologies and applications for human vehicle interaction. In Proc. IET Automotive Electronics. 1–15.

[40] M PourMousavi, M Wojnowski, R Agethen, R Weigel, and A Hagelauer. 2013. Antenna array in eWLB for 61 GHz
FMCW radar. In Proc. APMC. 310–312.

[41] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-home gesture recognition using
wireless signals. In Proc. MobiCom. 27–38.

[42] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2017. PointNet: Deep learning on point sets for 3D
classi�cation and segmentation. In Proc. CVPR. 652–660.

[43] Tauhidur Rahman, Alexander T Adams, Ruth Vinisha Ravichandran, Mi Zhang, Shwetak N Patel, Julie A Kientz, and
Tanzeem Choudhury. 2015. Dopplesleep: A contactless unobtrusive sleep sensing system using short-range doppler
radar. In Proc. Ubicomp. 39–50.

[44] Siddharth S Rautaray and Anupam Agrawal. 2011. Interaction with virtual game through hand gesture recognition. In
Proc. IMPACT. 244–247.

[45] Richard Hartless Richard Rudd , Ken Craig , Martin Ganley. 2014. Building Materials and Propagation. Technical Report
September. 40 pages.

[46] Andreas Riener, Alois Ferscha, Florian Bachmair, Patrick Hagmüller, Alexander Lemme, Dominik Muttenthaler, David
Pühringer, Harald Rogner, Adrian Tappe, and Florian Weger. 2013. Standardization of the in-car gesture interaction

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 156. Publication date: June 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



156:18 Klen Čopič Pucihar, Nuwan T. A�ygalle, Matjaž Kljun, Christian Sandor, and Luis A. Leiva

space. In Proc. AutomotiveUI. 14–21.
[47] Marco Roccetti, Gustavo Mar�a, and Angelo Semeraro. 2012. Playing into the wild: A gesture-based interface for

gaming in public spaces. J. Vis. Commun. Image Represent. 23, 3 (2012), 426–440.
[48] Christian Sandor and Hiraku Nakamura. 2018. SoliScratch: A Radar Interface for Scratch DJs. In Proc. ISMAR-Adjunct.

427–427.
[49] R. W. Schafer. 2011. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 28, 4 (2011), 111–117.
[50] Gözel Shakeri, John HWilliamson, and Stephen Brewster. 2018. May the force be with you: Ultrasound haptic feedback

for mid-air gesture interaction in cars. In Proc. AutomotiveUI. 1–10.
[51] Merrill Ivan Skolnik et al. 1980. Introduction to radar systems. Vol. 3. McGraw-hill New York.
[52] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem Keskin, and Otmar Hilliges. 2014. In-air

gestures around unmodi�ed mobile devices. In Proc. UIST. 319–329.
[53] Peng Song, Wooi Boon Goh, William Hutama, Chi-Wing Fu, and Xiaopei Liu. 2012. A handle bar metaphor for virtual

object manipulation with mid-air interaction. In Proc. CHI. 1297–1306.
[54] Thad Starner, Jake Auxier, Daniel Ashbrook, and Maribeth Gandy. 2000. The gesture pendant: A self-illuminating,

wearable, infrared computer vision system for home automation control and medical monitoring. In Proc. ISWC. 87–94.
[55] Ivan E Sutherland. 1964. Sketchpad a man-machine graphical communication system. Simulation 2, 5 (1964), R–3.
[56] Ivan E Sutherland. 1965. The ultimate display. In Proc. IFIP Congress. 506–508.
[57] John W. Tukey. 1977. Exploratory data analysis. Addison-Wesley Publishing Co.
[58] Wouter Van Vlaenderen, Jens Brulmans, Jo Vermeulen, and Johannes Schöning. 2015. Watchme: A novel input method

combining a smartwatch and bimanual interaction. In Proc. CHI EA. 2091–2095.
[59] Klen Čopič Pucihar, Christian Sandor, Matjaž Kljun, Wolfgang Huerst, Alexander Plopski, Takafumi Taketomi, Hirokazu

Kato, and Luis A. Leiva. 2019. The Missing Interface: Micro-Gestures on Augmented Objects. In Proc. CHI EA. 1–6.
[60] Qian Wan, Yiran Li, Changzhi Li, and Ranadip Pal. 2014. Gesture recognition for smart home applications using

portable radar sensors. In Proc. EMBS. 6414–6417.
[61] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and Otmar Hilliges. 2016. Interacting with soli: Exploring �ne-

grained dynamic gesture recognition in the radio-frequency spectrum. In Proc. UIST. 851–860.
[62] Yazhou Wang and Aly E Fathy. 2011. Micro-Doppler signatures for intelligent human gait recognition using a UWB

impulse radar. In Proc. APSURSI. 2103–2106.
[63] Teng Wei and Xinyu Zhang. 2015. mTrack: High-precision passive tracking using millimeter wave radios. In Proc.

MobiCom. 117–129.
[64] Huiyue Wu and Jianmin Wang. 2012. User-de�ned body gestures for TV-based applications. In Proc. ICDH. 415–420.
[65] LI Yang, Jin Huang, TIAN Feng, WANG Hong-An, and DAI Guo-Zhong. 2019. Gesture interaction in virtual reality.

Virtual Reality & Intelligent Hardware 1, 1 (2019), 84–112.
[66] Hui-Shyong Yeo, Gergely Flamich, Patrick Schrempf, David Harris-Birtill, and Aaron Quigley. 2016. RadarCat: Radar

Categorization for Input & Interaction. In Proc. UIST. 833–841.
[67] Renyuan Zhang and Siyang Cao. 2018. Real-time human motion behavior detection via CNN using mmWave radar.

IEEE Sens. Lett. 3, 2 (2018), 1–4.
[68] Chen Zhao, Ke-Yu Chen, Md Tanvir Islam Aumi, Shwetak Patel, and Matthew S Reynolds. 2014. SideSwipe: detecting

in-air gestures around mobile devices using actual GSM signal. In Proc. UIST. 527–534.
[69] M. Zhao, T. Li, M. A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi. 2018. Through-Wall Human Pose Estimation

Using Radio Signals. In Proc. CVPR. 7356–7365.
[70] Yan Zhuang, Chen Song, Aosen Wang, Feng Lin, Yiran Li, Changzhan Gu, Changzhi Li, and Wenyao Xu. 2015.

SleepSense: Non-invasive sleep event recognition using an electromagnetic probe. In Proc. BSN. 1–6.

A ALTERNATIVE MODEL ARCHITECTURE

Previous work has shown that a spatio-temporal 3D CNN (Conv3D) architecture is an e�ective
tool for accurate action recognition of image sequences [13, 24]. Since Soli provides a sequence
of Doppler images through time, we developed a custom Conv3D architecture (Figure 9) as an
alternative to our hybrid CNN+LSTM architecture (Figure 4).
This model processes each sequence of gesture images with a stack of four Conv3D blocks to

extract feature maps. Each block is composed of a Conv3D layer followed by a max pooling 3D
layer and a spatial dropout layer. The Conv3D layers have 32 × 64 × 128 × 256 units each with
2 × 2 × 2 �lters and use LeakyReLU as activation function. The max pooling layers (pool size of 2)
downsample the feature maps across a 3D volume and the dropout layer (drop rate of 0.5) allows to

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 156. Publication date: June 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Solids on Soli 156:19

Table 4. Linear regression models (LRMs) to predict performance of 3D CNN for di�erent gesture classifiers
trained on both robot and human data with di�erent gestures sets. The results show strong correlation across
all conditions.
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Robot A 75 73 8.69 7.02 0.78 0.78 <.001 75 20 5.72 2.28 0.97 0.91 <.001 Humans A 6 4 7.16 5.27 0.86 0.83 <.01
Robot B 75 73 10.60 8.87 0.72 0.72 <.001 75 20 7.37 2.97 0.96 0.87 <.001 Humans B 6 4 6.85 5.45 0.85 0.82 <.01
Robot C 75 73 13.00 10.20 0.59 0.58 <.001 75 20 12.00 4.95 0.90 0.64 <.01 Humans C 6 4 7.12 5.58 0.86 0.83 <.01

Robot D 75 73 11.10 8.87 0.56 0.56 <.001 75 20 7.23 2.92 0.95 0.81 <.001 Humans D 6 4 7.34 5.49 0.90 0.88 <.01

Robot E 75 73 11.60 9.61 0.71 0.70 <.001 75 20 8.93 3.69 0.95 0.82 <.001 Humans E 6 4 9.07 6.66 0.80 0.76 <.05

Robot F 75 73 9.05 6.99 0.78 0.77 <.001 75 20 7.15 2.82 0.96 0.86 <.001 Humans F 6 4 6.85 5.26 0.87 0.84 <.01

Robot G 75 73 8.19 6.65 0.81 0.81 <.001 75 20 7.61 3.14 0.96 0.84 <.001 Humans H 6 4 9.45 7.11 0.88 0.84 <.01

Mean 10.32 8.32 0.71 0.70 8.00 3.25 0.95 0.82 Mean 7.69 5.83 0.86 0.83

Acronyms: Perf: (ACC + AUC)/2  DoF: Degrees of Freedom   RMSE: Room Mean Square Error   MAE: Mean Absolute Error  R²: R-squared   Adj. R²: Adjusted R²

Fig. 9. Conv3D deep learning model architecture. Range Doppler images (1) are processed with a Conv3D
layer (2) that extracts feature maps followed by 3D maxpooling (3) and spatial dropout (4) layers. Layers
(2) to (4) are stacked in blocks of 32, 64, 128, and 256 units. Then a fully connected layer creates the feature
vectors which are fed into a so�max layer (5) for class prediction (~̂).

prevent over�tting. Then, there is a fully-connected layer with 512 units followed by a softmax
layer for classi�cation.
This model is trained with the Adam optimiser with learning rate [ = 0.001 and decay rates

V1 = 0.9, V2 = 0.999. As in our hybrid model training (Section 4.5), we set the maximum number
of epochs to 200, and also set an early stopping criteria of 50 epochs, which means that training
stopped if the validation loss did not improve after 50 consecutive epochs, and the best model
weights were retained.

We built 7 classi�ers for each data source (robot and humans), totaling 14 classi�ers. This was
done in the same way as for our hybrid CNN+LSTM architecture (see Table 1). Again, all classi�ers
were built for di�erent gesture combinations (6/6 and all possible combinations of 5/6 gestures).

Table 4 shows strong correlation across all conditions, however RMSE and MAE are higher for
the Conv3D architecture when compared to the hybrid architecture (see Table 2). Nevertheless,
these results support our claim that our method of modeling material performance is actually
agnostic to the model architecture.
Table 5 compares our two deep learning architectures considered for all the materials in the

catalogue, using robot data. As can be seen, the hybrid CNN+LSTM model architecture achieves
better performance on average. Therefore, it is preferred for measuring signal distortions with our
proposed indirect method. Note that some materials induce higher signal degradation, thereby
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lowering recognition performance, and the Conv3D architecture is more sensitive than the hybrid
CNN+LSTM architecture in this regard.

Table 5. Comparison of gesture recognition performance across all materials in our catalogue. We report
mean ± standard deviation, followed by 95% confidence intervals.

Metric CNN+LSTM model Conv3D model

Acc. (%) 73.62 ± 4.95 [68.67, 78.56] 66.14 ± 5.25 [60.89, 71.39]
AUC (%) 84.16 ± 2.97 [81.19, 87.13] 79.77 ± 3.15 [76.62, 82.92]

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 156. Publication date: June 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.


