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Purpose: Brain-Computer Interfacing (BCI) has shown promise in Machine
Learning (ML) for emotion recognition. Unfortunately, how data are parti-
tioned in training/test splits is often overlooked, which makes it difficult to
attribute research findings to actual modeling improvements or to partitioning
issues.
Methods: We introduce the “data transfer rate” construct (i.e., how much
data of the test samples are seen during training) and use it to examine data
partitioning effects under several conditions. As a use case, we consider emo-
tion recognition in videos using electroencephalogram (EEG) signals. Three
data splits are considered, each representing a relevant BCI task: subject-
independent (affective decoding), video-independent (affective annotation),
and time-based (feature extraction).
Results: Model performance may change significantly (ranging e.g. from 50%
to 90%) depending on how data is partitioned, in classification accuracy. This
was evidenced in all experimental conditions tested.
Conclusion: Our results show that (1) for affective decoding, it is hard to
achieve performance above the baseline case (random classification) unless
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some data of the test subjects are considered in the training partition; (2) for
affective annotation, having data from the same subject in training and test
partitions, even though they correspond to different videos, also increases per-
formance; and (3) later signal segments are generally more discriminative, but
it is the number of segments (data points) what matters the most. Our find-
ings not only have implications in how brain data are managed, but also in
how experimental conditions and results are reported.

Keywords: Emotion recognition; Videos; BCI; EEG; Data splits.

1 Introduction

Recently, a lot of research effort is being paid to the context of emo-
tion recognition with Machine Learning (ML) models. Specifically, researchers
have proposed many approaches to collect, analyze, and model electroen-
cephalogram (EEG) signals, with promising results in terms of classification
performance; e.g. [1, 20, 19, 4, 28, 3, 23]. Furthermore, with the advent of
Deep Learning, more advanced ML models have been proposed over the last
few years, with sometimes impressively high recognition performance results
being reported. However, unlike what happens in, for example, the Computer
Vision community (e.g. [6, 22, 18, 21]), there is a lack of shared protocols and
benchmarking practices in the BCI community, which makes the proposed
approaches hardly comparable and does not promote or ensures the correctness
of a given model or technique. Furthermore, quite often the described experi-
mental methodology lacks details or is ambiguous, which leaves us wonder to
what extent the reported performance results have been achieved under fair
experimental conditions. Eventually, this status quo does not help researchers
with building up on previous work nor selecting the most adequate modelling
technique.

Certainly, emotion recognition using BCI signals is a challenging problem,
especially when it comes to understanding affective responses towards dynamic
contents such as videos, mainly because of the high inter-subject and intra-
subject variability [26] and the dynamic nature of videos [13].

In the literature, three data regimes are typically considered in affec-
tive modeling problems: subject-dependent, subject-independent, and cross-
subject. Subject-dependent is considered the most favorable condition, since a
personalized ML model is trained on subject-specific data and only data from
the very same subject is used for testing the model; so usually the highest per-
formance is achieved under this condition. In the subject-independent case,
however, a single model is learned with data from several subjects, who are
combined during training and testing. Subject-independent is considered more
challenging but also more realistic than the subject-dependent regime. Corre-
spondingly, the reported model performance is usually lower. However, how
much data from one subject is used in training is critical to understand whether
the merits of the achieved performance corresponds to the generalization abil-
ity of the proposed ML model or to the amount of the data from test subjects
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that has been seen during model training. Finally, the cross-subject scenario is
considered the hardest and most useful in practice, since the ML models are
tested on data from subjects that were never seen in model training.

Another critical factor that makes emotion recognition using BCI signals a
challenging problem is the size of the datasets. BCI datasets are usually small
in size, due to the cost of acquiring these signals. This has an impact on the
kind of ML models that can be used, since, for example, (deep) neural networks
typically require lots of training instances to avoid overfitting. To alleviate
this issue, researchers have considered different temporal segments (or chunks)
of the BCI signals as independent data points for ML model development.
While this certainly helps to increase the number of training and testing sam-
ples, there is a potential data leakage issue because neighboring segments are
expected to be similar. Therefore, ML models are tested on samples that are
very similar to those seen during training. This problem is further exacerbated
when those segments overlap.

In this paper, we provide a rigorous analysis of these data partitioning
issues. We introduce the “data transfer rate” construct (i.e., how much data
of the test samples are seen during model training) and use it to examine
data partitioning effects under several conditions. As a use case, we consider
EEG signals and videos as input stimuli. First, we study subject-independent
data splits, which is relevant for generalized ML models of affective decod-
ing. Second, we study video-independent data splits, which is relevant for
affective annotation of multimedia contents. Third, we study time-based data
splits, which is relevant for preprocessing and feature extraction in ML. Taken
together, our results show that (1) for affective decoding, it is hard to achieve
recognition performance above the baseline case (random classification) unless
some data of the test subjects are considered in the training partition; (2) for
affective annotation, having data from the same subject in training and test
partitions, even though they correspond to different videos, slightly increases
performance; and (3) later signal segments are generally more discriminative,
but it is the number of segments (data points) what matters the most to
improve performance. Our findings not only have implications in how BCI
signals are managed, but also in how experimental conditions and results are
reported in academic papers.

1.1 Related work

The following literature overview is not meant to be exhaustive, given the
large body of research existing on emotion recognition with BCI devices,
but to illustrate the different reported model performances in order to con-
textualize the results yielded later in our analysis. As indicated before, we
consider EEG signals and videos as input stimuli. We focus on a very popular
dataset (DEAP) [14] and on the most popular ML task: binary classification of
valence [17, 24, 25]. Valence is a positive or negative quantification of affective
appraisal, or the degree an emotion has a pleasant or unpleasant quality [8].
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Table 1 Binary valence classification performance on DEAP dataset over the last 5 years

Subject- Cross-

Year Accuracy (%) independent subject ML model

2019 79.99 [10] Random forest, SVM

2019 86.87 [12] CNNs

2019 68.75 [12] CNNs

2021 84.81 [28] Graph-based CNN + LSTM

2021 73.9 [19] Clustering + neural network

2021 89.83 [9] k-NN regressor

2021 68.14 [11] CNN

2022 67.24 [3] 3D CNN + LSTM

2022 78.12 [3] 3D CNN + LSTM

2022 69.06 [5] LSTM

2023 99.31 [23] Deep CNN + SVM

2023 69.38 [16] ManifoldNet + LSTM

2023 67.36 [27] GRU + CNN

In subject-independent experiments, 89.83% accuracy is reported by
Galvão et al. [9] using a k-NN regressor in a 10-fold cross-validation setting.
Keelawat et al. [12] tested Convolutional Neural Networks (CNNs) of 3–7
layers and achieved 86.87% accuracy with 6 layers and 10-fold cross valida-
tion, and 68.75% accuracy with 4 layers and leaving-one-subject out. Yin et
al. [28] combined graph-based CNNs and long short-term memory (LSTM)
cells, achieving 84.81% accuracy. Huang et al. [11] developed a CNN that
exploited the differences in patterns between the left and right brain hemi-
spheres, achieving 68.14% accuracy. Du et al. [5] applied attention to the
output of LSTM for the automatic selection of the emotion-relevant EEG chan-
nels, and obtained 69.06% acccuracy. Classification accuracy higher than 99%
is reported with a combination of a Deep CNN (DCNN) and a Support Vec-
tor Machines [23]. With a spatio-temporal-spectral network, an accuracy of
69.38% is obtained [16]. Finally, Xu et al. [27] reported an accuracy of 67.36%
using a combination of Gated Recurrent Unit (GRU) cells and a CNN.

Towards the ideal scenario of callibration-free emotion recognition, where
no brain data from a target subject would be required in advance, a few-shot
learning study by Bhosale et al. [3] reported average few-shot classification
accuracy ranging from 67.24% (under 5-shot and random sampling) to 78.12%
(under 25-shot and subject-dependent sampling). In a zero-calibration setup,
accuracy ranged from 62.98% (5-shot, subject-dependent) to 71.68% (25-shot
and subject-independent).

In cross-subject experiments, an average accuracy of 79.99% has been
reported by Gupta et al. [10]. Liu et al. [19] explored domain adaptation
through subject clustering, achieving an accuracy of 73.9% (±13.54%).

While these results provide a rough idea of the performance range in state-
of-the-art methods, it also highlights a significant variability between them
and an unclear trend along the years (Table 1). This means that it is difficult
to understand the relationship between model complexity and achieved perfor-
mance. It is therefore hard to judge whether the performance differences are
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attributed to either improvements in data preprocessing or feature extraction
techniques, or to the particular ML approach, or to the data splits used. To
shed more light in this regard, in this work we consider constant the data pro-
cessing and the ML model, and conduct a careful analysis on the relationship
between the data splits and recognition performance.

2 Materials and methods

2.1 Dataset and setup

We conducted our experiments on the DEAP dataset [14], which is perhaps the
most popular dataset for the analysis of human affective states. Relevant to
our research, DEAP provides EEG signals of 32 participants while watching
40 one-minute long excerpts of music videos. Participants rated each video
in terms of valence, arousal, like/dislike, dominance, and familiarity. DEAP
includes both raw and preprocessed EEG signals. In our experiments, we use
the latter to ease replication and comparisons against previous work. 1

We divided the one-minute brain signals into short temporally consecutive
segments of 1, 2, or 4 seconds long, without overlap.2

Each pair (v, s) of video v ∈ {1, . . . , 40} and subject s ∈ {1, . . . , 32} has a
label ℓ ∈ [1, 9] for each emotional dimension (valence, arousal, and dominance),
which corresponds to the subjective self-reported annotation. In this work, we
considered only the valence dimension, and binarized its values into “negative”
(ℓ ≤ 5) and “positive” (ℓ > 5), in line with much of previous work [17, 24, 25].
Therefore, we consider a 2-way (binary) classification problem. The binarized
labels are used as ground-truth for model training and performance evaluation
on the test samples. Each individual segment inherits the label from the (v, s)
signal it belongs to.

2.2 Data splits

We consider splits data at three different target levels: subject-level, video-
level, and time-level. In the first two cases, we consider a data transfer rate that
represents how much data of the test target, expressed as the ratio β ∈ [0, 1],
is “transferred” to the training partition. Accordingly, three types of data
splits of the segmented brain signals were considered, each corresponding to a
different practical scenario:

Subject-independent splits are relevant to affective decoding settings. Data
from a random subset of subjects were used for training and a disjoint subset
of subjects was used for testing.
Video-independent splits are relevant to affective annotation tasks. Data from
a random subset of videos were used for training and a disjoint subset of videos
was used for testing.

1See http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
2Except in one of our experiments where we explore the effect of overlapping segments.

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
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Time-based sampling represents practical scenarios in BCI recording sessions
or live interaction contexts. Here, the last 20% duration of each video (i.e.,
60/5 = 12 s) was used for testing, since there is some evidence that the last
part of the brain signal is more relevant [15]. The remaining 80% was used as
a pool of samples to be added to the training partition, as detailed below.

For subject-independent and video-independent cases, the respective proce-
dures described above were repeated following k-fold cross-validation. We used
k = 5 since it represents a good choice for moderate computational complex-
ity and test size representativeness. Note that a larger k would imply smaller
test sets and more training rounds.

The data splits were determined as follows (Fig. 1). The size of the test set
was fixed to F , a ratio of the total dataset size. Importantly, this size remains
the same regardless of the transfer rate β, which guarantees that the test set is
not a confounding variable and, therefore, the effects on the dependent variable
(performance) are only attributable to the independent variable (β). Another
important detail is that the pool of the test set used for data transfer rate is
disjoint to the test set actually used for performance evaluation, so β applies
only to the remaining R (%) test samples. The transfer rate was varied as
β ∈ {0, 0.2, 0.4, 0.6, 0.8}.

Take for example the 5-fold example shown in Fig. 1a and 1b. Since k = 5,
if F = 4%, for each of the k = 5 folds, the test fold has 100/k = 20% of the
data samples, from which a global amount F is fixed for testing, and different
amounts of the remaining R = 20− F (%) are used to take different β ratios.
Thus, if F = 4%, then R = 20− 4 = 16%. Therefore, with β = 0.2, a total of
β ·R = 0.2 · 16% = 3.2% of the total samples are additionally included in the
training set. For the subject-independent experiments (Fig. 1a), since there
are S = 32 different subjects in the dataset, each fold has data of S/k different
subjects (i.e. 6 or 7 subjects per fold). Notice that the particular subset of test
instances per each fold is fixed, so that it is not affected by β.

For the time-based sampling experiments, we analyze the influence of the
temporal provenance of signal segments. We increasingly chose different seg-
ment lengths following either a forward or backward strategy. Concretely, for
each EEG sample x1:T in the training set, segments from increasingly longer
parts of the subsequence x1:ρT are considered for training in the forward case,
and xT (1−ρ):T for the backward case, as illustrated in Fig. 1c. The sequence
ratio ρ was varied as ρ ∈ {0.2, 0.4, 0.6, 0.8}.

2.3 Machine Learning model

We used our own PyTorch Lightning [7] implementation of a CNN model based
on MIN2Net [2], which is an architecture proposed for motor-imagery tasks.
MIN2Net implements a multi-task learning framework with three additive
losses: supervised classification, reconstruction, and metric learning compo-
nents. Our architectural choice relies on the fact that, compared to other
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1 42 3 F

Training Test

β

Subjects 1-6 Subjects 7-12 Subjects 13-19 Subjects 20-26 Subjects 27-32

(a) Subject-independent splits

1 42 3 F

Training Test

β

Videos 1-8 Videos 9-16 Videos 17-24 Videos 25-32 Videos 33-40

(b) Video-independent splits

Training Test

Training

time

ρ forward ρbackward

(c) Time-based sampling

Test

F

time

ρ1 42 3

Training

Subjects 1-6 Subjects 7-12 Subjects 13-19 Subjects 20-26
For every sequence for Subjects 27-32

forward

5
Transfer pool

(d) Subject-independent and time-based sampling

Fig. 1 Schematics of the different data splits considered in this work. In (a), (b), and (d)
the numbers of subjects and videos within each fold are sorted for presentation simplicity,
but random disjoint subsets were actually considered in our experiments.
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Table 2 The CNN network we used consists of two convolutional blocks and a
classification block. For convolutional and pooling layers, k is the kernel size and s is the
stride. In convolutional layers, n is the number of filters. In fully connected (linear) layers,
n is the number of hidden units. In batch normalization layers, m is the momentum.

Layer

Conv2D(n:512, k:1× 65, s:1× 1)

ELU(α:1.0)

BatchNorm2D(ϵ:10−5, m:0.1)

AvgPool2D(k:1× 2, s:1× 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conv2D(n:10, k:1× 33, s:1× 1)

ELU(α:1.0)

BatchNorm2D(ϵ:10−5, m:0.1)

AvgPool2D(k:1× 4, s:1× 4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flatten

Linear(n:160)

BatchNorm1D(ϵ:10−5, m:0.1)

ReLU

Linear(n:1)

proposed models, MIN2Net provides an excellent balance between complex-
ity and performance, which seems more suitable given the limited amount
of available data, as usual in most of today’s BCI datasets. We explored
several variants of MIN2Net associated to different combinations of the above-
mentioned three loss functions, but did not observe notable differences; thus
we report our results using the classification loss only.

The input to our model is a tensor of size C × L where C is the number
of BCI channels (32 in DEAP), and L = f · T , with T being the duration
of a signal segment and f the sampling frequency (128Hz in DEAP). The
architecture is depicted in Table 2.

The binary cross-entropy was used as classification loss. The batch size was
100 temporal segments. The model was trained up to 15 epochs, but the model
with lowest validation loss was kept for testing. The optimizer was Adam with
a linear scheduled learning rate γ = 10−3 (warm up of 10%), weight decay
λ = 0.01, and parameters β1 = 0.9, β2 = 0.999.

3 Results

3.1 Subject-independent tests

The influence of data transfer rate (Fig. 2) is clear: with no data transfer
rate (β = 0) the model performance is essentially random. Then, with increas-
ing β, classification performance increases steadily. The effect is stronger with
shorter signal segments, despite the fact that short segments carry less infor-
mation and thus could be considered less discriminative. The likely reason for
this behavior is two-fold: shorter segments imply more training instances, and
these instances are more likely to be similar in the training and test sets.
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(a) F = 16% (b) F = 4%

Fig. 2 Effect of data transfer rate in subject-independent tests with two different sizes F

The effect of different amounts of F for the fixed test set can be seen by
comparing Fig. 2a and 2b. These subfigures represent two testing conditions:
on the one hand, a large F is important to have a representative test set; on the
other hand, smaller F implies more training data to choose from (i.e. β ·R is
higher). Then, classification performance with F = 4% is significantly higher.
This highlights the importance of properly conducting and reporting the data
splits in academic papers. Without a shared protocol and further information,
the performance reported in Fig. 2b suggests that the method is preferable
over that of Fig. 2a even though they correspond to exactly the same method
and ML model; only the test set and data transfer rate are different.

It is important to highlight that the performance improvement is mainly
due to the data from subjects in the test set being used in training, not simply
because more training data is being used. As an evidence of this fact, the
performance achieved at β = 0 with 5-fold and 10-fold (not shown here) is
essentially the same (random performance) in spite of having twice as many
training data samples in the 5-fold case (20% of the dataset) than in the 10-fold
case (10% of the dataset).

We should note that the temporal segments used in these experiments do
not overlap. Results for signal segments of T = 4 s with 25% overlap (i.e.
1 s) and 50% overlap (i.e. 2 s) illustrate the notable performance improvement
(Fig. 3), with classification performance comparable to those of T = 2 s or
T = 1 s without overlap. It is important to note that overlapping segments can
be seen as one of the strongest forms of data leakage. Therefore it is generally
advisable not to use them if we care about model generalization.

3.2 Video-independent tests

For the video-independent case, similar trends (Fig. 4) to those observed in
the subject-independent tests, happen in terms of data transfer rate (β). In
absolute terms, the average performance for a given β is slightly higher in
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Table 3 Confusion matrices for the minimum (a, b) and maximum (c, d) mean accuracy
for the subject-independent tests (Fig. 2). N and P stand for the “negative” and “positive”
valence classes. Each cell includes the number of test instances and the corresponding
overall percent. Below the matrix, the accuracy (Acc) and F1 score are included

A
ct
u
a
l

Predicted

N P

N
11437
18.6%

16125
26.2%

P
14451
23.5%

19427
31.6%

Acc: 0.50, F1: 0.43

A
ct
u
a
l

Predicted

N P

N
1337
17.4%

2150
28.0%

P
1657
21.6%

2536
33.0%

Acc: 0.50, F1: 0.41

(a) β = 0, F = 16%, T = 1 (b) β = 0, F = 4%, T = 2

A
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u
a
l

Predicted

N P

N
19372
31.5%

8190
13.3%

P
7038
11.5%

26840
43.7%

Acc: 0.75, F1: 0.72

A
ct
u
a
l

Predicted

N P

N
2920
38.0%

567
7.4%

P
496
6.5%

3697
48.1%

Acc: 0.86, F1: .85

(c) β = 0.8, F = 16%, T = 1 (d) β = 0.8, F = 4%, T = 2
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Fig. 3 Effect of data transfer rate in subject-independent experiments F = 16% with three
segment overlap ratios: no overalap (0%), 25% and 50%
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Fig. 4 Effect of data transfer rate in video-independent experiments

Table 4 Confusion matrices for the video-independent tests (Fig. 4) corresponding to the
minimum (left) and maximum (right) mean accuracy

A
ct
u
a
l

Predicted

N P

N
5760
18.8%

7973
26.0%

P
7416
24.1%

9571
31.2%

Acc: 0.50, F1: 0.43

A
ct
u
a
l

Predicted

N P

N
18783
30.6%

8731
14.2%

P
8017
13.0%

25909
42.2%

Acc: 0.73, F1: 0.69

(a) β = 0.0, T = 2 (b) β = 0.8, T = 1

the video-independent cases than in the subject-independent cases. A sensible
explanation is that even though EEG data from a test video is not seen in the
training set, there are data from the same subject in the training and test sets,
albeit corresponding to different videos. Therefore, although EEG data is both
subject-specific and video-specific, the information specific to one subject is
slightly harder to generalize and, therefore, classification performance in the
subject-independent tests is a bit lower.

3.3 Time-based sampling

In the time-based splits, classification performance is notably higher overall
(Fig. 5, ) than in the subject-independent and video-independent tests, since
in this case the segments corresponding to the same subjects and videos are
both in the training and test splits, since the focus of these experiments was on
the timestamp of the segments. It is apparent that the length of the segment
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Fig. 5 Effect of forward and backward temporal sampling for three different segment
lengths T

Table 5 Confusion matrices for the temporal sampling tests (Fig. 5) corresponding to the
minimum (left) and maximum (right) accuracies

A
ct
u
a
l

Predicted

N P

N
200
5.2%

1516
39.5%

P
116
3.0%

2008
52.3%

Acc: 0.57, F1: 0.20

A
ct
u
a
l

Predicted

N P

N
5905
38.4%

959
6.2%

P
945
6.2%

7551
49.2%

Acc: 0.88, F1: 0.86

(a) Forward, ρ = 0.2, T = 4 (b) Backward, ρ = 0.8, T = 1

has an impact even higher than in subject-independent or video-independent
tests, with higher performance being obtained with shorter segments. This can
be explained by the fact that short segments that are temporally contiguous
are more likely to be similar than longer segments.

Finally, the performance differences between forward and backward tem-
poral sampling is only noticeable at the smallest training sizes considered
(ρ = 0.2). This suggests that having training data corresponding to the
last part of the brain signal has a higher discriminative power at small-data
regimes, but this effect tends to be less relevant than the amount of training
data.
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Fig. 6 Combined effect of forward temporal sampling and data transfer rate in subject-
independent experiments for F = 16%.

3.4 Subject-independent and time-based sampling

Finally, in light of the previous results, we combine the data transfer rate
within the subject-independent scenario with (forward) temporal sampling.
Fig. 6 indicates that classification performance is slightly worse than those
observed in the subject-independent experiments (Fig. 2) because the imposed
temporal constraint of the temporal segments (increasing ρ correspond to more
increasingly later segments being used) makes the segments in the training
and test segments less similar at lower ρ. With respect to (subject-agnostic)
temporal sampling (Fig. 5), classification performance is remarkably smaller
because the amount of data from the same subject is more limited. The result
is particularly lower for T = 4 s since there are fewer training segments of that
length and many more (i.e. higher ρ) are required to better help discriminating
emotions.

4 Discussion

Over the last few years, very good classification performance has been reported
in BCI-based emotion recognition experiments, especially when using EEG sig-
nals. However, previous work is often unclear about the experimental protocol
and, importantly, the data splits used. We have looked into this problem and
empirically studied the impact on performance of experimental details regard-
ing data partitioning. Although our experiments have been performed on a
single dataset and one neural architecture, our findings suggest how critically
important the details about data splits are. Specifically, variations in accuracy
ranged from about random (≈ 50%) to nearly 90% using the very same ML
model. This calls for more attention when conducting BCI experiments and
reporting results, especially under subject-independent and cross-subject pro-
tocols. We strongly believe that a shared definition of these different protocols
should also be explicitly acknowledged in the published works. Authors should
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be diligent in providing those important details unambiguously, which should
be promoted or ensured by our peers.

Our work can be extended to more than two classes, other emotion dimen-
sions (e.g. arousal and dominance), and other learning tasks (e.g. regression
instead of classification). It is also assumed, as done in the research litera-
ture, that separately classifying temporal segments of the entire brain signal
is a meaningful approach. However, while being exposed to dynamic contents
such as videos, the assumption that all segments carry the same sequence-level
affective information might need to be revisited [17]. Another direction to look
into is to what extent data augmentation techniques may alleviate the lack of
target-specific (video, subject) data.

Future work should revisit how ground-truth information is constructed.
Typically, participants in BCI studies report self-perceived measures of affec-
tive states (e.g. valence or arousal values in a graded scale). Given the
variability of the BCI signals in response to dynamic stimuli, it can also be
argued how much of the participant’s self-reported response is actually present
in each of these (short) segments which the BCI signals are typically split into.

Our findings can be summarized in terms of three key scenarios explored:
subject-independence, video-independence, and temporal sampling, which in
turn relate to three important BCI research topics, namely, affective decoding,
affective annotation, and brain signal recording sessions and usage.

Affective decoding

With no subject-specific information included in the training set, classification
performance is expected to be essentially random, at least in the small data
regime (which is the case in the majority of BCI studies). Then, performance
should quickly increase with an increasing data transfer rate. This means that
even for powerful state-of-the-art ML models, it is hard to learn features that
generalize to unseen subjects. The practical implications is that calibration-
free BCI is essentially not possible as of today. Interestingly, with a few data
samples from the target subject, performance increases. This suggests that
a short calibration stage might be helpful, in order to collect such little but
valuable data.

Affective annotation

For stimulus-level analysis, the results are similar to the subject-independent
case. In practice, this means that annotating new contents, for which no emo-
tional response has yet been observed during training, is a really challenging
endeavor. As soon as some signal segments from a target video are available
during training, classification performance increases progressively. This is more
remarkable with shorter segments.

Temporal sampling

When temporal segments are used in the training set, according to their times-
tamp, we found that using segments later in the sequence provides diminishing



Sneaky Emotions 15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Transfer rate ( )

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

T=1 s
T=2 s
T=4 s

Fig. 7 Effect of data transfer rate in subject-independent tests using leaving-one-subject-
out

returns in terms of model recognition. The practical implication of this find-
ing is that shorter capture sessions might be enough and that a favourable
tradeoff between recognition performance and human effort is possible. For
example, in the one-minute video stimuli of the DEAP dataset, about 40% of
the length of the signals sequences (corresponding to about 20 seconds) may
already provide high-rate affective decoding using one-second length segments
if multiple subjects are considered. Although this requires a set of partici-
pants, it reduces the effort per participant to provide brain data. On the other
hand, our results suggest that short segments carry sufficiently discriminative
information, which implies that on-line learning algorithms might be used at
training or deployment time, without incurring in a significant delay to wait
for subsequent parts of the brain signals to be captured and processed.

4.1 Conclusion

We have investigated the effect of data splits in binary valence classification
performance, and found significant differences in several practical scenarios.
This effect has been largely overlooked in the research literature; therefore it
is difficult to attribute previous research findings to actual modeling improve-
ments or to data partitioning issues. Our findings not only have implications
in how BCI signals are managed, but also in how experimental conditions and
results are to be reported in academic papers.



16 REFERENCES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Transfer rate ( )

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

T=1 s
T=2 s
T=4 s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Transfer rate ( )

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

T=1 s
T=2 s
T=4 s

(a) F = 16% (b) F = 4%

Fig. 8 Effect of data transfer rate in subject-independent tests with two different sizes F

for a k-NN classifier

A Leaving one subject out

B Traditional classifier

References

[1] John Atkinson and Daniel Campos. Improving BCI-based emotion recog-
nition by combining EEG feature selection and kernel classifiers. Expert
Systems with Applications, 47:35–41, 2016.

[2] Phairot Autthasan et al. MIN2Net: End-to-end multi-task learning for
subject-independent motor imagery EEG classification. IEEE Transac-
tions on Biomedical Engineering, 69(6):2105–2118, 2022.

[3] Swapnil Bhosale, Rupayan Chakraborty, and Sunil Kumar Kopparapu.
Calibration free meta learning based approach for subject independent
EEG emotion recognition. Biomedical Signal Processing and Control,
72:103289, 2022.

[4] Yu Chen, Rui Chang, and Jifeng Guo. Emotion recognition of EEG sig-
nals based on the ensemble learning method: Adaboost. Mathematical
Problems in Engineering, 2021.

[5] Xiaobing Du, Cuixia Ma, Guanhua Zhang, Jinyao Li, Yu-Kun Lai,
Guozhen Zhao, Xiaoming Deng, Yong-Jin Liu, and Hongan Wang. An
efficient LSTM network for emotion recognition from multichannel EEG
signals. IEEE Transactions on Affective Computing, 13(3):1528–1540,
2022.

[6] Mark Everingham, S. M. Eslami, Luc Gool, Christopher K. Williams,
John Winn, and Andrew Zisserman. The Pascal visual object classes
challenge: A retrospective. International Journal of Computer Vision,
111(1):98––136, January 2015.

[7] William Falcon and The PyTorch Lightning team. PyTorch Lightning
(version 1.4), March 2019. https://github.com/Lightning-AI/lightning.

[8] Don C Fowles. The three arousal model: Implications of gray’s two-factor

https://github.com/Lightning-AI/lightning


REFERENCES 17

learning theory for heart rate, electrodermal activity, and psychopathy.
Psychophysiology, 17(2):87–104, 1980.

[9] Filipe Galvão, Soraia M. Alarcão, and Manuel J. Fonseca. Predicting
exact valence and arousal values from EEG. Sensors, 21(10):3414–3414,
May 2021.

[10] Vipin Gupta, Mayur Dahyabhai Chopda, and Ram Bilas Pachori. Cross-
subject emotion recognition using flexible analytic wavelet transform from
EEG signals. IEEE Sensors Journal, 19(6):2266–2274, 2019.

[11] Dongmin Huang, Sentao Chen, Cheng Liu, Lin Zheng, Zhihang Tian,
and Dazhi Jiang. Differences first in asymmetric brain: A bi-hemisphere
discrepancy convolutional neural network for EEG emotion recognition.
Neurocomputing, 448:140–151, 2021.

[12] Panayu Keelawat, Nattapong Thammasan, Boonserm Kijsirikul, and
Masayuki Numao. Subject-independent emotion recognition during
music listening based on EEG using deep convolutional neural networks.
In International Colloquium on Signal Processing & Its Applications
(CSPA), pages 21–26, 2019.

[13] Byung Hyung Kim and Sungho Jo. Deep physiological affect network
for the recognition of human emotions. IEEE Transactions on Affective
Computing, 11(2):230–243, 2020.

[14] Sander Koelstra, Christian Muhl, Mohammad Soleymani, Jong-Seok Lee,
Ashkan Yazdani, Touradj Ebrahimi, Thierry Pun, Anton Nijholt, and
Ioannis Patras. DEAP: A database for emotion analysis using physio-
logical signals. IEEE Transactions on Affective Computing, 3(1):18–31,
2012.

[15] Nitin Kumar, Kaushikee Khaund, and Shyamanta M Hazarika. Bispectral
analysis of EEG for emotion recognition. Procedia Computer Science,
84:31–35, 2016.

[16] Rui Li, Chao Ren, Sipo Zhang, Yikun Yang, Qiqi Zhao, Kechen Hou,
Wenjie Yuan, Xiaowei Zhang, and Bin Hu. STSNet: a novel spatio-
temporal-spectral network for subject-independent EEG-based emotion
recognition. Health Information Science and Systems, 11(25), 2023.

[17] Xiang Li, Yazhou Zhang, Prayag Tiwari, Dawei Song, Bin Hu, Meihong
Yang, Zhigang Zhao, Neeraj Kumar, and Pekka Marttinen. EEG based
emotion recognition: A tutorial and review. ACM Computing Surveys,
55(4), November 2022.

[18] An-An Liu, Ning Xu, Wei-Zhi Nie, Yu-Ting Su, Yongkang Wong, and
Mohan Kankanhalli. Benchmarking a multimodal and multiview and
interactive dataset for human action recognition. IEEE Transactions on
Cybernetics, 47(7):1781–1794, 2017.

[19] Jin Liu, Xinke Shen, Sen Song, and Dan Zhang. Domain adaptation
for cross-subject emotion recognition by subject clustering. In Intl.
IEEE/EMBS Conference on Neural Engineering (NER), pages 904–908,
2021.

[20] Yu Liu, Yufeng Ding, Chang Li, Juan Cheng, Rencheng Song, Feng Wan,



18 REFERENCES

and Xun Chen. Multi-channel EEG-based emotion recognition via a
multi-level features guided capsule network. Computers in Biology and
Medicine, 123:103927, 2020.

[21] Davide Marelli, Luca Morelli, Elisa Mariarosaria Farella, Simone Bianco,
Gianluigi Ciocca, and Fabio Remondino. ENRICH: Multi-purposE
dataset for beNchmaRking In Computer vision and pHotogrammetry.
ISPRS Journal of Photogrammetry and Remote Sensing, 198:84–98, 2023.

[22] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool,
Markus Gross, and Alexander Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[23] Ruchilekha, Manoj Kumar Singh, and Mona Singh. A deep learning
approach for subject-dependent & subject-independent emotion recogni-
tion using brain signals with dimensional emotion model. Biomedical
Signal Processing and Control, 84:104928, 2023.
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