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Abstract—Handheld touch-capable devices have become one
of the most popular and fastest growing consumer products. It
seems logical therefore to think of such devices as Personal Dig-
ital Bodyguards (PDBs) in charge for example of biometrical,
biomedical, and neurocognitive monitoring by just inspecting
the user’s handwriting activity. However, it is unclear whether
the hardware of today’s devices is capable to handle this task.
To this end, we conducted a comparative study regarding the
capabilities of past and current tablets to allow for the design of
PDBs based on the exploitation of the Kinematic Theory. Our
study shows that, while some improvements are still necessary
at the sampling frequency level, the conclusions drawn by the
Kinematic Theory can be directly transferred to PDBs.

I. INTRODUCTION

Many human motor control theories rely on the assumption
that dynamic and kinematic information is encoded in one
way or another in the user’s neural activity. Although the
specific underlying processes are still under investigation,
from an engineering and computational perspective, this
assumption provides practical guidelines for designing and
implementing innovative devices and products for different
applications. This is particularly true when it comes to hand-
writing and gesture-based interaction, for which the number
of input devices has increased recently. Ergonomic handheld
slate tablets and laptops trapped in tablet bodies, with styli
or touch gestures replacing computer mice and keyboards,
deliver a natural writing and drawing experience [1]. A
similar breakthrough is underway in the smartphone industry.

In the forthcoming years, the ubiquity of smartphones
and tablets, along with their increased computing power and
sensing capabilities, will make it possible to convert these
devices into Personal Digital Bodyguards (PDBs). Among
other things, PDBs will leverage handwriting activity to
monitor the user’s motor control, being able to detect e.g.
stress, aging, and health problems. In this context, PDBs
provide an intelligent solution for biometrical, biomedical and
neurocognitive monitoring and in fact are within reach [2].
However, the realization of this vision is a difficult chal-
lenge. Indeed, handwriting entails complex neuromotor skills.

Producing a handwritten message requires the performance
of numerous cognitive tasks leading to the production of
words from the motor action plans that have been learned
over the years. According to the Kinematic Theory of
Human Movements [3], [4], these plans activate specific
neuromuscular networks to produce a given pen tip trajectory
by combining lognormal strokes, the fundamental units of
handwriting movements [5].

Most of the research regarding this theory has been done
in well-controlled protocols and experimental setups, using
standard digitizers characterized by their stable sampling
frequency and high spatial resolution. One practical ques-
tion that emerges when it comes to making a technology
transfer toward handheld devices (e.g. tablets, phablets,
smartphones...) is the following. Is today’s hardware ready
for such a move?

In this context, it is far from being certain that the
conclusions drawn by the Kinematic Theory can be directly
transferred to PDBs, at least in the present status of the device
development ecosystem, where the sampling frequencies are
much smaller than those of the classical digitizers and often
not stable. Furthermore, the spatial resolution is lower and
the touchscreen sensitive area might not be homogeneous
since this is not a requirement in most commonly used tasks
like e.g. browsing the Web, sending an SMS, or operating a
camera application.

In this paper, we present the results of a comparative study
regarding the capabilities of past and current tablets to be
used in the design of PDBs. Our study is mostly exploratory
but firmly based on the exploitation of the Kinematic Theory.
We show that, while some improvements are necessary at
the sampling frequency level, the conclusions drawn by the
Kinematic Theory can be directly transferred to PDBs.

II. RELATED WORK

In the past, it has been argued that pen-based digitizers lack
sufficient sensitivity [6]. However, this statement no longer
holds true. For example, Elliott [7] sought to understand
how the individual variables of handwriting vary across
devices. It was found that there are significant differences
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in signature traits across devices, but these variables are not
significantly different. Today, handwriting accuracy is a still
matter of concern for tablet users (finger writing behavior),
influenced by many factors including e.g. frequency sampling,
the texture of the screen, or the responsiveness of the device.

Many researchers have focused on identifying the activities
that the stylus is most beneficial for. Among other findings,
device and task interactions have been largely confirmed, with
the stylus identified as optimal for compound tasks, crossing
tasks, radial steering, selection, stroke-based gestures, and
shape tracing tasks [8]. Forlines et al. [9] investigated the
differences between direct touch and mouse input on tabletop
displays. They observed that for bimanual tasks performed,
users benefit from direct-touch input. However, mouse input
may be more appropriate for a single user working on tabletop
tasks requiring only single-point interaction. In addition,
Zabramski et al. [10], [11] compared the performance of
mouse, pen, and touch input in a line-tracing task. It was
observed that touch input was the worst performer in terms
of accuracy but was the fastest in terms of speed.

Other researchers have focused on the effect of the device
on the usability and user experience of digital handwriting.
For example, Ward and Phillips [12] found several misun-
derstood performance characteristics of tablet digitizer that
many impact the usability of interactive applications. Also,
Annett [8] found that latency, unintended touch, and stylus
accuracy have a significant impact on the user experience.

Overall, high writing resolution is achieved with higher
sampling rates on the capturing device. However, researchers
have shown that some applications do not need such a
high sampling rates to achieve good results in practice. For
example, Junker et al. [13] found that there is almost no
loss in accuracy for sampling rates greater than 20 Hz and
resolutions greater than 2 bits. Vatavu [14] analyzed the
effect of sampling rate on the performance of template-based
stroke gesture recognizers. It was found that as few as 6
sampling points per gesture example are sufficient to attain
competitive recognition accuracy.

Despite the fundamental research conducted in previous
works, to the best of our knowledge, a systematic examination
of hardware resolution on handwriting analysis is lacking in
the research literature. Therefore, a study like the one we
conducted in this paper is both timely and necessary.

III. KINEMATIC THEORY

The Kinematic Theory is aimed at explaining the genera-
tion and control of human movements. This theory has been
proved in the past years to be one of the best approaches
to describe the global properties of the neuromuscular
networks involved in a synergistic action [15], [16]. It
proposes explanations about the emergence of the basic
kinematic relationships and psychophysical laws that have
been consistently reported in the studies dealing with human
movements [15].
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Figure 1. A handwritten letter ‘a’. The handwriting trajectory (green thick
line) is described by the temporal overlap of a series of strokes (black
dashed arcs). Each stroke is described by a lognormal equation.

The basic idea behind the Kinematic Theory is that the
neuromuscular network involved in the production of a human
movement can be considered as a linear system made up
of a large number of coupled subsystems [3], [17], [4]. For
example, when writing on a paper sheet we use from the
shoulder down to the joints of the fingers, each of which
must be controlled by the muscle groups attached to them.
The resulting velocity profile of a specific neuromuscular
system converges toward a lognormal function, that is:

‖~v(t)‖ = DΛ(t; t0, µ, σ
2) (1)

being

Λ(t; t0, µ, σ
2) =

1

σ
√
2π(t− t0)

e
−[ln(t−t0)−µ]2

2σ2 (2)

where D describes the amplitude of the input command;
t0 is the time occurrence of the input command; µ is the
neuromuscular system time delay and σ is the neuromuscular
system response time.

There are many models derived from this lognormal
paradigm, among which the Sigma-Lognormal model (ΣΛM)
is the latest and more complete representation [18]. Unlike
previous models, the ΣΛM does not assume that the involved
neuromuscular systems are working in precisely opposite
directions. The synergy emerging from the interaction and
coupling of many of these neuromuscular systems results in
the generation of any complex movements, not limited to a
single stroke.

According to the ΣΛM, the velocity of a complex move-
ment (Figure 1) is described by the temporal overlap of the
velocities ~vi(t) of each involved stroke [19]:

~v(t) =

N∑

i=1

~vi(t) =

N∑

i=1

[
cosφi(t)
sinφi(t)

]
DiΛ(t; t0i , µi, σ

2
i ) (3)

where N represents the number of strokes and φi(t) is
the direction profile for each stroke, described by an error
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function:

φi(t) = θsi +
θei − θsi

2

[
1 + erf

(
ln(t− t0i)− µi

σi

√
2

)]
(4)

where θsi is the starting direction and θei is the ending
direction of the i-th stroke.

Finally, the x(t) and y(t) Cartesian coordinates can be
calculated integrating ~v(t):

[
x(t)
y(t)

]
=

[
x0

y0

]
+

N∑

i=1

∫ t

t0i

~vi(τ) dτ (5)

or alternatively, x(t) and y(t) can also be computed directly
from the Sigma-Lognormal parameters [20]:
[
x(t)
y(t)

]
=

[
x0

y0

]
+

N∑

i=1

Di

θei − θsi

[
sinφi(t) − sin θsi

− cosφi(t) + cos θsi

]

(6)
The generation of these complex movements obeys the

lognormality principle [21]. This principle states that a user
in total control of his movements produces the minimum
number of perfect lognormal strokes in order to generate
the intended hadwriting trajectory. In contrast, when the
user is not in full control, the produced strokes will not be
ideal lognormals or she will use a large number of these
to produce the movement. Therefore, the lognormality of
velocity profiles can be interpreted as reflecting the behavior
of users who are ideal motion planners.

In sum, the ΣΛM provides a solid framework to study the
generation of complex human movements, as defined by the
control parameters (t0, D, θ) and the peripheral parameters
(µ, σ) provided by the model. Our evaluation is performed
by tapping into this model, as discussed in the next section.

IV. EVALUATION

Participants were told to write a series of words on three
different devices. Then, each word was reconstructed accord-
ing to the ΣΛM. Finally, the performance of each device was
assessed through a number of assessment measures derived
from the ΣΛM. Below we describe the experimental setup
and the evaluation procedure.

A. Apparatus

Each participant tested three devices, see Figure 2: a
Wacom Bamboo Pen & Touch digitizer, an Apple iPad mini 2,
and a Lenovo ThinkPad 1st gen. We used the first one as
a baseline device against which the other devices should
be compared, since previous works have used the Wacom
for ΣΛM analysis [22]. Table I summarizes the technical
specifications of these devices.

We developed an HTML5 application that rendered a web
canvas on which participants could write. The application
captured both pen and touch coordinates via event listeners,
together with the timestamp in which the event occurred.
This way, each word was encoded as an on-line sequence

Table I
DEVICE SPECIFICATIONS.

Manufacturer Device Size Resolution Input

Wacom Bamboo 6.1” 2 540 LPI∗ Pen/Touch1
Apple iPad mini 7.9” 326 PPI Touch
Lenovo ThinkPad 10.1” 215 PPI Pen/Touch2

∗ 1 PPI ≈ 2 LPI
1 Touch input was disabled.
2 Pen input was disabled.

of {x,y,t} tuples. No restriction was placed to the sam-
pling frequency, thereby obtaining the maximum sampling
frequency possible for each device.1

B. Participants

We recruited 12 participants aged 23–46 (M=28, SD=2.3)
using our University’s mailing lists. We intentionally wanted a
rather broad sample and recruited participants with many dif-
ferent backgrounds; e.g. Mechanical Engineering, Computer
Science, or Physics. There was no economic compensation for
the participants, who just provided us with raw handwritten
data.

C. Design and Procedure

We used a repeated measures within-subjects design, i.e.,
all participants tested all devices. Each participant had to
handwrite ten common English words, extracted from the
list of “Most common words in English,” according to the
Oxford English Dictionary.2 Words were chosen at random
from this list, with the only restriction that they should be
at least three characters long. Each participant entered each
word ten times, in order to control for variability, resulting in
100 samples per participant and device (see Figure 2), 3 600
samples in total. We used Latin squares (pseudo-random
condition assignments) to counterbalance the order in which
devices would be tested, and to mitigate possible learning
effects between trials.

1) ΣΛM Reconstruction Procedure: Given that strokes are
“hidden” inside a handwriting movement, a ΣΛM reconstruc-
tion is needed to perform a “reverse engineering” process,
in order to uncover the values of the stroke parameters that
best explain the observed velocity profile. For this, we used
the procedure presented in [23]. As discussed later, a good
reconstruction is expected to have the following properties:
(1) the reconstruction quality should be higher than a preset
threshold and (2) for a given reconstruction, the smallest
number of strokes is preferable.

1The Wacom digitizer achieved 120 Hz of temporal resolution on average,
whereas both tablets achieved around 60 Hz.

2http://www.oxforddictionaries.com
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Figure 2. Experimental setup. From left to right: Wacom digitizer, iPad tablet, and ThinkPad tablet.

Wacom iPad ThinkPad

Figure 3. The word “year” written by one of the participants using the different devices.

2) Assessment Measures: We estimate the quality of
a reconstruction using three standard measures. The first
measure is the signal to noise ratio (SNR) between the
original and the reconstructed velocity profile:

SNR = 10 log

( ∑T
t=1 ‖~v(t)‖2∑T

t=1 ‖~v(t)− ~v(t)‖2

)
(7)

where ~v(t) is the analytic velocity, ~v(t) is observed velocity
and T is the duration of the handwriting movement. Previous
works suggest that different SNR thresholds can be used to
quantify what is considered as a good reconstruction [23],
[24], here 25 dB will be used as upper bound.

The second measure is the number of lognormal strokes,
nbLog—or N in Equations (3), (5) and (6)—used in the
reconstruction. As previously commented, the smaller this
number the better.

Finally, the third measure evaluates the reconstruction
quality according to the lognormality principle, by calculating
the ratio between SNR and nbLog. The higher this ratio, the
better. Overall, given two reconstructions with the same
number of strokes, a bigger SNR is always preferable. And
if both reconstructions achieve the same SNR, a smaller
number of lognormal strokes is desirable.

D. Results

First, we measured the average writing duration per device.
As shown in Figure 4, writing on the handheld devices is
slower. In particular, it is half slower on the iPad and two
times slower on the ThinkPad.

Next, we looked at the ΣΛM reconstruction quality
measures; see Figures 5 to 7. Unsurprisingly, in terms of SNR,
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Figure 4. Differences in average writing duration (the lower the better).
Error bars denote 95% CIs.

the Wacom digitizer achieves the highest value, followed by
the iPad and the ThinkPad. However, with respect to the
number of lognormals (nbLog), both the Wacom digitizer
and the iPad tablet achieve similar values, and the samples
written on the ThinkPad tablet have 60% more lognormals
on average than the other devices. Finally, regarding the
ratio between SNR and nbLog, the Wacom digitizer achieves
the highest value, followed by the iPad (14% less) and the
ThinkPad (32% less).
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Figure 5. Differences in SNR (the higher the better). Error bars denote
95% CIs.
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Figure 6. Differences in the number of lognormals (the lower the better).
Error bars denote 95% CIs.
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Figure 7. Differences in SNR/nbLog (the higher the better). Error bars
denote 95% CIs.

To analyze better the differences between these devices we
performed an Analysis of Variance (ANOVA) for each quality
measure. The ANOVA test revealed statistical significance
in all cases excepting the ratio between SNR and nbLog:
writing duration [F2,33 = 9.76, p < .001, η2p = 0.37],
SNR [F2,33 = 3.94, p = .029, η2p = 0.19], nbLog
[F2,33 = 3.47, p = .042, η2p = 0.17], and SNR/nbLog
[F2,33 = 3.03, p = .062, η2p = 0.15]. Effect sizes suggest
small to moderate practical significance of the results.

Therefore, we conducted post-hoc pairwise t-tests (two
tails, Bonferroni-Holm corrected for multiple comparisons)
where the ANOVA test reported statistical significance. The
post-hoc tests provide specific information on which devices
perform significantly different from each other.

In terms of writing duration, the differences between the
Wacom digitizer and the ThinkPad tablet are statistically
significant (p < .001). Thus, the ThinkPad tablet performs
significantly worse than the Wacom digitizer in this regard.
In terms of SNR, the differences between the ThinkPad
and iPad tablets are not statistically significant (p > .05).
However, the Wacom digitizer performs significantly better
than both tablets in this regard (p = .027). Finally, in terms of
nbLog, the differences between all devices are not statistically
significant (p > .05), suggesting that all devices achieve
equally similar performance in this regard. Other comparisons
were not found to be statistically significant.

V. DISCUSSION AND FUTURE WORK

As it can be seen from the above results, all of the studied
devices could be used in the context of the Kinematic Theory
since, among other findings, the handwritten trajectories can
be reproduced with SNR higher than 20 dB (see Figure 5),

which is considered to be appropriate for human movement
analysis [25].

On the other hand, we observed that participants wrote
much more carefully on the ThinkPad tablet to avoid
handwritten words looking “wobbly” due to the low screen
resolution. This fact may explain to a great extent the signif-
icant higher number of lognormals required to reconstruct
each handwritten trajectory on average (see Figure 6).

However, even when the writing duration is higher than
usual (see Figure 4), it can be observed that all devices
achieved a comparative performance in terms of SNR/nbLog
(see Figure 7). The differences among these ratios suggest
that high-quality reconstruction is still achievable in finger
writing. This result is especially important because it confirms
previous works’ findings that showed that the Kinematic
Theory was not limited to pen-based handwriting, but could
be used in a more general context. For example, reproducing
wrist movement and eye saccades [4], 2D and 3D arm
movements [26], and more recently, stroke gestures [24].

It must be pointed out that the use of a stylus greatly
improves performance, as compared to finger writing. Also,
the friction is one of the major factors in determining
the accuracy of handwritten text, but unfortunately modern
tablets like the ones we used in our study do not allow to
control this factor. However, despite of these observations,
our findings open up the possibility of using the Kinematic
Theory in numerous applications like games or gesture-
based applications. For biomedical applications, one question
remains to be investigated and in fact this will be the topic of
a follow up study. Do the ΣΛM parameters extracted from
the trajectories differ greatly form one device to another? In
preliminary experiments we have observed that the peripheral
parameters—µ and σ in Equations (1) to (4)—do not vary
too much from device to device for the same participant.
For example, the user in Figure 2 has µWacom = −1.52,
µiPad = −1.58, µThinkPad = −1.80, and σWacom = 0.3,
σiPad = 0.28, σThinkPad = 0.28. However, these experiments
are outside the scope of this paper and will be the subject
of study in future work. Eventually, the answer to such a
question will be particularly determinant when it comes to
track the neuromotricity of a person from different types
of devices. We also plan to test more devices that cover
different variabilities in e.g. size, resolution, and sampling
frequency. All in all, this work should be seen as one corner
stone of a broad series of potential applications of the PBS
concept.

VI. CONCLUSION

This study is the very first to address fundamental questions
regarding the interoperability of handheld devices based on
the exploitation of the Kinematic Theory. Previous research
in the context of this theory has been done in well-controlled
protocols and experimental setups, using standard digitizers
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characterized by their stable and high sampling frequency
and spatial resolution.

So far, we can anticipate that improvements will be
necessary at the sampling frequency level. However, our
study has shown that today’s hardware is ready to make a
technology transfer toward handheld devices. With this, the
PDB concept and ideas become finally realizable. Looking
forward, we believe this paper will inform researchers and
practitioners about the design of PDBs. Now we can be
confident that it is possible to derive practical guidelines
for implementing innovative devices in charge of active
neurocognitive monitoring.
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