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Abstract—Gesture recognizers require a large pool of training
data to achieve good accuracy. However, recruiting participants,
data collection and labeling, etc. necessary for achieving this
goal are usually time-consuming and expensive. Fortunately, the
Kinematic Theory allows to easily bootstrap gesture generation.
In this paper, we show that the synthesized gestures not only
perform equally similar to gestures generated by human users
but also they look and feel the same. Ultimately, this work benefits
researchers and designers who wish to prototype gesture-driven
applications.

Index Terms—Gesture Synthesis; Bootstrapping; Gesture
Recognition; Strokes; Marks; Symbols; Unistrokes; Multistrokes;
Multitouch; Kinematics; User Interfaces; Rapid Prototyping

I. INTRODUCTION

Gestures are increasingly becoming a predominant input
modality in today’s graphical user interfaces (GUIs). Gesture
interaction is possibly one of the most researched areas in
Human-Computer Interaction (HCI), with a long history that
started as early as 1960, with the Sketchpad project [40] and
the RAND tablet [10]. Gestures can be mid-air (more promi-
nent in gaming applications) or stroke based (more prominent
in mobile applications). We are particularly interested in the
latter type, since stroke gestures are becoming more and more
relevant to mainstream products such as touchscreen-capable
devices like smartphones and tablets.

Stroke gestures represent the movement trajectory of one or
more contact points on a sensitive surface. Stroke gestures are
sometimes also called “pen gestures”, “hand drawn marks”,
“hand drawn gestures”, “hand markings”, or “markings” [45].
Stroke gestures tend to give richer perceptual cues to the user,
to form an association between the shape of the gesture and
the meaning of the command [5]. Stroke gestures also may
improve the usability of UIs, by replacing standard shortcuts
by more accessible triggers.

Today, stroke gestures are mostly used in consumer devices
for executing simple actions, such as pinching a picture to
zoom in/out, swiping to reveal an options menu, or panning
to switch between apps. Nevertheless, stroke gestures are
increasingly being incorporated to facilitate random access to
smartphone contents, such as invoking a command hidden in
an advanced settings menu or quickly searching for a friend’s
email in the contacts list. Therefore, it is expected that stroke
gestures will make a notable impact in consumers’ lives.

This paper agglutinates ideas and results previously published by the authors
at scientific journals and conferences [21], [22], [23], [27].

In general, any application that is driven by gestures must
rely on some recognition-based techniques. These techniques
often require expert knowledge in pattern recognition or ma-
chine learning, something that is typically beyond the reach
of many developers and UI designers. Furthermore, recruiting
participants, data collection and labeling, etc. necessary for
using these techniques are usually time-consuming and ex-
pensive. Thus, it is important to investigate how to empower
developers to (1) quickly collect gesture samples and (2)
create recognizers; both for improving GUI usage and user
experience.

II. RELATED RESEARCH

We review core areas that resemble the most to our work:
approaches to gesture recognition and gesture bootstrapping.

A. Gesture Recognition

Gesture recognition has its own roots in sketching and
handwriting recognition [9], [11], [29], [38]. In HCI, most
gesture recognizers for prototyping GUIs are based on the
template matching (or instance-based) approach [20]: a query
gesture is geometrically compared against a number of stored
templates, using 1 nearest-neighbor for classification and either
Euclidean distance or a Mean Square Error (MSE) score as
dissimilarity measures. Template matchers are a very viable
and a relatively simple solution for recognizing gestures, and
can be adapted to personalized user gestures.

Popular examples of these template-based recognizers
among the HCI literature are part of the so-called “$ family”:
$1 [44], $N [3], and their newer versions Protractor [24] and
$N-Protractor [4], respectively. More recently, Vatavu [42]
introduced $P, a sequential-agnostic recognizer where strokes
are treated as a cloud of 2D points, discarding thus stroke
number, order, and direction.

B. Gesture Boostrapping

Example-based approaches like GRANDMA [38],
Agate [18], or Gesture Studio [26] allow developers to
create and test gestures by recording examples. There
are a number of similar systems tailoring end-users, like
EventHurdle [16], A CAPpella [12], or GestIT [39].
They support designers’ explorative prototyping through
programming by demonstration environments. Another strand
of research is aimed at simplifying the process of designing
gesture sets. For example, Gesture Script [25], Gesture
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Marks [31], Gestalt [32], or CrowdLearner [2]. Finally,
we can find a number of competing systems aimed at
creating synthetic 3D gestures as a means to improve gesture
recognizers, including e.g. MAGIC [6], [17] and Gesture
Follower [8].

Overall, training data is the key factor to build a competitive
gesture recognizer, for which most of the previously reviewed
approaches have contributed to generate their own, without
having to recruit participants and perform time-comsuming
user evaluations. They also have contributed to decreasing the
number of iterations needed to build a fast and stable gesture
recognition interface. However, there is no evidence that any of
the previous works can produce human-like samples. Further,
artificially generated samples usually perform poorly since
they do not illustrate sufficient variation required for high-
quality training [1], [36], [37].

III. SYNTHESIZING GESTURES

Many models have been proposed to study human move-
ment production; e.g. [7], [41], [30], [43], among which
the Kinematic Theory [33] provides a well-established and
solid framework for the study of the production of human
movements This framework takes into account different psy-
chophysiological features, such as the neuromuscular response
time, and has been shown to outperform many other ap-
proaches [34]. The Sigma-Lognormal (ΣΛ) model [35] is the
latest instantiation of this framework, and very recently has
been used to explore gesture recognition.

At a high-level representation, the Kinematic Theory as-
sumes that a complex handwritten trace (such as a stroke
gesture) is composed of a series of primitives (circular arcs)
connecting a sequence of virtual targets. This series of prim-
itives conform the “action plan” of the user, which is fed
through the neuromuscular network to produce a trajectory
that leaves a handwritten trace.

Under this framework, each gesture primitive is modeled
according to a lognormal function of their velocity profile,
defined by a set of central parameters (D, t0, θ) and peripheral
parameters (µ, σ) [33]. Then, an extractor computes the param-
eter values that best explain the observed velocity profiles [28].
Once the gesture primitives are modeled, perturbations can be
added to the model parameters in order to produce different
gesture variations [22]:

p∗i = pi + npi (1)

where pi = {µi, σi, Di, θi } denote the ΣΛ parameters, with
npi

= U(−ni, ni) being the noise applied to each primi-
tive, according to a uniform distribution (i.e., a rectangular
distribution with constant probability) centered around the
expected human variability ranges [15], [22]: nµ = nσ = 0.1,
nD = 0.15, nθ = 0.06. Figure 1 shows some examples of the
synthetic gestures produced with the Kinematic Theory.

Previous works have demonstrated the connection between
the distortion of the Sigma-Lognormal parameters and the
intra-variability found in human handwriting [13]. Combin-
ing both types of variations reflects real-life situations like

Human sample Synthetic samples

Fig. 1: Examples of gestures synthetized with the Kinematic
Theory, using a single human example as input.

performing the same movement under different psychophys-
iological conditions. For example, perturbations in µ and σ
mimic peripheral noise, e.g., a user who articulates the same
gesture slightly different each time; perturbations in D and θ
refer to central fluctuations that occur in the position of the
virtual targets of the action plan from one articulation to the
next [21], [22].

IV. GESTURE PERFORMANCE ANALYSIS

We compared the performance of synthetic gestures with
that of human samples under user-independent tests in terms
of articulation speed, input device, and gesture variability.
The interested reader may consult user-dependent tests and
a follow-up evaluation in our previous work [21].

We synthesized two popular datasets in HCI: GDS [44] and
MMG [4]. On the one hand, the GDS dataset comprises 5,280
unistroke gestures (16 classes). Ten users provided 10 samples
per class at 3 articulation speeds (slow, medium, fast) using
an iPAQ Pocket PC (stylus as input device). On the other
hand, the GDS dataset comprises 5,280 multistroke gestures
(16 classes). Twenty users provided 10 samples per class at 3
articulation speeds (same as in GDS) using either finger (half
of the users) or stylus as input device on a Tablet PC.

A. Impact of Articulation Speed

We sought to analyze whether gesture articulation speed
leads to a difference in classification error rates between
human and synthetic templates. The GDS dataset was analyzed
with the $1 recognizer, whereas MMG was analyzed with the
$P recognizer. Both recognizers were fed with 10 templates.
Table I summarizes this experiment. A two-tailed paired t-
test (Bonferroni corrected) revealed no statistically significant
differences for any of the articulation speeds, suggesting thus
that synthetic gestures perform the same as their human
counterparts.

TABLE I: Effect of articulation speed on error rates (in %)

Type GDS MMG

Slow Med. Fast Slow Med. Fast

Human 0.09 0.06 0.18 0.03 0.02 0.06
Synthetic 0.20 0.27 0.90 0.17 0.36 0.56
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GDS dataset MMG dataset

Fig. 2: Five examples of each synthesized gesture using the human examples (top row) as input.

B. Impact of Input Device
We also sought to analyze whether the input device leads

to a difference in classification error rates between human
and synthetic templates. This analysis was performed over the
MMG dataset, which is the one that provides two data splits:
finger and stylus. We used the $P recognizer with 10 templates.
Table II summarizes this experiment. A two-tailed paired t-
test (Bonferroni corrected) revealed no statistically significant
differences, suggesting thus that gestures can be successfully
synthesized with both a stylus and the finger.

TABLE II: Effect of input device on error rates (in %)

Human Synthetic

Finger Stylus Finger Stylus

0.03 0.04 0.43 0.29

C. Impact of Gesture Variability
Finally, we sought to analyze whether an increase in the

amount of noise ξ introduced to the Sigma-Lognormal model
parameters leads to more variable synthetic gestures. We com-
puted the mean squared error between human and synthetic
gestures for different number of synthesized samples using
ξ from 0.0 (no variability) to 1.0 (maximum variability, in
the allotted human ranges [21]). Table III summarizes this
experiment. As expected, it was found that synthetic samples
are more variable as ξ increases. Interestingly, variability was
found to increase as the number of requested synthetic samples
increases.

TABLE III: Gesture variability (mean squared error)

N GDS MMG

ξ = 0.0 ξ = 1.0 ξ = 0.0 ξ = 1.0

10 554.9 593.6 169.7 490.4
100 " 622.1 " 493.4

1000 " 621.4 " 498.7

V. GESTURE SIMILARITY ANALYSIS

To provide further evidence on the value of the Kinematic
Theory as a means to generate stroke gestures, we conducted

an online survey that measured the user perception toward
gestures’ human-likeness. We used the same datasets depicted
in the previous section, both in their original and synthesized
form. The survey is still available online at https://g3.prhlt.
upv.es/guessit/. Eventually, 236 participants took part in this
study.

We defined the guessing accuracy as the user’s ability to
distinguish between human and synthetic samples; i.e., the
proportion of gestures that were successfully classified by the
user. Then, two types of errors can be committed [14], [15]:
(i) a synthetic gesture is mistaken with a real sample, measured
by the False Real Rate (Type I error); and (ii) a real gesture
is marked as synthetic, measured by the False Synthetic Rate
(Type II error). The results are presented in Table IV.

TABLE IV: Accuracy and error rates (in %)

Accuracy False Real Rate False Synthetic Rate

49.65 29.84 20.40

A paired two-sample t-test (two-tailed alternative hypothe-
sis) revealed that there is no difference between classified and
misclassified gestures, proving thus the human-like appearance
of synthetic samples. In sum, participants could not tell
human and synthetic gestures apart. Follow-up analyses [22],
[19] provided further evidence that synthesized gestures are
actually reflective of how users produce stroke gestures. We
concluded therefore that the visual appearance of the synthetic
samples is very similar and close to that of human gestures.

VI. DISCUSSION

Users tend to be reluctant to invest time and effort upfront
to train or adjust software before using it [5]. Further, users
are unwilling to provide more than a small set of samples for
training [24]. Consequently, synthesizing techniques like are
of high value, as they help to lower time and costs associated
to recruiting users and subsequent data labeling.

Until now the “human likeness” of synthesized ges-
tures was measured indirectly, intermediated by classifica-
tion/recognition accuracy performance. Our studies are impor-
tant because recent research has shown how different users
produce different gesture articulations in various conditions.
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Yet, finally researchers and practitioners can be confident that
synthesized gestures using the Kinematic Theory are actually
reflective of how users produce stroke gestures.

VII. CONCLUSION

We have shown that the Kinematic Theory generates stroke
gestures that can be useful to researchers and practitioners
in many ways. The synthesized gestures not only perform
equally similar to their human couterparts but also they look
and feel the same. In sum, the Kinematic Theory provides
the HCI community with a reliable way to synthesize gesture
sets without having to expressly collect them from a large
pool human subjects. However, we do not to encourage the
substitution of human gestures by synthetic ones, but rather to
provide an automated way to lower the need of recruiting a
large number of users and subsequent data labeling. Our online
application and accompanying web service (JSON RESTful
API) is available at https://g3.prhlt.upv.es/.
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