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Figure 1. Examples of human and synthetic gestures. Can you guess which are which? See the answer at the end of this paper.

ABSTRACT

Researchers are increasingly being concerned with the resem-
blance of synthetic gestures; i.e., how human-like they are,
as perceived by end users. However, evaluations in this re-
gard have been scarce and/or inconclusive. In this paper, we
compared stroke gestures produced by two modern synthe-
sizing techniques (GPSR and G3) against the same gestures
produced by humans. We conducted an online study involving
623 participants, who provided binary assessments for near
6K gesture images. We found that it is difficult to tell human
and synthetic gestures apart, but also that gestures synthesized
with G3 are perceived as if they were human-generated more
often than those synthesized with GPSR. Our results enable a
deeper understanding of synthetic gestures’ production, which
can inform the design of gesture interaction.
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INTRODUCTION

Gesture interaction is a longstanding research area in HCI,
evidenced by early works from 1960 like the Sketchpad
project [28] and the RAND tablet [7]. Today, stroke gestures
(also known as pen gestures, touch gestures, or hand markings)
are becoming more and more relevant to mainstream products
such as touchscreen-capable devices like smartphones and
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tablets. Compared to traditional interactions, stroke gestures
have the potential to lower cognitive load and the need for
visual attention [5, 33]. Stroke gestures also may improve
the usability of Uls, by replacing standard shortcuts by more
accessible triggers [15, 18].

Training a high-quality gesture recognizer requires providing
a large number of examples to enable good performance on
unseen, future data. However, recruiting participants, data
collection and labeling, etc. necessary for achieving this goal
are usually time-consuming and expensive [1, 14]. Previ-
ous works have proposed to address this problem by gener-
ating synthetic samples [2, 8, 12, 27]. Modern synthesizing
techniques like G3 [16] and GPSR [29] have demonstrated
that training gesture recognizers with synthetic data generated
from real users can significantly improve recognition accuracy.
However, researchers have seldom evaluated the quality of
gesture synthesis from the perspective of how “human-like”
they really are. It is crucial that synthetic gestures have a
realistic appearance, not only for display purposes, but be-
cause severely deformed synthetic samples may lead to poor
recognizer performance [29].

In this paper, we investigate the user perception toward
unistroke and multistroke gestures synthesized with GPSR
and G3 vs. actual human gestures. We conducted an online
study “in the wild”, involving 623 participants who provided
binary assessments for near 6K gesture images. We found
that it is difficult to tell human and synthetic gestures apart,
but also that gestures synthesized with G3 are perceived as if
they were human-generated more often than those synthesized
with GPSR. Researchers and practitioners can finally be con-
fident that synthetic stroke gestures are actually reflective of
how users perceive real gestures. Taken together, our results
enable a deeper understanding of synthetic gestures’ produc-
tion, which can inform the design of gesture interaction by
(1) automatically augmenting current gesture sets with more
human-like samples and, in consequence, (2) building more
accurate gesture recognizers.



RELATED RESEARCH

Approaches to gesture synthesis mainly fit into two cate-
gories [29]: those that replicate stroke features from an exist-
ing dataset and those that apply perturbations to a given gesture
sample. Approaches in the former category are unsuitable for
rapid prototyping as they require a reasonably large amount of
data to begin with as well as advanced knowledge in machine
learning. The latter category aims for lightweight, easy to
understand and ready-to-use approaches that address common
UI demands. There is a third option involving an interactive
approach, such as in Gesture Script [20], where developers
describe the gesture structure and its parts. However, having
to provide too detailed information for each gesture can be
time-consuming. This is why we focus on perturbation-based
approaches to gesture synthesis.

Most relevant to this work, G3 [16, 21] produces synthetic
stroke gestures by means of the Kinematic Theory [24] and its
associated XA model [25]. Concretely, G3 creates a kinematic
model of a user-provided gesture sample and introduces local
and global perturbations to the model parameters. Then, the
perturbed models are used to generate synthetic gestures that
in turn look realistic, as shown in a study like the one we
conducted in this paper but at a smaller scale [17].

Also relevant to this work, GPSR [29] produces synthetic
stroke gestures by lengthening and shortening gesture sub-
paths within a given sample to produce realistic variations
via stochastic (nonuniform) resampling. A preliminary study
revealed significances between GPSR and a custom implemen-
tation of G3, but not between GPSR and real samples. It is
unclear thus if these results will hold the same at a large scale,
like the study we conducted in this paper.

So far, there is little work that has advanced our knowledge
of how users perceive synthetic stroke gestures. Galbally et
al. [11] examined the human likeness of synthetic handwritten
signatures (25 participants), Leiva et al. [17] replicated that
study with stroke gestures (236 participants), and Taranta et
al. [29] conducted an informal evaluation (unknown number
of participants, presumably small). All these previous works
found a high degree of similarity between synthesized and
human samples, but it is unclear which synthesizing technique
actually performs better. Therefore, an evaluation like the one
conducted in this paper has been missing.

EVALUATION

We conducted an online study to assess the subjective percep-
tion that non-expert human observers have of unistroke and
multistroke gestures.

Datasets
We used two well-known public datasets in HCI that are also
available in synthesized forms [17, 29].

GDS: Comprises 16 unistroke gesture classes, 5,280 samples
in total [32]. Ten users provided 10 samples per class at 3
articulation speeds (slow, medium, fast) using an iPAQ Pocket
PC (stylus as input device).

MMG: Comprises 16 multistroke gesture classes, 9,600 sam-
ples in total [4]. Twenty users provided 10 samples per class
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at 3 articulation speeds (same as in GDS) using either finger
(half of the users) or stylus as input device on a Tablet PC.

The set of MMG + GDS gestures, produced by humans and
by the two synthesizing methods, was made available online
at https://g3.prhlt.upv.es/guessit/.

Participants

The study was advertised in social networks, ensuring that
users had no expert knowledge on gesture recognition; e.g.,
we did not survey special interest groups on gesture interaction
or machine learning. In order to increase the chance of partici-
pation, we did not collect explicit demographic information
and participants were incentivized with a comparison of their
results to others, via social sharing buttons at the end of the
study.

We report on data collected between November 2016 and
December 2016, which attracted 6,035 pageviews. During
this time, 623 volunteers from 30 different countries took part
in the online study. Most of the participants came from Europe
(92%) and the Americas (5.1%), and used either a desktop PC
(48%), a mobile device (45%), or a tablet (7%). The study
was completed between 30 seconds and a minute on average.

Procedure

This study aimed for recreating as much as possible the set-
tings used by previous works [11, 17]. Each user was presented
with 10 gesture images (1 image at a time) drawn at random
among all gesture samples available. The user had to click on
a button to indicate whether the gesture shown was human or
artificial; see Figure 2. The maximum time permitted to assess
each gesture was 4 seconds at most. This was so because the
overall objective of this study was not making a detailed and
profound analysis of each gesture, but estimating the general
visual appearance of gesture samples after a short inspection.
A “Skip this guess” button allowed the user to discard the
current gesture shown and load a different one. Users could
take the study more than once, if desired (only 22 users did it).

Human or Machine?

Make your guess quickly!

Human or Machine?

Make your guess quickly!

Human or Machine?

Make your guess quickly!

X K Y

Human | Machine Human | Machine

Human | Machine

Remaining guesses: 10 Remaining guesses: 10

Remaining guesses: 10
SKip this guess Skip this guess
Skip this guess

Figure 2. Screenshots of the study application.

Design
We considered 4 independent variables (factors) for analysis:

1. Producer, with 3 levels: Human, GPSR, G3;
2. Dataset, with 2 levels: GDS, MMG;

3. Speed, with 3 levels: slow, medium, fast;

4. Device, with 2 levels: stylus, finger.

The dependent variable considered is Guessing Accuracy: the
user’s capability to distinguish between human and synthetic
gestures, i.e., the success classification rate.



The study is a repeated measures within-subjects design, since
the same user makes a number of randomized guesses while
being exposed to potentially any treatment level of every factor
combination. The data were analyzed using a generalized
linear mixed model for binomial proportions as omnibus test,
which combines the advantages of ordinary logit models (akin
the ANOVA test) with the ability to account for random subject
and item effects [6].

RESULTS

The omnibus test to assess the main effects and inter-
actions present in our data revealed a significant main
effect regarding Producer [X%2,N:4457) =26.11, p< .001].
In addition, a significant interaction was found for
Producer*Dataset [X?Q,N:4457) =8.80, p= .012] and Pro-

ducer*Device [X%Z,N:4457) =2181,p< .001}. No other
main effects or high-order interactions were significant. We
therefore split the data by producer type and performed pair-
wise comparisons using the Wilcoxon rank sum test as post-
hoc test of significance, with appropriately adjusted signifi-
cance levels to guard against the risk of over-testing the data.
All post-hoc tests used the Bonferroni correction.

Table 1 and Figure 3 summarize the overall guessing accuracy
for each producer type. Notice that the distributions are non-
Gaussian, as they represent the proportion of average successes
in a series of independent binary assessments.

Human (N=1,937) GPSR (N=2,032) G3 (N=1,989)
54.53 [52.1,56.9] 50.02 [47.7,52.4] 4492 [42.6,47.3]

Table 1. Overall guessing accuracy (in %, mean and 95% confidence
intervals). N = 5,958 gestures in total.
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Figure 3. Distribution of guessing accuracy by producer type, averaged
across all subjects.

Derived from the data above we can see that (i) real gestures
were marked as synthetic 100 — 54.53 = 45.4% of the time;
(i) GPSR gestures were mistaken with a real sample 49.9% of
the time; and (iii) G3 gestures were mistaken with a real sample
55.1% of the time. Simply put, it is not easy to distinguish one
type of gestures over the other, suggesting thus that synthetic
samples have actual human-like appearance.

To better understand the differences between the three produc-
ers, we ran the pairwise comparisons and observed statistically
significant differences in all cases: human vs. GPSR (p < .01),
human vs. G3 (p < .001), and GPSR vs. G3 (p < .01). These
results reveal that users performed differently when they were
presented with a human or a synthetic gesture sample; i.e.,
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users tended to guess correctly human samples more often,
but also tended to classify synthetic samples as human. This
is particularly true for G3, which had the lower guessing ac-
curacy rate, and is further supported by the median guess-
ing accuracies, which were Mdn=50% for both human and
GPSR samples, and Mdn=33% for G3 samples. In sum, users
committed more errors when assessing artificial samples, and
particularly more when assessing gestures generated with G3.

Dataset analysis

We also investigated the impact of dataset (unistroke vs. mul-
tistroke gestures), given the interaction effect observed in
the omnibus test. Table 2 summarizes the results. The post-
hoc test on the GDS dataset (unistrokes) revealed statistically
significant differences between synthetic and human samples
(p < .01) but no differences were found between GPSR and G3
(p = .32,n.5.). Next, the post-hoc test on the MMG dataset
(multistrokes) revealed statistically significant differences be-
tween G3 and the other approaches (p < .01).

Dataset Human (N=985) GPSR (N=1,008) G3 (N=985)

GDS 55.77 [52.3,59.2] 45.59 [42.2,49.0] 43.15 [39.8,46.5]
MMG 5347 [50.1,56.8] 53.88 [50.6,57.11 46.39 [43.1,49.6]

Table 2. Guessing accuracy (in %, mean and 95% Cls) on the GDS
dataset (N = 2,978 unistrokes) and MMG (NN = 2,980 multistrokes).

This analysis suggests that both synthesizing techniques suc-
ceed at producing realistic unistroke gestures, however G3
seems more appropriate for rendering multistrokes, as it had
much lower guessing accuracy. In general, multistroke ges-
tures are more complex in nature. There are spatial constraints
between consecutive strokes that sometimes are hard to rep-
resent accurately; see e.g. the “asterisk” or “six point star”
samples in Figure 4.

Input device analysis

We also investigated the impact of input device (stylus vs. fin-
ger gestures) over the MMG dataset,! given the interaction
effect observed in the omnibus test. Table 3 summarizes the
results. The post-hoc test on the stylus gestures revealed sta-
tistically significant differences between human samples and
both synthesizing techniques (p < .001), and no differences
were found between GPSR and G3 (p = .126, n.s.). Next, the
post-hoc test on the finger gestures revealed statistically sig-
nificant differences between GPSR and the other approaches
(p < .01).

Device Human (N=952) GPSR (N=1,024) G3 (N=1,004)

Stylus  59.76 [55.2,64.3] 49.74 [45.1,54.4] 44.75 [40.2,49.3]
Finger 46.68 [41.8,51.5] 57.80 [53.3,62.3] 48.17 [43.5,52.9]

Table 3. Guessing accuracy (in %, mean and 95% ClIs) of gestures
drawn with stylus (N = 1,509) and finger (N =1,471).

This analysis suggests that both synthesizing techniques suc-
ceed at producing gestures drawn with a stylus. However, for
finger gestures G3 was on par with human samples, and both
of which outperformed GPSR.

'GDS gestures were drawn with a stylus, so they were excluded.
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Figure 4. Gestures samples from GDS (top subtable) and MMG (bottom subtable). Each gesture group (a,b,c) is labeled the same way as in Figure 1.

Discussion

Overall, participants struggled to tell human and synthetic ges-
tures apart. We conclude therefore that the visual appearance
of the synthetic samples is very similar and close to that of
human gestures, evidencing thus that they “look and feel” the
same to human observers. This is an important result because
recent literature on gesture analysis has shown how users pro-
duce different gesture articulations in various conditions [3,
13, 31]. Further, being able to produce synthetic gestures with
a realistic appearance not only fulfills display purposes, but
also improves recognition performance [29].

Previous user studies on stroke gestures perception [11, 17,
29] revealed that the number of mistaken real and synthetic
samples was very similar. This paper advances our knowledge
further, revealing that, at a large scale, both GPSR and G3 pro-
duce compelling results in terms of unistroke gestures, and that
G3 delivers better results than GPSR in terms of multistrokes.
We also found an effect of input device on guessing accuracy,
suggesting that both synthesizing techniques perform similarly
for stylus gestures and that G3 outperforms GPSR for finger
gestures.

The synthesizing approaches studied in this paper have been
proven to be strong contenders in the research literature. GPSR
introduces reasonable perturbations on a stroke gesture sample
directly, operating over the sequence of 2D coordinates. This
makes this approach computationally efficient, with minimal
coding overhead. On the contrary, G3 extracts a number of
complex model parameters from a given sample and perturb
their parameters. This approach becomes more resilient to ges-
ture type and input device, however this apparent superiority
comes at the expense of performance: G3 may take several
seconds to process a gesture sample, including the delay times
incurred by network latency (G3 is available as a web service,
GPSR is standalone software).

On a side note, the concepts concerning internal models of
human movements have been well supported by behavioral
studies in the field of sensory motor control. Overall, it is
assumed that users are “ideal” motion planners who choose

movement trajectories to minimize an expected loss [30, 26].
Currently, we can find two compelling theories to describe
those movements: the Minimization Theory [10] and the Kine-
matic Theory [24]. Actually, it has been shown that their
concepts are linked and describe, with different arguments, a
model of velocity profiles [9, 17].

Users tend to be reluctant to invest time and effort upfront to
train or adjust software before using it [5]. Further, users are
unwilling to provide more than a small set of samples for train-
ing [19]. Consequently, synthesizing techniques like GPSR
and G3 are of high value, as they help to lower time and costs
associated to recruiting users and subsequent data labeling.
Furthermore, researchers can focus exclusively on UI design
rather than fret over machine learning concepts or toolkits that
may not be available for their platform. Eventually, both GPSR
and G3 can be used for rapid prototyping, allowing develop-
ers to define new gestures on demand. However, if realtime
response is mandatory and only 2D information is needed, we
would recommend to use GPSR. For more advanced applica-
tions such as modeling mouse movements [22] or handwriting
behavior [23] we would recommend G3.

CONCLUSION AND FUTURE WORK

This work provides evidence against the implied alternate hy-
pothesis of a difference between human and synthesized stroke
gestures. Our findings have demonstrated the importance of
our study: until now the “human likeness” of synthesized
gestures has been measured indirectly, intermediated by classi-
fication accuracy. Researchers and practitioners can be finally
confident that synthesized gestures (either via GPSR or G3)
are actually reflective of how users perceive gestures, and that
G3 is more appropriate for rendering realistic multistroke and
touch-based gestures.

For future work, the relationship between what looks realistic
and what is realistic should be studied further. As of today,
there is no gold standard to assess how realistic a gesture
sample really is. The method undertaken by this and previous
work assumes that humans a reasonable judges of realism, but
it might not be the case.
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APPENDIX

Figure 4 depicts all the gestures in both datasets drawn with a
stylus at medium speed, which represents the tradeoff between
drawing accuracy and execution pace.

Solution to Figure 1
Group (a) was produced by humans, group (b) was synthesized
using GPSR, and group (c) was synthesized using G3.
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