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Gesture recognizers usually require a large number of examples to
achieve good accuracy. To achieve this goal, a series of time-consuming
and expensive experiments must be followed, e.g. preparing the lab, re-
cruiting participants, data collection and labeling, and often reporting
to review boards. Fortunately, the Kinematic Theory allows to easily
bootstrap gesture data generation. The synthesized data, in turn, may
enable further applications of interest. In this chapter, we review the
foundations of synthetic stroke gestures generation; i.e. the synthesis of
data sequences comprising 2D points and associated timestamps, derived
e.g. from electronic pens and touchscreens. We show that synthesized
gestures not only perform equally similar to gestures generated by hu-
man users, but also they “look and feel” the same. We also discuss how
the synthesized gestures can be used to estimate production time, which
is a fundamental measure of performance in Human-Computer Interac-
tion. Ultimately, this work benefits researchers and designers who wish
to create gesture-driven prototypes or use the synthesized data to build
more sophisticated applications.
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1. Introduction

Gestures are increasingly becoming a predominant input modality in to-

day’s graphical user interfaces (UIs). Gesture interaction is possibly

one of the most researched areas in Human-Computer Interaction (HCI),

with a long history that started as early as 1960, with the Sketchpad

project [Sutherland (1963)] and the RAND tablet [Davis and Ellis (1964)].

Gestures can be mid-air (more prominent in gaming applications) or stroke

based (more prominent in mobile applications). We are particularly inter-

ested in the latter type, since stroke gestures are becoming more and more

relevant to mainstream products such as touchscreen-capable devices like

smartphones and tablets; see Figure 1.

Fig. 1. Stroke gestures input is common on many devices with a wide variety of form
factors, from smartphones and tablets to tiny touchscreens featured by some wearables,

such as smartwatches, and to large interactive surfaces.

Stroke gestures represent the movement trajectory of one or more con-

tact points on a sensitive surface. Stroke gestures are sometimes also called

“pen gestures”, “hand drawn marks”, “hand drawn gestures”, “hand mark-

ings”, or “markings” [Zhai et al. (2012)]. Appert and Zhai (2009) demon-

strated the cognitive advantage of stroke gestures in the area of command

shortcuts, concluding that stroke gestures tend to give richer perceptual

cues to the user, to form an association between the shape of the gesture

and the meaning of the command. Stroke gestures also may improve the

usability of UIs, by replacing standard shortcuts by more accessible triggers.

Stroke gestures have existed in the market for decades. Early exam-

ples of commercial products that successfully incorporated gestures are,

e.g., PDAs like the Palm Pilot or the Apple Newton, and the Windows

Tablet. These devices featured the Graffiti and Unistroke shorthand writing

systems, which used a single stroke Roman letter-like gesture vocabulary.

Stroke gestures are increasingly being incorporated to facilitate random ac-

cess to smartphone contents, such as invoking a command hidden in an
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advanced settings menu or quickly searching for a friend’s email in the con-

tacts list. For example, drawing a letter “S” on a mobile phone screen can

be used to search in the address book [DroidByDesign (2014)] or speed-

dial some contacts [Li (2010a)]. Similarly, in a video game [POW Studios

(2008)] players can draw circles to create shields, arcs to launch fireballs,

and hearts to drink potions. More recently, the massive online game ‘Harry

Potter: Wizards Unite’ requires players to draw stroke gestures to create

spells and defeat enemies [WB Games and Niantic (2019)]. In addition,

many modern tablets incorporate a stylus,a which allows for more precise

and enriched gestures. Therefore, it is expected that stroke gestures will

make a notable impact in consumers’ lives.

In general, any application that is driven by gestures must rely on some

recognition-based techniques. These techniques often require expert knowl-

edge in pattern recognition or machine learning, something that is typically

beyond the reach of many developers and UI designers. Furthermore, these

techniques require a large pool of labeled training data, which is usually

both time-consuming and expensive to acquire. Thus, it is important to

investigate how to empower developers to (1) quickly collect and label ges-

ture samples and (2) create accurate recognizers; both for improving UI

usage and user experience.

This book chapter provides a compilation of our previous results on

the application of the Kinematic Theory to stroke gestures synthesis [Leiva

et al. (2016); Mart́ın-Albo and Leiva (2016)], and summarizes for read-

ers empirical results regarding the articulation characteristics of synthetic

stroke gestures [Leiva et al. (2017a)], the perception of human observers

comparing synthetic and authentic gesture articulations [Leiva (2017)], as

well as applications to predicting users’ gesture input performance [Leiva

et al. (2018a,b)] and extensions towards modeling the articulation charac-

teristics of gestures produced by various categories of users [Leiva et al.

(2017b); Ungurean et al. (2018b,a)]. By compiling all these previous re-

sults in one informative and instructional book chapter, we hope to deliver

readers a clear understanding of the application potential of synthetic ges-

tures to support innovations and advances in stroke gestures recognition

and analysis.

aFor example: Apple iPad Pro, Microsoft Surface Pro 6, Samsung Galaxy Tab S4, Huawei
MediaPad M5 Pro, Wacom Cintiq 22HD, and Lenovo Yoga Book, among others.
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2. Related Research

In this section we review core areas that resemble the most to our work:

approaches to gesture recognition and gesture bootstrapping.

2.1. Gesture Recognition

Gesture recognition has its own roots in sketching and handwriting recog-

nition [Connell and Jain (2000); Deepu et al. (2004); Marzinkewitsch

(1991); Rubine (1991)]. Classification methods include, among others:

linear discriminant analysis [Rubine (1991)], template matching [Connell

and Jain (2000)], decision trees [Belaid and Haton (1984)], neural net-

works [Marzinkewitsch (1991)], hidden Markov models [Koschinski et al.

(1995)], parsing grammars [Costagliola et al. (2004)], support vector ma-

chines [Bahlmann et al. (2001)], principal component analysis [Deepu et al.

(2004)], or ad-hoc recognizers [Leiva et al. (2013, 2014)].

In HCI, most gesture recognizers for prototyping UIs are based on the

template matching (or instance-based) approach [Leiva et al. (2014)]: a

query gesture is geometrically compared against a number of stored tem-

plates, using 1 nearest-neighbor for classification and either Euclidean dis-

tance or a Mean Square Error (MSE) score as dissimilarity measures. Tem-

plate matchers are a very viable and a relatively simple solution for recog-

nizing gestures, and can be adapted to personalized user gestures.

Popular examples of these template-based recognizers among the HCI

literature are part of the so-called “$ family”: $1 [Wobbrock et al. (2007)],

$N [Anthony and Wobbrock (2010)], and their improved versions Protrac-

tor [Li (2010b)] and $N-Protractor [Anthony and Wobbrock (2012)], respec-

tively. Vatavu et al. (2012) introduced $P, an articulation-invariant gesture

recognizer that represents stroke gestures as clouds of 2D points, discarding

thus stroke count, order, and direction, with the most recent instantiation

being $Q, a quick and accurate recognizer for point clouds [Vatavu et al.

(2018)].

For personalized, gesture-based interaction, it is hard to foresee what

gestures an end-user would specify and what the distribution of these ges-

tures will look like [Li (2010b)]. Nonetheless, they can be both time and

space consuming on the computational side, given the size of the gesture

vocabulary and the number of stored templates to define each gesture.
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2.2. Gesture Boostrapping

Training a high-quality recognizer requires providing examples that illus-

trate sufficient variation to enable robust inference on unseen, future data.

Example-based approaches like GRANDMA [Rubine (1991)], Agate [Lan-

day and Myers (1993)], or Gesture Studio [Lü and Li (2013)] allow develop-

ers to create and test gestures by recording examples. There are a number

of similar systems tailoring end-users, like EventHurdle [Kim and Nam

(2013)], A CAPpella [Dey et al. (2004)], or GestIT [Spano et al. (2013)].

They support designers’ explorative prototyping through programming by

demonstration environments. Another strand of research is aimed at simpli-

fying the process of designing gesture sets. For example, Gesture Script [Lü

et al. (2014)], Gesture Marks [Ouyang and Li (2012)], Gestalt [Patel et al.

(2010)], or CrowdLearner [Amini and Li (2013)]. Finally, we can find

a number of competing systems aimed at creating synthetic 3D gestures

as a means to improve gesture recognizers, including e.g. MAGIC [Ash-

brook and Starner (2010); Kohlsdorf and Starner (2013)] and Gesture Fol-

lower [Caramiaux et al. (2014)]. MAGIC performs local perturbations to

the resampled points of a gesture, whereas Gesture Follower introduce some

variations to a gesture template using Viviani’s curve formulation.

Overall, training data is the key factor to build a competitive gesture

recognizer, for which most of the previously reviewed approaches have con-

tributed to generating their own, without having to recruit participants

and perform time-consuming user evaluations. They also have contributed

to decreasing the number of iterations needed to build a fast and stable

gesture recognition interface. However, there is no evidence that any of

the previous works can produce human-like samples. Further, artificially

generated samples usually achieve suboptimal results since they do not il-

lustrate sufficient variation required for high-quality training [Almaksour

et al. (2011); Plamondon et al. (2014); Reznakova et al. (2015)] and there-

fore the achieved error rates are typically higher when compared to training

exclusively with human-generated data.

Besides the above-mentioned error rates, another important factor

worth mentioning toward the adoption of one gesture recognizer over an-

other is performance, typically represented by processor time and memory

usage. It is here where the above-mentioned template matchers usually

excel, and the main reason why we chose them to conduct our recognition

experiments in the next sections. In addition, template matchers are very

easy to convey, implement, and deploy on any platform for non-specialists
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whose objective is quickly enhancing interactivity and not dealing with the

complexity of the underlying recognition algorithms.

3. Synthesizing Gestures

Many models have been proposed to study human movement production;

e.g., models relying on neural networks [Bullock and Grossberg (1988)],

equilibrium point models [Feldman (1966)], behavioral models [Thomassen

et al. (1983)], coupled oscillator models [Hollerbach (1981)], kinematic mod-

els [Meyer et al. (1990)], or models exploiting minimization principles [Flash

and Hogan (1985)]. Other models exploit the properties of various func-

tions to reproduce human movements; e.g., exponentials [Plamondon and

Lamarche (1986)], second order systems [van der Gon and Thuring (1965)],

beta functions [Alimi (2003)], splines [Morasso et al. (1983)], Viviani’s

curves [Viviani and Flash (1995)], and trigonometrical functions [Maarse

(1987)]. Among these approaches, the Kinematic Theory [Plamondon

(1995)] provides a well-established and solid framework for the study of

the production of human movements This framework takes into account

different psychophysiological features, such as the neuromuscular response

time, and has been shown to outperform many other approaches [Plam-

ondon et al. (1993)]. The Sigma-Lognormal (ΣΛ) model [Plamondon and

Djioua (2006)] is the latest instantiation of this framework, and very re-

cently has been used to explore gesture recognition.

At a high-level representation, the Kinematic Theory assumes that a

complex handwritten trace (such as a stroke gesture) is composed of a

series of primitivesb (circular arcs) connecting a sequence of virtual targets.

This series of primitives conform the “action plan” of the user, which is fed

through the neuromuscular network to produce a trajectory that leaves a

handwritten trace; see Figure 2.

Under this framework, each ith gesture primitive is modeled according

to a lognormal function representing their corresponding velocity profile.

Each primitive is defined by a set of central parameters (D, t0, θ) and pe-

ripheral parameters (µ, σ) [Plamondon (1995)]. The central parameters

describe the articulated handwritten trajectory, whereas the peripheral pa-

rameters describe the reaction to such articulation. Concretely, D rep-

resents the overall size (amplitude) of the primitive, t0 accounts for the

bIn the gesture recognition literature, the term “stroke” denotes the trajectory between
two consecutive pointer-down and pointer-up events. In the Kinematic Theory literature,
a “stroke” is what we call “primitive” in this chapter.
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Fig. 2. A gesture stroke (solid lines) is described by the temporal overlap of a series

of primitives (dashed arcs) connecting a sequence of virtual targets (numbered circles).

Each primitive is described by a lognormal velocity profile.

handwriting start time, θ informs about rotation and direction, and finally

µ and σ denote the mean and variance of the lognormal function, respec-

tively, reflecting the neuromuscular response.
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Then, a ΣΛ extractor computes the parameter values that best explain

the observed velocity profiles [Mart́ın-Albo et al. (2015)]. Once the gesture

primitives are modeled, perturbations can be added to the model parame-

ters in order to produce different gesture variations [Leiva et al. (2017a)]:

p∗i = pi + npi
(4)

where pi = {µi, σi, Di, θi } denote the ΣΛ parameters, with npi
=

U(−ni, ni) being the noise applied to each primitive, according to a uniform

distribution (i.e., a rectangular distribution with constant probability) cen-

tered around the expected human variability ranges [Galbally et al. (2012b);

Leiva et al. (2017a)]: nµ = nσ = 0.1, nD = 0.15, nθ = 0.06. Figure 3 shows

a series of actual examples of the synthetic gestures produced with the

Kinematic Theory.
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Human sample Synthetic samples

Fig. 3. Examples of gestures synthetized with the Kinematic Theory, using a single
human example as input.

Previous works have demonstrated the connection between the distor-

tion of the ΣΛ model parameters and the intra-variability found in human

handwriting [Djioua and Plamondon (2009)]. Combining both types of

variations reflects real-life situations like performing the same movement

under different psychophysiological conditions. For example, perturbations

in µ and σ mimic peripheral noise, e.g., a user who articulates the same ges-

ture slightly different each time; perturbations in D and θ refer to central

fluctuations that occur in the position of the virtual targets of the action

plan from one articulation to the next [Leiva et al. (2016, 2017a)]. Finally,

we should mention that we decided to not add perturbations to the t0 pa-

rameter, since it is very sensitive to fluctuations [Djioua and Plamondon

(2009); Leiva et al. (2016)]. Nevertheless, perturbations in t0 have been

suggested to reflect changes in the sequence of command instantiation e.g.

due to a decrease in attention or cognitive neuromotor fatigue [Djioua and

Plamondon (2009)]. Therefore, further analysis of the t0 parameter is left

as an opportunity for future work.

4. Gesture Performance Analysis

The first experiment compared the performance of synthetic gestures with

that of human samples under user-independent tests in terms of articulation

speed, input device, and gesture variability. The user-independent setting is

the more generalizable scenario, however the interested reader may consult

user-dependent tests and a follow-up evaluation in our previous work [Leiva

et al. (2016)].

We synthesized two popular datasets in HCI: GDS [Wobbrock et al.

(2007)] and MMG [Anthony and Wobbrock (2012)]. Both datasets include

examples of simple and complex gestures produced with different devices

and under different execution speeds. Therefore these datasets are a rele-

vant testbed for conducting replicable research on stroke gestures.
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On the one hand, the GDS dataset comprises 5,280 unistroke gestures

(16 classes). Ten users provided 10 samples per class at 3 articulation speeds

(slow, medium, fast) using an iPAQ Pocket PC (stylus as input device).

On the other hand, the MMG dataset comprises 9,600 multistroke gestures

(16 classes). Twenty users provided 10 samples per class at 3 articulation

speeds (same as in GDS) using either finger (half of the users) or stylus as

input device on a Tablet PC. Both GDS and MMG datasets are available at

http://depts.washington.edu/madlab/proj/dollar/. The synthesized

versions of both datasets are available at https://luis.leiva.name/g3/

#datasets.

GDS dataset

MMG dataset

Fig. 4. Five synthesized gestures using one human example (top row) as input.
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4.1. Impact of Articulation Speed

We sought to analyze whether gesture articulation speed leads to a differ-

ence in classification error rates between human and synthetic templates.

The GDS dataset (unistroke gestures) was analyzed with the $1 recog-

nizer, whereas the MMG dataset (multistroke gestures) was analyzed with

the $P recognizer. Both recognizers were initialized with 10 templates, as

suggested in previous work [Anthony and Wobbrock (2010); Li (2010b);

Wobbrock et al. (2007)]. Table 1 summarizes this experiment.

As can be observed, error rates are very small (< 1%), indicating that

the recognizers were successful in classifying correctly each gesture instance.

The error rates for the synthesized gestures were slightly higher, therefore

we ran two-tailed paired t-tests to investigate further these differences. We

applied the Bonferroni correction, to counteract Type I errors as a result

of multiple comparisons. The statistical tests revealed no statistically sig-

nificant differences on recognition errors for any of the articulation speeds,

suggesting thus that synthetic gestures can be recognized with the same

confidence as their human counterparts, regardless the execution speed.

Table 1. Effect of articulation speed on error rates (in %).

Type GDS MMG
slow med. fast slow med. fast

Human 0.09 0.06 0.18 0.03 0.02 0.06

Synthetic 0.20 0.27 0.90 0.17 0.36 0.56

4.2. Impact of Input Device

We also sought to analyze whether the input device leads to a difference

in classification error rates between human and synthetic templates. This

analysis was performed over the MMG dataset, which is the one that pro-

vides two data splits (finger and stylus). We used the $P recognizer with

10 templates, as in the previous experiment. Table 2 summarizes this ex-

periment.

As can be observed, error rates are very small (< 0.5%), indicating that

the recognizers were successful in classifying correctly each gesture instance.

The error rates for the synthesized gestures were slightly higher, therefore

we ran two-tailed paired t-tests (Bonferroni corrected) to investigate further

these differences. The statistical tests revealed no statistically significant
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differences on recognition errors for any of the articulation speeds, suggest-

ing thus that gestures can be successfully synthesized using either a stylus

or the human finger as input.

Table 2. Effect of input device on
error rates (in %).

Human Synthetic
finger stylus finger stylus

0.03 0.04 0.43 0.29

4.3. Impact of Gesture Variability

Finally, we sought to analyze whether an increase in the amount of noise

ξ introduced to the ΣΛ model parameters leads to more variable synthetic

gestures. We computed the mean squared errorc between human and syn-

thetic gestures for different number of synthesized samples using ξ from

0.0 (no variability) to 1.0 (maximum variability, in the allotted human

ranges [Leiva et al. (2016)]). Table 3 summarizes this experiment.

As expected, it was found that synthetic samples are more variable as

ξ increases. As expected, within-samples variability was found to increase

as the number of requested synthetic samples increases. In general, we ob-

served that requesting a small number of synthetic samples (10 samples per

gesture) provides slightly less variable samples. For a given value of ξ, vari-

ability was found to increase as the number of requested synthetic samples

increases, though we suspect it is because the MSE is underestimated for

small batch sizes. Indeed, the standard error (Table 3) gets smaller as the

number of samples gets larger, because the mean of a large sample is likely

to be closer to the true population mean.

5. Gesture Similarity Analysis

To provide further evidence on the value of the Kinematic Theory as a

means to generate synthetic stroke gestures, we conducted an online sur-

vey that measured the user perception toward gestures’ human-likeness.

We used the same datasets depicted in the previous section, both in their

original and synthesized form. The survey is still available online at
cTo ease computation, strokes were resampled in such a way that a human sample and
its synthesized samples had the same length.
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Table 3. Gesture variability in term of mean squared error (standard errors
in parentheses).

N GDS MMG
ξ = 0.0 ξ = 1.0 ξ = 0.0 ξ = 1.0

10 554.9 (56.6) 593.6 (57.8) 169.7 (9.5) 490.4 (38.2)

100 " (17.8) 622.1 (20.5) " (3.0) 493.4 (10.7)
1000 " (5.6) 621.4 (6.4) " (0.9) 498.7 (3.5)

https://g3.prhlt.upv.es/guessit/. Eventually, 236 participants took

part in this study.

We defined the guessing accuracy as the user’s ability to distinguish

between human and synthetic samples; i.e., the proportion of gestures that

were successfully classified by the user. Then, two types of errorsd can be

committed [Galbally et al. (2012a,b)]: (i) a synthetic gesture is mistaken

with a real sample, measured by the False Real Rate (Type I error); and

(ii) a real gesture is marked as synthetic, measured by the False Synthetic

Rate (Type II error). The results are presented in Table 4.

Table 4. Accuracy and error rates (in %).

Accuracy False Real Rate False Synthetic Rate

49.65 29.84 20.40

A paired two-sample t-test (two-tailed alternative hypothesis) revealed

that there is no difference between classified and misclassified gestures,

proving thus the human-like appearance of synthetic samples.e In sum,

participants could not tell human and synthetic gestures apart. Follow-

up analyses [Leiva et al. (2017a); Leiva (2017)] provided further evidence

that synthesized gestures are actually reflective of how users produce stroke

gestures.

We also examined the intra-class variability of human gestures, distance-

wise; i.e., how variable is a human gesture sample as compared to the rest

of the human samples that belong to the same gesture class. The Pearson’s

correlation coefficient was found to be ρ > 0.9 in all datasets, and we

observed that ρ decreased as ξ increased. This indicates that, as expected,

dThe sum of False Real Rate (Type I error) and False Synthetic Rate (Type II error)
yields the overall error rate (100 - Accuracy).
eWe assume that humans are reasonable judges of realism, but it might not always be
the case.
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samples synthesized with a low variability degree look much more similar

to the human samples from which they were generated. Taken together,

these experiments suggest that the visual appearance of synthetic gestures

is very similar and close to that of their human counterparts.

6. Production Times Analysis

As a practical application of the synthesized gestures with the Kinematic

Theory, we report results on a fundamental topic in HCI. The production

time of a stroke gesture, i.e., how long it takes users, on average, to produce

a 2D handwritten trace on a touch-sensitive surface, is one essential aspect

of user performance with gesture input [Castellucci and MacKenzie (2008);

Cao and Zhai (2007); Vatavu et al. (2011); Rekik et al. (2014)]. Such

insightful information about users’ performance represents a valuable asset

for practitioners to inform gesture design directly, e.g., what are the fastest

gestures to produce [Appert and Zhai (2009); Castellucci and MacKenzie

(2008)] or indirectly, e.g., what are the easiest gestures to execute from

a given set [Vatavu et al. (2011); Rekik et al. (2014)]. Moreover, gesture

production time turned out to be an excellent predictor of users’ subjective

perceptions of the difficulty to articulate stroke gestures [Rekik et al. (2014);

Vatavu et al. (2011)]. In this context, it is important for user interface

designers to be able to estimate a priori, as accurately as possible, users’

input performance in order to save considerable time and effort demanded

by subsequent user evaluations and/or gesture set redesigns.

For this experiment, we compared the synthesized gesture production

times against ther human counterparts [Leiva et al. (2018a,b)] using the

same two datasets described in the previous experiments (GDS and MMG).

The performance of ΣΛ as time predictor was evaluated with the following

accuracy measures:

Rank accuracy evaluates the extent to which the synthetic gestures de-

liver the correct ranking (Spearman’s correlation) of gestures ac-

cording to their production times. The closer the rank to 1, the

better.

Absolute accuracy evaluates the extent to which the synthetic gestures

deliver the correct magnitude (in ms) of the expected production

time of a given gesture type. The closer the magnitude to the true

production time, the better.

Production times were computed using a user-independent leave-one-
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out cross-validation procedure, which considers each execution from each

gesture produced by each participant as the representative gesture sam-

ple to compare against the ΣΛ model. The results of this experiment are

shown in Table 5. In any case, we found no statistically significant differ-

ences between true and estimated times, which builds our confidence that

synthesized gestures are on par with users’ actual time performance with

stroke gesture input.

Table 5. Production times analysis. Time in ms. SDs denoted in parentheses.

Dataset Device Speed True time Rank acc. Abs. acc.

slow 1607 (679) .979∗∗∗ 1587 (678)
GDS stylus med. 1055 (438) .992∗∗∗ 1078 (425)

fast 618 (259) .991∗∗∗ 670 (273)

slow 1011 (683) .932∗∗∗ 1120 (638)
MMG stylus med. 668 (511) .900∗∗∗ 672 (408)

fast 537 (440) .788∗∗∗ 609 (339)

slow 1038 (694) .950∗∗∗ 940 (665)
MMG finger med. 688 (504) .914∗∗∗ 805 (528)

fast 553 (434) .775∗∗∗ 730 (464)

Statistical significance levels are p < .001 in all cases.

We are thus confident that synthetic samples look like real ones at the

geometric level. However, velocity profiles comprise subtle time-dependent

relationships that so far have not been studied for stroke gestures. There-

fore, How realistic are the velocity profiles synthesized? To answer this

question, the plots below display the velocity profiles of a set of gestures

chosen at random from each dataset. We can observe that the synthesized

velocity profiles are often in line with the human velocity profiles, however

the velocity range is typically smaller for the synthesized gestures. This

happened especially to the synthesized samples from the GDS dataset, as

show in Figure 5, and is a consequence of our current implementation of the

ΣΛ model, which transforms the original stream into constant frequency;

i.e., the resulting synthesized coordinates are uniformly distributed in time.

This resampling process allows to “fix” downsampled strokes that were ac-

quired with under-resourced hardware [Leiva et al. (2016)] but an undesired

side effect is that velocity profiles look smoother than usual. The MMG is

a particularly bad dataset to analyze velocity profiles, because many ges-

ture points have duplicated timestamps [Leiva et al. (2017a)], which makes

it challenging to estimate velocity values. For example, if two consecutive
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points at timestep i−1 and i have the same timestamp, the time derivative

at timestep i is zero and therefore the velocity value is infinite. In conse-

quence, careful preprocessing must be performed. Figure 6 shows a couple

of velocity profiles corresponding to gestures articulated with stylus and

finger, respectively.
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Fig. 5. Comparison of velocity profiles from samples in the GDS dataset.

7. Discussion

Users tend to be reluctant to invest time and effort upfront to train or adjust

software before using it [Appert and Zhai (2009)]. Further, users are un-

willing to provide more than a small set of samples for training [Li (2010b)].

Consequently, synthesizing techniques like ours are of high value, as they

help to lower time and costs associated to recruiting users and subsequent

data labeling. Furthermore, researchers can focus exclusively on UI design
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Fig. 6. Comparison of velocity profiles from samples in the MMG dataset.

rather than fret over machine learning concepts or toolkits that may not be

available for their platform. Eventually, our web application [Mart́ın-Albo

and Leiva (2016)] can be used for rapid prototyping, allowing developers

to define new gestures on demand. The interested reader can access it at

https://g3.prhlt.upv.es.

Until now the “human likeness” of synthesized gestures was measured in-

directly, intermediated by classification/recognition accuracy performance.

Our studies are important because recent research has shown how different

users produce different gesture articulations in various conditions. Thus,

researchers and practitioners can be confident that synthesized gestures

using the Kinematic Theory are actually reflective of how users produce

stroke gestures.

One requirement for the ΣΛ model to produce proper results is that the

user-provided gesture example should be reconstructed with high quality,

as defined by the signal-to-noise ratio (SNR). Previous work suggested that

SNR values below 15 dB denote poor execution quality [Almaksour et al.

(2011); Leiva et al. (2016, 2017a)] and, in such cases, the input gesture

should be discarded. However, we found this situation to appear extremely

rarely in practice: out of the 14, 240 stroke gestures that we evaluated in our

experiments, only 22 samples had SNR< 15 dB, which represents merely

0.15% of the data.

On a side note, the concepts concerning internal models of human move-
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ments have been well supported by behavioral studies in the field of sensory

motor control. Overall, it is assumed that users are “ideal” motion plan-

ners who choose movement trajectories to minimize an expected loss [Trom-

mershäuser et al. (2003); Quinn and Zhai (2018)]. Currently, we can find

two compelling theories to describe those movements: the Minimization

Theory [Flash and Hogan (1985)] and the Kinematic Theory [Plamondon

(1995)]. Actually, it has been shown that their concepts are linked and

describe, with different arguments, a model of velocity profiles [Djioua and

Plamondon (2010); Leiva et al. (2017a)], the Minimization Theory being

as a very good approximation of the lognormal description provided by the

Kinematic Theory.

The previous instantiation of the Kinematic Theory (the Delta-

Lognormal model) assumed that the production of a stroke requires the

synergetic activation of two neuromuscular systems, one agonist and the

other antagonist to the direction of the movement. These synchronous com-

mands propagate in parallel across the two neuromuscular systems, each of

which is described by a lognormal impulse response and has its own timing

properties. On the contrary, the ΣΛ model does not assume that the two

neuromuscular systems are working in precisely opposite directions. The

output velocity is thus described by a vectorial summation of the contribu-

tion of each neuromuscular system involved in the production of a stroke.

This model is actually very general, and is not limited to a single stroke de-

scription [Plamondon and Djioua (2006); O’Reilly and Plamondon (2009)].

This corroborates the prediction of the Kinematic Theory, where it is the-

orized that the ideal impulse response of the human neuromotor system

follows a lognormal response that results from the limiting behavior of a

large number of interdependent neuromuscular networks, as stated in the

first chapter of this book and referred to as the lognormality principle.

The fundamental advantage of our approach over others is that the ΣΛ

model only needs one user example to start synthesizing more gestures.

Although using only one gesture example could be seen as a limitation

(i.e., the results are bound to the sample gesture provided as seed), our

experiments revealed that synthetic gestures are on par with their human

counterparts. This performance is explained by the fact that our synthe-

sizer [Leiva et al. (2016); Mart́ın-Albo and Leiva (2016)] uses generic, user-

independent value ranges for the ΣΛ parameters, which were empirically

derived from and validated for many user categories by prior work [Galbally

et al. (2012b); Leiva et al. (2016, 2017b); Mart́ın-Albo et al. (2014)]. The

interested reader can refer to these prior works to know other range values
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and how they may impact recognition performance. Although we should

note that different values may be needed for different user categories, such

as gestures articulated by visually impaired users [Leiva et al. (2017b)] or

users with motor impairments [Ungurean et al. (2018b,a)].

We also have shown that the ΣΛ model delivers accurate predictions of

users’ stroke gesture production times with no effort required from design-

ers. This is a practical application to enable effective gesture sets design.

We should stress the fact that it is important to provide designers with

both measures of central tendency (i.e., the expected production time of

a gesture) and, equally important, measures of variation as well; i.e., how

much are users expected to deviate their production times from the mean?

Given that users are known to vary their gesture articulations [Anthony

et al. (2013); Vatavu et al. (2013)], it also causes variation in their pro-

duction times. With synthesized gestures, we are able to deliver the extra

information given by location and dispersion-based measures that can tell

the practitioner the range in which the mean time is likely to lie and also

how much to expect individual times to deviate from the mean.

Finally, in light of the analysis of the synthetic velocity profiles, we

believe there is still room for improvement in how synthetic gestures are

produced by the ΣΛ model. While the articulation of synthetic gestures,

as reflected by the shape of their velocity profiles, is very much in line

with their corresponding human velocity profiles, the ΣΛ model is often

unable to capture all the compensatory micro-movements observed in hu-

man gesturing, very much like it happens in human handwriting. These

subtle micro-movements are explained by the isochrony principle [Viviani

and McCollum (1983)], which states that the velocity of a movement is pro-

portionally linked to its linear extension (or trajectory) so as to permit the

execution time to be maintained approximately constant [Freund (1986)].

Stroke gestures captured on commodity touchscreens, such as the ones we

have analyzed in this work, have usually low temporal resolution and asyn-

chronous timestamps. Therefore, their velocity profiles are much more

challenging to reconstruct than, say, handwritten signatures performed on

a high-resolution tablet with a high and fixed sampling rate. More re-

search is thus needed to understand the articulation of stroke gestures on

touch-capable devices.
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8. Conclusion

Our experiments provide evidence against the implied alternate hypothesis

of a difference between human and synthesized stroke gestures. Researchers

and practitioners can be finally confident that the Kinematic Theory gen-

erates stroke gestures that not only perform equally similar to their human

couterparts but also they look and feel the same. And while there is still

room for improving how synthetic strokes gestures are articulated, it is re-

liable to generate synthetic datasets this way, since the overall performance

and behavior of gesture samples will be consistently similar to that of actual

users. This can be useful to researchers and practitioners in many ways.

As a practical application of the synthesized gestures, we have discussed

how they can be used to estimate production times, which is one of the fun-

damental performance measures in HCI. We have left out other practical

applications that also might be of interest to practitioners, such as syn-

thesizing gestures across populations [Leiva et al. (2017b); Ungurean et al.

(2018b)], evaluating the effect of hardware resolution on handwriting anal-

ysis [Mart́ın-Albo et al. (2016b)], or detecting the “hidden” user intent in

mouse cursor movements [Mart́ın-Albo et al. (2016a)]. However, space pre-

cludes a complete treatment of all possible applications of synthetic gestures

in HCI. Instead, the interested reader is redirected to the works referenced

above.

In sum, the Kinematic Theory provides the HCI community with a

reliable way to synthesize stroke gesture sets without having to expressly

collect them from a large pool human subjects. However, we do not to

encourage the substitution of human gestures by synthetic ones, but rather

to provide an automated way to lower the need of recruiting a large number

of users and subsequent data labeling.

References

Alimi, A. M. (2003). Beta neuro-fuzzy systems, in W. Duch and D. Rutkowska.
eds., TASK Quarterly J., Special Issue on Neural Networks, Vol. 7.

Almaksour, A., Anquetil, E., Plamondon, R. and O’Reilly, C. (2011). Synthetic
handwritten gesture generation using Sigma-Lognormal model for evolving
handwriting classifiers, in Proceedings of Biennial Conf. of the Intl. Grapho-
nomics Society (IGS).

Amini, S. and Li, Y. (2013). CrowdLearner: Rapidly creating mobile recogniz-
ers using crowdsourcing, in Proceedings of Annual ACM Symp. on User
Interface Software and Technology (UIST).

Anthony, L., Vatavu, R.-D. and Wobbrock, J. O. (2013). Understanding the con-

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



October 2, 2019 11:48 ws-rv9x6 Book Title main page 20

20 L.A. Leiva et al.

sistency of users’ pen and finger stroke gesture articulation, in Proceedings
of Graphics Interface (GI).

Anthony, L. and Wobbrock, J. O. (2010). A lightweight multistroke recognizer
for user interface prototypes, in Proceedings of Graphics Interface (GI).

Anthony, L. and Wobbrock, J. O. (2012). $N-protractor: a fast and accurate
multistroke recognizer, in Proceedings of Graphics Interface (GI).

Appert, C. and Zhai, S. (2009). Using strokes as command shortcuts: Cognitive
benefits and toolkit support, in Proceedings of SIGCHI Conf. on Human
Factors in Computing Systems (CHI).

Ashbrook, D. and Starner, T. E. (2010). MAGIC: A motion gesture design tool,
in Proceedings of SIGCHI Conf. on Human Factors in Computing Systems
(CHI).

Bahlmann, C., Haasdonk, B. and Burkhardt, H. (2001). On-line handwriting
recognition with support vector machines: A kernel approach, in Proceed-
ings of Intl. Workshop on Frontiers in Handwriting Recognition (IWFHR).

Belaid, A. and Haton, J.-P. (1984). A syntactic approach for handwritten formula
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 6, 1.

Bullock, D. and Grossberg, S. (1988). The VITE model: a neural command
circuit for generating arm and articulator trajectories, in Dynamic Patterns
in Complex Systems.

Cao, X. and Zhai, S. (2007). Modeling human performance of pen stroke gestures,
in Proceedings of SIGCHI Conf. on Human Factors in Computing Systems
(CHI).

Caramiaux, B., Montecchio, N., Tanaka, A. and Bevilacqua, F. (2014). Adaptive
gesture recognition with variation estimation for interactive systems, ACM
Trans. Interact. Intell. Syst. 4, 4.

Castellucci, S. J. and MacKenzie, I. S. (2008). Graffiti vs. Unistrokes: An em-
pirical comparison, in Proceedings of SIGCHI Conf. on Human Factors in
Computing Systems (CHI).

Connell, S. D. and Jain, A. K. (2000). Template-based on-line character recogni-
tion, Pattern Recogn. 34, 1.

Costagliola, G., Deufemia, V., Polese, G. and Risi, M. (2004). A parsing technique
for sketch recognition systems, in Proceedings of Symp. on Visual Languages
and Human-Centric Computing (VLHCC).

Davis, M. R. and Ellis, T. O. (1964). The RAND tablet: A man-machine graphical
communication device, in Proceedings of American Federation of Informa-
tion Processing Societies (AFIPS).

Deepu, V., Madhvanath, S. and Ramakrishnan, A. G. (2004). Principal compo-
nent analysis for online handwritten character recognition, in Proceedings
of Intl. Conf. on Pattern Recognition (ICPR).

Dey, A. K., Hamid, R., Beckmann, C., Li, I. and Hsu, D. (2004). A CAPpella:
Programming by demonstration of context-aware applications, in Proceed-
ings of SIGCHI Conf. on Human Factors in Computing Systems (CHI).

Djioua, M. and Plamondon, R. (2009). Studying the variability of handwriting
patterns using the Kinematic Theory, Hum. Mov. Sci. 28, 5.

Djioua, M. and Plamondon, R. (2010). The limit profile of a rapid movement

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



October 2, 2019 11:48 ws-rv9x6 Book Title main page 21

Stroke Gesture Synthesis in Human-Computer Interaction 21

velocity, Hum. Mov. Sci. 29, 1.
DroidByDesign (2014). Oftseen gestures, URL https://play.google.com/

store/apps/details?id=com.proofbydesign.oftSeenGestures, accessed
on May 2019.

Feldman, A. (1966). Functional tuning of the nervous system with control of
movement or maintenance of a steady posture, Biophysics 11, 1.

Flash, T. and Hogan, N. (1985). The coordination of arm movements: an exper-
imentally confirmed mathematical model, J. Neurosci. 5, 7.

Freund, H.-J. (1986). Time control of hand movements, Prog. Brain Res. 64.
Galbally, J., Plamondon, R., Fierrez, J. and Ortega-Garćıa, J. (2012a). Synthetic
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Spano, L. D., Cisternino, A., Paternò, F. and Fenu, G. (2013). GestIT: A declar-
ative and compositional framework for multiplatform gesture definition, in
Proceedings of ACM SIGCHI Symp. on Engineering Interactive Computing
Systems (EICS).

Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication
system, Tech. Rep. 296, Lincoln Laboratory, MIT.

Thomassen, A. J., Keuss, P. J. and van Galen, G. P. (1983). Motor aspects of
handwriting, Acta Psychol. 54, 1–3.
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