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1 INTRODUCTION

Shape-writing, also known as gesture typing, swype input, swipe to text, or just swiping (for short), is a prevalent
mobile text entry method currently supported by all mobile vendors. Contrary to regular touch typing, where the user
touches one key at a time and lifts up the finger to enter one character, swiping is a word-based text entry method: The
finger lands on (or close to) the first key of the desired word and then, without lifting the finger from the keyboard, it
traverses (the vicinity of) all the keys until reaching the last character of the word, generating a trajectory of touch
points as a result. See Figure 2 for some examples.

While original studies suggested that swiping is faster than touch typing [25], recent empirical studies have challenged
this assumption [34], calling for more research on the involved user factors and dynamics. However, until now, swiping
performance has been researched in small-scale experiments [39], in large-scale studies as one of many text methods [34],
or using proprietary, undisclosed datasets [37]. At the moment, there is no publicly available dataset where researchers
∗Work done in part while affiliated with Aalto University.
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could access rawmovements dynamics such as the gesture path drawn on top of the keyboard or the time lapsed between
consecutive swiped keys. Collecting such data is challenging, because most mobile keyboards are vendor-locked and do
not offer an API for collecting such data.

This paper contributes to efforts in understanding typing performance with mobile devices, a central topic in HCI;
see e.g. [3, 4, 21, 36, 41]. We present a new dataset ś the first of its kind ś for conducting research on mobile swiping
together with first observations of correlates of typing performance. To improve text entry techniques, it is important
to understand their effects beyond controlled laboratory studies. While most studies in HCI have involved a relatively
low number of participants [10], and often focused on prototype evaluation, we report here results from a large-scale
dataset of over 1,300 volunteers. Large-scale analyses of mobile interaction are relatively rare and mostly undertaken by
commercial organizations that hold the datasets proprietary. There are notable exceptions [9, 13, 21, 34] but they did not
investigate swiping behavior. The analyses presented in this paper can contribute to improve our current understanding
swiping performance and serve as training data for machine learning models.

To this end, we first present the data collection method and then describe our dataset. Next, we report on distributions
of commonly used metrics of typing performance, including words per minute (WPM) and word error rate (WER).
Then, to better understand mobile swiping behavior, we present observations on the effect of demographic factors and
typing styles on performance. Our dataset and accompanying software are publicly available (see Appendix).

In the analysis of the dataset, we make several interesting findings, among which we highlight the following ones:

(1) Swiping with the thumb is faster than with any other finger.
(2) People swipe faster on large screens and invest less reading effort.
(3) On large screens, swipe trajectories are longer but swipe times are shorter.
(4) The more the user is familiarized with swiping, the higher the word error rate.
(5) Native English speakers swipe random words slower than non-natives.
(6) Text entry speed and word errors are affected by age, swipe hand, and language skill.

2 RELATEDWORK

Invented by Zhai and Kristensson in 2003 [48], swiping has become a widely adopted text entry method on mobile
devices.1 It well suits touch-based interaction, and relaxes the requirement of precisely acquiring a small key on a soft
keyboard. To date, this text entry method is supported by major commercial soft keyboards including Google’s Gboard,
Microsoft’ SwiftKey, and iOS’s built-in keyboard on iPhones.

The research community has also carried out a large amount of research on swiping techniques. For example, swiping
has been extended to support mid-air text entry [31], eyes-free input [50], ring-based input [20], phone-tilting based
input [46]. In addition to text entry, swiping paradigm has also been extended to support command input [1, 11, 26]. A
user enters a command by gesturing a shortcut related to the command name. Such a method shows advantages in
learnability compared with hotkey-based command input [11]. The swiping dataset reported in this paper will well
serve these gesture typing based input methods, as it provides data for understanding fine-grained swiping behavior,
and will serve as a basis for training gesture typing algorithms.

1The first publication on shape-writing technology is Kristensson’s master’s thesis from August 2002.
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2.1 Phrase sets

The importance of representative phrase sets in studies of text entry has been acknowledge in extant literature. In the
past, researchers used ad-hoc text sources for their experiments, such as sentences drawn from a Western novel [23],
quotations from Unix’s fortune program [22], news snippets [49], street addresses [19], or passages from Sherlock
Holmes [40] and Alice in Wonderland [42]. Using ad-hoc, proprietary text sources is often considered a bad practice
because text entry studies could not be accurately reproduced. To help the situation, researchers have proposed
automated methods to create phrase sets [17, 28, 33]. MacKenzie et al. [30] released a phrase set consisting of 500
English idioms, and Vertanen et al. [43] released the EnronMobile phrase set, including empirical data regarding
sentence memorability. Both Mackenzie’s and EnronMobile phrase sets are today the most popular ones in text entry
experiments. Kristensson et al. [24] compared both phrase sets and found not much difference between them, although
the actual differences are conceptually rather large. For example, EnronMobile is better suited to evaluating mobile text
entry methods, as it contains genuine mobile emails. As explained in Section 3.3, we will use this dataset as a baseline
and will collect another set of more challenging words to ensure that our final dataset is diverse and representative of
the English language.

2.2 Large-scale text entry studies

Text entry studies are mostly conducted in laboratory settings, mainly because of the difficulty in controlling the highly
variable environment and reaching a larger audience. Despite the challenges, some larger-scale studies have been
published, pursuing higher external validity. Previous large-scale studies tried different approaches for data collection,
mainly simulation-based and on-line study methods.

Simulation-based methods enable a large-scale automated and repetitive analysis of a text entry system without
performing an actual study. For example, Octopus [7] tried a simulation-based approach utilizing a collection of real-user
text entry data. The resulting data comprise simulated touchpoints, which can operate the soft keyboard. A model-based
approach is also possible. For example, Fowler et al. [16] implemented a human-like typing model, which simulates
noisy touches, and Quinn and Zhai [37] modeled the gesture typing stroke generation process.

On-line data collection methods have been investigated to reach a larger audience. This kind of method involves real
users and maximizes external validity. However, conducting such a study is costly, and a few challenges followed because
of the method’s uncontrolled nature. For example, 1) the apparatus varies between the participants, 2) the internal state
of the system is unknown, 3) it exhibits a high drop-out rate [34], and 4) the data contains a significant amount of
exceptions. The first and second issues could be partially solved by deploying a dedicated keyboard app to the public, like
in the study by Reyal et al. [39]. They evaluated both the regular keyboard input and gesture typing. However, forced
app installation increases the hurdle for study participation. A fully web-based study is an alternative. Two notable
large-scale data collection studies [13, 34] have been performed recently, using physical keyboards [13] and built-in soft
keyboards [34]. Because the keyboard’s internal state (or text entry system) is unknown, the following workaround was
suggested: By monitoring the input field changes, an estimation algorithm classifies the input events [2, 34]. The third
and fourth issues (high drop-out rates and invalid trials) should be treated with a careful preprocessing of the data.

3 DATA COLLECTION METHOD

In the following we describe key design objectives of our work and the choices that support them. The first key objective
is to collect a rich dataset on swiping, covering both movement-level and task performance-level data, since currently
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there is no such dataset in the research literature. The second objective is a large and representative sample of swiped
words. Capturing natural variability in swiping is important for more realistic empirical analyses as well as for training
machine learning techniques. A third key objective is to provide first larger-scale observations about swipe-based
typing by cross-correlating it against user-related factors, such as demographics, language skill, as well as strategies
like the choice of input finger.

We created the website https://swipetest.aalto.fi where users can test their shape-writing performance and compare
to others. We contacted TypingMaster, a company that offers typewriting courses online and has a large active user base.
The company advertised our test on their website for three months so that we could reach an international audience.
HTTP requests to the site that originated from devices detected as mobile (screen width < 600 px) were redirected to
our test. We also advertised the test on social media (Twitter and Facebook). There was no financial compensation for
the users who took the online test, which triggered their intrinsic motivation to test their swiping efficiency.

A web-based method, as opposed to a laboratory or app-based data collection, allows for a larger sample and broader
coverage of different mobile devices, but comes with the caveats of self-selection and compromised logging accuracy.
Still, the typing test setting imposes a more controlled environment than an in-the-wild study [34]. We ensured our
test site supports all major mobile browsers, making it responsive to different screen sizes; see Section 3.1. Finally, we
should remind the reader that our study is actually a data collection experiment rather than a real mobile typing test.
For this reason, our virtual keyboard does not offer intelligent text entry assistance such as word autocompletion or
realtime word suggestions, nor a working statistical decoder.

3.1 Soft keyboard development

We developed a JavaScript application that renders a virtual QWERTY keyboard on a canvas element. The keyboard
layout looks the same for all users and it is programmatically adapted to the available screen size of the device, ensuring
a consistent aspect ratio (𝐻/𝑊 = 1.4 obtained by averaging 32 keyboard apps on iOS and Android markets). Note that
for swiping the space key becomes unnecessary because all keyboards automatically insert a space after each swiped
word. However, we decided to add it together with other ‘dummy’ keys (with no associated characters) in order to
render a keyboard that would look familiar to the participants. Tapping or swiping over dummy keys has no effect on
the produced text.

Figure 1(a) depicts the virtual keyboard as shown on an Google Nexus 6 phone. In our keyboard, while swiping, the
finger trajectory is overlaid on top of the keys and gradually fades out, as currently implemented by all major mobile
keyboard vendors. We note that the sampling resolution of the captured JavaScript touch events is around 16ms (60Hz),
as measured by the logged touch event timestamps, indicating that modern mobile browsers can provide fine-grained
movement data.

As hinted before, the virtual keyboard does not include statistical word decoding capabilities. This is to deconfound
the effect of the decoder from user performance. Instead, the keyboard records any swipe trajectory and verifies that
the touch coordinates are articulated around (either inside of or close to the vicinity of) the expected keys. For example,
following the example in Figure 3, a swipe for the word łwhatž should begin around the łwž key, then move around the łhž
key, then move around the łaž key, and finally end around the łtž key. To decide what is ‘close enough’, we empirically
set a threshold radius of 𝑟 = 1.5max(ℎ,𝑤) px where𝑤 and ℎ are the width and height of each key, respectively. Then,
we compute the (ordered) sequence of traversed keys, removing duplicates, and verify that it matches the sequence of
characters in the prompted word. This process is illustrated in Figure 3(b).
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(a) (b)

Fig. 1. Left: Study prompt, with the deployed virtual keyboard at the bottom. Right: landing page shown to one of the participants at
the end of the study.

Fig. 2. Example of different swipes of the same word entered by different participants.

(a) Touch key tolerance
wwwweeeeddddffffgggh...t

(b) Swipe trajectory for the word ‘what’

Fig. 3. To verify whether a swipe trajectory followed the expected sequence of keys, we set a threshold radius of 50% larger than the
current key size, shown in (a) around the letter łgž, and computed the resulting sequence of traversed keys for each touch point (b).

3.2 Procedure

The study follows a procedure used in most text entry studies [39]; that is, a transcription task where an English phrase
is presented and it must be entered using swiping. Our online test prompts each participant with 16 short sentences,
the first of which is a warm-up sentence that is not logged.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



MobileHCI ’21, September 27-October 1, 2021, Toulouse & Virtual, France L. A. Leiva, S. Kim, W. Cui, X. Bi, A. Oulasvirta

Before starting the test, participants had to fill out a short questionnaire where they indicated some demographic
information (e.g. age, gender, nationality, English level, etc.) together with skill-related information (e.g. swipe use,
dominant hand, swipe finger, etc.). See Figure 9 for some examples of the collected data. Participants also had to
acknowledge that they had read the instructions and gave their consent for data collection. Upon submitting these
initial data, the first sentence was displayed.

Each participant had to swipe all the words for a given sentence (as fast and as accurately as possible) in order to
advance to the next sentence. A counter in the top part of the screen indicates the number of remaining sentences to
finish the test; see Figure 1(a). Each sentence was visible at all times. Breaks could be taken between the sentences. We
used the following color hints to help the participants keep track of their progress. The word to be entered is rendered
in bold typeface. Whenever a word if successfully entered, the word becomes blue. Pending words are shown in gray
color. Finally, if the word is swiped wrongly, it becomes red and the participant has to swipe it again, until getting it
right. In sum, there is no room for uncorrected errors in our study.

Upon entering all the sentences successfully, a summary pagewith performance statistics was shown to the participant.
Figure 1(b) shows an example of such a landing page. Similar to Palin et al. [34], we chose well-understood performance
metrics covering speed and errors and updated performance feedback only after participants completed the test.
Participants could redo the test, if desired, to get a better estimate of their performance. Every time a user access the
test there will be different sentences.

3.3 Phrase sets

We compiled two different phrase sets for our study. On the one hand, we created a set of 4-words sentences on the fly,
drawn from 4 different word lists that we describe below. On the other hand, we used the memorable sentences from
the EnronMobile dataset [43], a curated set of 200 short sentences written on Blackberry devices. This phrase set has
been extensively used in mobile studies and it is widely considered as representative of the English language [34, 43].
We excluded long sentences (having more than 8 words) from this set to make our two phrase sets comparable, as
sentences in mobile text entry evaluations are considerable short, around 9 words/sentence [43]. We concluded to a set
of 169 sentences in total. We will refer to the first phrase set as Random and the second phrase set as Enron. Table 1
summarizes both sets.

To create the Random phrase set, we downloaded (1) the 10,000 most common English words according to Google’s
Trillion Word Corpus2 and (2) the Forbes 2019 Global 2000 list,3 which ranks the top public companies in the world. We
created a word list from the Forbes companies by splitting each company name by the space delimiter. In sum, the
Random phrase set includes:

(1) Highly frequent words: top 2k words from the common English list.
(2) Common words: next best 3k words from the common English list.
(3) Infrequent words: remaining 5k words from the common English list.
(4) Out-of-vocabulary (OOV) words: words from the Forbes Global 2000 and the common English list that are not in

the English dictionary.4

By using two different phrase sets, we can verify how fluent and consistent users are while swiping. For example,
words from the Enron sentences should be easier to swipe, since they are everyday words. One third of the sentences
2https://github.com/first20hours/google-10000-english
3https://www.forbes.com/global2000/
4We used the /usr/share/dict/words dictionary, available in all Unix systems.
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Set Sentences Running words Words/Sentence Chars/Word

Enron 169 796 4.71 ± 1.3 3.61 ± 1.7
Random N/A 12213 4.00 ± 0.0 6.58 ± 2.5

Table 1. Statistical summary of our phrase sets.

presented to every participant are drawn from the Enron dataset. The remaining of the presented sentences are 4-words
sentences composed on the fly from the Random phrase set. All 4-words sentences include a highly frequent word, a
common word, an infrequent word, and an OOV word. Each of these 4 words are randomly selected. There are 236
unique common words in both phrase sets.

All sentences shown to the participants are lowercased with no punctuation symbols. We also remove 1-character
words (e.g. "x", "e") from our Random phrases, since at least 2 distinct characters are needed for swiping on a keyboard.
Swiping over the same key was supported by our virtual keyboard, though, as a few Enron sentences include 1-character
words (e.g. "i like it"). We did not remove offensive or swear words, in order to ensure ecological validity of our data, i.e.
our dataset accounts for real-world words, including both formal and informal language. Table 2 shows some of the
sentences prompted to the users.

Phrase set Sample sentence

Enron i was planning to attend
you can talk to becky
this seems fine to me
not even close

Random offerings viewpicture long eagle
release vcr dodge visa
layer prefers hyundai definition
attack cube value link

Table 2. Sample sentences from our phrase sets.

3.4 Logging

We logged the following swipe-related data: event timestamp, x and y coordinate, touch radius (in x and y axes), and
rotation angle. This information is captured via JavaScript using standard browser APIs. We also logged the keyboard
size, the prompted word, and whether it was swiped correctly or not. On the other hand, we logged the following user
metadata: swipe use, age, gender, nationality, browser language,5 device pixel ratio, screen size (height and width),
English level, dominant hand, swipe hand, swipe finger, and mobile vendor. Screen size was measured in CSS pixels
by the JavaScript engine of the web browser,6 which are normalized pixels and do not depend on the physical screen
density of the device. This way we ensure that the recorded screen sizes are comparable across devices and vendors.

The data were logged in a backend server written in PHP, using a JSON-based database format to store the users’
metadata and plain text format to store swipe log files. We post-processed the data both at the sentence and word level,
to ease analysis efforts for the interested researchers. Figure 9 provides concrete examples of the log files we collected.
5Distilled from the list of languages in the HTTP Accept-Language header. We only considered the top (preferred) language from that list.
6https://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html
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Our dataset comprises 8,831,733 touch points corresponding to 11,318 unique English words swiped by 1,338 users.
There are 11,295 unique words correctly swiped and 3,767 words wrongly swiped. Note that the set of failed words is a
subset of the successfully entered words, since the participants had to re-enter a failed word in order to get the sentence
right and advance to the next one. We did not control for who accessed our test, since it was made globally available,
nor how long breaks happened between sentences, so a data cleaning step becomes necessary. For example, some users
accessed our test for the sake of curiosity and did not finish it. This is rather common in online studies [13, 34, 38]. Only
398 users (30%) completed all 16 sentences, which is a comparable dropout rate to Palin et al.’s study [34]. Therefore,
since our main focus is on data collection, we consider for analysis the users who entered at least 5 sentences, which
comprises one third of all the requested sentences. Then, we programmatically excluded users who did not use a real
mobile phone according to the max. number of touch points supported by the user agent7 (should be greater than one)
and the viewport size8 (should be less than 600 px width and less than 900 px height, respectively). A more detailed
analysis of these exclusions suggested that these ‘fake mobile’ users (33 cases) accessed our test in mobile simulation
mode, which is available in all major browsers.

4 DATA ANALYSIS

Here we describe the participants considered for analysis, define our set of text entry metrics to investigate swiping
performance, and describe the statistical decoder we developed.

4.1 Participants

Our final user sample accounts for 909 participants (598 female, 304 male, 7 other) who used either Android (647) or
iPhone (262) smartphones. We will release our full dataset with 1,338 users, so that researchers can use it at their own
discretion. Figure 4 summarizes the user sample.
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Fig. 4. Demographics characteristics of our analyzed user sample (𝑵 = 909 participants).

Figure 5 shows the user population proportional to the contributions of each country. As can be shown, our collected
user sample is rather diverse although a bit over-represented by the US (356 users); e.g. 106 users were from Philippines,
84 from Mexico, 81 from India, and 53 United Kingdom. To ease later analyses, considering that all words were in
English and that most participants were from the US, we will split the nationality of our participants into US (356) and
non-US (553), and the browser language will be split into English (815) and other (94).

Gender-wise, our sample is biased towards female users (598). Age-wise, our sample is biased towards young users:
The average age of our participants is 25 years (Mdn=23). In the following we will use three age groups for analysis:
youth (<20 years, 261 users), young (20ś30 years, 440 users), and adult (+30 years, 179 users).
7https://www.w3.org/TR/pointerevents/
8https://mediag.com/blog/popular-screen-resolutions-designing-for-all/
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Fig. 5. Geographical distribution of our analyzed user sample. Each circle is proportional to the number of users from each country
up to a saturation radius of 100 px to avoid visual clutter.

Regarding swipe familiarity, 193 users indicated they use it every day, 226 sometimes, 130 often, 261 rarely, and 99
never. Most users were right-handed (822 users) and were proficient in English: 312 declared to be native speakers,
248 had advanced knowledge, 218 had intermediate knowledge, and 131 were considered beginners. Most of the users
swipe with their right hand (691 users) and 174 users indicated they use both hands. Also, most of the users swipe
either with their thumb (601 users) or index finger (271). Finally, most participants used Android smartphones (647) and
372 users had a large phone screen (width >400 px).

4.2 Metrics

We report standard performance metrics in text entry (WPM, WER) and compute related metrics for swipe data, as
discussed below. Further analysis was conducted using these measures, computed per sentence or word (where suitable)
and aggregated per user. On the one hand, we consider the following sentence-level metrics:

Words per minute (WPM) is computed as number of characters in the sentence divided by five9 divided by the
time elapsed between the first touch point of the first entered word and the last touch point of the last entered
word.

Word error rate (WER) is computed as the number of wrongly entered words according to a statistical decoder
we describe in Section 4.3, divided by the number of words in the reference sentence.

Interval time is computed as the time elapsed between two consecutively swiped words (the difference between
the time of the last touch point of the previous word and the time of the first touch point of the current word)
and serves as a proxy for reading effort [18].

On the other hand, we consider the following word-level metrics, inspired by existing accuracy measures for evaluating
computer pointing devices [29], whose purpose is to compute swiping performance via word difficulty estimators:

Swipe length is computed as the cumulative Euclidean distance between consecutive touch points in the swipe
trajectory.

Swipe time is computed as the time elapsed between the first and last touch points of the swipe trajectory.
Swipe error is computed as the Dynamic Time Warping (alignment score) between the produced swipe sequence

and the ‘ideal’ swipe sequence, or sokgraph [25].

We should note that, as discussed in Section 3.1, our virtual keyboard used a rather permissive procedure to not
frustrate the users and allow them advance to the next word or sentence, while ensuring that the entered swipe
9http://www.yorku.ca/mack/RN-TextEntrySpeed.html
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trajectory was not egregiously far off the expected swipe trajectory. Therefore, we will report WER post-hoc, according
to a state-of-the-art statistical decoder, since in our study all logged sentences were eventually entered correctly.

4.3 Statistical decoding

We developed a word decoder following the principles outlined in SHARK2 [25]. The input of the decoder is a gesture
trace 𝑔 on the keyboard, and the output is an 𝑛-best list of words from the vocabulary𝑊 . The word at the top of this
list �̂� is the most probable word. The vocabulary implemented in our decoder is the one described in Section 3.3.

The probability of decoding a word𝑤 given a gesture trace 𝑔 on the keyboard is given by the Bayes theorem:

𝑃 (𝑤 |𝑔) = 𝑃 (𝑔 |𝑤)𝑃 (𝑤)
𝑃 (𝑔) (1)

where 𝑃 (𝑔|𝑤) is the decoding probability, given by a gesture model, 𝑃 (𝑤) is the prior probability of the word, given
by a language model, and 𝑃 (𝑔) is a constant factor that does not influence on the decoding result. Indeed, the most
probable word is given by

�̂� = argmax
𝑊

𝑃 (𝑤 |𝑔) = argmax
𝑊

𝑃 (𝑔|𝑤)𝑃 (𝑤) (2)

because the argmax operation is monotonous and so 𝑃 (𝑔) can be ignored. This reasoning applies to any ranking
function over the word vocabulary𝑊 .

As observed in Equation 2, the decoder comprises two components: a gesture model and a language model. For the
gesture model we use elastic matching, parameterized by a Gaussian distribution [25]. The gesture likelihood is given
by:

𝑃 (𝑔 |𝑤) = 𝑃𝑠 (𝑔|𝑤)𝑃𝑙 (𝑔|𝑤)∑
𝑖∈𝑊 𝑃𝑠 (𝑔|𝑖)𝑃𝑙 (𝑔|𝑖)

(3)

where 𝑃𝑠 (𝑔|𝑖) and 𝑃𝑙 (𝑔|𝑖) are the probability from the shape and location channel. The shape channel evaluate gestures
based on the shape information. The location channel examines the absolute location of the user’s gesture trace on the
keyboard. The details can be found in [25].

For the language model, we have considered both unigram and bigram models. For the unigram language model, we
used 1/3 million most frequent English words and their frequencies [32]. Formally, the word probability in the unigram
language model is given by their frequency:

𝑃 (𝑤) = |𝑤 |∑
𝑖∈𝑊 |𝑖 | (4)

where | · | denotes the word frequency.
For the bigram language model, we used the Corpus of Contemporary American English (COCA) [12] comprising the

data from 2012 to 2017, which contains over 5 million sentences. As a matter of fact, the Enron corpus was released in
2004 [43], so it is unlikely that our COCA partition may contain any Enron sentence. Formally, the word probability in
a generic (𝑛-gram) language model is given by their conditional frequency, i.e. a probability distribution over sequences
of words:

𝑃 (𝑤1 · · ·𝑤𝑚) =
𝑚∏
𝑖=1

𝑃 (𝑤𝑖 | 𝑤1 · · ·𝑤𝑖−1) ≈
𝑚∏
𝑖=1

|𝑤𝑖−(𝑛−1) · · ·𝑤𝑖 |
|𝑤𝑖−(𝑛−1) · · ·𝑤𝑖−1 | (5)

where𝑚 is the sentence length (word count). In the bigram language model, 𝑛 is set to 2, since it considers one context
word.

4.3.1 Effects of decoding. Figure 6 reports decoding results considering the contribution of the decoder components
(namely: no language model, unigram, and bigram language model) and using either top-1 or top-4 decoding accuracy.
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While top-1 decoding accuracy is the most conservative decoding estimation, top-4 accuracy is based on the fact that
modern soft keyboards show the decoded word together with three suggestions, and thus represents a more practical
decoding estimation.

When no language model is used, the decoder relies on the gesture model only; see Equation 2. In this case, the WER
reported below is attributed to the gesture decoding error alone; see ‘Gesture’ distributions. The unigram language
model considers the probability of each word independently, i.e. with no context. Finally, the bigram language model
considers the probability of each word conditioned on the previous word, for which we used the aforementioned COCA
corpus. When any of these language models is used, WER is computed considering the contribution of both the gesture
decoding and the language model. We remind that WER is computed as the number of wrongly decoded words divided
by the number of words in the reference sentence.
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Fig. 6. Histograms of word decoding errors by phrase set and decoder components: Gesture model only (no language model), Gesture
+ Unigram language model, and Gesture + Bigram language model. Word error rates reported in [0,1].

Not surprisingly, it can be observed in Figure 6 that a language model improves decoding accuracy. Also, as expected,
using top-4 accuracy improves the results considerably. We note, however, an observation about decoding. The word
frequency in Random sentences is much smaller than words from Enron sentences, about one order of magnitude smaller,
and so does their probability estimated by any language model. Therefore, Enron sentences do benefit from a bigram
language model, as it is the one that achieves the best results. On the contrary, the bigram model is detrimental for the
Random sentences, since those sentences were generated at random, and so word order does not matter. For this reason,
it is the unigram language model the one that achieves the best results for Random sentences.

From now on we will use the combination of gesture model and unigram language model to compute WER, since it
is the most common case: On the one hand, as previously mentioned, all major vendors display the top-1 recognized
word in the soft keyboard’s text field but also suggest up to three words. On the other hand, the unigram language
model is the simplest model to create, since it is only necessary a list of words, without any context.

5 RESULTS

In the following we report overall performance estimates according to the metrics defined in Section 4.2. We then
report on indicators of swiping performance and analyze the effect of demographics and other user-related factors. We
aggregate the data by participant. Since most of our samples are not normally distributed, we use the Kruskal-Wallis
test (non-parametric equivalent of the one-way ANOVA test) as Omnibus test. Then, if a significant difference is found
and there is more than two conditions, we perform post-hoc pairwise comparisons using the Mann-Whitney U test
with Holm-Bonferroni correction. Effect sizes are reported using 𝜙 : A value of 0.1 is considered a small effect, 0.3 a
medium effect, and 0.5 a large effect [8].

5.1 Sentence-level analysis

We begin by reporting sentence-level performance metrics. Later on we report word-level metrics.
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Fig. 7. Mean distributions of sentence-level performance metrics.

5.1.1 Words per minute. Figure 7(a) reports text entry speed, in words per minute, for all considered factors. The
average WPM is M=39.82 (SD=17.08) for the Enron phrase set, which is higher than the WPM observed in a similar
web-based large-scale study of mobile typing behavior (36.17 WPM) that used the same phrase set [34]. The average
WPM is M=31.11 (SD=12.49) for the Random phrase set. Overall, the fastest participant reached and average WPM of
72.98.

We did not find an effect of gender or browser language. All other comparisons were statistically significant; see
Table 3. The effect size of the phrase set is moderate (𝜙 = 0.271), suggesting that Random sentences are slower to swipe,
which is understandable since random words are longer (Table 1). The more familiarized is the user with swiping, the
faster they enter text; c.f. 50 WPM (everyday use) vs. 40 WPM (never) for the Enron phrase set. Then, the older the
user, the lower the WPM. People from US are significantly faster than others, and, surprisingly, those whose browser
language is not English do swipe faster. This difference is larger for the Random phrase set, suggesting that native
English speakers are biased towards entering common words; i.e. they require more reading time for random words
because they do not see those often, whereas for non-natives, both common and unusual words look more similar. We
discuss this further in Section 5.3. On the other hand, people who swipe with their dominant hand and the thumb are
faster. We also observed that people swipe faster on larger screens (width >400 px) and on Apple devices.

5.1.2 Word error rate. Figure 7(b) reports text entry errors, expressed as word error rates, for all considered factors.
The average WER is M=15% (SD=17.7%) for the Enron phrase set and M=15% (SD=17.5%) for the Random phrase set.
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The median WER is 0% in both phrase sets, which reveals that our statistical decoder can recognize all entered words
(per sentence) in most cases. We note that here we consider the top-4 words using Gesture + Unigram models; see
Figure 6. We found a significant effect of swipe use, age, English level, and swipe finger. Among these, swipe use showed
the largest differences. Surprisingly, the more familiarized is the user with swiping, the larger the WER. All other
comparisons were non-significant; see Table 3. The effect size of the phrase set is non-significant, suggesting that both
Enron and Random phrase sets are similar in terms of WER. However, we should remember that every random word
that was not correctly swiped had to be re-entered until getting it right, which might have influenced the results of this
analysis. Also notice the small range of the Y axis, which suggests that the our statistical decoder performs similarly
across factors.

5.1.3 Interval time. Figure 7(c) reports the time elapsed between consecutive swipes for all considered factors. The
average interval time is M=846.5ms (SD=374.9ms) for the Enron phrase set and M=1210.5ms (SD=452.2ms) for the
Random phrase set. We did not find an effect of age, gender, browser language, or swipe finger. All other comparisons
were significant; see Table 3. The effect size of the phrase set is large (𝜙 = 0.445), suggesting that sentences with random
words require more reading effort. As expected, the more familiarized is the user with swiping, the higher interval
times. This suggests that experienced users require less reading effort than swipe beginners. Non-US people require
more thinking time, especially those with less English knowledge. Those who swipe with their non-dominant hand of
the index finger require more interval time, presumably because of the influence of grip posture and motor control
factors: People who swipe with their thumb are also holding the mobile phone with the same hand, which requires less
effort to reach the screen. Interestingly, the larger the screen the smaller the interval times. We attribute this difference
to the fact that on smaller screens it is more difficult to read texts, which eventually increases the time to between
words. Also interestingly, Apple users required less interval time, which might be explained by other factors such as age
or English knowledge. Indeed, if we split the data by these factors we can see that Apple users are younger (Mdn=20
years) than Google users (Mdn=25 years) and have more English natives (78% vs 56% of the users, respectively).

Factor Levels (𝑔) WPM WER Interval time
𝜒2 𝜙 𝜒2 𝜙 𝜒2 𝜙

Swipe use 5 28.60 0.126 ∗∗∗ 21.08 0.108 ∗∗∗ 17.83 0.099 ∗∗
Age 3 26.90 0.122 ∗∗∗ 7.64 0.065 ∗ 5.85 0.057
Gender 3 2.54 0.037 0.73 0.020 2.35 0.036
Nationality 2 130.38 0.268 ∗∗∗ 2.85 0.040 84.63 0.216 ∗∗∗
Browser language 2 2.40 0.036 0.68 0.019 5.20 0.054 ∗
English level 4 212.02 0.342 ∗∗∗ 7.96 0.066 ∗ 168.03 0.305 ∗∗∗
Swipe hand 3 17.87 0.099 ∗∗∗ 1.91 0.032 12.36 0.083 ∗∗
Swipe finger 3 25.67 0.119 ∗∗∗ 6.04 0.058 ∗ 6.73 0.061 ∗
Screen size 2 48.94 0.164 ∗∗∗ 0.71 0.020 45.15 0.158 ∗∗∗
Vendor 2 149.68 0.287 ∗∗∗ 1.44 0.028 78.38 0.208 ∗∗∗
Phrase set 2 133.51 0.271 ∗∗∗ 0.16 0.009 359.14 0.445 ∗∗∗

Table 3. Statistical tests 𝝌 2 (𝒈 − 1, 𝑵 = 1816) of sentence-level metrics and effect sizes 𝜙 . Statistical significance is denoted as
follows: 𝒑 < .001 (∗∗∗), 𝒑 < .01 (∗∗), 𝒑 < .05 (∗).

5.2 Word-level analysis

We now report word-level performance metrics, for which we plot the Random phrase set according to each of the four
word categories considered: highly frequent words (Rand2k), common words (Rand3k), infrequent words (Rand5k), and
out-of-vocabulary words (OOVs).
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Fig. 8. Mean distributions of word-level performance metrics.

5.2.1 Swipe time. Figure 8(a) reports the average swipe time for all considered factors. Overall, it is M=689.2ms
(SD=520.4ms) for the Enron phrase set, M=1414ms (SD=959.7ms) for Rand2k words, and M=1933.2ms (SD=1332.7ms)
for OOV words. We did not find an effect of browser language. All other comparisons were significant; see Table 4.
However, in most cases the effect sizes are small, suggesting a small practical importance of these differences. The effect
size of English level is moderate (𝜙 = 0.245), with native and advanced English speakers being considerably faster than
beginners. There is a large effect size of word type (𝜙 = 0.527), however no differences were found between Rand5k and
both Rand3k and OOVs. All other differences between word types were significant. This suggests that words belonging
to the Enron phrase set are faster to swipe overall, and that Rand2k words are faster to swipe than any other word type
in the Random phrase set.

5.2.2 Swipe length. Figure 8(b) reports the average swipe length for all considered factors. Overall, it is M=371.1 px
(SD=256.6 px) for the Enron phrase set, M=687.3 px (SD=383.8 px) for Rand2k words, and M=799 px (SD=438.8ms)
for OOV words. We did not find an effect of age, gender, browser language, English level, or swipe hand. All other
comparisons were significant; see Table 4. However, in most cases the effect sizes are small. Interestingly, there is a
moderate effect size of screen size (𝜙 = 0.195), suggesting that swipe trajectories are significantly longer on larger
screens, however this finding contradicts the previous evidence that users swipe faster on larger screens. We suspect
that there are other demographic factors influencing this result. There is a large effect size of word type (𝜙 = 0.681),
however no differences were found between Rand5k and both Rand3k and OOVs. All other differences between word
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types were significant. This suggests that words belonging to the Enron phrase set produce shorter swipe trajectories.
and that Rand2k words are shorter than any other word type in the Random phrase set.

5.2.3 Swipe error. Finally, Figure 8(c) reports the average swipe error per word for all considered factors. Overall, it is
M=1285.8 px (SD=922.4 px) for the Enron phrase set, M=2596.1 px (SD=1663.5 px) for Rand2k words, and M=3562.5 px
(SD=2261.6ms) for OOV words. We did not find an effect of browser language or screen size. All other comparisons
were statistically significant; see Table 4. However, in most cases the effect sizes are small. There is a moderate effect
size of mobile vendor (𝜙 = 0.184), but again we suspect it is because other demographic factors. There is a large effect
size of word type (𝜙 = 0.581), however no differences were found between Rand5k and both Rand3k and OOVs. All
other differences between word types were significant. This suggests that words belonging to the Enron phrase set are
swiped more precisely, and that Rand2k words are swiped more accurately than any other word type in the Random
phrase set.

Factor Levels (𝑔) Swipe time Swipe length Swipe error
𝜒2 𝜙 𝜒2 𝜙 𝜒2 𝜙

Swipe use 5 30.42 0.082 ∗∗∗ 17.01 0.061 ∗∗ 15.93 0.059 ∗∗
Age 3 47.75 0.103 ∗∗∗ 0.91 0.014 48.38 0.103 ∗∗∗
Gender 3 15.71 0.059 ∗∗∗ 2.05 0.021 18.15 0.063 ∗∗∗
Nationality 2 168.67 0.193 ∗∗∗ 6.15 0.037 ∗ 45.33 0.100 ∗∗∗
Browser language 2 0.10 0.005 0.02 0.002 0.57 0.011
English level 4 271.93 0.245 ∗∗∗ 1.21 0.016 143.12 0.178 ∗∗∗
Swipe hand 3 21.44 0.006 ∗∗∗ 0.92 0.014 16.06 0.060 ∗∗∗
Swipe finger 3 51.38 0.106 ∗∗∗ 9.60 0.046 ∗∗ 28.33 0.079 ∗∗∗
Screen size 2 67.11 0.122 ∗∗∗ 173.38 0.195 ∗∗∗ 0.18 0.006
Vendor 2 198.36 0.209 ∗∗∗ 21.94 0.070 ∗∗∗ 153.87 0.184 ∗∗∗
Word type 5 1257.72 0.527 ∗∗∗ 2101.99 0.681 ∗∗∗ 1530.50 0.581 ∗∗∗

Table 4. Statistical tests 𝝌 2 (𝒈 − 1, 𝑵 = 4537) of word-level metrics and effect sizes 𝜙 . Statistical significance is denoted as follows:
𝒑 < .001 (∗∗∗), 𝒑 < .01 (∗∗), 𝒑 < .05 (∗).

5.3 Summary of findings

In the following we discuss the most salient findings of our study:

5.3.1 Swiping with the thumb is faster than with any other finger. We were surprised to see that swiping with the thumb
is faster than with the index finger, as the prototypical demonstration of swiping is performed with the index finger.
Moreover, a previous study reported that reaching the corners of a mobile display is challenging with when using the
thumb [6]. Comparing to one-finger tap typing, Azenkot and Zhai reported index finger typing is faster than thumb by
2.5 WPM [3], while Palin et al. [34] reported typing with the thumb is faster than with the index finger by a factor of 3
WPM in a larger scale study. Reyal et al. [39] also noted that swiping with the thumb is particularly effective in more
mobile situations. It is possible, of course, that the thumb performance correlates with any of the other factors, such as
age. Our dataset permits deeper analyses of the observation and in fact we plan to do so in future work.

5.3.2 People swipe faster on large screens and invest less reading effort. It is surprising that larger screens are associated
with higher WPMs, while target selection performance generally degrades with smaller target size [35]. This may, like
above, be confounded by other background demographics. However, one could also conjecture that it is associated
with relatively smaller effects of motor noise. Likewise, we attribute the positive relationship of larger screen size with
smaller between-word intervals to be because it is easier to read text on larger screens. A larger screen would also
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mean bigger keys and reduced finger occlusion, allowing users to prepare their swipe faster since they have a better
view of the keyboard.

5.3.3 On large screens, swipe trajectories are longer but swipe times are shorter. We found that, on a large screen, swipe
length is not only longer but also briefer. This could be related to the effects of motor noise, as above, but also because
newer phones have better hardware which, in turn, may correlate with a more responsive touchscreen. This might
correlate as well with pointing and steering laws: With larger screens, the target (i.e., key) is larger, thus easier to reach.
Users can also speed up in the middle of the swipe trajectory, then slow down when the finger is close to the target [5].
In addition, on a smaller display the finger is more likely to cut across unwanted characters. Users may be mitigating
that by regulating speedśaccuracy trade-off such that they slower down writing on a smaller display.

5.3.4 The more the user is familiarized with swiping, the higher the word error rate. Somewhat paradoxically, user’s
swiping experience was associated with slightly higher WER, although the effect size is small (𝜙 = 0.108). Again, there
could be latent effects of age or display size. However, it could also reflect adaptation: users experienced with a particular
gesture decoder may have been penalized by the one we used; as switching to a similar text entry system (but still a
different system) often causes breakdowns in learning curves, which might explain their higher swipe errors. We can
further relate this finding to previous work in stroke gesture articulation that found expert users to be sloppier than
novices [45].

5.3.5 Native English speakers swipe random words slower than non-natives. Interestingly, non-natives were faster while
swiping random words than English natives. We tentatively attribute this to motor learning: People used to type in
English may have internalized motor patterns that reflect the statistical distribution of that language. Our non-native
participants come from different language backgrounds, some of which may by chance have a better match with the
language. Put differently, for non-natives, most English words have about the same articulation difficulty. Another
hypothesis is that non-native users pay more attention to characters ś not words. For a user like this, changing from
real words to random words does not make a big difference.

5.3.6 Text entry speed and word errors are affected by age, swipe hand, and language skill. Previous work has found
a non-linear negative influence of age [34] in mobile touch typing, which we now can corroborate it also occurs in
swiping. Recent work by Findlater et al. [15] has found important age and motor ability correlates impacting input
performance. In our data, more concretely, right-handed young English speakers usually swipe faster than any other
user group. Further work is needed to understand these effects more deeply, since, as previously highlighted, text entry
performance is a multidimensional problem and should be investigated as such.

6 DISCUSSION

We collected swipe data from thousands of volunteers using a web-based transcription task and a custom-made virtual
keyboard. Even if online studies of self-selected volunteers do not permit a rigorous control,10 large samples increase
statistical power and yield better estimates and shapes of distributions. Previous work on gathering mobile typing
data outside the traditional lab experiment has relied on crowdsourcing [24] or custom mobile apps [9, 21]. The only
large-scale web-based mobile typing study that we are aware of was conducted by Palin et al. [34] but they did not
collect trajectory-level data on swiping, since participants used the built-in soft keyboard of their smartphones. On the
10For example, we cannot guarantee that users provided their actual age or swiping finger. However, given the conditions of our study, we are confident
our participants operated in good faith.
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contrary, our deployed keyboard layout was programmatically adapted to the available screen of each user’s device,
ensuring a consistent aspect ratio and within the range of available keyboards on the market. We have analyzed the
aspect ratios in our data and they are normally distributed (𝑝 = .704, Kolmogorov-Smirnov test) with M=1.41 and
SD=0.17. Therefore, we can safely assume that most keyboards used by other users will not be noticeably off from our
tested keyboard.

To the best of our knowledge, ours is the first public dataset of its kind, and on an unprecedented scale. Nevertheless,
this comes with limitations. Generalizability of the user sample is an issue: our participants are likely exhibiting a
self-selection bias due to the nature of the recruitment website, which is a typing test website. Many of our participants
were young females from the US interested in typing. We acknowledge that this is not representative of the general
population and might bias the data towards representing a western, young, more technology-affine group of people.
Yet, based on previous large-scale text entry studies [9, 13, 21, 34] we argue that our findings would not be qualitatively
different with a demographically more diverse sample. For example, as discussed in Section 5.3, Palin et al. [34] reported
that typing with the thumb is faster than the index by 3 WPM, whereas we observed a difference of 4 WPM in
our data. Furthermore, we were able to identify dominant user factors influencing swiping behavior, not previously
reported elsewhere. Hopefully others will deploy our virtual keyboard in a different study setting and collect new data,
contributing thus to expanding our current knowledge about mobile typing performance.

Given than were interested in collecting a rich dataset that is large and representative of the English language, the
most straightforward way to encourage users to swipe as many words as possible is to create random phrases on the
fly. Now that our dataset contains many real-word swiped words, text entry researchers can create their own phrases
by recombining the collected data. This is a standard procedure in other machine learning areas such as handwriting
transcription [27, 47].

We used a transcription task to assess typing performance which requires the participant to dedicate part of their
attention to the transcribed sentence in addition to the entered text and the keyboard. Part of this attention is allocated
to memorizing the prompted sentence to some extent, hence memorizing a grammatically-valid sentence is easier than
memorizing random words. Alternative methods to assess typing performance include composition tasks [44] or even
object-based methods, such as instructing users to annotate an image [14]. We see promising follow-up work in both
changing the nature of the task and the parameters of individual tasks. For example, using our web-based test, we could
investigate the effect of different composition tasks and individual task parameters, such as the effect of difficulty of a
sentence set on transcription task performance. Such investigations are difficult to perform using traditional text entry
experimental methods and we hope our dataset will be inspirational for other text entry researchers.

Finally, we should mention the absence of autocompletion and word suggestions in our deployed soft keyboard.
This design choice was to remove any possible bias from a particular decoder implementation and to gauge the most
natural word gestures that are not tuned to a particular recognizer’s ability. We believe this should be seen as a benefit
of our dataset, as by collecting algorithm-free data we can ensure they are not affected by any recognition or correction
technique. Future work should investigate the influence of writing assistance methods, such as autocomplete and word
suggestion, to consider the presence of all modern aspects of swiping technology. Furthermore, many more interesting
insights could be derived from this rich dataset, including for example the potentially complex swiping patterns that
have performance implications. For example, What is the gesture variability among users? Which kinds of gestures are
more difficult? Where on the keyboard do people tend to make mistakes? We leave these questions as an opportunity
for future work.
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7 CONCLUSION

Wehave collected a large-scale dataset of mobile swiping behavior and have reported initial observations that can support
efforts in both empirical study of swiping as well as the development of better intelligent text entry techniques. Our
study allowed us to carry out detailed statistical analyses of swipe-based metrics and correlates of typing performance,
including e.g. user demographics, English level proficiency, and mobile vendor. Our collected dataset is the first of its
kind, in the sense that it comprises raw swipe trajectories, including touch points, timestamps, and the finger’s area of
contact with the touchscreen. The presented analysis confirms prior findings on text entry performance but also gives
us new insights into the complex swiping behavior of people and the large variations between them.

Although the nature and scale of our work have surpassed its precedents in the text entry literature [9, 13, 21, 24, 34,
37, 39], many questions beyond the scope of this paper require further research. These include further, longitudinal
empirical studies to disentangle confounds between the various factors we have considered for analysis. Further
empirical investigation may refine out current knowledge about swiping behavior. To this end, we are releasing our
dataset and associated software to assist further efforts in modeling, machine learning, and improvements of text entry
methods.

A THE HOW-WE-SWIPE DATASET

Our dataset is available at https://osf.io/sj67f/. It contains over 8M touch points corresponding to over 11k unique English
words swiped by over 1,300 volunteers. The dataset includes all data reported in this paper, including demographics,
swipe logs, sentence stimuli, and failed words. Figure 9 provides an example of the kind of data one might find in our
dataset. The source code of our logging application is available at https://github.com/luileito/swipetest.

Swipe log file example
sentence timestamp keyb_width keyb_height event x_pos y_pos x_radius y_radius angle word is_err
force_instrumental_reliance_replacement 1576480557856 360 205 touchstart 140 100 1.33... 1.33... 0 force 0
force_instrumental_reliance_replacement 1576480557864 360 205 touchmove 140 100 1.49... 1.49... 0 force 0
[ more lines ]

Processed user metadata
age dominant_hand english_level familiarity gender language max_touch_points nationality \
screen_height screen_width swipe_finger swipe_hand timestamp uid vendor
19 right beginner sometimes female en 5 ae 640 360 thumb right 1583309231 0q1... google inc.
19 left native rarely female en 5 us 869 412 index right 1583136907 124... google inc.
[ more lines ]

Processed sentence-level stats
good_wpm_swipe sentence fail_wpm_classic fail_wpm_swipe fail_interval_time fail_length fail_time good_length \
fail_dtw good_interval_time good_dtw good_time good_wpm_classic wer username dataset
18.1... they_have_capacity_now 15.9... 9.9... nan 1409.5... 3012.5 904.5... 10498.2... 1703.5 3660.1... 1648.0 20.0... 0.25 0q1... enron
39.2... what_a_jerk nan nan 453.5... nan nan 2146.8... 1528.0 35.3... 0.0 0q1... enron
[ more lines ]

Processed word-level stats
dataset dtw is_failed length sentence time username word
enron 4853.1... 0 1078.9... they_have_capacity_now 1709 0q1... they
enron 2467.1... 0 730.1... they_have_capacity_now 1587 0q1... have
[ more lines ]

Fig. 9. Dataset file samples. A backslash (\) denotes a line continuation. An ellipsis (...) denotes an intentional omission of some
data, such as decimal places, for brevity’s sake.
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