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Abstract

Online services are often protected with captchas that typically must
be solved by typing on a keyboard. Now that smartphones and tablets
are increasingly being used to browse the web, new captchas best suited
to touch-capable devices should be devised, since entering text on soft
keyboards is usually uncomfortable an error-prone. We contribute to
solving this issue with µcaptcha, a novel captcha scheme to tell humans
and computers apart by means of math handwriting input. Instead of
entering text with a keyboard, the user retypes a mathematical expression
on a touchscreen using e.g. the finger, a stylus, or an e-pen. Further, as
a byproduct of solving µcaptcha challenges, a valuable labeled dataset
of online handwritten math expressions is collected. Our studies reveal
that µcaptcha is accurate, fast, and easy to perform, and that users find
it to be both useful and enjoyable. Ultimately, this work informs our
understanding of designing better web security measures.

Keywords: CAPTCHA; HIP; Math Handwriting; Web Security Measures;
Challenge Response Protocol; Touch-based Interaction

1 Introduction

A captcha (Completely Automated Public Turing Test to Tell Computers and
Humans Apart) is a program that protects online services against bots by
generating and grading challenges that humans can pass but computers cannot.

∗Corresponding author. Email: llt@acm.org
†Work conducted while affiliated with the UPV.
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Captcha belongs to the set of protocols called HIPs (Human Interactive Proofs),
which allow a person to authenticate as belonging to a select group (Rusu and
Govindaraju 2004); e.g., human as opposed to machine, adult as opposed to
a child, etc. Captchas are used on the web for many purposes, such as to
prevent massive email account creation, avoid spam comments in blogs and
forums, or verify financial transactions. The main advantage of captchas is that
they operate without the burden of passwords, biometrics, mechanical aids, or
special training (Baird and Popat 2002). However, the usability of captchas is a
subject of intense debate (Bursztein et al. 2014, Chellapilla et al. 2005, Yan and
El Ahmad 2008).

Historically, users have had to deal with captchas in the form of images of
distorted text, such distortions based on the weaknesses of Optical Character
Recognition (OCR). However, as OCR software improves, solving captchas
is becoming increasingly difficult. This places a burden on users (Bursztein
et al. 2014), who are progressively reluctant to solve them (Shirali-Shahreza and
Shirali-Shahreza 2006). Moreover, the majority of captchas are designed for use
on computers and laptops, which do not align well with the interaction style of
mobile users; see Figure 1.

Figure 1: Solving captchas on a mobile device is rather uncomfortable. For
instance, focusing on a text field causes zooming and field positioning which do
not allow for the captcha to be read properly.

According to the international telecommunication union, there are more than
2 billion active mobile-broadband subscriptions worldwide.1 An independent
study by comScore2 confirmed that in 2013 smartphones and tablets surpassed
desktop PCs to become the leading platform in terms of total time spent online,
either via web browsers or apps that make use of web services. These figures urge
for a prompt revision on the design of HIPs in general and captchas in particular,
since entering text in soft keyboards is uncomfortable and error-prone (Chen
et al. 2010). To this end, drawing is presumably easier and quicker than typing
on a mobile device (Kienzle and Hinckley 2013).

In this paper we introduce µcaptcha, a novel way to tell humans and comput-
ers apart by handwriting mathematical expressions on a touch-capable device.
The main advantage of µcaptcha is that it is language-independent, so it is

1http://www.itu.int/ITU-D/ict/statistics
2http://www.comscore.com/mobilefutureinfocus2013
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Figure 2: µcaptcha interface. A math expression is shown to the user (left), who
has to draw it on a canvas (right). Buttons from left to right: clear strokes,
request a new challenge, listen challenge (to write it in plain text), undo last
stroke, redo last stroke, submit challenge.

equally easy to learn for everyone. Another potential advantage is that µcaptcha
uses a controlled vocabulary of math symbols, which provides high recognition ac-
curacy. Most important, the spatial relations between symbols (e.g., superscripts,
subscripts, fractions, etc.) allow for a large number of different expressions
to be generated. Furthermore, very few OCR software can recognize mathe-
matical expressions. Together with its segmentation-resilient foreground noise
technique (Figure 2), µcaptcha should keep regular attackers at bay. Finally, as a
byproduct of solving a µcaptcha challenge, a labeled handwritten mathematical
expression is obtained. Therefore, µcaptcha contributes to building valuable
machine learning datasets. Ultimately, this work informs our understanding of
designing better web security measures.

The contributions of this work include:

• Introduction of µcaptcha as a novel captcha scheme, together with a
thorough description of the technology involved in its development.

• A web service that allows others to include µcaptcha on their websites or
mobile apps, independently of the technology used to develop them.

• An open source web-based application that integrates our web service,
which can be reused, studied, analyzed, or improved by both researchers
and practitioners.

• Validation of µcaptcha in a series of experiments and in detailed analyses
of reliability, accuracy, and user acceptance.
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2 Related Work

Many captchas are known to be broken, so their general strength is an area of
increasing concern. The next generation of captchas are likely to be more difficult
and awkward for human users; e.g., Rusu et al. (2010) combined handwritten text
images with a random tree structure and random test questions that leveraged
unique features of human cognition. This approach was found to be hard to
solve by machines, but also by regular users.

2.1 Text-based Captchas

There is a large body of work on text-based captchas that will not be discussed
here because they do not bear direct relevance to this paper. The reader
is redirected to comprehensive surveys in this area (Baird and Popat 2002,
Basso and Bergadano 2010, Hidalgo and Alvarez 2011, Roshanbin and Miller
2013). In short, text-based captchas obfuscate OCR by introducing image
degradations; the harder ones provide better performance but are also harder
for humans to solve (Chew and Baird 2003, Coates et al. 2001). Among others,
reCAPTCHA (von Ahn et al. 2008) stands out as the most popular solution. It
makes positive use of human effort by channeling the time spent solving captchas
into digitizing text, annotating street imaginery, or building machine learning
datasets. It also can be broken with 99% of accuracy (Goodfellow et al. 2014).

2.2 Image-based Captchas

Since most text-based captchas are vulnerable, researchers have proposed alter-
natives to character recognition. A popular one is the form of image recognition,
which requires users to identify simple objects in the images presented. However,
the need for a human to label the pictures in a large database is mandatory, so
that answers can be verified. Examples in this regard include: Sketcha (Ross
et al. 2010), Implicit CAPTCHA (Baird and Bentley 2005), GOTCHA (Blocki
et al. 2013), Asirra (Elson et al. 2009), or CAPTCHA-Zoo (Lin et al. 2011).

In visualcaptcha3 the user has to click on the icon that best represents
the word given. Currently, 37 icons and 20 audios are used as input stimuli.
KittenAuth4 also uses relatively small image databases. An image database
small enough to be manually constructed is also small enough to be manually
reconstructed by an attacker.

An interesting image-based captcha requires the user to rotate images to
the correct orientation (Gossweiler et al. 2009). An advantage of this idea is
that it uses unlabeled images. One drawback is that images have to be carefully
selected since certain images can have several correct orientations. Also, if the
images display faces, they can be automatically detected and rotated.

3http://visualcaptcha.net
4http://thepcspy.com/kittenauth/
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2.3 Captcha Alternatives

The Math CAPTCHA (Hernandez-Castro and Ribagorda 2010) presents the user
with an equation that must be solved. The number of different math challenges
is very few and the answer for them is a single digit, so the challenge can be
passed with trial and error. Further, this captcha is too complicated for the
general public. There are other math-based captchas much simpler than this,
relying on basic arithmetic operations shown in plain HTML, which can be
automatically solved using regular expressions.

Another alternative is presenting the user with a short video, who can either
describe it using tags (Kluever and Zanibbi 2009) or select the most appropriate
answer from an option list (Shirali-Shahreza and Shirali-Shahreza 2008). Apart
from their limited usability, these approaches do not scale well, as they require
human intervention to enlarge the challenge database. In NuCaptcha5 the user
has to type moving letters, an approach that has been recently defeated (Xu
et al. 2012).

Another option is to make the user play a game. PlayThru6 provides dif-
ferent possibilities in this regard. Further, they claim to adopt a sophisticated
mechanism to differentiate human game playing activity from automated activ-
ity (Mohamed et al. 2014). However, there is evidence that these games can be
easily spoofed.7

2.4 Captchas for Mobile Devices

A number of research efforts are aimed to simplify and speed-up captcha solving
on mobile devices. TapCHA (Jiang and Tian 2013) presents the user with a
set of geometric shapes (square, triangle, etc.), and the challenge consists in
dragging one of the shapes. Chow et al. (2008) propose to click on 3 valid English
words out of a grid of 3x4 captchas. Some companies like Uniqpin8 and Confi-
dentCAPTCHA9 use this technique with images. Drawing CAPTCHA (Shirali-
Shahreza and Shirali-Shahreza 2006) presents the user with a large number
of squares randomly drawn, and the user must connect three diamonds via
taps. QapTcha10 is a draggable component for web forms; users just have to
move a slider to confirm that they are humans. All of these approaches can be
broken with machine learning techniques and client-side scripting (Chellapilla
and Simard 2005, Lin et al. 2011).

SeeSay and HearSay (Shirali-Shahreza et al. 2013) allow the user to solve
a captcha by submitting audio instead of text. There are, however, a number
of situations where it is inappropriate to use speech-based input, and dictation
difficulties are magnified when external conditions deteriorate (Price et al. 2009).

5http://nucaptcha.com
6http://areyouahuman.com
7http://spamtech.co.uk/software/bots/
8http://uniqpin.com
9http://confidentcaptcha.com

10http://myjqueryplugins.com/jquery-plugin/qaptcha
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Moreover, recognition errors are one of the major concerns for users to accept
these captchas (Shirali-Shahreza et al. 2013).

2.4.1 Handwriting Captchas

One option to ease text entry on mobile devices is by means of handwriting
input. In Highlighting CAPTCHA (Shirali-Shahreza and Shirali-Shahreza 2011)
the user must trace an obfuscated word with a stylus. This method is similar
in spirit to ours; however it has two drawbacks. First, it requires the user to
precisely trace each character, which is difficult to perform on a mobile device
due to the inaccuracy of user input (Commarford 2004, Hourcade and Berkel
2008). Second, the handwriting recognition that validates user input relies on
heuristics that do not achieve competitive accuracy.

Regular text handwriting could be further explored as a means to solve
captchas on mobile devices. However, recognition of cursive hand-made text
is language-dependent and challenging both for computers and humans (Rusu
et al. 2010). Isolated handwritten character recognition could be used instead,
but the number of symbols should be reduced in order to remove ambiguities
(e.g., c, C, o, O, 0, etc.), resulting in few combinations available. Further, this is
actually a subset of math symbols, which are language-independent and can be
controlled together with the type of expressions shown to the user.

Another work closely related to ours is MotionCAPTCHA.11 It presents the
user with an image of a unistroke gesture that the user must draw. This is actually
a proof of concept, and so it has a number of important security flaws. For
example, the gesture vocabulary is very small (16 gestures, 4 bits of information
entropy per challenge) and the solution to the captcha is available in the HTML
source code. Nevertheless, we consider this approach worth of comparison, since
today gestures are becoming ubiquitous on mobile devices (Leiva et al. 2014).

To conclude this section, Table 1 provides an overview of the relevant ap-
proaches to our work for the reader to have a good understanding of the tech-
nology landscape.

3 System Design

The specific implementation of µcaptcha reflects a number of design principles.
We believe that understanding these will be useful to others trying to build similar
systems. Ideally, desirable properties of captchas are the following (Hernandez-
Castro and Ribagorda 2010):

• Automation: the challenge should be automatically generated and graded
by a computer program.

• Easy of use: the challenge should be taken quickly and easily by human
users.

• High reliability: the challenge should accept virtually all human users.

11http://josscrowcroft.com/demos/motioncaptcha/

6

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Category Name Reference Pros Cons

General reCAPTCHA von Ahn
et al. (2008)

supports different
types of challenges

difficult to perform on
mobile devices

Image Rotating
CAPTCHA

Gossweiler
et al. (2009)

uses unlabeled data images must be
carefully selected

Math Math CAPTCHA Hernandez-
Castro and
Ribagorda
(2010)

tailored to
authenticating
technical users

too complicated for
regular users

Video VideoCAPTCHA Kluever and
Zanibbi
(2009)

large video dataset limited usability

GamePlay PlayThru footnote 6 enjoyable to use not accessible

Speech SeeSay/HearSay Shirali-
Shahreza
et al. (2013)

users enter audio
instead of text

prone to recognition
errors

Mobile TapCHA Jiang and
Tian (2013)

drag and drop
interaction

not scalable

Mobile Drawing
CAPTCHA

Shirali-
Shahreza and
Shirali-
Shahreza
(2006)

tap-based interaction not accessible

Handwriting Highlighting
CAPTCHA

Shirali-
Shahreza and
Shirali-
Shahreza
(2011)

simple to use difficult to perform on
mobile devices

Handwriting MotionCAPTCHA footnote 11 works well on
touchscreens

very insecure

Handwriting µcaptcha this work easy to use and learn uncomfortable for
mouse interaction

Table 1: Summary of captcha schemes relevant to this article, including their
main strengths and weaknesses.

• Low false negatives: the challenge should reject very few human users.

• Low false positives: the challenge should reject virtually all machine users.

• High reliability: the challenge should resist automatic attack for many
years, even as technology advances.

However, no matter the challenge, the whole system must be secure. Con-
cretely, µcaptcha complies with the following requirements:

• Protection against brute-force attacks. It must be resilient to requiring
another captcha after a few invalid responses.

• Protection against replay attacks (Mohamed et al. 2014). A captcha ID
generated once cannot be reused, or at least should not be valid in other
active session.

• Protection against side-channel attacks (Zelkowitz 2001). The captcha
solution must not be stored on the client side. Otherwise, it would be
trivial to bypass the challenge.

7

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



• Server-side validation. The captcha system must validate what is submitted
by the user.

3.1 Architecture Overview

Figure 3 provides an overview of our system architecture. At a high level, the
user draws a mathematical expression, generating thus a sequence of handwritten
strokes that are submitted to a math recognizer. For a challenge to be passed, the
ID of the recognition result must match the ID of the mathematical expression
presented to the user.

strokes
sequence

symbol
decoder

online
classifier

math parser

math renderer

encoder

challenge
generator

image

ID

canvas

offline
classifier

encoderID

challenge passed if IDs match

a

b c

ed

f g

h

i

j

klm

browser/app

web server

recognizer

output

module

Legend:

Figure 3: Requesting a µcaptcha generates a math expression in TEX format (a).
The expression is encoded (d, e) and rendered as an image (b, c). The user
must draw (f) the presented math expression, generating thus a sequence of
strokes (g) that is submitted to a symbol decoder (h). The identified handwritten
symbols are submitted to two classifiers (i, j) for later recognition within a math
parser (k). The output of the parser is a math expression in TEX format, which
is encoded (l) in the same way as (d). The challenge is solved if the final ID (m)
matches the challenge ID (e).

A µcaptcha ID is a one-way “salted” hash of a TEX equation generated by a
probabilistic context-free grammar (PCFG). The server-side encoder knows how
to de-salt the hash, which depends on the session and a number of additional
factors such as the website requesting the challenge or the checksum of the
non-distorted challenge image. Therefore this ID scheme not only makes the
backend stateless, but also makes it impossible to invert the hash. So, even if a
malicious attacker could mimic our encoder algorithm, these measures would
deter a potential attack.

3.1.1 Math Recognizer

µcaptcha is built upon seshat,12 a state-of-the-art open source recognizer of
handwritten math expressions. The recognizer operates in a two-step procedure.
First, isolated symbol recognition is performed using both online and offline
recurrent neural network classifiers. Second, the most likely math expression is

12http://github.com/falvaro/seshat
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parsed according to a 2D-PCFG equivalent to the grammar we use to generate
the challenges.

3.1.2 Challenge Generation

Figure 4 shows some µcaptcha examples. Special consideration has been put
into making our challenges reasonable for humans to solve. On the one hand,
successful captchas rely on segmentation problems, as they are computationally
expensive (Simard et al. 2003). µcaptcha images use black and white foreground
arcs, since these are easily recognized for humans and yet remain difficult for
computers to distinguish (Chellapilla et al. 2005). On the other hand, PCFGs
are defined at the symbol level (Álvaro et al. 2014, Zanibbi and Blostein 2012).
However, because in µcaptcha the user has to enter strokes, our PCFG is defined
at the stroke level. Thus, a “longer” challenge means that the user has to write
more strokes, not necessarily that the expression has more symbols. For instance,
2− 3 (3 symbols, 3 strokes) is much faster to write than F 6= π (3 symbols, 9
strokes).

Figure 4: Examples using between 4 and 9 strokes per math expression.

3.1.3 Math Vocabulary Training

There are 3 different sources of error in µcaptcha: (1) the challenge is too hard or
unclear, which may be skipped; (2) the user draws an incorrect symbol; (3) the
math recognizer does not accept the answer. The latter is worth of consideration,
as it introduces some degree of indeterminism due to recognizing hand-made
input. Therefore, it is important for the math recognizer to reach high accuracy
results.

Initially, we considered the full set of 100 symbols used in CROHME,13 a pop-
ular competition on recognition of online handwritten mathematical expressions.
The number of samples provided for each class is quite unbalanced, therefore we
manually labeled new symbols until we obtained 500 samples per class. Then,
for each symbol class we used 400 samples for training, 50 samples for validation,
and 50 samples to form the test set. As a result, we trained the online and offline

13http://www.isical.ac.in/~crohme/
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classifiers with 40,400 symbols. The error rate of isolated symbol recognition
was 6.97%. This was not sufficient for µcaptcha, so we removed the symbols
that caused most of the errors according to the classifiers’ confusion matrices.
After this, the error rate was as low as 0.88% considering 66 symbols. Figure 5
shows the symbol sets before and after removal of conflicting classes.

0 1 2 3 4 5 6 7 8 9

A a α b B β C c cos +

d / ∆ ÷ · . . . E e = ∃
F f ∀ G g γ ≥ > h H

i I ∈ ∞
∫

j k l L λ

{ [ ≤ lim log ( < m M µ

n N 6= o P p φ π ± ′
q R r ] } → ) S s σ

sin
√ ∑

T t tan θ × u V

v w X x y Y z − ! |

Figure 5: Original set (100 symbols) and reduced set (66 symbols), by removing
those symbols indicated in gray background color.

Reducing the set of math symbols resulted in an isolated symbol classification
error of near zero, but the structure of the math expressions has to be recognized
as well. Thus, aiming at a better system, we limited our PCFG so that structural
ambiguities were removed. For instance, we decided that a letter followed by
a number can only be subscript or superscript. With these improvements, the
error of our math recognition system should be very low, while providing a large
number of math expressions. Concretely, with a vocabulary of m math symbols
and r spatial relations, there are approximately mNrN−1 math expressions of N
symbols. µcaptcha uses 66 symbols and 5 spatial relations, so a challenge with 3
symbols has about 7M of possible combinations, which represents 22.7 bits of
information entropy. This is actually an upper bound, since not all symbols can
use all spatial relations. Taking into account that µcaptcha generates expres-
sions of 6 symbols on average, there are approximately 7.1 · 1054 combinations
(182.2 bits of information entropy). By way of comparison, a 4-digit PIN has 104

combinations and 13.2 bits of information entropy.

3.2 Web Service

µcaptcha provides a JSON-based REST API to become backend-agnostic. This
way, developers can use their preferred technology stack to deploy µcaptcha
on websites or native mobile apps. The API provides two endpoints: one for
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requesting a challenge and other for solving the challenge (Figure 6). Both
API endpoints require a registered user token to be submitted on each request.
Otherwise the server responds with a “403 Forbidden” HTTP status code, which
indicates that the server can be reached and understood the request, but refuses
to take any further action. The API is available at http://api.mucaptcha.com.

When a challenge is requested, the developer can point to PNG and MP3
files by concatenating the response ID with .png or .mp3 extensions. To solve
the challenge, the user must submit a sequence of online strokes in the following
format:

[
[ [x1, y1, t1], . . ., [xN , yN , tN ] ], // First stroke
. . .,
[ [x1, y1, t1], . . ., [xM , yM , tM ] ] // Last stroke

]

where x and y are coordinates and t is their timestamp.
A status code informs the application interfacing with our web service

whether the result was successfully processed (0: no error) or not (code > 0
otherwise). A challenge is passed when the value of msg equals "success". All
passed challenges are periodically fed back to our math recognizer so that it can
learn different writing styles and improve accuracy over time.

Request GET http://url/user token/challenge

Response data:{ "status":0, "id":"http://url/hash" }

Request POST http://url/user token/solve/id

data:[ strokes array ]

Response data:{ "status":0, "msg":"success" }

Figure 6: REST API. We have developed an accompanying web-based prototype
that interfaces with our web service.

3.3 Web Application

We have developed a web-based prototype that interfaces with our web service.
The application is released as open source software so that others can reuse,
study, analyze, or improve it. In order to save valuable touchscreen space, we
decided to put the challenge as a background image in a web canvas, as shown
in Figure 2. However, a developer implementing other µcaptcha interfaces may
decide to present the user with the image and the canvas separately (Figure 7),
as the user is strictly not required to trace the symbols of the math expression.
It is required, however, to preserve the spatial relations between symbols; i.e.,
an expression with highly overlapping symbols might not be recognized reliably.
Our prototype is available at http://mucaptcha.com.

Similar to other captchas, to account for challenges that are unreadable or
too difficult to write, our application allows users to request a new challenge.
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Figure 7: Alternate UI design. Eventually we opted for the compact version
(Figure 2) in order to save screen space.

Also, when a µcaptcha is wrongly solved, the user is presented with a different
challenge; there is no option to retry the same µcaptcha once submitted. Further,
in order to provide an accessible option for all users, our application features
the possibility of hearing the mathematical expression and letting the users to
write it down in plain text. In this case, the web canvas is replaced by a regular
text field. Under the hood, the audio synthesis is performed with Festival,14 an
open source speech synthesis system. English and Spanish voices are currently
available, as they are shipped with the latest Festival version.

4 Evaluation

We performed 3 studies in order to investigate the possibilities of µcaptcha.
The first one analyzed the strengths of µcaptcha against math-based OCR. The
second one was a longitudinal user study, aimed at fine-tuning our recognizer
for real-world use. The third one was an in-lab user study, aimed at comparing
µcaptcha against two alternatives.

4.1 Attacking µcaptcha

We simulated a fundamental attack consisting in scanning µcaptcha challenges
offline with math OCR software. We generated thousands of challenges and
tried to automatically solve them with InftyReader,15 the most competitive
math-based OCR to date.

14http://festvox.org
15http://www.inftyproject.org
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4.1.1 Results and Discussion

µcaptcha images are rendered in lightgray color, which caused InftyReader to
misrecognize all expressions. Images were thus binarized and submitted again to
InftyReader, but it could not recognize any expression because of the foreground
noise. Therefore, we sought a more sophisticated attack.

Aimed at removing the foreground noise while preserving the math symbols,
we applied erosion and dilation operations with different operator sizes. Figure 8
shows some examples of the images resulting after these morphological operations.
Even so, none of these attempts allowed InftyReader to properly recognize any
expression because the lines and arcs used as noise have similar width to that of
the math symbols, thus either the noise was not successfully removed or parts of
the symbols disappeared afterward.

1 px −→ 2 px −→ 3 px −→ 4 px

Figure 8: Attacking µcaptcha. Noise reduction examples use morphological
operators (erosion plus dilation) of variable size.

We conclude that µcaptcha cannot be broken with out-of-the-box math OCR
or basic image preprocessing techniques. This is because offline recognition relies
on connected components analysis, which in our case is obfuscated by using
foreground noise as lines and arcs. Even in the case that noise could be removed
with a sophisticated preprocessing technique, at least two further issues should be
addressed to break a µcaptcha. First, the denoised image should be scanned with
a competent math OCR. Then, it still should be required to generate the online
sequence of strokes that represents the math expression. As a two-dimensional
problem, not only must the symbols be correct, but also properly arranged.

4.2 Longitudinal Pilot Study

We were interested in examining the actual performance of our recognizer, since
the error rate achieved in training was at the symbol level. As we had constrained
the set of math symbols and the grammar, we could not assess recognition rate
at the expression level with the CROHME test set; roughly just 3% of the
provided expressions could be accounted for by our system. Furthermore, we
were interested in examining the users’ performance as well as their acceptance
toward µcaptcha. For these reasons, we decided to use a Wizard of Oz (WoZ)
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system, which informed users only that they advanced to the next challenge.
The study was conducted during 5 working days.

4.2.1 Participants

We advertised the study via local mailing lists and bulletin boards to get a
sample of participants with diverse backgrounds, preferably not computer experts.
Eventually we recruited 10 right-handed participants (4 females) aged 25–34
(M=28.3, SD=6.1) that were either students or university staff members with
no technical background in computer security or captcha design. Participants
were gastronomically compensated for their efforts the week after the study.

4.2.2 Design

The experiment was a within-subjects repeated measures design. Error rate and
solving time were set as dependent variables. The collected data were analyzed
on a daily basis.

4.2.3 Apparatus

Participants were given an iPad mini to solve µcaptchas within our web applica-
tion. Using the same apparatus for all participants eliminates the effect of device
and the effect of screen size. The math recognizer was tuned each day, using the
accumulated data provided by the participants. Retraining the symbol classifiers
was unfeasible, since each recurrent neural network usually takes up to 3 days.
All challenges randomly ranged between 3 and 9 strokes per expression, which is
approximately 2–9 symbols per expression. The web canvas was 300 px wide.

4.2.4 Procedure

Participants were briefly described the µcaptcha interface. Once they were ready,
participants were given 10 minutes to solve as many challenges as they could.
Participants were instructed to perform as fast and accurate as possible, so they
operate at their own speed-accuracy tradeoff point. These instructions were
repeated each day. Being a WoZ setting, participants were not told whether
they successfully solved the captchas or not as they went.

4.2.5 Results

Participants solved 2,780 µcaptcha challenges, at a rate of 556 challenges
(SD=58.1) per day, which amounts to M=55.6 daily challenges on average
per participant.

Analysis of Recognition Accuracy µcaptcha achieved a mean error rate
of 8%; see Figure 9. We believe this is good enough for production use: approxi-
mately 1 out of 15 “legitimate” challenge solutions would be rejected. Moreover,
it is worth noting that these errors may be either because the user draws an
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incorrect symbol or because the math recognizer does not accept the answer.
A deeper examination of the challenges that were wrongly solved revealed that
approximately 20% of the time the error was caused by sloppy handwriting, the
remaining errors being just due to system errors. Considering that no participant
had tried µcaptcha before, we find these results to be particularly promising.
We shed more light in this regard in a later section.
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Figure 9: Error rate. Error bars denote 95% confidence intervals.

Analysis of Solving Time Overall, participants took around 6 seconds to
solve each challenge (M=6.1, SD=3.6); see Figure 10. Compared to other
captcha systems, we observed that µcaptcha is fast enough; e.g., solving a
regular captcha takes between 5 and 10 seconds to complete (Bursztein et al.
2014, Lin et al. 2011), whereas reCAPTCHA takes 13 seconds on average (von
Ahn et al. 2008). In the second user study we shed more light in this regard.

Qualitative Observations Arguably more important than performance-related
results, participants found µcaptcha to be useful and particularly engaging. They
stated that they do not see themselves using it with a regular computer mouse,
but put in the context of mobile devices is perceived as a smart approach. Indeed,
the mouse is less dexterous than the finger or an e-pen. Interestingly, some
participants made the observation that “some symbols were harder to enter
because they require more writing strokes”; and wished that expressions were
slightly shorter overall. These statements encouraged us to push µcaptcha’s
development forward. For instance, as a result, we decided to set the upper
bound of 9 strokes per expression to be at most 6 strokes.

4.3 In-Lab User Study

This study was aimed at comparing µcaptcha with reCAPTCHA (currently the
most popular captcha system) and MotionCAPTCHA (a similar alternative to
ours, from a user interaction’s perspective). Our hypothesis was that drawing is
better than typing on a mobile device in several ways.
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Figure 10: Solving time. Error bars denote 95% confidence intervals.

4.3.1 Participants

Again, we advertised the study widely to get another sample of participants
with diverse backgrounds. We required participants to have no prior exposure
to the previous study. Eventually we recruited 10 participants (3 females) aged
25–35 (M=30.4, SD=3.4). Two of them were left-handed. All participants had
submitted a text-based captcha at some time while browsing the web, though
nobody had technical background in computer security or captcha design. Each
participant was given a gift voucher of $10 at the end of the study.

4.3.2 Design

The experiment was a within-subjects repeated measures design with 3 conditions:
reCAPTCHA (Figure 1), MotionCAPTCHA (Figure 11), and µcaptcha. We
measured error rates and 3 time-related measures: processing time (time between
showing up the captcha and start entering the solution), execution time (time
spent solving the captcha), and overall solving time (until clicking on the submit
button).

4.3.3 Apparatus

All challenges were solved on a Nexus 4 smartphone (Android 4.4.4) with
the Chrome mobile browser 36. We used the same web application as in the
previous study with the same configuration. Now µcaptcha challenges were set to
randomly range between 3 and 6 strokes per expression, which is approximately
2–6 symbols per expression. In addition, some adjustments were made to the
other captcha systems:

• reCAPTCHA currently displays Google street view images by default.
Then, after solving exactly 5 challenges they become the usual two words
(a verification word, to which reCAPTCHA knows the answer, and an
unknown word which comes from an old book). We ensured that the
two-word version was always shown to the participants, so that everyone
tested it under the same settings.
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Figure 11: MotionCAPTCHA example, using our UI’s look and feel.

• MotionCAPTCHA is an insecure option for many reasons. However, it
is similar to µcaptcha in terms of interaction, c.f. drawing instead of
typing. Therefore, we instrumented MotionCAPTCHA to reach the level
of its peers. The prototype uses the same interface as µcaptcha, the same
foreground noise technique, and a similar hashing function to encode the
challenges. In addition, 3 unistroke gestures are always shown to the
user, which increases the challenge combinations from 16 to 163. The
server-side recognizer is a 1 nearest-neighbor classifier with Euclidean
distance (Wobbrock et al. 2007).

4.3.4 Procedure

Participants were briefly introduced the captcha systems they would use and
could test each for at most 5 minutes. They had to hold the smartphone in
portrait position and were told to go at their normal working pace. They had
to solve 25 challenges with each system; resulting thus in 250 observations per
condition. This time participants were informed whether they successfully solved
a challenge or not as they went, as it is a better simulation of real-world use
cases. All systems automatically advanced to the next challenge, regardless it
was correctly solved or not. Conditions were counterbalanced and presented to
the participants in randomized order, in order to reduce the chance of learning
effects.

In order to get a better picture of the study, participants filled in the SUS
and NASA-TLX questionnaires on a nearby computer. They were also asked to
score each captcha system in a 5-point Likert scale in terms of: usefulness, ease
of execution, ease of understanding, and ease of learning.

4.3.5 Results

Analysis of Recognition Accuracy As shown in Table 2, µcaptcha was
found to be more accurate than reCAPTCHA and MotionCAPTCHA. A
Kruskal-Wallis one-way analysis of variance test was statistically significant
[χ2

(2,N=30) = 18.49, p < .001, η2 = 0.68]. Post-hoc pairwise comparisons using
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the Wilcoxon signed rank test (Bonferroni corrected) indicated no significant
difference between reCAPTCHA and µcaptcha, whereas MotionCAPTCHA per-
formed significantly worse than its peers. We conclude that µcaptcha is accurate
enough for production use. The bad performance of MotionCAPTCHA is ex-
plained by the fact that a single challenge entails 3 unistroke gesture recognition
tests, so if just one of these tests is unsuccessful, the challenge is not passed.

System Accuracy (%) 95% CI*

reCAPTCHA 88.4 [83.84 – 91.80]
MotionCAPTCHA 65.6 [59.52 – 71.21]

µcaptcha 90.8 [86.57 – 93.79]

* Wilson interval estimation for binomial distributions.

Table 2: Recognition accuracy results.

Analysis of Solving Time Overall, participants spent considerably more
time solving a reCAPTCHA in comparison to MotionCAPTCHA and µcaptcha;
see Table 3. Differences between systems were statistically significant according
to the ANOVA test [F2,27 = 112.16, p < .001, η2p = 0.89]. Effect size suggests
a high practical significance. Post-hoc pairwise comparisons using the t-test
(Bonferroni corrected) revealed that reCAPTCHA was significantly slower than
its peers. µcaptcha was significantly 1 second slower than MotionCAPTCHA,
however this was unsurprising because µcaptcha challenges had almost twice the
number of strokes (M=5.4, SD=1.6).

Time (s) reCAPTCHA MotionCAPTCHA µcaptcha

Processing 5.0 (2.9) 0.9 (0.4) 1.3 (0.7)
Execution 10.2 (3.6) 4.4 (1.2) 5.1 (1.9)

Overall 15.2 (4.5) 5.3 (1.5) 6.5 (2.1)

Table 3: Mean solving time. SDs are denoted in parentheses.

Similarly, execution time results showed that participants spent consider-
ably more time typing a reCAPTCHA than drawing a MotionCAPTCHA or
a µcaptcha. Differences between systems were statistically significant [F2,27 =
80.54, p < .001, η2p = 0.86]. Effect size suggests a high practical significance.
Post-hoc pairwise comparisons (Bonferroni corrected) revealed that partici-
pants spent a significantly high amount of time typing as compared to drawing.
As expected, µcaptcha was significantly slower than MotionCAPTCHA, since
µcaptcha challenges require entering more strokes.

We observed that reCAPTCHA takes up to one third of the total time to
process the challenge, i.e., the user first reads the challenge and then focuses
on the text field to start typing. In contrast, participants were considerably
faster with the other systems. Differences between systems were statistically
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significant [F2,27 = 36.77, p < .001, η2p = 0.73]. Effect size suggests a high
practical significance. Post-hoc pairwise comparisons (Bonferroni corrected)
revealed that participants were significantly slower at processing reCAPTCHA
challenges. MotionCAPTCHA and µcaptcha performed statistically similar,
which suggests that our math challenges are both easy to read and understand.

Analysis of Usability and Workload In terms of SUS, reCAPTCHA scored
lower than its peers (higher is better); see Table 4. Differences between sys-
tems were statistically significant [F2,27 = 19.08, p < .001, η2p = 0.59]. Effect
size suggests a moderately high practical significance. Post-hoc comparisons
(Bonferroni corrected) revealed that reCAPTCHA was found to be significantly
less usable than the other systems. MotionCAPTCHA and µcaptcha performed
statistically similar. It is worth noting that SUS scores below 50 imply serious
usability issues (Bangor et al. 2008).

Score reCAPTCHA MotionCAPTCHA µcaptcha

SUS 49.7 (16.1) 77.0 (11.5) 82.0 (8.8)
TLX 61.1 (19.1) 40.5 (13.6) 39.6 (12.2)

Table 4: Mean usability (SUS) and workload (TLX) scores, both ∈ [0, 100]. SDs
are denoted in parentheses. Higher SUS is better, lower TLX is better.

In terms of TLX, reCAPTCHA scored higher than its peers (lower is bet-
ter); see Table 4. Differences between systems were statistically significant
[F2,27 = 6.31, p < 0.01, η2p = 0.32]. Effect size suggests a moderate practi-
cal significance. Post-hoc comparisons (Bonferroni corrected) revealed that
reCAPTCHA was found to be more cognitively demanding than the other sys-
tems. MotionCAPTCHA and µcaptcha performed statistically similar. It is
worth noting that TLX scores above 60 are cause for concern (McCabe 2002).

Analysis of Perceived Utility Our participants found reCAPTCHA to be
less likable than the other systems, though they acknowledged that reCAPTCHA
pursues the considerate goal of digitizing old books. This explains why it scored
higher in terms of usefulness but was around a neutral score for the rest of the as-
sessed statements; see Table 5. Overall, differences between systems were statisti-
cally significant according to the ANOVA test [F2,27 = 17.10, p < .001, η2p = 0.56].
Effect size suggests a high practical significance. Post-hoc pairwise comparisons
using the t-test (Bonferroni corrected) revealed that reCAPTCHA was perceived
to be significantly less valuable than its peers. It was interesting to note that
MotionCAPTCHA, despite its low accuracy, was rewarded by the participants
as being statistically similar to µcaptcha. This suggests that mobile users are
eager to try captchas that are best suited to mobile devices. Also interestingly,
participants called into question the utility of MotionCAPTCHA.
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Perception reCAPTCHA MotionCAPTCHA µcaptcha

Usefulness 4.0 (0.8) 3.8 (0.7) 4.5 (0.5)
Execution 2.9 (1.3) 4.0 (0.8) 4.4 (0.5)

Understandability 3.2 (1.3) 4.2 (0.7) 4.3 (0.5)
Learnability 3.2 (1.2) 4.3 (0.7) 4.3 (0.5)

Overall 3.2 (1.2) 4.2 (0.7) 4.3 (0.5)

Table 5: Mean subjectivity scores (higher is better) ∈ [1, 5]. SDs are denoted in
parentheses.

Qualitative Observations Participants were concerned about the fact that
unistroke gestures must be performed in a unique way: “even though it is very
easy to reproduce the gestures, the recognizer fails too often.” In contrast, in
µcaptcha it is possible to write math symbols in different ways, which provides
the user with more flexibility. In this regard, one participant stated: “I’m not
very good at writing... I’m surprised how accurate is the math recognizer!” Also,
we observed that users tend to read the entire math expression prior to start
writing, whereas for MotionCAPTCHA the user can read and enter one gesture
at a time. Finally, other participant made an interesting observation: “Initially
I considered µcaptcha to be more complex than MotionCAPTCHA, but then I
realized that you are just drawing what you see in the background.”

Labeled Dataset As a result of the challenges solved by our participants,
2,787 online handwritten math expressions have been automatically annotated.
The math recognition system outputs a TEX transcription together with an
InkML16 file describing the recognition result. Therefore, when a challenge is
solved we obtain a valid sample that is annotated at the stroke level with symbol
segmentations, symbol classes, and the structure of the expression. This is a
valuable asset helpful for machine learning in math expression recognition, and
avoids the tedious manual annotation process. µcaptcha is thus channeling the
user effort into building valuable machine learning datasets. For instance, the
data can be useful for training handwritten character recognition systems, for
which the annotation process is usually tedious and time-consuming.

4.4 Follow-up Study: Improving Recognition Accuracy

Overall, the accuracy rate of µcaptcha is competitive enough for production use,
however we wondered if it could be further improved. One way to do so is by
improving the math recognizer, i.e., either the symbol classifiers or the PCFG
parser. Nevertheless, this is a non-trivial task that requires expert knowledge in
pattern recognition or machine learning procedures. A more plausible option
consists in introducing a confidence measure, so that the outcome of the recognizer
is not as hard as a true/false binary decision. In fact, reCAPTCHA intentionally

16http://www.w3.org/TR/InkML/
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tolerates some errors depending on how much they trust the user giving the
solution. This is in line with a question raised by one of our participants: “most
of the time I did not understand why reCAPTCHA accepted my answer because
I had to do a very big guess on one of the words.” Eventually we adopted the
following solution.

For mathematical expressions, EMERS (Sain et al. 2011) is a well-defined
tree edit distance evaluation measure. EMERS is not a normalized distance, but
it calculates the set of edit operations to transform a tree into another such that
if both trees are identical EMERS is equal to zero. EMERS is motivated by our
desire to test the value of handwriting input (while realistically acknowledging
that perfect recognition may in fact be unattainable) to determine whether it
is worthwhile even to pursue better math recognizers for this task. Figure 12
shows the gain achieved in accuracy incurred by different EMERS thresholds.
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Figure 12: Improving accuracy by using different EMERS thresholds.

As observed, EMERS-1 (one tree-edit distance) leads to 50% of improvement
in current recognition rates (Figure 12). However, this comes at the cost of
increasing the chance of false positives. Thus, it is important to seek a balance
between using a binary decision as recognition result (hard constraint) or being
a bit fault-tolerant in order to improve the user’s acceptance. Together with
the distributions shown in Figure 13, we have decided to use EMERS-1 in case
the recognition result does not match the challenge submitted to the user. This
should increase the user experience without impacting security. Regarding the
automatic annotation of math expressions, only those expressions that have been
perfectly recognized (EMERS-0) are actually saved as ground truth data.

5 General Discussion

What fundamental aspect of mathematical expressions makes them suitable as
captchas? For instance, could a simpler, non-math-based scheme like letters-only
but in normal, superscript, and subscript positions work just as well? Letters-
only is actually a subset of math expressions. Therefore, math expressions allow
for more combinations. Furthermore, letters-only with subscripts/superscripts
is a one-dimensional (left-to-right) problem that would be easier to crack than
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Figure 13: Relative frequency of EMERS error distributions.

two-dimensional expressions. Even more, detecting subscripts/superscripts from
regular text is error-prone (Álvaro et al. 2014) and usually relies on language
models (Zanibbi and Blostein 2012). We constrained our grammar in order to
solve spatial ambiguities and improve accuracy.

Bursztein et al. (2014) analyzed the interactions of visual features used in
today’s captchas, in order to understand how they affect captcha’s difficulty and
user perception. Unexpectedly, it was found that accuracy and solving time are
not good predictors of user preference. Instead, it is more effective to use the
captcha as a medium for engagement with the user, and examine the interaction
holistically. This explains why our participants scored MotionCAPTCHA and
µcaptcha similarly; see Table 4 and Table 5. However, our evaluation tasks were
artificial and therefore we suspect that in a real-world situation this perception
toward MotionCAPTCHA might change due to its relatively low accuracy.

HIPs, and by extension captchas, are based on open problems in artificial
intelligence (AI) that induce security researchers, as well as otherwise malicious
programmers, to work on advancing the field of AI. HIPs are thus a win-win
situation (von Ahn et al. 2004): either it is not broken and there is a way to
differentiate humans from computers, or it is broken and an AI problem is solved.
While µcaptcha does not guarantee that is secure against highly sophisticated at-
tacks, it is not trivially breakable. However, like every captcha system, µcaptcha
could be defeated by human manpower. For example, spammers could pay a
developer to aggregate our challenges and feed them one by one to a human
operator.

5.1 Limitations and Future Work

Our current implementation of µcaptcha has a number of limitations that are
intended to be addressed in future work:

• It would be desirable to incorporate more math symbols, in order to further
increase µcaptcha’s information entropy. However, our preliminary studies
suggest that doing so may increase the error rate of the recognizer. A
plausible option would be balancing EMERS and expression length; e.g.
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EMERS-2 would not be tolerable for use with expressions comprising 3
symbols, but it may be adequate for use with expressions having 6 symbols.

• The lines and arcs of the foreground noise are drawn in an uncontrolled
fashion. It may happen that they occlude parts of the expression, such as
a minus sign, which could lead the user to enter a wrong solution to the
challenge presented. In fact, one of our participants complained about this
issue. In any case, if the user cannot distinguish what symbols are being
shown, it is possible to reject the challenge by requesting another one. We
log all unsolved challenges for later analysis.

• It may be the case that a mathematical expression does not make sense; e.g.
2x ∀y . This may confuse users with advanced math knowledge, though
we have not received such a complain. We believe that a mechanism to
generate “mathematically correct” expressions would be desirable.

On another line, we would like to explore more sophisticated security attacks.
One of these could be that of template attack (Yan and Ahmad 2008), where pre-
computed templates of math symbols would be used to try breaking µcaptcha.
However, because the foreground noise makes it hard to isolate symbols, a
template attack would probably detect wrong symbols. Further, we could use
different math renderers, as TEX equations may have different font styles such
as face, size or weight. Even if such attack were successful, handwritten strokes
should be artificially generated and arranged according to both the structure
and the relations of the math expression. Another possibility would be creating
online strokes for the connected components of a math image. Nevertheless, this
is really challenging. The foreground noise has different thick sizes so there are
no expected wider or higher strokes. Therefore, removing components would
either delete symbol parts or add noisy strokes.

Taking a different tack, it is worth noting that our web service can be
integrated in native mobile apps; however we expect µcaptcha to be largely
used on websites. This was the main reason why we developed a web-based
application to interface with our web service. In this context, we should mention
that the application is tailored to HTML5 browsers. Therefore, drawing on a
web canvas might not work in old devices or old browsers. Also, drawing does
not work at all in browsers that have disabled JavaScript.

Lastly, if µcaptcha were largely used, it would create a vast dataset of labeled
online handwritten math expressions. This resource would help the advancement
in math research, which is lately bringing more attention to students as a result
of the rapid growth of mobile devices. For instance, education is moving toward
computer-based solutions at the expense of traditional (paper-based) books, so
handwritten input is likely to play an important role in the classrooms in the
near future. Another increasingly important field is that of math information
retrieval (Zanibbi and Blostein 2012), for which µcaptcha would contribute in
creating worthwhile educational materials on math.
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6 Conclusion

We have introduced µcaptcha, a novel method to tell humans and computers
apart by handwriting mathematical expressions on a touch-capable device. Our
studies suggest that µcaptcha is appreciated by the users, however we believe the
results presented here are part of a more general idea. It is important to have
captchas tailored to different platforms and devices, since there is a large number
of them accessing the web today. µcaptcha is especially useful on mobile devices
where soft keyboards are difficult to accommodate or use. Furthermore, the effort
spent solving µcaptchas is channeled into creating labeled handwritten datasets.
Looking forward, we believe our work suggests future research opportunities in
current web security measures.
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