
MouseHints: Easing Task
Switching in Parallel Browsing

Luis A. Leiva

ITI – Institut Tecnològic d’Informàtica

Universitat Politècnica de València

Caḿı de Vera, s/n - 46022 (Spain)

luileito@iti.upv.es

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

Abstract
We present a technique to help users regain context either
after an interruption or when multitasking while
performing web tasks. Using mouse movements as an
indicator of attention, a browser plugin records in
background the user’s interactions (including clicks, dwell
times, and DOM elements). On leaving the page, this
information is stored to be rendered as an overlay when
the user returns to such page. The results of a short study
showed that participants resumed tasks three times faster
with MouseHints and completed their tasks in about half
the time. Related applications and further research are
also envisioned.

Keywords
Parallel browsing, task switching, tabbed browsing,
pointing devices, mouse tracking

ACM Classification Keywords
H.5.2 [User Interfaces]: Input devices and strategies,
Windowing systems; H.5.3 [Group and Organization
Interfaces]: Web-based interaction; H.5.4 [Hypertext/
Hypermedia]: Navigation

General Terms
Experimentation, Human Factors, Performance

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Introduction and Background
The power of browsing has grown substantially in the last
decade, becoming today a traditional interface for many
computing tasks. We now use the Web to multi-task the
activities we do every day, to the extent that it is not
unusual to see users with a dozen applications and browser
instances open at a time; e.g., sharing pictures, listening
to music, or shopping, just to name a few. By providing
tabs, web browsers have started supporting parallel
browsing, allowing users to engage multiple concurrent
pages simultaneously [6]. The current active tab is a
foreground task and thus it has the user’s attention, while
other tabs or windows may be loading in background or
contain information that is not yet needed [8].

People thus may cognitively coordinate multiple tasks
through multi-tabbing, having many pages open at the
same time and switching between them in any order.
However, users are susceptible to overload, making
attention and workflow both delicate and difficult to
maintain [9]. The findings that multitasking over different
types of tasks can reduce productivity [12] is further
supported by the single channel theory, which suggests

Figure 1: A usual approach for
easing attention shifts in tabbed
interfaces (in this case, a text
editor). The last edited line is
automatically marked by
highlighting the text background,
so when the user switches back
to the current tab she can realize
faster where she left writing.

that the ability of humans to perform concurrent mental
operations is limited by the capacity of a central
mechanism [13]. Therefore, multitasking may seem
efficient at first glance but actually it may take longer and
lends itself to more errors.

Pointing and Gaze-based Devices

Researchers have developed interesting applications by
using eye tracking technology to support task interruption.
In fact, our work was inspired in Gazemarks [10].
However, the selection of mouse tracking over gaze
tracking equipment for illustrating our technique was
pragmatic. First, from a HCI point of view, the computer

mouse, also including other pointing-related devices such
as styli or touchscreens, is the most widely used
instrument to browse web pages, also being the closest
device to the eye tracker on the spectrum of various
modalities [4]. Second, unlike a mouse, it is relatively
difficult to control gaze position consciously and precisely
at all times. And third, eye tracking equipment is alas still
less stable and accurate than most manual input devices.

Mouse Tracking in HCI

Previous studies have explored mouse movements as a
fairly accurate reflection of eye movements (e.g., [5]).
Mouse trajectories have also been studied as an indicator
of how information is interpreted [1], to predict gaze
position from mouse coordinates [7], to evaluate usability
of interfaces [2], and even to cluster web documents [11].
However, we are not aware of the use of mouse tracking in
the same scope as in this work, i.e., to ease attention in
application/task switching while browsing the Web.

Our Proposal: MouseHints
Kern and co-authors [10] showed that some users, in order
to keep track of where they were, tended to use the
mouse cursor as a marker or to highlight the last line of a
text paragraph. A similar approach is implemented in
some text editors (see Figure 1). We exploit this notion to
remove the need of having to explicitly find a placeholder
and/or actively manipulate it, without requiring additional
hardware or any special setting.

System Basis

Only one web page and a corresponding tab representing
it can be active at the same time in a browser window.
Tapping this fact, our system tracks in background the
mouse activity in the current tab. Upon switching such a
tab back, the system “hints” a subset of the mouse

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



(a) Raw trajectory (event-based) (b) Digest (velocity-threshold identification) (c) Clustering (sequential K-means) (d) DOM history (n-best hovering frequency)

Figure 2: Visualization options for displaying the same mouse track. The right-most (green) circle represents the last cursor position, while the smallest (red) circles represent mouse
clicks. The bounding box of the last interacted HTML element is also highlighted. Figure 3 shows the original page, to allow the reader to compare each option with the source.

movements (30 seconds by default), also highlighting the

Figure 3: Original test page,
with no overlays.

last interacted element and the last cursor position (see
Figure 2). Then the rendered layer fades out in 500 ms.

User-System Interaction Protocol

When the user selects a browser tab, a focus event is
triggered and MouseHints records the position of the
cursor every time she moves the mouse. When the user
switches to another tab, two browser events are fired
sequentially: a blur event from the old tab and a focus

event from the new (now current) tab. MouseHints thus
stops recording in the old tab and begins to track the
activity in the current tab. When the user switches back
to a previously visited tab, mouse data are overlaid on top
of the HTML content, and are then reset. One may note
that if the user switches to a desktop application, only a
blur event can be detected. However, when switching
back to the web browser, a focus event will be triggered,
therefore enabling MouseHints again.

Implementation

MouseHints was developed as a Firefox extension since
such browser has a powerful mechanism that made it
relatively easy to code and test. The browser interface

was structured in XUL. Both the logic and tracking
algorithms were both written entirely in JavaScript. The
visualization was coded in HTML5 throughout the canvas
element, supported since version 1.5 of that browser.

Visualization

We decided to represent the mouse path in a reasonable
fashion while unobtrusively highlighting the last interacted
HTML element. We developed a generic DOM selector
that translated the mouse activity (e.g., hovering,
clicking) into CSS selectors, so that the system could
draw the corresponding bounding box of such interacted
elements. Additionally, we implemented four different
mouse path visualization options:

1. The raw mouse trail (Subfigure 2a).

2. A “digest” of the original trajectory (Subfigure 2b).

3. Clusters of mouse coordinates (Subfigure 2c).

4. A DOM-only visualization (Subfigure 2d).

In order to evaluate this system, we showed the four
visualization options to 6 participants and let them vote
which one they preferred. The option that most people
selected was number 2, so we used it for the test.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Evaluation Methodology
The tested hypothesis was that using MouseHints should

(a) Level 12

(b) Transition

(c) Level 13

Figure 4: While browsing,
participants were eventually
interrupted to play a game.

benefit the users in terms of orientation in parallel
browsing, i.e., faster task resumption and work completion
by having the mouse interactions as a visual remainder.

Participants 36 unpaid volunteers (11 females) were
recruited via email. They were told to participate remotely
in a study that would measure their reaction times while
browsing. All of them were regular computer users
accustomed to tabbed browsing, aged 19 to 45 (M=25.5).

Apparatus We developed two Firefox extensions: the
MouseHints application and a very basic logging system
with the routines of the study. Half of the participants
were asked to install both extensions on their computer.
The other half of users, who were not aware of the
existence of MouseHints, installed the logging extension.

Design A between-groups design was employed, with half
of the subjects performing the tasks in only one condition
(18 users in the control group and 18 users in the
experimental group, respectively). The outcome measures
were task success, time for task resumption, and time for
task completion.

Procedure Each user performed two tasks, which were
common to both groups. Each task took them about 5
minutes to perform in average, as it was dependent on
each participant’s browsing capabilities. The evaluation
was done remotely, to allow subjects to browse in their
own working environments. The tasks consisted in
searching information for different topics (to mitigate
possible learning effects between tasks); e.g., “how would
you make <noun> in the minimum number of steps?” or
“find the name of the last chapter of the book entitled
<noun>”. Participants had to interrupt normal navigation

flow to play a popular game1 in a dedicated browser tab.
Such a game, despite being quite straightforward, required
a lot of visual attention: the user had to click the last-born
circle on each level (see Figure 4). The conditions were
browsing in a normal environment (control), and with the
help of MouseHints (experimental).

To measure how visual attention differed between both
groups, at least two tabs had to be opened: one with the
game and other with a regular web page. After a random
delay between 20 to 40 seconds, the browser changed the
focus of navigation from the current tab to the game tab,
and users had to resume playing. After another delay, the
browser changed the focus to another tab, which was
randomly chosen from all opened tabs, to stress the
cognitive load during the test. We measured the time for
task resumption (first time to move the mouse inside the
page) and time for task completion (total browsing time)
for all opened tabs. Users were told to close their browser
when a task goal was achieved — this allowed us to easily
post-process their data.

In both conditions data were saved as timestamped event
sequences in the local file system. In order to preserve the
user’s privacy, URLs were converted to MD5 hashes and
data were stored in plain text format. In this way
participants could verify that their data were sufficiently
anonymized, and could also review what kind of
information the extension was gathering. Then they were
asked to submit the log files via email.

Preliminary Results and Discussion
We report measures on the three areas suggested by the
ISO 9241-11 standard: effectiveness (completion rates
and errors), efficiency (time on task resumption and

1http://tubegame.com/camera_mind.html

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



completion), and satisfaction (users’ subjective opinions
on using the system).

Control Exp.

1,000

2,000

3,000

4,000

Mean task resumption (ms)

Control Exp.

2

4

6

8

Mean task completion (min)

Figure 5: Between-groups
efficiency comparison. Candidate
removal was not adequate
enough for this test due to the
relatively small size of the end
user sample (18 subjects in each
group).

Study on Effectiveness

We used a Pearson’s chi-square test for this study. The
nominal outcomes were task success/failure, measured by
assigning 1 point each time the goal was achieved (based
on the manual revision of user’s comments that were
submitted by email). All participants except for one user
from the control group were able to finish the assigned
tasks, concluding that there were no statistically
significant differences in effectiveness between both
groups (χ2

1
= 1.09, p = 0.29, two-tailed). This result was

almost evident. In fact, MouseHints is just an interaction
assistant and, as expected, the user’s success did not
depend on using this system for achieving their goals.

Study on Efficiency

In this case we used a Kolmogorov-Smirnov test. The
continuous outcomes were time for task resumption and
time for task completion. We used the median as central
tendency measure for reducing the influence of outliers.
As predicted, participants were found to be considerably
faster in task resumption with MouseHints (Mdn = 791.5
ms) than without (Mdn = 2363 ms), D = 0.72,
p < 0.001, two-sided hypothesis. We achieved similar
conclusions regarding task completion (Mdn = 3.9
minutes with MouseHints; Mdn = 6.8 minutes without),
D = 0.5, p < 0.05, two-sided hypothesis.

Study on Satisfaction

Participants from the experimental group submitted an
online System Usability Scale (SUS) questionnaire [3]
after finishing the study. A Likert scale, from 1 (strongly
disagree) to 5 (totally agree), was used to rank ten
questions. Then the reported a composite measure of the
overall usability of the system. The result was a score of

87.6, indicating that people indeed liked using
MouseHints. (SUS scores have a range of 0 to 100.)

The form attached to the online questionnaire allowed
users to submit free comments and ideas. A frequently
reported comment among participants in the experimental
group was that MouseHints was considered helpful.
Moreover, participants often mentioned the advantage of
saving time and easing task resumption (12 of 18). Eight
people liked the aid to memory of not having to remember
what they previously did with the mouse in a page.

Known Limitations
First of all, participants performed tasks in an
uncontrolled environment and without experimenter
supervision. That could explain the large variability in the
gathered data (see Figure 5), maybe due to potential
outside distractions, or also because some tabs could not
be relevant to the assigned task. Second, our approach is
not suitable for the user that does not use the mouse (or
a similar pointing device) at all while browsing the Web.
Besides, there are situations where the eye and the mouse
are not in sync; and we believe that our approach may not
be much useful if such behavior happens frequently.
Clearly, users who move the pointing device according to
their focus of attention may be the most benefited target
from MouseHints. Third, we proposed for the study very
general tasks that were relatively simple to perform, and
we believe that MouseHints could be of greater help in
other environments (see ‘Envisioned Applications’).
Fourth, gathered data comprised about ten minutes of
task execution data for each user. It would be interesting
nevertheless to evaluate the effects of MouseHints in a
large-scale study, where users will probably be more
accustomed to the system. Finally, users can assist web
browsing by using more advanced I/O devices such as

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



speech recognizers or eye trackers. Therefore, we
encourage MouseHints to be used in combination with
such systems, since we believe they can unobtrusively
coexist with each other.

Envisioned Applications
We have employed the browser events to track the user’s
interactions and detect task switching. However, our
client-side implementation could provide additional
analysis features to the user. For instance, the browser
could also act as a personal organizer, prioritizing and
reordering tabs according to browsing usage. MouseHints
could also support web browsing on mobile phones or
tablets, e.g., in situations where the user should halt
browsing because of a call or a push notification.
Additionally, at a higher level of application, one could
implement our event detection method (see ‘User-System
Interaction Protocol’) throughout an accelerometer,
providing support for ambient intelligence. In this way, it
would allow mobile users to resume a task, e.g., after
leaving the device on a table because of an interruption.

Conclusions and Future Work
Despite the known drawbacks of our approach, results
have supported our initial hypothesis, showing that
MouseHints can effectively assist the user in parallel
browsing. Moreover, this could be a promising technique
for enhancing desktop-based interactions when
multitasking. Future work includes replicating the
experiment for pure visual-oriented tasks in a controlled
setting, also comparing each of the four implemented
visualizations. We also plan to research more related
applications, since the potential fields are endless.

Acknowledgements Work partially supported by the
Spanish research programme MIPRCV (CSD2007-00018).

References
[1] E. Arroyo, T. Selker, and W. Wei. Usability tool for

analysis of web designs using mouse tracks. In Ext.

Abstracts CHI, pp. 484–489, 2006.
[2] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the

user’s every move – user activity tracking for website
usability evaluation and implicit interaction. In Proc.

WWW, pp. 203–212, 2006.
[3] J. Brooke. SUS: A “quick and dirty” usability scale. In

Usability Evaluation in Industry. Taylor and Francis, 1996.
[4] M.-C. Chen, J. R. Anderson, and M.-H. Sohn. What can

a mouse cursor tell us more? correlation of eye/mouse
movements on web browsing. In Ext. Abstracts CHI, pp.
281–282, 2001.

[5] L. Cooke. Is the mouse a “poor man’s eye tracker”? In
Proc. STC, pp. 252–255, 2006.

[6] P. Dubroy and R. Balakrishnan. A study of tabbed
browsing among mozilla firefox users. In Proc. CHI, pp.
673–682, 2010.

[7] Q. Guo and E. Agichtein. Towards predicting web
searcher gaze position from mouse movements. In Ext.

Abstracts CHI, pp. 3601–3606, 2010.
[8] J. Huang and R. W. White. Parallel browsing behavior on

the web. In Proc. HT, pp. 13–18, 2010.
[9] K. Humm. Improving task switching interfaces. Technical

Report COSC460, University of Canterbury, 2007.
[10] D. Kern, P. Marshall, and A. Schmidt. Gazemarks:

Gaze-based visual placeholders to ease attention
switching. In Proc. CHI, pp. 484–489, 2010.

[11] L. A. Leiva and E. Vidal. Assessing user’s interactions for
clustering web documents: a pragmatic approach. In
Proc. HT, pp. 277–278, 2010.

[12] J. S. Rubinstein, D. E. Meyer, and J. E. Evans. Executive
control of cognitive processes in task switching. Journal
of Experimental Psychology, 27(4):763–797, 2001.

[13] R. Schweickert and G. J. Boggs. Models of central
capacity and concurrency. Journal of Mathematical

Psychology, 28(3):223–281, 1984.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.


