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ABSTRACT

Searchers often make a choice in a matter of seconds on SERPs.

As a result of a dynamic cognitive process, choice is ultimately re-

flected in motor movement and thus can be modeled by tracking the

computer mouse. However, because not all movements have equal

value, it is important to understand how do they and, critically, their

sequence length impact model performance. We study three differ-

ent SERP scenarios where searchers (1) noticed an advertisement,

(2) abandoned the page, and (3) became frustrated. We model these

scenarios with recurrent neural nets and study the effect of mouse

sequence padding and truncating to different lengths. We find that

it is possible to predict the aforementioned tasks sometimes using

just 2 seconds of movement. Ultimately, by efficiently recording the

right amount of data, we can save valuable bandwidth and storage,

respect the users’ privacy, and increase the speed at which machine

learning models can be trained and deployed. Considering the web

scale, doing so will have a net benefit on our environment.
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1 INTRODUCTION

Searchers are faced with choices and decisions all the time, from the

very basic (e.g., whether to click on a link or bookmark the page) to

the more informed (e.g., devising a search strategy or judging the

relevance of a snippet). Every decision is a commitment to a course

of action [42] and it may involve a complex process of considering
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and evaluating different pieces of information. Moreover, a decision

making process is inherently linked to our sensorimotor system [11]

and can be conceptualized as involving two distinct phases [16, 29,

30]: a (pre-movement) planning phase, where key parameters of

the upcoming action are specified and ready for implementation,

and a control phase, in which corrective processes fine-tune the

movement to ensure successful completion.

In information retrieval (IR) tasks, most of the user interactions

happen on the client side only, so it is not possible to infer them on

the server side. To find out what content is consumed and how it

was consumed, the website can use client-side tracking to record

richer interactions [19]. Historically, eye tracking has been used

to study user behavior in IR [1, 7, 12, 21]. However, eye tracking

requires specialized equipment, ranging from expensive stationary

eye trackers to more affordable but noisy webcams [26]. In the

recent years, a large body of work has examined the relationship

between eye gaze and mouse cursor movements during search [13ś

15], providing ample evidence on the connection between the two

signals and highlighting mouse cursor tracking as a low-cost, scal-

able alternative to eye tracking. Mouse tracking is easily accessible

to researchers and practitioners alike, requiring no dedicated equip-

ment or extensive training to use [20]. It also provides a face-valid,

readily interpretable dynamic assessment of choice [34].
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Figure 1: We study the effect of padding and truncating

mouse movement sequences using three modes that oper-

ate at the beginning of the sequence, end of the sequence,

or both parts. Here, all sequences are set to a fixed length

of 10 timesteps, so shorter sequences are padded up to 10

timesteps and longer sequences are truncated to that length.

An effective approach to modeling mouse cursor movements

are Recurrent Neural Networks (RNNs), which remove the need

to manually engineer features [3]. Instead, RNNs will pick up on

features that may not be evident yet important for prediction, using

raw, unprocessed movement sequences as input. RNNs can handle

variable-length sequences, however all sequences in the same batch

must have the same length. The usual way to address this is by
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truncating longer sequences and padding shorter sequences with

dummy values up to a predefined length. Figure 1 illustrates three

different ways of implementing both kinds of operations. In this

paper we explore all of them, as well as their combinations (e.g. left

padding with right truncating). In total, we tested 9 mode combina-

tions (3 padding and 3 truncating modes) for a variable number of

sequence lengths; see Figure 2. Our fundamental research question

is: How does sequence length impact model performance?

To the best of our knowledge, we are the first to investigate

the impact of sequence length on RNN performance in IR tasks.

We argue that it is critical for many web actors (e.g. webmasters,

developers, researchers, search engines) because not all movements

have equal value for the task at hand. By efficiently recording the

right amount of mouse movements, it is possible to save bandwidth

and storage, which, considering the web scale, eventually it will

have a net benefit on our environment. In addition, with shorter

mouse sequences it is possible to speed up RNN model training.

Finally, because shorter sequence use less information about user

interactions, online profiling becomes a more challenging task,

hence contributing to preserving the users’ privacy.

2 RELATED WORK

Formal approaches to assessing decision making processes are

based on the premise that people make decisions and then im-

plement them. Zsambok [44] provides a succinct definition of natu-

ralistic decision making that emphasizes both the context in which

decisions are made (e.g. dynamic environments, competing goals,

time constraints) [25], as well as the role of prior experience [28].

Tversky and Kahneman [39] describe three heuristics: availability,

representativeness, and anchoring, and argue that these explain the

patterns of human judgement observed across a wide variety of

contexts. Another class of heuristics ś fast and frugal [37] ś empha-

sises the need to consider the bounded rational nature of human

cognition and the importance of the interaction between the mind

and the environment. This crucial mind-environment interaction

highlights the role of learning from feedback in well-structured

environments, such as Search Engine Results Page (SERPs), as well

as the differences that are observed when people make decisions

on the basis of described or experienced information.

In the context of IR, much of human decision making involves a

complex and lengthy process of considering and evaluating different

kinds of relevant information before choosing a course of action.

Hence, the user is subjected to various conscious and unconscious

processes and stages [41] (e.g., identifying attributes relevant to the

decision, deciding how to weight those attributes, obtaining a total

utility, or selecting the option with the highest weighted total), that

are oftentimes misaligned [24].

One important limitation faced nowadays is the lack of accessible

and scalable tools outside research labs. Psychological experiments

too often test micro-hypothesis about concrete processing phe-

nomena in tightly controlled laboratory conditions. This limits

significantly the amount of actual knowledge on the dynamics of

human information processing that is brought into a real-world

testing ground [27]. For example, technologies such as electroen-

cephalography or eye tracking require high resource investments

and, quite often, sophisticated experimental setups. On the other

hand, there are online methods like mouse cursor tracking, which

has been shown to be a cost-effective and scalable technique for

capturing various user engagement measures, such as search suc-

cess [13, 14] and satisfaction [22], interest [2, 4], attention [3, 5], or

abandonment [8, 40]. Moreover, mouse tracking has been shown to

be a sensitive metric to capture the onset, magnitude, and evolution

of conflict within decision-making [35, 36].

In this work, we build upon the temporal construal theory [38]

and frame our analysis in terms of the effect of mouse movement

length as a proxy of how searchers make decisions on SERPs. The

temporal construal theory describes the effects of ‘psychological dis-

tance’ on thinking, decisionmaking, and behavior. More specifically,

temporal distance has been shown to have important effects on a

wide range of decisions, including e.g. consumer’s choice [31, 43].

In that respect, it provides a suitable basis for establishing experi-

mentally how much of the decision making process is expressed

in the early, middle, or late stages of user interactions on a SERP,

as reflected by their mouse cursor movements (represented as mul-

tivariate sequential data of x,y coordinates and timestamps). Our

work addresses the current knowledge gap in the research litera-

ture about the utility of this important signal with respect to its

sequence length.

3 EXPERIMENTS

We investigate the effect ofmousemovement length in three paradig-

matic IR tasks: attention (ads noticeability), page abandonment, and

user frustration. These tasks can be tackled with existing public

mouse tracking datasets. As can be observed in Table 1, mouse

sequences are rather variable in length, which calls for research in

this topic.

Table 1: Summary of mouse sequence lengths (number of

timesteps) in our analyzed datasets. ‘Rate’ denotes the aver-

age sampling rate (inms) of the capturedmousemovements.

Dataset/task Min Max Mean Median SD Rate

Attention 6 222 20.4 15 18.4 150

Abandonment 2 123 25.0 19 21.6 150

Frustration 6 595 92.6 64 87.7 60

3.1 Predicting Ads Noticeability

For this taskwe use the attentive cursor dataset [17], which provides

716 mouse sequences on Google SERPs with associated ground-

truth labels regarding user’s attention to native advertisements

(either the user noticed the ad or not) while browsing transactional

queries (e.g. łbuy rolex watchž). The are 476 cases were users no-

ticed the ad (majority class), according to a binary self-reported

rating collected at post-task.

We use the same RNN model and settings provided by Arapakis

et al. [5], which outperformed other approaches in this task. The

model is a bidirectional long short-term memory (BiLSTM) layer

with 0.5 dropout and embedding size of 50 units, followed by a fully-

connected layer of 1 neuron with sigmoid activation as output. The

BiLSTM layer uses hyperbolic tangent as activation function and

sigmoid activation in the recurrent step.
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Figure 2: Experimental results. Rows denote a truncation mode (e.g. łfirst 10ž means keeping the first 10 timesteps) and bars

denote the padding mode. Error bars denote 95% confidence intervals using the Wilson method for binomial distributions.

3.2 Predicting Page Abandonment

For this task we use the dataset provided by Brückner et al. [8],

which comprises 133 mouse sequences on Yahoo SERPs with associ-

ated ground-truth labels regarding page abandonment (either good

or bad abandonment) while browsing informational queries (e.g.

łBrad Pitt’s agež). The are 77 good abandonment cases (majority

class), where users left the SERP without clicking anywhere.

We use the same RNN model and settings provided by Brückner

et al. [8], which outperformed other approaches in this task. The

model is a stack of 2 BiLSTM layers with 0.3 dropout, followed by a

fully-connected layer of 1 neuron with sigmoid activation as output.

The BiLSTM layers use hyperbolic tangent as activation function

and sigmoid activation in the recurrent step.

3.3 Predicting Search Frustration

For this task we use the dataset provided by Feild et al. [10], which

comprises 259 mouse sequences on several SERPs (Google, Ya-

hoo, Bing, Ask.com) with associated ground-truth labels regarding

search frustration on SERPs (either the user was frustrated or not)

while browsing both informational and navigational queries. There

are 30 cases where users felt frustrated (minority class), according

to a self-reported rating ≥ 4 in a scale of 1ś5 (1 means no frustra-

tion at all). We deliberately ignore ratings of 2 and 3 because the

goal of this task is to detected truly frustrated users. Since this task

has not been tackled with RNN models before, we use the same

architecture of the abandonment model, because of the similarities

between both tasks.

3.4 Procedure

In each scenario, we split the data using stratified sampling, to

produce balanced splits that preserve the original class distribution.

We use 60% of the data for training, 10% for validation, and 30% for

testing. We train the models in batches of 16 mouse sequences. We

use the Adam optimizer with learning rate 𝜂 = 0.0005 and decay

rates 𝛽1 = 0.9 and 𝛽2 = 0.999. We set a maximum number of 500

training epochs but use early stopping of 10 epochs by monitoring

the validation loss (binary cross-entropy); i.e., if the loss on the

validation set does not improve in 10 consecutive epochs, training

finishes and the best learned weights are kept. The test set is a held-

out partition that simulates unseen data. We run the experiments

using 5 different seeds, to avoid potential biases from evaluating

on a single run.

Our RNN models are fed with raw mouse sequences as input, i.e.

sequences of 𝑥,𝑦, 𝑡 tuples. We use 3 padding modes and 3 truncating

modes (Figure 1) for a variable number of sequence timesteps: 10, 20,

50, 100, 200, and full length. In the łfull lengthž case, sequences are

padded to themaximum length observed in each dataset (Table 1). In

total, we tested 54 length variations for the attention and frustration

scenarios, and 48 variations for the abandonment scenario (in this

case, since the maximum length is 123 timesteps, we tested up to 5

length cases, as opposed to the 6 cases for the other scenarios).



3.5 Results

The results of our experiments are reported in Figure 2. We report

model performance using weighted average F-measure (F1 score)

and area under the ROC (AUC). We can see that in some cases

using full-length sequences (i.e., forcing all sequences to have the

same length of the maximum sequence observed in each dataset)

is detrimental for performance. For example, in the ads attention

task it is better to use sequences comprising the first 100 timesteps

instead of padding all sequences to the maximum sequence length.

Furthermore, using just the first 20 timesteps is as beneficial as

using the first 100 timesteps, as indicated by the higher values

of F1 and AUC. Interestingly, for the abandonment scenario it is

the last 10 timesteps the cases that achieve better performance.

For the frustration scenario, however, we observed that in most

cases the winning combinations comprise the middle points of the

mouse sequences. For example, łmiddle 10ž and łmiddle 20ž with

any padding mode are as good as using full sequences with sides

padding. In sum, in all scenarios, using shorter mouse sequences

may lead to the same or even better performance than using full-

length sequences as input to the RNN models.
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Figure 3: Model training time and dataset storage size as a

function of the number of mouse sequence timesteps.

We provide additional results about the savings incurred in terms

of training time and storage size in Figure 3, as a function of the

number of sequence timesteps. In both plots, the X and Y axes are in

logarithmic scale. Training time is measured on a commodity Intel

i5 CPU@ 2.4Hz, whereas storage size is measured by serializing the

mouse sequences (multivariate time series) and ground-truth labels

as JSON. We can see again that, by using shorter sequences it is

possible to speed up training considerably, and this was so without

a significant drop in model performance, as noted by our previous

experiments. Similarly, the storage savings are clear, sometimes by

more than one order of magnitude.

4 DISCUSSION

Built off cognitivemodels that propose a dynamic interplay between

motor movements and underlying cognition [32, 33], mouse track-

ing provides a dynamic window into how a decision unfolds [23].

Our work is the first to provide empirical evidence for the three

paradigmatic SERP scenarios considered: predicting ads noticeabil-

ity, page abandonment, and search frustration.

4.1 Takeaway Messages

For IR tasks that involve investigating how users pay attention to

different parts of the SERP (such as advertisements), it is beneficial

to focus on the initial mouse movements. This is justifiable because

our visual system is extremely fast and efficient. Hence, upon load-

ing the page, users quickly scan it and locate the different SERP

elements (e.g. logo, organic links, cards, etc.) even before moving

their mouse. This minimizes the amount of thinking or łworking

outž that goes into reading and interpreting the page, and simply

lets the eyes do their efficient job, then the mouse follows. On the

contrary, for predicting SERP abandonment it is beneficial to focus

on the final mouse movements. This is also understandable, as by

definition the act of abandoning means to give up, which happens

toward the end of the search session. Finally, we have observed

that users can become frustrated at anytime, even when they have

satisfied their search needs on the SERP [10], so it is difficult to

predict this outcome by tracking mouse movements alone.

In sum, attention prediction tasks should focus on the initial

timesteps of the mouse movement sequence, and abandonment

prediction tasks should focus on the final sequence timesteps. It

only takes about 20 timesteps (roughly 3 seconds of interaction

data) to detect the aforementioned decision making processes with

reasonable performance.

4.2 Implications and Future Work

Despite dramatically lower costs for bandwidth and storage, the

demand for these resources has continued to exceed the ability

of organizations to satisfy it within constrained budgets [9]. It

is argued that every gigabyte requires between 3 and 7 kw/h for

storage [6]. Therefore, considering the web scale, it is important to

record efficiently the right amount ofmousemovements. Eventually,

doing so will have a net benefit on our environment.

Our work has also implications for user’s privacy. It has been

shown that mouse movements can disclose sensible demographics

information such as gender and age, which could be exploited

without the user even noticing it [18]. Therefore, by recording

a small subset of mouse movements we argue it would be very

difficult to profile the user. This, however, remains to be validated

in future work. Further avenues for future work include comparing

other model architectures and other mouse tracking datasets, which

unfortunately are scarce in the IR literature.

5 CONCLUSION

The psychological study of decision making is replete with impor-

tant applications to real-world problems and contexts. Our work,

which investigated three representative SERP scenarios where

searchers made a choice ś either consciously (page abandonment),

unconsciously (ads noticeability), or both (frustration) ś further

elucidates how much of the decision making process is expressed

in the early, middle, or late stages of user interactions on a SERP,

as reflected by their mouse cursor movements. By analyzing the

effect of mouse sequence length, we have found that: (1) attentional

events happen at the beginning of the search session; (2) SERP aban-

donment decision happens towards the end of the search session;

(3) searcher’s frustration can happen at anytime in the search ses-

sion. We also have found that these choices happen rather quickly,

so, taken together, it is not really necessary to record all mouse

movements on the SERP, thereby saving valuable bandwidth and

storage, respecting the users’ privacy, and increasing the speed at

which machine learning models can be trained and deployed.
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