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can swipe on the nearby cable to (b)
scroll down the instructions view.
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ABSTRACT
Augmenting arbitrary physical objects with digital content leads to the missing interface problem,
because those objects were never designed to incorporate such a digital content and so they lack a
user interface. A review of related work reveals that current approaches fail due to limited detection
fidelity and spatial resolution. Our proposal, based on Google Soli’s radar sensing technology, is
designed to detect micro-gestures on objects with sub-millimeter precision. Preliminary results with a
custom gesture set show that Soli’s core features and traditional machine learning models (Random
Forest and Support Vector Machine) do not lead to robust recognition accuracy, and so more advanced
techniques should be used instead, possibly incorporating additional sensor features.
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INTRODUCTIONThe missing interface problem occurs
when physical objects are augmented with
digital elements, because those objects were
never designed to incorporate digital
content and thus they do not provide a
proper user interface to allow for
interaction.

Figure 1:Weused awrist-mountedGoogle
Soli for sensing micro-gestures on physi-
cal objects.

With the development of Augmented Reality (AR) technologies, we have adopted tools that are able to
manipulate our visual system and modify our perspective of reality, e.g. adding or removing realistic
or abstract objects from our field of view. Even though AR technology is still far from reaching the
holy grail in which the augmented content can no longer be distinguished from reality [11], there
are plenty of use cases where this (conscious) sense of augmentation is required. Some prominent
examples include e.g. remote guidance, instruction manuals, and training systems (see teaser Figure).
Such systems atempt to convey spatially complex information to the user by projecting additional
information onto physical objects. This is in fact an important advantage of AR interfaces over
conventional interaction systems [5, 6].

Augmenting arbitrary physical objects with digital elements leads to the missing interface problem,
because those objects were never designed to incorporate digital content and thus they do not provide
a proper user interface to allow for interaction. For example, imagine a maintenance task where
instruction annotations are projected directly onto the objects in need of repair. How do we browse
the instructions? How do we query for additional information? How do we provide feedback in order
to communicate a problem to the remote expert? How do we efectively curate new digital instructions
if we are the authors of such instruction manuals?

In this paper, we explore the possibilities of a łSwiss Army knife”-like interface that would fill in the
missing interface void. We do this by (i) reviewing current approaches and similar interaction methods
and (ii) proposing and evaluating a novel gesture detection system based on Google Soli’s millimeter-
wave radar sensing technology. This new sensing technology has been very recently approved by
the Federal Communications Commission (FCC),1 suggesting it will soon become widespread to

1htps://docs.fcc.gov/public/atachments/
DA-18-1308A1.pdf

developers and practitioners. This makes technology evaluation, such as the one presented in this
paper, an important and timely contribution.

RELATEDWORK
To overcome the missing interface problem, AR interactive systems follow two diferent paterns:
(i) remote interaction, where interaction is dislocated from the augmented object (e.g. mid-air gestures
to place holograms around the room) and (ii) direct interaction, where interaction is performed on the
augmented object (e.g. tapping the object with annotation to reveal more information).
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Remote Interaction

Figure 2: In our user study, participants sat
at a table while interacting with a picture
frame.

Interfaces that enable remote interaction can be implemented through speech recognition, using
additional handheld controllers, or even by performing mid-air gestures with hands and body. These
systems work reasonably well in controlled environments, particularly when used in multimodal
setups, however they face some restrictions. For example, handheld controllers require the user to
hold a device and gesture recognition systems are commonly based on captured RGB or RGB-D data
streams [13] imposing the following limitations: (i) gestures need to be performed within the camera’s
field of view; (ii) gestures require a reasonably large hand or finger movements, cf. HoloLens gestures;2

2htps://fologram.com/docs/articles/
360000919873

(iii) the hand and fingers performing the gesture must not be occluded.
To address the lack of line of sight when detecting mid-air gestures, previous research looked

at alternative sensing abilities, such as electric field sensing for full-body gestures [2], fingertip
tracking [8], audio-based doppler shit sensing [7], and capacitive sensing [10]. Other solutions have
been explicitly designed as wearables, such as acceleration-sensitive finger rings [4] or a wristband
device that recognizes hand gestures and forearm movements [10].

Direct Interaction
Building interfaces that enable direct interaction is more challenging, since the interface needs to be
integrated with the object being augmented. Moreover, objects add noise to the gesture detection
pipeline and increase the dificulty of hand segmentation. To overcome these problems, previous
research utilized infrared proximity sensors, allowing for e.g. multi-touch interaction around small
devices [1], capacitive sensing techniques enabling detection of touch events on humans, screens,
liquids, and everyday objects [12], and even electromyograpy systems that measure muscle tension [3].

Irrespective of recent advances in gesture detection systems and sensing methods, current solutions
sufer from limited gesture detection fidelity and spatial resolution, especially when gestures involve
subtle hand/finger movements. Therefore, current gesture detection systems fail to support micro-
gestures on objects that otherwise would enable inconspicuous, precise, and flexible object oriented
interactivity. This is important when a direct interaction patern is more appropriate for the task at
hand, a common case in AR-supported remote guidance, instruction manuals, and training systems.

MICO-GESTURES ON AUGMENTED PHYSICAL OBJECTS
Millimeter-wave radar sensing technology has recently shown promising results in the context of
detecting micro-gestures [9, 15]. This technology is based on the principle of emiting electromagnetic
waves at high frequencies (57ś64GHz) and capturing their reflections using a radar antenna. These
signals are later processed to produce data features that can be used to detect user fine-grained
interactions using machine learning techniques.
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Due to the nature of radar waves (e.g. can penetrate certain materials) and the proof that micro-
gesture detection is possible with this technology [9], we hypothesize that millimeter-wave radar
sensing technology is capable of detecting micro-gestures on physical objects without having to instrument
the augmented object.We test our hypothesis using Google Soli, which has shown that radar-based
interaction technology can be used to perform łrobust, high-resolution, low-power, miniature mid-air
gesture sensing” [9]. In addition, the Soli sensor has been shown to be successful at classifying
everyday objects and materials [16ś18].

Figure 3: Thumbmoving up&down (a) and
Scratch (b) gesture examples.

Figure 4: Tickle (a) and Swipe (b) gestures.

We designed and 3D-printed a hand-mounted wristband for the Google Soli sensor (see Figure 1).
The sensor was positioned to illuminate the fingers, maximizing the amount of captured reflected
signal caused by hand and finger movements. The sensor was connected to a laptop computer with
a USB cable. Current form factor is likely to miniaturize as the technology improves making the
approach viable for wearables.
Next, we conducted a user study (Figure 2) and recorded ~3.2K labeled instances (4 gestures, 10

users, 20 gesture repetitions, 3ś5 sessions). The four gestures were Thumb, Scratch, Tickle, and Swipe;
see Figures 3 and 4. These gestures were designed based on the analysis of finger-based gesture sets
that have been used in previous work [9, 15]. Participants (all students, 6 male, 4 female, aged 23ś50)
were siting at a table whilst performing the gestures on a picture frame. An image of the gesture with
its name was shown to each participant on the nearby laptop. Ater a beep sound, the participant had
to perform the gesture. The order of gestures was randomized and ater each round the sensor was
reset (the cluter map was rebuilt). Participants could perform each gesture in a warm-up condition
before starting the experiment. Participants were asked to repeat the gesture if the one they performed
did not match the gesture shown on the image (e.g. the user performed the Scratch gesture instead of
the Thumb gesture).

EVALUATION
We used the standard gesture detection pipeline proposed by Google Soli’s SDK. We created feature
vectors using the 9 built-in core features of Google Soli sensor recommended by the SDK: Acceleration,
EnergyMoving, Energy Total, Movement index, Range, Spatial dispersion, Velocity, Velocity Dispersion.
We computed 4 meta-features for each core feature: mean, standard deviation, sum, and absolute
sum. Considering that each of our gestures is approximately 1 second long, we logged sensor data at
100Hz. As a result, our feature vectors have a dimensionality of (9 + 9·4)·100 = 4500. We used these
feature vectors to train two popular machine learning models: Random Forest (RF, with forest size of
200 and depth of 10) and Support Vector Machine (SVM, with RBF kernel and regularization). The
hyperparameters of each model were tuned via grid search.

We performed an 80/20 split of the data, where 80% of the data is used for training and the remaining
20% is used for testing. The results are presented in Tables 1ś3. As can be observed, RF outperforms
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the SVM model, however if we consider our original set of 4 gestures it only manages to achieve an
accuracy of 55%, which is insuficient for a production-ready system. Looking at the confusion matrix
presented in Table 2, we can see that Thumb/Scratch gestures and Tickle/Swipe gestures are oten
misrecognized. If we remove the Tickle gesture gesture from our recognition pipeline, the RF model
achieves an overall accuracy of 68%, which represents an increment of 23%.

Full set Reduced set

No. classes 4 3
No. samples 3156 2367
RF accuracy (%) 55 68
SVM accuracy (%) 50 61

Table 1: Classification results.

Thumb Scratch Tickle Swipe
Thumb 59% 19% 14% 8%
Scratch 23% 54% 15% 7%
Tickle 13% 16% 55% 16%
Swipe 16% 11% 20% 53%

Table 2: Confusion matrix for RF. Full ges-
ture set.

Thumb Scratch Swipe
Thumb 71% 14% 15%
Scratch 9% 70% 21%
Swipe 11% 25% 64%

Table 3: Confusionmatrix for RF. Reduced
gesture set.

DISCUSSION AND FUTURE WORK
Our work atempts to fill in the void of the missing interface which is present in physical objects
that are augmented with digital content, since those objects were never designed to support digital
augmentation and so do not provide the necessary interface. Our preliminary results show that
built-in features (provided by the Soli sensor) and traditional machine learning methods (Random
Forest and Support Vector Machine) do not lead to robust recognition when using our gestures; e.g.
the overall accuracy for a set of 4 gestures is 56%, whereas for a set of 3 gestures is 68%. Nonetheless,
further improvements should be possible to atain with e.g. additional sensor features and more
advanced machine learning methods. This is further supported by previous work fromWang et al. [14]
that evaluated mid-air gesture detection using Range-Doppler images and deep neural networks
architectures (convolutional and recurrent neural networks) and achieved very good results; e.g. 85%
accuracy with a set of 11 gestures.

Our experiment had a number of limitations that will be addressed in future work, such as: (i) sta-
tistical testing for feature selection: we used the feature set proposed in the Google Soli SDK, however
a feature selection technique should be considered to improve accuracy; (ii) cross-validation training:
this should help to improve classification accuracy as well, particularly in the case of small datasets.
Nevertheless, our preliminary results have important implications, as we provide insights into how ef-
fective are Google Soli core features for micro-gesture detection. To our knowledge, no such evaluation
has been reported before and thus may be of interest to developers and practitioners.

Besides experimenting with the aforementioned changes to the gesture detection pipeline, we plan
to evaluate the proposed system on an extended gesture set and integrate it into a final application.
Due to the fact that objects introduce noise to the gesture detection pipeline, we also plan to evaluate
how resilient is our system when gestures are performed on diferent object materials of diferent
shapes and sizes as well as mid-air vs. on-object versions of the same gesture. Another interesting
experiment would be to compare micro-gestures interaction against other current gesture sets, such
as those used in HoloLens.33htps://docs.microsot.com/en-us/windows/

mixed-reality/gestures
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