
Error-proof, High-performance, and
Context-aware Gestures for
Interactive Text Edition

Luis A. Leiva, Vicent Alabau, Enrique Vidal
ITI/DSIC, Universitat Politècnica de València
Caḿı de Vera, s/n – 46022 Valencia (Spain)
{luileito,valabau,evidal}@{iti,dsic}.upv.es

the foot rope, and presumably and of its

the foot rope, and presumably and of its

the footrope, and presumably out of thig

the footrope, and presumably out of this

Figure 1: Transcribing handwritten text on a mixed-initiative
UI, where the user and the system efficiently cooperate to
produce an error-free result. As observed, only 2 operations are
needed to achieve the correct transcription, as long as the
submitted strokes are correctly being classified either as (the
right) gestures or handwritten text when necessary.

Copyright is held by the author/owner(s).
CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris, France.
ACM 978-1-4503-1952-2/13/04.

Abstract
We present a straightforward solution to incorporate
text-editing gestures to mixed-initiative user interfaces
(MIUIs). Our approach provides (1) disambiguation from
handwritten text, (2) edition context, (3) virtually perfect
accuracy, and (4) a trivial implementation. An evaluation
study with 32 e-pen users showed that our approach is
suitable to production-ready environments. In addition,
performance tests on a desktop PC and on a mobile device
revealed that gestures are really fast to recognize (0.1 ms
on average). Taken together, these results suggest that
our approach can help developers to deploy simple but
effective, high-performance text-editing gestures.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
interfaces—Input devices and strategies, interaction styles

Author Keywords
Text Editing; Gestures; UI Prototyping; Pointing Devices

Introduction
Gesture-based interfaces provide the user with a direct,
natural form of interaction. Together with the popularity
of stroke-based devices (e.g., touchscreens, e-pens, styli,
tabletops, or surfaces), accurate gesture recognition and
suitable prototyping tools are becoming essential. Within

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

this context, text-editing applications are increasingly
being enhanced with gestures, specially those applications
that follow a mixed-initiative user interface (MIUI)
principle [2], i.e., those in which the user and the system
collaborate efficiently (Figure 1). For instance,
CueTIP [8], CATTI [7], and IMT [6] are recent examples
of text-editing applications with MIUIs partially
commanded by gestures. In these systems, the user
iteratively refines some automatic system output (or
hypothesis), by providing corrective feedback that the
system leverages to produce a better hypothesis.

i ii iii

(a) Delete

i ii iii

(b) Insert

i ii iii

(c) Validate

Figure 2: One of the goals of
this work is to simplify stroke
candidates. Here, examples for
deletion [2a], insertion [2b], and
validation [2c] gestures are
shown. Ours is the third option
(minimum effort stroke).

Figure 3: As a result of the
aforementioned simplification
goal, we ended up in reducing
gestures to their minimal
expression: 1D lines.

Current Challenges
This work aims to solve three open problems when editing
text on MIUIs. First, gestures and handwritten text must
be unambiguously differentiated. Otherwise, if a gesture is
misrecognized as text (or vice versa), cascading errors are
likely to happen, so a) the actual user intention would be
wrongly captured by the application; therefore b) it would
not be possible for the system to derive a correct
response; which c) would cause frustration, as d) the user
would need to amend the erroneous response and
resubmit the previously intended gesture (or text
correction) again. Second, it is notably important to
ensure both low recognition errors and low recognition
times, since productivity is extremely mandatory when
operating a text-editing MIUI. In this regard, users are
typically willing to accept error rates up to about 3% or
less, before deeming the technology as “too
encumbering” [3]. Finally, it is mandatory for the system
to know the context of an issued gesture, i.e., the
application need to know information from the text itself
which the user is interacting with, at the word (or even
character) level, in order to provide the user with suitable
corrections. Thus, on a text-editing MIUI, gestures must
be performed over the text being edited.

The above-mentioned open problems constrain the design
of the gesture vocabulary. Moreover, each type of
application has unique operations and therefore requires
specialized gestures. Even more, gestures are limited both
by human memory and user performance, and hence they
must remain simple. Figure 2 illustrates these ideas.
Inspired in part by the Marking Menus techniques [1], our
approach, named MinGestures, is based on the fact that
drawing lines (1D gestures) with a pointer device is a very
simple task and really easy for users to perform, but it
also should be very efficient for computers to recognize,
since the proposed gestures are linearly separable. This
paper therefore provides a well-defined balance to deploy
text-editing gestures on MIUIs.

Implementation
We first tried to implement our baseline set of eight 1D
gestures (Figure 3) using state-of-the-art recognizers,
among which we chose [5, 9, 10] for being easily
customizable. Concretely, only $1 [10] would partially fit
our needs. Protractor [5] is a faster version of $1, as a
result of rotating gesture samples to their optimal
indicative angle prior and during recognition, and
therefore it is not appropriate to deal with our full set of
1D gestures. $P [9] is another version of $1 in which
gestures are treated as clouds of points, so it cannot
differentiate gestures on the basis of direction.

As reported in Pilot Study, after incorporating some
tweaks to $1, overall recognition error was around 2%,
which was encouraging but perhaps still insufficient for
editing text on MIUIs. Therefore, considering the
simplicity of MinGestures, we opted for implementing a
customized parametric recognizer, since target gestures
must fit an assumed model (straight lines). Otherwise,
the strokes should be identified as handwritten text.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Figure 4 provides a graphical overview of a proposed
gesture set based on MinGestures, which, from our
experience developing MIUIs (e.g., [6, 7]), incorporates
essential operations to handwritten text and, at the same
time, adequately solves the three open problems discussed
in the previous section.

ACTION RESULT ACTION RESULTLABEL LABEL

Undo Lorem Lorem Ipsum

Redo Lorem Ipsum Lorem

Validate Lorem Ipsum Lorem Ipsum

Split Lorem Lor em

Merge Lorem Ipsum LoremIpsum

Delete Lorem Ipsum Lorem

Lorem et IpsumInsert Lorem Ipsum

Lorem IpsanSubstitute Lorem Ipsum

Figure 4: Sample set of interactive text-editing operations that can be developed with
MinGestures.

Preliminaries: Contextualizing Gestures
For each text segment being edited, word bounding boxes
are normalized in height (Figure 5). These “virtual”
bounding boxes will be used to accurately detect the
word(s) the user is interacting with.

Lorem Ipsum dolor sit amet

Lorem Ipsum dolor sit amet

Figure 5: Words’ bounding
boxes are normalized in height.
This allows the user to easily
select (or draw over) them, but
also to find the gesture context.

Let P = {s1 . . . sp . . . s|P |} be a sequence of |P | strokes,
where sp = {(x1, y1) . . . (xn, yn) . . . (x|sp|, y|sp|)} are
sequences of |sp| 2D points.

On the one hand, the centroid cp = 1
|sp|

∑|sp|
n=1 sp informs

about the word being edited (Figure 5), by searching

j∗ = argmin
j

d(cp, cj) (1)

where d(cp, cj) is the distance between the stroke
centroid and the j-th bounding box centroid. On the

other hand, the angle θp = tan−1 y|sp|−y1

x|sp|−x1

measures the

slope of the fitted line (if any). As shown in Figure 6,
MinGestures uses a tolerance of ǫ1 = 35◦ for diagonal
lines and ǫ2 = 10◦ for horizontal/vertical lines, although
both parameters are customizable.

Disambiguating Gestures & Handwritten Text
Using our parametric approach, we tried Pearson’s ρ as a
discriminative feature, as suggested by Li and
Hammond [4]. This feature, albeit being intuitive for this
task, did not work for us, as indicated in the next section.
In contrast, we can use a couple of stroke features that fit
better this task. These features rely on the gestures lying
on the x-axis. Thus, each feature must be rotated by its
indicative angle, as in [5, 9, 10]. First, the aspect ratio

ϕ =
w

h
(2)

where w and h are, respectively, the width and height of
the stroke bounding-box, informs about the shape of a
stroke, therefore “thin” strokes are likely to be
near-straight lines. Second, the cummulative horizontal
negative derivative

∆−
x =

|sp|∑

n=2

max(xn−1 − xn, 0) (3)

informs about points being drawn backwards; therefore if
a submitted stroke gives ∆−

x ≈ 0, then it is monotonous
in the (rotated) x-axis and therefore is likely to be a line.

Using these features, we found out that gestures can be
easily disambiguated from handwritten text. Then,
together with the taxonomy shown in Table 1, gestures are
properly contextualized and potential collisions are solved.
For instance, the character "l", a comma, or a dash,

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

could be misrecognized as lines, for which the context of
bounding boxes adequately solves these ambiguities.

Recapitulation: Recognizer Workflow
Whenever the user stops writing on the UI (e.g., after
some milliseconds of inactivity), the submitted pen strokes
are inspected according to Equations (2) and (3),
together with the following taxonomy.

First Last Gesture labels

in in Substitute, Merge
in out Substitute
out in [unassigned]
out out Delete, Insert, Split, Validate, Undo, Redo

Table 1: Taxonomy of implemented gestures (Figure 4),
based on the position of the first and last stroke points with
respect to a word bounding box.

Then, if the first stroke is considered to be a line, the
stroke angle is computed to classify the corresponding
operation. Otherwise, the user would be substituting
(handwriting) a word, in which case the strokes must be
decoded by a handwriting recognition engine.

0

2π

−
π

4
rad

±ǫ2

π

2

π±ǫ1

π rad

−π

2
3π

2

(a)

Validate

Delete

Undo

(b)

Figure 6: Accommodating
gesture variability. [6a] The
angular tolerances ǫ1, ǫ2 are
user-customizable. [6b] Gestures
are drawn on non-overlapping
areas, so they can be robustly
distinguished.

Pilot Study
We recruited 32 e-pen users (6 females) aged 26–36. All
subjects were unpaid volunteers. A Wacom Bamboo ‘Pen
& Touch’ digitizer tablet was used as input device in a
regular PC (2 GHz CPU, 1 GB RAM) equipped with
Ubuntu Linux. Participants were asked to perform each
gesture up to 10 times, over the same mock-up sentence.
Gestures were presented randomly, in order to avoid
possible biases in learnability.

We also collected qualitative data about usage experience:
Q1: Gestures are easy to perform; Q2: Gestures are easy

to remember; Q3: Gestures do suffice for text-editing
purposes; Q4: I am satisfied with this gesture recognizer.
Questions were punctuated in a 1–5 Likert scale (1:
completely disagree, 5: completely agree). Users were also
encouraged to give free comments and ideas via an online
survey at the end of the test.

Recognition Errors
We conveyed a series of experiments to assess how the
recognizers performed in terms of accuracy and efficiency.
The goal was to classify a given pen stroke into one of
nine classes: each of the eight directions and handwriting
text. As previously pointed out, first we should tell
gestures and non-gestures apart.

Previously we have discussed some stroke features that
can be used to detect lines. Nevertheless, we need to
establish a threshold after which gestures and non-gestures
can be discriminated. In order to identify the threshold
without a bias, we decided to split the original corpus into
two datasets. The training set consists of 5 samples per
gesture plus text (9 classes) per user, with a total of 1440
samples. This set was used to obtain the threshold that
minimizes the recognition error rate. The remaining
samples (1351 in total) were used as an independent test
set. The threshold used for these experiments was the one
selected in the training phase. Finally, as the $1
recognizer needs templates to operate, it was fed with a
set of ‘perfect’ line samples in each of the eight directions.

Our initial approach was to use $1 out-of-the-box.
However, as this recognizer rotates all the gestures to its
indicative angle, all lines were rotated to the vertical line.
Moreover, $1 scales gestures to a 1:1 aspect ratio, so lines
become almost dots. Thus, results turned out to be
random. Therefore, we decided to remove these
limitations from $1. We found that if a gesture was

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

recognized with less than 0.44 posterior probability, then
an optimum was obtained with 2.22% error rate.

Next, we experimented with MinGestures (MG for
short). Our first approach was to use Pearson’s ρ.
Unexpectedly, ρ proved to be not very robust for
identifying lines, with an error of 6.94% with gestures
being recognized as such if ρ ≥ 0.15, which is very low
(Figure 7a). Hence, we decided to rotate the gestures to

0 0.5 1
0

20

40

60

80

Pearson coeficient (ρ)

E
rr
o
r
(%

)

(a)

0 5 10
0

1

2

3

Backward points (∆−

x)

E
rr
o
r
(%

)

(b)

0 5 10
0

5

10

15

Aspect ratio (ϕ)

E
rr
o
r
(%

)

(c)

0 5 10 0
5

1090

95

100

ϕ
∆−

x

A
cc
u
ra
cy

(%
)

(d)

Figure 7: MG’s threshold
estimations. [7d] Vertical axis
shows accuracy instead of error
to ease the visualization.

lie down on the x-axis, and then compute the number of
pixels drawn backwards (Equation 3). This resulted in a
much better approach with an error of 0.35%, considering
as non-gestures more than 1 pixels being drawn backwards
(Figure 7b). Also, using the bounding box aspect ratio
achieved very good results (0.14% with lines having an
aspect ratio ≥ 3.4, Figure 7c). Finally, aiming at an
error-free recognizer, we combined the last two
techniques. Indeed, we achieved a perfect recognizer
(both in training and test) when a gesture is at least 3:1
with no more than 6 pixels drawn backwards. A summary
of the results for both training and test is shown in
Table 2. As it can be seen, eventually MinGestures

behaves as a deterministic error-free interface.

Performance Evaluation
Firstly, we analyzed the time that users invested to draw
the gestures. On average, they took 800 ms (SD=610).
However, notice that the Substitute gesture penalized
slightly these results, since users submitted unconstrained
handwriting words during the test. Secondly, we computed
the average time required to recognize each gesture with
MinGestures (Table 3). We ran our recognizer 10 times
over all samples in an traditional PC (an i686 with 2 GHz
CPU and 2 GB of RAM). The PC needed 0.1 ms on
average (SD=0.01) to recognize all gestures. To better
understand the impact of the time performance, we

repeated the same experiment on an HTC Nexus One
running Android 2.2. The mobile device needed on
average 0.11 ms (SD=0.43) to recognize all submitted
gestures. Regarding the PC performance, this difference
of 0.01 ms could be considered statistically significant
[χ2

(1,N=2791) = 4.66, p = .03]. Nonetheless, in practice
users would not complain between using MinGestures on
a mobile device or on a traditional PC in terms of
performance, given the narrow margin of difference.
These results concluded that the proposed set of gestures
are effortless to draw and really fast to recognize.

Qualitative Results
Regarding the four qualitative questions asked at the end
of the acquisition tests, we observed that people liked
MinGestures overall (see Table 4). We concluded that
our recognizer is a convenient approach to deploy
text-editing gestures on MIUIs.

Limitations
The simplicity of our approach leads to a few inevitable
drawbacks. First, MinGestures is suited to maximize
accuracy and runtime efficiency. For that reason, this
recognizer is domain-specific and could not fit a
researcher’s needs in other applications. Thus, text
processing applications, such as post-editing interfaces, or
transcription and translation systems, are our main and
only (although relatively wide) target.

Second, MinGestures provides at most 8× 2× 4 = 64
gestures [directions, (un)touching a word, and
inside/outside words’ bounding boxes], a set of actions
that, however, should be enough for text-editing MIUIs.
Some guidance to implement more gestures could be
differentiating them on the basis of time or speed. If
needed, multistrokes gestures could be implemented by

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

combining the core set of MinGestures with finite state
automata. In any case, there is an inherent limitation of
all user-independent systems: creating custom gestures is
restricted to the set of primitives used in MinGestures.

System training test

random 88.9 88.9
$1 88.9 88.9
modified $1 2.22 1.78
MG+ ρ 6.94 7.99
MG+∆

−

x
0.35 0.52

MG+ϕ 0.14 0.22
MG+∆

−

x
+ϕ 0.0 0.0

Table 2: Summary of
recognition error rates (in %).
Thresholds were optimized for
training and used in test.

Pts per gesture 24 (18)
Drawing time (s) 0.8 (0.6)

Table 3: Mean (and SD) values
of user performance metrics.

Question Score

Q1 4.69 (0.77)
Q2 4.45 (0.81)
Q3 4.42 (1.04)
Q4 4.66 (0.87)

Table 4: Mean (and SD) scores
for the qualitative study, in a 1–5
Likert scale (5 is best).

All in all, although a concise recognizer like ours may not
rival other systems in terms of power, flexibility, or
complexity, it is our belief that it may be well suited for a
wide range of devices such as tablets, surfaces, or
handhelds computers.

Conclusion and Future Work
Stroke-based MIUIs devoted to create or modify text can
be easily enhanced with simple gestures, without resorting
to complex techniques or using recognizers that are too
general. We stressed this fact and developed a
deterministic approach to disambiguate among simple
gestures and handwritten text, with runtime efficiency as
primary focus. This paper may thus serve as a reference
guide prior to designing and evaluating text-editing MIUIs.

For future work, we have devised two research avenues.
On the one hand, we plan to incorporate more expressivity
to MIUIs that are driven by MinGestures. For instance,
multiple gesture strokes could be submitted together with
handwritten text at a time, speeding thus the cooperative
(and interactive and predictive) workflow carried out by
the user and the system on a text-editing MIUI.

We already have started working on the integration of
MinGestures in a production-ready machine translation
system. In the context of the CasMaCat project1, our
gesture set will assist professional translators to post-edit
text interactively. The whole machine translation system
is expected to be formally evaluated in a few months. It is

1http://www.casmacat.eu

our belief that MinGestures may enable a natural and
accurate (interactive) text edition well beyond e-pen or
touch devices.

Acknowledgements
This work is supported by CasMaCat Project 287576 (FP7
ICT-2011.4.2).

References
[1] Hardock, G., Kurtenbach, G., and Buxton, W. A marking

based interface for collaborative writing. In Proc. UIST

(1993), 259–266.
[2] Horvitz, E. Principles of mixed-initiative user interfaces.

In Proc. CHI (1999), 159–166.
[3] LaLomia, M. User acceptance of handwritten recognition

accuracy. In Proc. CHI EA (1994), 107–108.
[4] Li, W., and Hammond, T. Using scribble gestures to

enhance editing behaviors of sketch recognition systems.
In Proc. CHI EA (2012), 2213–2218.

[5] Li, Y. Protractor: a fast and accurate gesture recognizer.
In Proc. CHI (2010), 2169–2172.

[6] Ortiz-Mart́ınez, D., Leiva, L. A., Alabau, V.,
Garćıa-Varea, I., and Casacuberta, F. An interactive
machine translation system with online learning. In Proc.

ACL (2011), 68–73.
[7] Romero, V., Leiva, L. A., Toselli, A. H., and Vidal, E.

Interactive multimodal transcription of text images using
a web-based demo system. In Proc. IUI (2009), 477–478.

[8] Shilman, M., Tan, D. S., and Simard, P. CueTIP: a
mixed-initiative interface for correcting handwriting
errors. In Proc. UIST (2006), 323–332.

[9] Vatavu, R.-D., Anthony, L., and Wobbrock, J. O.
Gestures as point clouds: a $P recognizer for user
interface prototypes. In Proc. ICMI (2012), 273–280.

[10] Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without libraries, toolkits or training: A $1 recognizer for
user interface prototypes. In Proc. UIST (2007), 159–168.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

