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Abstract—Dementia is a disease characterized by memory im-
pairment and a gradual disability in performing daily activities.
Automated screening for early detection of dementia can lead
to more adequate and timely treatment. Our work focuses on
predicting various stages of dementia severity using pre-trained
Deep Learning (DL) models and a public Clock Drawing Test
(CDT) dataset. However, the relationship between sample size and
model performance is not yet well understood. This may lead to
an overreliance on a large number of samples for model training,
which may eventually deter reliable outcomes. We found that the
classification performance of DL models tends to plateau once a
certain number of samples is reached, therefore, it is possible to
work on a small data regime with DL models in this task. This
research not only advances the field of medical image analysis
for dementia screening but also offers broader implications for
DL applications in healthcare. Ultimately, the understanding of
how sample size affects model performance can guide future
research and support more intelligent and efficient utilization of
DL models in addressing complex health-related challenges.

Index Terms—Sample size estimation; Clock Drawing Test;
Deep Learning; Alzheimer’s disease

I. INTRODUCTION

Dementia is a progressive neurological disorder that causes
memory loss and cognitive decline, critically impairing an
individual’s ability to perform daily activities. The prevalence
of dementia is increasing, with Alzheimer’s disease (AD)
being identified as the most common form, accounting for the
majority of cases [1]. Despite substantial research progress,
a cure for dementia continues to remain out of reach, high-
lighting the need for research and development of innovative
interventions [1]. The impact of this disease extends beyond
the affected individuals, including their families, caregivers,
and healthcare systems. According to current estimates, the
global cost of dementia reaches one trillion dollars annually
and is expected to increase in the future [2].

Detecting dementia typically requires a variety of cognitive
tests for neuropsychological impairment [3], among which the
Clock Drawing Test (CDT) is a widely used tool. Specifically
for the study of AD, the CDT has demonstrated a high
diagnostic efficiency [4], [5], especially among the elderly [6],
[7]. It assesses the cognitive health of patients through a

simple yet revealing task: drawing a clock set to a specific
time (usually ten minutes after eleven). The simplicity, non-
invasiveness, and intuitiveness of this test make it an accessible
tool for assessing cognitive health across diverse populations,
including those with limited literacy or physical disabilities.

The evaluation of CDT images involves analyzing the
quality of the drawings, specifically the positioning of the
numbers and the clock hands. Clinicians use different scor-
ing systems for their assessments, which help determine the
severity or progression of dementia. In this paper, we rely on
the well-established Shulman six-point scale [8] to classify
CDT images with Deep Learning (DL) models.

Recently, significant advancements have been made with
regard to the analysis and interpretation of CDT images.
Jimenez-Mesa et al. [9] introduced a computer-aided diagnosis
system based on DL for automated diagnosis. Similarly, [10]
developed a deep neural network (DNN) model using 40000
CDT drawings. Their model achieved an accuracy of 90% in
binary classification (impaired vs. control participants), and
up to 77% accuracy in identifying individuals with probable
dementia. Nevertheless, their research primarily centered on
the binary classification problem. In another study by [11],
a DNN-based prediction model was designed to detect cog-
nitive decline, effectively distinguishing between cognitively
impaired and control participants. All these previous works
aimed at automating the scoring process for CDT images,
specifically targeting their use for screening purposes, and
mostly focusing on binary classification tasks.

A current limitation of the state of the art, as discussed in
the next section, is the lack of systematic and comprehensive
understanding of the optimal sample size required for deep
learning (DL) models, particularly in the context of dementia
diagnosis, and the absence of focused studies on the nuanced
effects of varying sample sizes on model performance. This
is important because it is often assumed that DL requires
a large number of samples for model training. At the same
time, collecting and labeling CDT images is time-consuming.
Therefore, it would be a quite feat if DL models could provide
reliable outcomes with small data.
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This work concentrates on optimizing the sample size used
for DL model training with CDT images. By exploring various
sample sizes and their effects on model performance, we aim
to improve the efficiency and effectiveness of diagnostic pro-
cesses for dementia. Our findings shed light on the important
topic of sample size in DL model performance, providing a
practical roadmap for researchers, clinicians, and practitioners
dealing with limited data availability.

II. RELATED WORK

The growing body of research supports the potential of DL
models for early and accurate dementia detection, facilitating
more timely and effective treatment for patients [12]. For
example, previous work has shown promise in the diagnosis of
neurological disorders [13] and the prediction of early-stage
dementia [14].

Recent research proposed the use of automatic scoring
systems as alternatives to traditional manual evaluation tech-
niques [15], [16]. Notably, Chen et al. [16] aimed to automate
the CDT scoring process using DL models, reporting an accu-
racy of 96.65% for binary classification and 72.2% for multi-
class classification based on the six-point Shulman scale [8],
which categorizes drawings from perfect clock representations
to those that are severely disorganized and unidentifiable as
clocks (see Figure 2).

However, the process of collecting a large quantity of
high-quality data for DL models is both time-consuming and
expensive. This represents a significant challenge, especially
in medical research where data collection involves strict
ethical regulations and privacy concerns [17]. Nonetheless,
the relationship between sample size and DL performance
is poorly understood. While larger datasets can potentially
lead to improved model performance, the results are not
guaranteed. Therefore, determining an appropriate sample size
is vital, as it significantly affects the robustness, reliability, and
generalizability of a model’s predictions.

Knowing the adequate amount of training data is essen-
tial [17], but few studies have systematically evaluated the
impact of sample size on model accuracy [18]. Althnian et
al. [19] showed that smaller sample sizes when combined
with careful feature selection, can enhance the performance
of machine learning (ML) classifiers. This lack of a clear
rule emphasizes the need for further research on how the
quantity of data influences the performance of ML models in
the medical field. Our study aims to contribute to this ongoing
topic, examining the influence of data size on the effectiveness
of DL models in dementia diagnosis.

Several studies have investigated the impacts of dataset size
on the classification performance in the medical domain [18],
[20]. For example, Varma and Simon [21] used a dataset
comprising only 40 samples and examined the performance of
models using two different Cross-validation (CV) approaches
for data selection. Their study primarily focused on the choice
of validation method. In contrast, Combrisson et al. [22] varied
the sample size and used K-fold CV exclusively. Their study
reported that with smaller sample sizes, classification accuracy

was above the chance level 62.5% with the p-value < .05 (in
a 2-class or 4-class classification problem). In another study in
the medical domain, Althnian et al. [19] prepared three subsets
of different sizes and employed a range of metrics to compare
the performance of six classic ML models. They concluded
that a set of 10 features and a smaller amount of data could
enhance the performance of classifiers. Meanwhile, Han et
al. [23] took a slightly different approach and investigated the
optimal number of feature sets using a random forest classifier.
They suggested that optimal data can vary from one dataset
to another if no specific pattern is defined. Hence, to address
this, they proposed using an out-of-bag error and ‘SearchSize’
exploration, leading to an improvement in accuracy.

Finally, various studies have tackled the challenge of small
datasets by augmenting training sets; see e.g. [24]. However,
most of this research has predominantly focused on increasing
the data size, with little attention given to examining the
impact of the sample size on performance. Mostly, existing
research has concentrated on the extent to which the dataset
size can affect the classification performance in different
domains (e.g., [25], [26]).

In sum, this paper addresses a gap in the current research
on using DL models in the clinical domain, in particular for
dementia diagnosis. The paper investigates the optimal sample
size required for DL models, exploring its impact on model
performance. By clarifying the optimal data requirements, this
study paves the way for more efficient dementia diagnostic
processes, even in settings with limited data resources.

III. MATERIALS AND METHODS

Our focus is to investigate whether using an optimal
dataset size for DL model training can achieve similar, or
even improved, classification performance levels for dementia
screening, as compared to using the full dataset. Therefore, we
sought to develop DL models capable of predicting different
stages of dementia severity using an optimal sample size. To
achieve this, our approach builds on and replicates the study
conducted by Chen et al. [16], who previously demonstrated
the efficacy of training DL model on a public CDT dataset.

Given the characteristics of the CDT dataset (small size and
imbalanced classes), we used data augmentation techniques,
which have been proven effective in generating new training
samples, by applying various transformations to the original
images [27] to see how the model performance with and
without augmentation in different sample sizes will change.
This approach is two-fold. Firstly, it helps balance the dataset
by generating a range of inputs from which the model can
learn. Secondly, it acts as a robust regularization technique,
ensuring that the model generalizes well to new data and
preventing overfitting [28], [29].

A. Dataset

The CDT dataset we used in this work has 1375 images.
The participants’ age varied from 18 to 98 years, with an
average age of 69.8 years±14.7 years. Based on the Shul-
man scoring system, the images have been classified into
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Fig. 1: Total number of drawings for screening and scoring.
Score 0 refers to healthy subjects. Score 6 refers to subjects
who are unable to draw anything related to a clock.

six categories, each representing different stages of dementia
severity. The scores ranged from 1 to 6, each indicative of
increasing dementia severity, with 1 indicating low severity
and 6 indicating high severity. A score of 0 represents healthy
subjects (Figure 1).

During data acquisition, participants were presented with a
piece of paper containing a pre-printed circle. They were then
instructed to draw the clock numbers from 1 to 12 and to set
the clock hands to point to “11:10 o’clock.” As illustrated in
Figure 2 (with a Shulman Score 0), the clock hands should be
positioned on ’11’ and ’2’ to accurately represent this time.

1) Data pre-processing: The paper-and-pencil drawings of
both patients and healthy participants were scanned in 256-bit
grayscale PNG format at 849×1168 px, which were resized
to 224×224 px, according to the expected input size of our
pre-trained DL models, as explained in the next section.
We manually revised all images and removed 20 low-quality
images, mostly due to bad scanning and noisy images.

As mentioned before, the dataset is highly imbalanced and
not very large for today’s standards in DL, so we use data
augmentation to address this issue in our study. However, note
that not all data augmentations apply in our case. For example,
mirroring CDT images would destroy the semantics of the
drawings. Similarly, changing the hue or saturation has no
effect on those images since they are grayscaled. Therefore,
we applied the following operations: scaling, rotation, and
translation. These operations produce new, transformed images
that help to increase the size and diversity of the training data
without compromising its clinical validity [30]. The resulting
dataset was perfectly balanced, comprising 448 CDT images
per class, or 3136 images overall.

Further, to quantify the quality of the augmented data, we
computed the structural similarity index measure (SSIM) [31]
of all augmented images against the original images. As shown
in Figure 3, the SSIM values are overall between 0.65 to
0.85 with the highest frequency range from 8 to 10, which

indicates that the augmented images are not near-duplicates of
the original data. Rather, they are new images that, as shown
later, eventually helped to improve model performance.

B. Deep learning models

We employed transfer learning to leverage the power of
pre-trained DL models in our experiments. Transfer learning
is an approach that enables the use of neural network models
that have been previously trained on a representative dataset,
such as ImageNet [32], to be used as a starting point for
solving a related problem by fine-tuning the model on a new
dataset [33]. This method helps reduce the need for large
computational resources and extensive labeled data, yet still
allows us to achieve high performance on the target task.

We fine-tuned three Convolutional Neural Networks (CNNs)
for binary (healthy vs. non-healthy) and multi-class (six Shul-
man scores) classification tasks. Binary classification provides
a fundamental understanding of the model’s capability to
differentiate between normal and abnormal cognitive func-
tioning. Conversely, the multi-class classification task aims
to distinguish among the six stages of dementia severity
according to Shulman’s scale, which enables a more detailed
understanding of dementia progression, as reflected in the CDT
drawings. In the following, we delve into the specifics of the
CNN architectures used:

• VGG-16 [34]: It comprises 16 CNN layers with a 3x3
kernel and three subsequent fully connected (FC) layers,
was designed by the Visual Geometry Group (VGG) at
Oxford University. It has garnered recognition due to its
straightforward architecture and efficiency in extracting
features.

• ResNet-152 [35]: It comprises 152 CNN layers, providing
flexibility and a smaller parameter count compared to
models like VGG. It effectively minimizes the error rate
to 3.5% and owes its remarkable performance to the use
of skip connections.

• DenseNet-121 [36]: It comprises 121 CNN layers, en-
suring that every layer has a direct connection to the
outputs of all the layers preceding it. It also comprises
DenseBlocks interconnected by transition layers.

IV. SAMPLE SIZE ANALYSIS

The size of a dataset plays a central role in ML, enabling
the effective training and testing of predictive models. A
frequent question that often arises is how much data is
sufficient or required for model training, and this remains
an open challenge [37]. The answer to this question is not
straightforward, as it involves finding a balance influenced
by various factors. These include the complexity of the task,
the diversity present within the data, and the sophistication of
the chosen model. Further, small-scale studies carry a higher
likelihood of committing either type I or II errors, thereby
reducing the probability of identifying true effects [38].

Therefore, it is critical to identify and apply strategies that
can reduce data requirements without excessively compromis-
ing the model performance. How to effectively use smaller
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Fig. 2: Sample drawings of the CDT dataset that was used in this work, scored according to Shulman’s scale.

Fig. 3: SSIM distributions. Dashed plots correspond to the
results considering all the augmentation (All aug.) techniques
collectively. The selected augmentation techniques are Rota-
tion, Scaling, and Translation offset.

datasets is especially beneficial for researchers with restricted
access to large datasets. We aim to demonstrate how these
strategies can be effectively applied to deal with the limitations
imposed by smaller datasets while ensuring robust model
performance. We will report the usual model performance
metrics to assess the efficacy of our approach: classification
accuracy and area under the Receiver Operating Characteristic
curve (AUC). These metrics will provide a comprehensive
understanding of the model’s capacity to correctly classify and
distinguish between different stages of dementia severity.

A. Learning Curves

A learning curve (LC) is a graphical representation that
illustrates the performance of a model over time [39]. The
LC serves beyond merely visualizing the current performance
of the model. It can also be used as a predictive tool. Once
the LC has been established, we can extrapolate to estimate
the accuracy of the model if it is to be trained on the entirety
of the available training data. This allows us to predict the
potential performance using additional data.

In this work, we generated LCs for accuracy and AUC to
visually assess the model’s improvement and to identify any

potential areas where performance may decline. This can help
researchers to use data wisely, e.g. to decide whether to stop
or continue model training based on the observed performance
over different data splits.

B. Model Training

We selected training subsets corresponding to splits of 10%,
25%, 50%, 75%, and 95% of the entire dataset for our study.
A training split of 10% was fixed in each case, except for the
95% training split where the test split was set to 5%. For each
of the selected subsample splits, the model was trained from
scratch. We repeat this procedure five times, using different
initialization seeds for each split to verify the validity of our
results and consider any variability that may occur during
individual training iterations.

To ensure consistency, we used the experimental setup
outlined in the study conducted by Chen et al. [40]. Our CNN
models were trained using the Adam optimizer algorithm,
with learning rate values ranging from 0.0001 to 0.1, while
maintaining a fixed batch size of 16. Additionally, the cross-
entropy loss function was used in the training process to
measure the performance of a classification model.

Additionally, the recorded performance metrics facilitated
the plotting of the LC in the subsequent stages of our
experiment. This analysis enables us to effectively analyze,
interpret, and optimize the performance of our models. This
also helps us understand the trade-off between computational
cost and model performance, thereby allowing us to maximize
the efficiency of our model given the available data.

V. RESULTS AND DISCUSSION

TABLE I: Best and second-best Accuracy and AUC results
overall, relative to the total size of the CDT dataset.

Binary Classification Multi-class Classification

Classifier Accuracy @ Sample size Accuracy @ Sample size

VGG-16 0.97 @ 100% 0.95 @ 95% 0.68 @ 100% 0.68 @ 95%
ResNet-152 0.97 @ 100% 0.88 @ 95% 0.71 @ 100% 0.71 @ 95%
DenseNet-121 0.98 @ 100% 0.98 @ 95% 0.77 @ 100% 0.77 @ 95%

The results for both binary and multi-class classification
can be found in Table I. DenseNet-121 performed the best,
with almost 98% accuracy for binary classification, even with
the small sample size of 1585 images (50% of the data, after
data augmentation). For multi-class classification experiments,
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Fig. 4: LC for binary classification (two leftmost plots), and multi-class classification (two rightmost plots), showing model
accuracy and AUC results vs. training sample size. The dashed orange lines represent the performance of a random classifier.

ResNet-152 achieved an accuracy of 88% for binary classifi-
cation using 95% of the data. These results suggest that these
models can provide competitive performance when fine-tuned
on small data samples.

The LCs in Figure 4 are aligned with common trends
observed in previous studies (e.g., [22]), where a swift per-
formance enhancement was noticeable with the expansion of
the training set size. For sample sizes larger than 50%, the
performance of the DenseNet model stabilized and reached
the second-highest accuracy when using the whole dataset
(Table I).

In terms of binary classification accuracy, our analysis did
not reveal any statistically significant differences when using
DenseNet and 25% of the dataset compared to using more
data. This was confirmed by a chi-squared test of proportions
(χ2(4, N = 417) = 13.13, p > .05). Similarly, for multi-
class classification accuracy, no significant differences were
noted when employing 50% of the dataset compared to higher
data splits (χ2(4, N = 834) = 2.28, p > .05). These findings
suggest that using all the available data may not always be
crucial to obtain the best performance results. For architectures
like VGG and ResNet, a minimum of 75% of the dataset seems
necessary to attain peak performance.

In contrast to previous studies, that employed ML models
using all the available data, our experiments examined the role
of sample size and model performance across varying sample
sizes. In a nutshell, if the performance of a classifier is good
enough with only a subset of the dataset, then such a classifier
can be used in conditions where limited data is present, which
is quite frequent in clinical domains.

Although the emphasis in previous research has been on
how increasing data size improves the ability of CNNs
(e.g., [37]), there is a big gap in studies regarding the opti-
mized sample sizes. Our results showed that with 75% of the
data we reached to the highest accuracy in all CNN models but
DenseNet required only 50% of the data to achieve statistically
similar results as when using all the data. Until now, it was
expected that adding more labeled data would improve model
performance, but we have shown that we do not need as much
data.

The advantage of applying DL on a small dataset is quite
apparent, given that CNNs are highly data-dependent and
usually necessitate more computational costs than traditional
ML models. Although our findings are specific to a public
CDT dataset and a handful of state-of-the-art CNN models
used in a previous study (i.e. [40]), we believe that our results
provide valuable insights into the understanding of selecting
the optimum sample size for the development of improved DL
models.

VI. CONCLUSION AND FUTURE WORK

We have investigated the impact of sample size and the
performance of DL models (state-of-the-art CNN classifiers).
Our findings indicate that classification accuracy and AUC
tend to plateau once a certain number of samples are reached.
Therefore, we do not really need to use all the available
data for training. For multi-class classification, results suggest
we may need a larger portion of the dataset, even though
the results shown in Tables I report very similar figures.
Future research should explore other datasets together with
other DL architectures. This way, further improvements could
be achieved in terms of predictive capabilities for the early
detection of dementia.
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