
On-device Query Intent Prediction with Lightweight
LLMs to Support Ubiquitous Conversations
Mateusz Dubiel1,+, Yasmine Barghouti1, Kristina Kudryavtseva1, and Luis A. Leiva1,+,*

1University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
*Corresponding author: luis.leiva@uni.lu
+These authors contributed equally to this work.

ABSTRACT

Conversational Agents (CAs) have made their way to providing interactive assistance to users. However, the current dialogue
modelling techniques for CAs are predominantly based on hard-coded rules and rigid interaction flows, which negatively affects
their flexibility and scalability. Large Language Models (LLMs) can be used as an alternative, but unfortunately they do not
always provide good levels of privacy protection for end-users since most of them are running on cloud services. To address
these problems, we leverage the potential of transfer learning and study how to best fine-tune lightweight pre-trained LLMs to
predict the intent of user queries. Importantly, our LLMs allow for on-device deployment, making them suitable for personalised,
ubiquitous, and privacy-preserving scenarios. Our experiments suggest that RoBERTa and XLNet offer the best trade-off
considering these constraints. We also show that, after fine-tuning, these models perform on par with ChatGPT. We also discuss
the implications of this research for relevant stakeholders, including researchers and practitioners. Taken together, this paper
provides insights into LLM suitability for on-device CAs and highlights the middle ground between LLM performance and memory
footprint while also considering privacy implications.

Introduction
When using cloud-based communication platforms, users often lose control over their privacy, as their data is processed by (and
ends up being stored on) third-party servers, which may also be used for further training by service providers. Moreover, as
indicated by prior work, users’ privacy intentions are often not in sync with their behaviour, which may lead to users unwittingly
disclosing sensitive information1, 2. This issue is pertinent when it comes to interaction with systems that are designed to
mimic human-like interaction such as Conversational Agents (CAs)3, 4, especially on mobile devices that can be considered as
‘intimate’ objects that users rarely part with5.

Nowadays, CAs are becoming increasingly ubiquitous. They come in many shapes and forms, such as digital assistants on
smartphones (e.g., Apple Siri, Google Assistant, Samsung Bixby), stand-alone devices (e.g., Amazon Echo Show, Google Nest,
and Tencent Tingting), or automotive systems (e.g., BMW Intelligent Personal Assistant, Cerence Automotive Platform), just to
name a few. Popular areas of CA applications include e.g. health and well-being6–8, tutoring9–11, and productivity6, 12, 13.

As hinted before, CAs that are running on a cloud service do not always provide good levels of privacy protection, since
users have no guarantee that their voice or text commands will be safely handled there14. While it has been demonstrated
that traditional CAs can run completely offline, even on low-resource devices such as a RaspberryPi14, this approach does not
scale well. Specifically, traditional approaches for developing CAs involve use of predefined slot-filling mechanisms15, 16 and
rigid interaction flows17, consequently hindering flexibility and scalability to new tasks or domains18. For example, a user’s
utterance “Show my savings account balance” indicates a “show-balance” intent with an “account-type” slot. Overall, training a
slot-filling system is challenging, as it requires considerable manual encoding of multiple variations of user utterances for each
slot and each intent. In fact, this approach is considered deprecated nowadays19, 20, only suitable for very simple situations
such as those were users have to choose between some given options; cf. the customer service of a call centre.

Machine Learning (ML) is an alternative approach that allows for the CA’s behaviour to be learned from data, without the
need to program it explicitly, which makes it a more scalable and generalisable. More concretely, transfer learning has recently
emerged as a de-facto ML method in Natural Language Processing (NLP), where pre-trained Large Language Models (LLMs)
are adapted to new tasks by fine-tuning their hyperparameters on a small but representative dataset. However, fine-tuning
most modern LLMs (e.g. PaLM, LLaMA, or the GPT family) is out of reach to many researchers due to high computational
requirements21 and associated high monetary costs22. Therefore, quite often, the only option for many researchers and
practitioners is to rely on a cloud-based service that provides an interface to those LLMs, thereby compromising the user’s
privacy, especially for CAs that operate with sensitive information23 or are designed to encourage information disclosure24.

We should note that, in this paper, by ‘model’ we refer to ‘computational model’, i.e., a data-driven structure that is trained
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(through examples) to map inputs and outputs. Therefore, a computational model is both structure and data. As noted, without
data, no model pre-training is possible. Furthermore, there is ample evidence that supports the claim that high-quality data
makes better models, and not the other way around25, 26. We elaborate more on this observation in the ‘Implications’ section at
the end of this paper.

To bridge the gap between user’s privacy and scalability of LLM-based CAs, we investigate transfer learning on lightweight
LLMs that can be deployed for on-device inference tasks, a fundamental pre-requisite for mobile and ubiquitous systems; see
Figure 1. Specifically, we look at predicting four query intent surrogates, described in ‘Methods’ section. Intent surrogates
are crucial to understand the context of interactive conversations, as they determine the efficiency of a CA when it comes to
correctly interpreting user’s input and successfully addressing it. Our investigation taps into the “Conversations with GUIs”
dataset27, as it provides an interesting testbed for mobile systems, as explained in ‘Dataset’ section.

GUI datasets such as Rico28, Enrico29, VINS30, or WebUI31 can be useful during the early stages of design and development
of applications by providing inspiration and insights into various app features. While such datasets contain rich information
regarding GUI properties and relevant technical specification, querying them may require using developer expertise or
sophisticated JSON-based APIs32, making them inaccessible for users without programming experience. In order to address
this problem, Todi et al.27 proposed the use of a conversation modality to support users navigate complex GUI datasets using
natural language. In this paper, we further explore this concept with a series of lightweight LLMs suitable for on-device
NLP tasks. It should be noted that while prompt engineering allows for a more efficient use of LLMs through developing
and optimising instructions to guide the model33, it is not supported by the lightweight LLMs that we explore in this paper.
However, for comparative purposes we also assess the performance of a larger, state-of-the-art LLM, (ChatGPT) which is
fine-tuned with prompt engineering.

While LLMs are becoming increasingly ubiquitous they are susceptible to data leakage34, posing a treat to end-users’
privacy. In order to explore alternatives to regular LLMs that rely on external cloud services for deployment, here we investigate
the performance of lightweight LLMs on tasks that involve predicting query intents while running on commodity mobile
devices such as smartphones and tablets that can be used ‘on the go’. Following Stal et al.35 we define mobile device as, “a
portable, wireless computing device, possible to carry without additional equipment and small enough to be used while held in
the hand”. We formulate the following research questions:

• RQ1 concerns the performance of the models on intent prediction tasks:

– RQ1a: Which pre-trained models achieve the best performance after fine-tuning for predicting query intents in
different tasks?

– RQ1b: Is there a model that performs best in all of the tasks?

• RQ2 concerns the relationship between model performance and fine-tuning time:

– RQ2a: What is the minimum number of fine-tuning epochs for each pre-trained model?

– RQ2b: What is the optimal number of fine-tuned epochs for each model to achieve the best performance?

By addressing the above research questions, our work makes the following contributions:

• We provide insights into adequacy of lightweight LLMs for on-device NLP tasks and their fit for specific types of user
queries in the context of GUI conversations. We also conduct additional experiments on other datasets, for completeness.

• We shed light on the performance vs. privacy trade-off and demonstrate the feasibility of deploying LLMs-based CAs
on mobile and ubiquitous devices. We show that lightweight LLMs require more fine-tuning epochs than previously
assumed to reach their peak performance.

• We discuss the implications of our research for different types of stakeholders, including researchers, developers,
designers, and end-users. While ChatGPT excels at zero-shot classification tasks, lightweight LLMs achieve similar
performance (sometimes even better) after fine-tuning.

Overall, this work makes an empirical contribution to mobile and ubiquitous systems that need to effectively balance
performance and memory footprint, while also considering privacy implications for end-users. More specifically, we make the
selection of specific pre-trained models more informed, and help to avoid a trial-and-error selection approach when applying
lightweight LLMs to develop CAs. The main premise of this paper is that LLMs should be fine-tuned on commodity hardware,
without the need to access High Performance Computing facilities or a cloud service provider.
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Background and Related Work
We discuss the relevance of CAs to overcome the challenge of capturing users’ information needs, also know as the semantic
gap, and explain how transfer learning is transformative to this challenge. We also discuss current privacy and sustainability
issues of LLMs that may have an important impact on their widespread use.

Conversational Agents for GUI Interactions
The ‘CA’ term is an umbrella term which includes two main types of automated dialogue systems, namely (1) task-oriented
agents designed to accomplish a specific goal (e.g., booking a flight) and (2) non-task-oriented agents17. In this paper, we focus
on the former sense, considering an agent whose goal is to support a user in the task of GUI dataset exploration through natural
language.

We can find recent examples of CAs that have been applied to GUI design and layout tasks such as: sketching36, creating
task shortcuts to UI screens in apps37, and creating low-fidelity UI mock-ups from natural language phrases38. Most relevant to
our investigation, however, is the work of Todi et al.27 who presented a CA prototype to explore a large body of visual designs
from their “Conversations with GUIs” dataset. The prototype provided answers to users’ questions in the form of text, numbers,
GUIs, or a part of their design. For example, users could issue queries such as “Show me examples of search bar designs” or
“When was the app last updated?” to find information that can help them satisfy their search needs or provide a useful point of
reference.

Recently, the topic of resolving user information needs through conversation has been receiving increasing interest, leading
to development of several CA-based interactive systems39–41. For example, Jahanbakhsh et al.40 built a human-in-the-loop AI
question answering system to assist users with business documents. The system was well-aligned with the needs of actual users,
as their questions were collected in-situ while users were working on their documents naturally (i.e., conducting their everyday
work tasks). In another study, Wang et al.42 investigated the feasibility of enabling a versatile conversational interactions
with mobile interfaces using an LLM. While they designed prompting techniques to adapt an LLM to mobile UIs, they barely
explored informational queries for single-UI interactions. In our work, we also explore navigational queries and extend the
study beyond GUIs to (i) full mobile applications and (ii) datasets.

Sentiment Analysis with LLMs
Another research area that is relevant to our work is Sentiment Analysis, an NLP technique whose goal is to examine the
emotional tone of an utterance or piece of text. Varia et al.43 proposed an unified framework for solving Aspect-based Sentiment
Analysis (ABSA). ABSA is a sentiment analysis task that involves four elements from user-generated texts: aspect term, aspect
category, opinion term, and sentiment polarity. Varia et al. fine-tuned a T5 model with instructional prompts in a multi-task
learning fashion covering all the sub-tasks, as well as the entire quadruple prediction task. They showed that the proposed
multi-task prompting approach yielded a performance boost in a few-shot learning setting.

In a similar study, Simmering and Huoviala44 assessed the performance of GPT-3.5 in zero-shot and fine-tuned settings on
the ABSA task. They found that fine-tuned GPT-3.5 achieves a state-of-the-art F1 score of 83.8% on both aspect term extraction
and sentiment polarity classification of the SemEval-2014 Task 4, improving upon the state-of-the-art model InstructABSA45

by 5.7%. However, the performance came at the cost of 1000 times more model parameters to fine-tune, with the associated
costs, and an increased latency at inference time. Simmering and Huoviala’s results indicated that while detailed prompts
improve performance in zero-shot and few-shot settings, they are not necessary for fine-tuned models.

Zhang et al.46 compared the capabilities of LLMs with small LMs trained on domain-specific datasets, on tasks such
as conversational classification and multifaceted analysis of subjective texts. Overall, Zhang et al. evaluated performance
across 13 tasks on 26 datasets and found that, while LLMs demonstrated satisfactory performance in simpler tasks, they were
outperformed in more complex tasks by small LMs where deeper understanding or structured sentiment information is required.
Nonetheless, LLMs significantly outperformed smaller models in few-shot learning settings, suggesting their potential when
data curation and labelling are limited.

Semantic Gap
The semantic gap — the difficulty to articulate information needs in a way reliably understandable by a computer — is a
fundamental challenge in every information retrieval system47. CAs are increasingly being used to bridge this gap by allowing
users to formulate their queries in natural language27, 39–41.

In the context of GUI-related CAs, Todi et al.27 elicited over one thousand query intents that were manually labelled into
different categories and were used to develop a CA prototype. While they presented how intelligent systems can be designed to
interact with GUI datasets intuitively, their CA prototype was based on the popular Rasa framework [https://rasa.com]
which relies on predefined handwritten rules and user stories. While rule-based approach is highly interpretable and adaptable
to new domains and languages, it does not fully capture the variability of natural language and depends on the quality and
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coverage of the rules, which is clearly not scalable. In order to address this constraint, in our work we employ pre-trained
LLMs that offer great flexibility, which can be adapted to new tasks with little programming effort, and can be deployed on
commodity mobile devices.

Transfer Learning
Transfer learning is an ML method where a pre-trained model can be used as the starting point for a model on a new task or
domain48. For example, a model trained on a general-purpose image dataset such as ImageNet49 can be adapted to understand
more specific images such as X-ray images. Similarly, a model trained on a language disambiguation task can be repurposed for
another task such as query disambiguation50. One of the main advantages of transfer learning is that a better performance can
be achieved as compared to training with only a small amount of data from scratch. This is possible thanks to the adaptation
(a.k.a fine-tuning) of the model hyperparameters on new data, which allows for rapid and more adequate optimisation. The
intuition of fine-tuning in NLP is that, during the pre-training phase, the model has learned rich representations of a language,
which enables it to more easily learn (or ‘be fine-tuned to’) the requirements of a downstream language understanding task51

such as sentence classification. Interestingly, previous research has found that a well fine-tuned small language model can
outperform large-scale ones52, 53.

Pre-training of LLMs on diverse corpora of unlabelled text has led to several breakthroughs in the use of ML for NLP
tasks54. Some of the most notable examples of such models include, BERT55, RoBERTa56, XLNet57, PaLM58, LLaMA53, and
the GPT family59–61, including its recent and notably popular variant, ChatGPT62 and the open-source alternative BLOOM63.
The main component for the success of these LLMs is the transformer architecture64. In this paper, as hinted before, we study a
series of lightweight LLMs that can be deployed on commodity mobile devices in order to run inference tasks offline. Figure 1
and Table 2 provide an overview of these LLMs, together with the above-mentioned popular LLMs for comparison.
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Figure 1. Overview of some popular LLMs. Axes are in logarithmic scale to ease the visualization (almost a linear
relationship between model size and model parameters). Each model has different variants available, such as Base and Large
(see the plot annotations). As discussed in the next section, we set 2 Gb as the upper-bound for LLM size so that it can be
deployed on commodity mobile and ubiquitous devices (see ‘Models’ section for more details). Therefore, in this paper, only
the models below such an upper-bound are considered lightweight.

Privacy and Sustainability Issues of LLMs
As LLMs are becoming increasingly more ubiquitous, their impact on users’ privacy becomes more evident. Previous research
indicated that LLMs can be susceptible to training data leakage, where sensitive information can be extracted from the models34.
Due to high number of parameters and size of datasets that are processed during training, large-scale models are especially
prone to unintentional memorisation of portions of their training data that could be regurgitated during usage65. In turn, CAs
built on these models can be vulnerable to such privacy breaches66. However, as shown in a recent study, using smaller models
can help to mitigate the LLM memorisation issue67.

Moreover, human-like interaction offered by present-day CAs opens up possibilities for user nudging, deception, and
manipulation68. For example, users may disclose more information and/or excessively rely on a personalised agent when
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they confuse it with a human being69. Interestingly, people tend to perceive information sharing practices of a CA (e.g.,
sharing user’s data with third parties) less negatively if the CA is more socially interactive, and are more likely to make
intimate, privacy-sensitive disclosures to such agents70. Results of a recent survey on smartphone usage indicate that users
vary in their attitudes towards privacy based on personality traits – while some groups are risk-cautious, others are negligent
regarding potential threats71 which may increase their likelihood of unwittingly compromising their sensitive data. Further,
users’ propensity to disclose private information to CAs, combined with the lack of knowledge regarding information collection,
the storage and disclosure practices72 seem to be at odds with their proclaimed need for transparency and control over their
personal data73.

Training CAs based on large neural networks is associated with high energy consumption which, in turn, can have a
long-term impact on the environment as highlighted in previous work74, 75. Roller et al.76 mentioned that local, on-device,
deployment of fine-tuned LLMs can offer a way to enhance privacy and reduce their environmental footprint. Interestingly,
Huggins et al.77 demonstrated that only 25 training examples are required to achieve a high intent recognition accuracy with
a fine-tuned BERT model, showing feasibility of training small language models on a personal laptop. In this paper, we
systematically analyse 8 lightweight LLMs in terms of size, performance, and overall fine-tuning time. We also discuss their
suitability for deployment on mobile and ubiquitous devices; i.e., LLMs that can be loaded on device and run without the need
to communicate with external servers.

Materials

We used the “Conversations with GUIs” dataset27, which comprises of 1317 labelled user queries as a training material for our
LLMs. The dataset has elicited example queries at four target variables (a.k.a intents: query score, query purpose, response
format, and information feature) from three different user groups (end-users, designers, and developers) that were provided
together with different GUI screenshots.

Our motivation for choosing this dataset is three-fold. First, it contains out-of-domain data for LLMs and hence model
fine-tuning is expected for them to perform adequately. Second, it includes personalised user data that can be considered
privacy-sensitive. Third, contrary to medical records datasets, it is publicly accessible. Overall, the dataset provides us with
an interesting foundation to explore the trade-off between CAs performance and privacy considerations, which is essential to
mobile and ubiquitous systems.

Sample queries for each user group are presented in Table 1. For example, the query “Show app rating” (id.227) is an
example of an App-level intent whose goal is to obtain numeric information regarding app’s metadata, while the query “Is there
a similar app” (sic, id.1154) refers to the dataset and its purpose is to filter information. Note that the query types differ in
terms of difficulty and some of them were ambiguously labelled, resulting in different types of classification errors that we
discuss in ‘Misclassification examples’ section. Also note that, as hinted earlier, even though this dataset was not meant to
account for privacy-sensitive data, many queries can be considered as such (see e.g., id.957, id.792 and id.887).

Methods
In the following, we define our four intent prediction tasks, according to the ground-truth labels provided by the “Conversations
with GUIs” dataset, and the chosen models to conduct the tasks. We frame the query intent prediction task as classifying a user
utterance (or query) under four different categories, which we will refer to as our target variables (or intents):

1. Query scope (3 classes): Whether a query refers to an individual GUI, an application, or the entire dataset.

2. Query purpose (6 classes): The actionable goal behind the query; e.g. to filter based on some criteria, get more
information, request suggestions, etc.

3. Response format (4 classes): The expected delivery format of the retrieved information: image, text, numeric, or binary.

4. Information feature (13 classes): Particular features that the query was referring to; e.g., related to the accessibility or
privacy of an application, its design, etc.

Finally, Figure 2 provides the distribution of classes per target variable. As can be observed, we tackle four multi-class
classification problems in this paper. Also, we can see that many of the classes are imbalanced. Therefore, as explained later,
we will factor in this observation when measuring intent classification performance.
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Table 1. Query examples (verbatim, in no particular order, chosen at random) for different user groups. We provide an id for
each query that refers to the row number in the “Conversations with GUIs” dataset.

Group (id.) Example Query Scope Purpose Format Info. Feat.

Designers 79. Is there video support? UI Inform Binary Functionality
862. How can I make a profile? UI Educate Textual Settings
957. Show me security features Dataset Filter Image Privacy

Developers 227. Show app rating App Inform Numeric Metadata
854. where is the banner visible? UI Find Image Element
1154. Is there a similar app Dataset Filter Binary Metadata

End-users 16. How can I save a search? UI Educate Image Functionality
792. Can i see my credit balance? UI Inform Binary Element
887. show me all apps using my location! Dataset Filter Image Sensor

0

100

200

300

400

  
  

 A
p

p
−

le
ve

l

 D
a

ta
s
e

t−
le

ve
l

  
  

  
U

I−
le

ve
l

c
o
u
n
t

Query Scope

0

200

400

600

  
  

  
 E

d
u

c
a

te

  
  

  
 E

xe
c
u

te

  
  

  
  

F
ilt

e
r

  
  

  
  

  
F

in
d

  
  

  
  

In
fo

rm

  
  

  
 S

u
g

g
e

s
t

c
o
u
n
t

Query Purpose

0

100

200

300

400

500

  
  

  
  

B
in

a
ry

  
  

  
  

 I
m

a
g

e

  
  

  
 N

u
m

e
ri

c

  
  

  
 T

e
x
tu

a
l

c
o
u
n
t

Response Format

0

100

200

300

 A
c
c
e

s
s
ib

ili
ty

 C
o

m
p

a
ti
b

ili
ty

  
  

  
  

D
e

s
ig

n

  
  

  
 E

le
m

e
n

t

 F
u

n
c
ti
o

n
a

lit
y

  
L

o
c
a

lis
a

ti
o

n

  
  

  
M

e
ta

d
a

ta

  
  

  
  

  
P

a
g

e

  
  

  
 P

ri
va

c
y

  
 P

ro
g

ra
m

m
in

g

  
  

  
  

S
e

n
s
o

r

  
  

  
S

e
tt

in
g

s

  
  

  
  

 U
s
a

g
e

c
o
u
n
t

Information Feature 

Figure 2. Class distribution of the considered target variables in our study.

Models
We tapped into the LLMs from the Ernie repository to conduct our study: https://github.com/labteral/ernie.
The main reason for choosing Ernie is that it is publicly available and contains state-of-the-art lightweight LLMs suitable for
on-device deployment. According to a recent survey78, the RAM capacity of low-end (< $150) to mid-end (< $550) mobile
devices falls in the range between 3 Gb and 8 Gb. Considering that most of the RAM will be occupied by background services
and other running apps, we set 2 Gb as the upper-bound for LLM size so that it can be deployed on commodity mobile devices.

BERT (Bidirectional Encoder Representations from Transformers)55 is a Transformer-based model and the first-of-its-kind
groundbreaking LLM. It combines left-to-right and right-to-left training together with a Masked Learning strategy, in which
each word in a training sequence is replaced with a special token that the model has to predict. BERT was pre-trained on
BookCorpus79, that consists of over 11k unpublished books, and on the English Wikipedia.

RoBERTa (Robustly Optimized BERT Approach)56 builds on BERT’s language masking strategy, where the model learns
to predict intentionally hidden sections of text within otherwise unannotated language examples. RoBERTa was trained on the
reunion of five datasets: (1) BookCorpus79, (2) English Wikipedia, (3) CC-News80 which contains 63 million English news
articles, (4) OpenWebText60, and (5) Stories81 which contains a subset of the CommonCrawl corpus82 filtered to match the
story-like style of Winograd Schemas83.

ALBERT (A Lite BERT)84 is a Transformer architecture based on BERT, but it includes substantially less hyperparameters
(10M vs. 110M). To accomplish this goal, ALBERT shares same weights across different layers: it has one encoder layer that
is applied twelve times on the input. Since ALBERT has about 10 times less hyperparameters than BERT, it puts significantly
less strain on computational resources. ALBERT was pre-trained on the same data as BERT.

XLNet57 is an autoregressive pre-trained LLM that uses bidirectional contexts and maximizes the expected likelihood
of a text sentence over all permutation orders, outperforming BERT on 20 different tasks. It incorporates ideas from the
Transformer-XL architecture85 and overcomes the fixed-length context limitation of BERT and derivative models, resulting in a
powerful tool for NLP applications. XLNet was pre-trained on the same datasets as BERT plus CommonCrawl, Giga586 (16 Gb
of text), and ClueWeb 2012-B87.

Two remarks are worth mentioning. First, all models can be distinguished based on their size (e.g., Base vs. Large) but they
all comply with our established 2 Gb limit. Second, all models are case-sensitive, which means that they can disambiguate
between common nouns and proper nouns; e.g., an apple (fruit) vs. Apple (brand name). This is a convenient feature for any
modern CA to be usable in practice.
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Table 2. Description of the studied pre-trained lightweight LLMs. Model size is proportional to the number of Layers,
Attention Heads, and trainable Parameters.

Model Layers Att. Heads Parameters Size

BERT Base 12 12 110M 440 Mb
BERT Large 24 16 340M 1.2 Gb

ALBERT Base 12 12 11M 63 Mb
ALBERT Large 24 16 17M 87 Mb

RoBERTa Base 12 12 82M 499 Mb
RoBERTa Large 24 16 355M 1.6 Gb

XLNet Base 12 12 110M 565 Mb
XLNet Large 24 16 340M 1.57 Gb

In addition to these models, we also considered ChatGPT, a state-of-the-art proprietary LLM by OpenAI trained on an undis-
closed vast amount of data; cf. https://help.openai.com/en/articles/6783457. Our aim was to better under-
stand how lightweight LLMs would compare against the most popular LLM at present. We used the gpt-3.5-turbo-1106
version of ChatGPT, which is available through a paid JSON-based API for custom fine-tuning.

Fine-tuning Procedure
We randomly split all the coded queries in the dataset into three partitions: 70% for training, 10% for validation, and 20% for
testing. We use stratified sampling to ensure the same distribution of classes in each partition. The training and validation
partitions are used for model fine-tuning, whereas the testing partition is held out for model performance evaluation, as this
partition simulates unseen data.

We apply fine-tuning for an incremental number of epochs, from 1 to 20, using a batch size of 16 queries during training and
32 queries for validation. We employ the Adam optimiser88 with learning rate η = 2−5 and exponential decays β1 = β2 = 0.9.
Finally, to stabilise training, we set a clipnorm value of 1. In total, we conducted 720 fine-tuning experiments on the
“Conversations with GUIs” dataset, corresponding to the combination of 9 models × 20 epochs × 4 query intent prediction
tasks.

All experiments, including the additional ones that we report in the Supplementary Materials, were performed in a single
Tesla V100 (SXM2, 32 GB) GPU card. Note that, after fine-tuning, the models are ready to be deployed on commodity mobile
devices. To ease replication and further follow-up work, we will share our code and model checkpoints upon publication.
Please see the Supplementary Materials for details about ChatGPT’s fine-tuning procedure and experiments on other datasets.

Results
In the following plots we report performance results in terms of Balanced Accuracy and Area Under the ROC curve, as defined
below. The dashed horizontal lines denote the classification performance of a random classifier (computed as 100/c, where c is
the number of classes to predict in each case). The random classifier provides a theoretical lower bound, i.e. no LLM should
perform worse than random after model fine-tuning. As we can see in the following plots, in all cases ChatGPT achieved the
best zero-shot performance, but it was outperformed by other models after fine-tuning.

Balanced Accuracy
Classification accuracy (defined as the number of correct predictions across all predictions) is the standard evaluation metric in
classification problems, however it is very sensitive to imbalanced data, i.e., when one of the target classes appears more often
than the others; see Figure 2. Therefore, to account for this, we report Balanced Accuracy instead, which is the arithmetic mean
of sensitivity (true-positive rate) and specificity (true-negative rate). Figure 3 summarizes the results.

In terms of query scope prediction, ALBERT models are clearly outperformed by all other models. Overall, RoBERTa
Large is the best performer, with a balanced accuracy of 84% that is reached after 7 epochs. Notably, BERT Large achieves
only slightly worse performance (83%) in just 4 epochs. As for query purpose, we can see that all models perform slightly
worse than in case of query scope. Specifically, RoBERTa Large reaches the best result of 76% Balanced Accuracy at 6 epochs,
however, its performance drops after a few more epochs. The performance degradation of all models in this task is likely
explained by the fact that there are as twice as many target variables in this case (6 classes) and thus there may be more room
for ambiguity than in the query scope case (3 classes).
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Figure 3. Balanced accuracy results.

Regarding response format prediction, this task involves 4 classes and leads to a similar model performance as in the
case of query scope prediction. RoBERTa Base is the best performing model, with 89.9% Balanced Accuracy reached after 7
epochs, closely followed by BERT Large that reached the same result in 18 epochs. Overall, the behaviour of all models in this
tasks bears a close resemblance to that of the query scope prediction experiments, with the exception of ALBERT Large that
performs notably better in this case.

Finally, when it comes information feature prediction, the task seems to be the most challenging due to a substantially
large number of target variables (13 classes). As can be observed, all models require way more training epochs to achieve their
optimal performance. The best performing model for this task is RoBERTa Large with 62.8% Balanced Accuracy in 15 epochs,
followed by ChatGPT, which achieved the same performance but after 20 epochs. It is worth pointing out that the performance
of most models could have continued improving beyond 20 epochs.

AUC ROC
The Area Under the ROC curve (AUC ROC) is a popular metric to assess the discriminative power of any classifier89. The ROC
curve provides information regarding a model’s false-positive rate against its true-positive rate, across a range of classification
thresholds, and the AUC ROC is the area under such a curve. Since AUC ROC is defined for binary classification problems and
all our experiments have more than two classes, we compute it in a one-vs-all fashion, to account for multi-class classification.
Figure 4 summarizes the results.
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Figure 4. AUC ROC results.

As can be seen, there is an analogous trend to the results observed in the Balance Accuracy experiments (cf. Figure 3). In
terms of query scope prediction, the best performance is achieved by the RoBERTa models, with models reaching 87% AUC
ROC in 3 epochs, while the ALBERT models performed the worst. As for query purpose, the best performance is exhibited by
RoBERTa Large, which reaches 86% AUC ROC in 6 epochs. Again, ALBERT models performed the worst. This is likely
explained due to its substantially smaller number of hyperparameters as compared with the other models, making ALBERT
unsuitable for fine-tuning to GUI-related tasks.

Regarding response format prediction, RoBERTa Large is the best performing model, reaching 93% AUC ROC in 7
epochs. ALBERT Large performed notably better (76% at 12 epochs) when compared to its performance for the other target
variables, where it did not achieve any improvement.

Finally, when it comes information feature prediction, RoBERTa Base converged the fastest and reached the best AUC
ROC of 80% at 15 epochs. ChatGPT achieved its peak performance of 79.8% at 20 epochs. On the other hand, contrary to
Balanced Accuracy, where there were larger discrepancies between XLNet Base and XLNet Large models, this time XLNet
Base tended to perform better than its Large variant.
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Summary of Findings
We have seen a clear and interesting relationship between the number of classes and classification performance of all the studied
LLMs. First, for a small number of classes the trend resembles a logarithmic curve with models saturating after just a few
epochs. Then, as the number of classes increases, the curve gets flatter and the models take longer to reach optimal performance.
While ChatGPT outperformed all other models initially (zero-shot classification), it exhibited the same fine-tuning trends. It
was also interesting to notice that it was outperformed by other models after fine-tuning, in line with previous experiments
performed by Zhang et al.46.

Our analysis underscores the importance of LLM fine-tuning for query intent prediction tasks, and highlights the need to
select the appropriate model for the task at hand. Our analysis also helps to determine the optimal model choice for predicting
query intent based on the trade-off between model complexity and efficiency. Importantly, we fine-tuned all lightweight LLMs
in a commodity GPU card, so researchers and practitioners can easily reproduce our findings.

The general trend we observed is that, over time, the models converged to an optimum or “sweet spot”. We should note that
the small fluctuations observed in our performance metrics are attributed to fluctuations in the training loss over epochs. They
are mostly due to (1) the stochastic nature of gradient descent, (2) the fact that we cannot fit all queries in a single batch, and
(3) the large size of the models in proportion to the small size of the dataset.

For the sake of conciseness, Table 3 provides a summary of the top-3 performing models for the query intent prediction
tasks considered. All models were ranked on the basis of the optimum value of Balanced Accuracy; i.e., when each model
achieved maximum Balanced Accuracy in a minimum number of epochs. The table also reports the time (in minutes) to
fine-tune each model until such an optimum state. We can see that RoBERTa Large is the only model that is systematically
ranked among the top-3 for all tasks. Please note that, instead of reporting a summary of all models, by analysing the top-3
best performing models, we provide more concise and focused insights for researchers and developers interested in prototyping
their chatbots. As a matter of fact, in the initial stages of research it may be more practical to experiment with a model that
allows for faster iteration cycles. For example, RoBERTa Base provides similar performance than RoBERTa Large, yet it takes
half the time to be optimally fine-tuned.

Table 3. Summary of top performing models for each task after fine-tuning, based on the achieved balanced accuracy (higher
is better) and number of epochs (lower is better). The ‘Zero-shot Acc.’ column denotes classification accuracy before
fine-tuning. Fine-tuning times (lower is better) are computed until the best epoch reported in their respective row. ChatGPT
only made it to the top-3 for the Information Feature task.

Task Top-3 models Zero-shot Acc. (%) Bal. Acc. (%) Epochs Time (min)

Query scope RoBERTa Large 33.3 84.2 7 6.59
(3 classes) BERT Large 33.3 82.8 4 3.75

RoBERTa Base 33.3 82.6 17 7.11

Query purpose RoBERTa Large 16.6 75.8 6 5.43
(6 classes) XLNet Base 17.9 75.3 10 4.91

BERT Base 15.8 75.0 15 6.85

Response format RoBERTa Base 24.2 89.0 14 5.88
(4 classes) RoBERTa Large 25.0 88.9 7 6.51

Bert Base 17.8 87.4 15 6.03

Information feature RoBERTa Base 7.1 62.8 15 6.41
(13 classes) ChatGPT 49.4 62.8 20 58.5

RoBERTa Large 8.1 54.4 16 14.67

To further contextualise our findings, we would like to highlight a longstanding discussion regarding the trade-off between
model complexity and the availability of training data. As shown in previous work, having better quality data rather than more
data will lead to enhanced model performance, regardless of its complexity25, 26. This relationship seems to be reflected in our
experimental results as well, where larger models (e.g. BERT Large) or models trained on more data sources (e.g. XLNet) did
not always lead to a better performance.

Discussion
We begin by answering our main research questions regarding model performance (RQ1) and the relationship between number
of training epochs and performance (RQ2). We also provide some misclassification examples to better contextualise our
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findings. We then discuss the implications of our research to relevant stakeholders, consider the limitations of our study, and
propose several possible avenues for future work.

Model Performance
Before fine-tuning, all lightweight LLMs were able to capture general language features and patterns, but they did not exhibit
adequate performance for any of the tasks at hand. After fine-tuning, however, the models learned from the training data and
demonstrated much better performance, allowing them to better tackle each of the considered prediction tasks. It should be
noted that only ChatGPT performed well at zero-shot classification, outperforming all lightweight LLMs initially, but it was
later outperformed by other models after fine-tuning. ChatGPT’s excellent zero-shot performance is attributed to the fact that it
is much more complex and has much more knowledge about the (written) world than any of the lightweights LLMs we have
studied.

RQ1a: Which pre-trained models achieve the highest balanced accuracy after fine-tuning for predicting query intent in
terms of: scope, purpose, response format, and information feature?

We observed that RoBERTa models perform the best in all of the four prediction tasks. Specifically, RoBERTa Large
performed best for query scope (84.2%) and query purpose (75.8%), while RoBERTa Base was the best for response format
(89%, outperforming RoBERTA Large by 0.1 points) and information feature (62.8%). It has to be noted however, that both
models significantly differed in their fine-tuning time until convergence, as discussed in the next section.

RQ1b: Is there a model that performs best in all of the four tasks above?
Based on our previous discussion, we posit that while there is no single winner-takes-all model, except ChatGPT which

excels at zero-shot classification tasks, RoBERTa Large is the most sensible model for all tasks. Strictly speaking, while
RoBERTa Base achieved the best performance in predicting response format, it was by a negligible margin as compared to
RoBERTa Large: 89% vs 88.9%, and the differences are not statistically significant. Therefore, for the best overall performance
(i.e., highest accuracy), we recommend RoBERTa Large for development of CAs for GUI assistance.

Nonetheless, it should also be noted that despite its small size (almost one third of RoBERTa Large), RoBERTa Base
performs exceptionally well in the most challenging task of information feature prediction which contains 13 different classes
(see Table 3 for performance details). Therefore, it should be considered for disambiguation tasks with large number of classes,
especially given its short convergence time (6 minutes vs. 16 minutes for RoBERTa Large).

Relationship between Training Epochs and Performance
As hinted previously, each model has its preferred “fine-tuning sweet spot”. In the following, we discuss the variability observed
in terms of epochs for each model to achieve their best performance.

RQ2a: What is the minimum number of fine-tuning epochs for each pre-trained model?
At least six to seven epochs are required to achieve competitive performance in all of the considered prediction tasks, except

from information feature prediction, were at least fifteen epochs are usually required. Further, with the exception of information
feature, beyond fifteen epochs some models started to overfit. This could be justified by the high complexity of this task which,
compared to the other tasks, requires longer training times. Overall, it is advised not to fine-tune these models beyond fifteen
epochs on a dataset like the one we have analysed.

RQ2b: What is the optimal number of fine-tuned epochs for each model to achieve the best performance?
We observed that this number is consistently in the 7–15 range for all tasks, with the exception of the challenging information

feature prediction task, where all models needed more time to converge. We observed that all models apart from ALBERT
family and XLNet Large required only 3–5 epochs to start approaching their optimum performance. This observation is in line
with previous work that reported similar ranges for BERT models90, 91. When it comes to information feature prediction, for
BERT family models, 10–15 epochs were needed to reach optimal performance, while for RoBERTa models this range fell
between 7 and 12 epochs. A notable exception here are the XLNet models, whose performance followed a trend that was likely
to peak beyond 20 epochs. Overall, we observed that a larger number of classes per intent implies a more gradual learning
curve.

Misclassification examples
Table 4 contains examples of queries misclassified by the top-3 best performing models reported before. While overall the
models performed quite well, some of the user queries proved to be difficult due to their ambiguous character. For example,
“How to create a shopping basket?” (id.985) was predicted by RoBERTa Large as a ‘Suggest’ rather than an ‘Educate’ purpose,
which, given the limited context, could theoretically fall into both of these categories. Similarly, in ‘What data are we collecting”
(id.581), RoBERTa models predicted information feature to be a ‘Metadata’ instead of a ‘Privacy’ class. Again, the query was
possibly challenging to the model due to its brevity and lack of more extensive contextual information. Another ambiguous
example, which proved problematic to ChatGPT and RoBERTa Large, is “Where is the privacy?” (id.813), which was identified
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as a request for a ‘Binary’ or ‘Textual’ response rather than an ‘Image’ response format. It was again difficult to predict the
ground-truth format since both are equally sensible candidates to resolve this query.

It also should be noted that the dataset contains some queries that are duplicated or near-duplicated but have different
ground-truth labels. For example, “Is there a login page?” (id.21 and id.65) is labeled in terms of Information Feature as ‘Page’
for id.21 and as ‘Functionality’ for id.65. These cases, while were not frequent, may have introduced some noise in the models
and thus made the prediction tasks a bit more challenging.

Table 4. Examples of classifications errors committed by the top-3 performing models, highlighted in red color. The same
query is tested cross-model.

Query Intent

Task Top-3 models (id.) Example Query Predicted Ground-truth

Query RoBERTa Large Educate Educate
purpose BERT Large 985. How to create a shopping basket? Educate Educate

RoBERTa Base Suggest Suggest

Query RoBERTa Large UI-level App-level
scope XLNet Base 916. Can I enlarge the app window? UI-level App-level

BERT Base UI-level App-level

Response RoBERTa Base Image Image
format ChatGPT 813. Where is the privacy? Binary Image

RoBERTa Large Textual Image

Information RoBERTa Base Metadata Privacy
feature RoBERTa Large 581. what data are we collecting Privacy Privacy

BERT Large Privacy Privacy

Implications
Overall, users are currently faced with two alternatives. They can either use ChatGPT without fine-tuning to achieve competitive
classification performance (especially for intents having a large number of classes) yet at the expense of compromising their
privacy and some monetary costs ($0.008 per 1K tokens, around $1 per intent category in the “Conversations with GUIs”
dataset), or fine-tune lightweight LLMs on their own premises to achieve better performance.

In the following, we discuss the implications of our findings to relevant stakeholders, including developers, designers,
end-users, and the mobile and ubiquitous multimedia community. It should be noted that these recommendations are mostly
based on our findings on the “Conversations with GUIs” dataset, which is more challenging that other NLP datasets. We refer to
the Supplementary Materials for additional experiments that highlight superior results for most of the models we have studied
in this paper.

For Developers
Without fine-tuning, all models except ChatGPT perform like a random classifier in most cases (see dashed lines in Figure 3
and Figure 4). It is clear thus that lightweight LLMs are not ready to support the users’ needs in a CA context without proper
fine-tuning. This can be explained by the fact that all the studied lightweight LLMs were pre-trained on general-purpose data,
whereas the “Conversations with GUIs” dataset27 is specific to user interfaces so it can be considered ‘out-of-domain’ data.
Interestingly, right after just one epoch all lightweight LLMs exhibited a boost in their classification performance results.
Moreover, we observed that smaller (Base) models do not necessarily require less number of fine-tuning epochs than larger
models.

For Designers and End-users
CAs have potential to streamline interaction with GUIs by offering an additional channel of communication. For example, users
can issue conversational queries (via text of voice) to quickly access information regarding an app’s privacy settings (e.g., GPS
tracking) that would be otherwise hidden in a long-winded technical specification document. Knowing which model offers the
best accuracy to memory footprint trade-off can help users decide if performance gains are worth the additional time spent on
interacting with the model. It should be noted that hardware limitations may make fine-tuning of very large models infeasible
for users without access to high-performance computing. This point also applies to designers who work for companies that
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are concerned about economical use of the available assets. Effectively, on a global scale, our work can contribute to more
reasonable and greener use of computational resources.

For Mobile and Ubiquitous Computing
Ubiquitous applications are expected to operate in dynamic environments, in which mobile devices can operate seamlessly,
without relying on data connectivity. Our work sets a cornerstone in this regard by allowing the interested researchers to deploy
efficient lightweight LLMs on commodity hardware for CA-based applications. Some examples of these applications include,
for example, developing multi-party CAs92 or maintaining reading flow in e-readers93. Therefore, our work should be seen as
an enabling technology for the mobile and ubiquitous computing community.

As highlighted by Mhlanga94, protecting data privacy not only is an ethical obligation that demonstrates respect for
users’ rights but should also be a priority for company owners and developers that they employ. While the General Data
Protection Regulation (GDPR) legislation requires companies and organisation to protect the personal data of end-users, in
practice achieving a 100% compliance may be unlikely. In our investigation, we envision that end-users can run CAs based on
lightweight LLMs locally on their own device to avoid sending queries to cloud-based services, thus protecting their privacy.
Depending on the level of tech-savviness and the available resources1, lightweight LLMs can be directly trained by end-users
themselves or supplied as a one-off purchase chatbot plugin supplied by a company.

Limitations and Future Work
It should be noted that while we adopted 2 Gb of RAM as our upper-bound for model deployment, this size may exceed the
capacity of some older mobile devices, so it is advised to work with models well below that threshold to ensure a wider range
of compatibility. While, overall, larger models yielded best performance in our study, XLNet Base (for query purpose) and
RoBERTa Base (for query scope) match the top performing models closely, offering a viable alternative while substantially
reducing required RAM (∼60% reduction) for older mobile devices which have lower memory capabilities.

One aspect that we have not explored in this work is the analysis of runtime performance on low- and mid-end devices,
as we did not deploy our models. This implementation aspect should be explored in future work. In addition, it is advised to
consider an online learning scenario, where new (unseen) queries are provided by end-users as they interact with the models
with their devices. This can be implemented following the same fine-tuning methodology that we have presented, but using a
batch size of 1, to ingest one new query at a time.

Future work could consider more advanced fine-tuning techniques such as delta tuning95 and low-rank adaptation96 in
order to fine-tune LLMs that are prohibitively costly (in terms of computational resources) to many researchers, such as those
depicted in Figure 1. However, it should be noted that these techniques require much more data to converge compared to
traditional fine-tuning25, 97. Finally, future work should also explore runtime and battery consumption on specific models of
low- and mid-end mobile devices to practical insights to provide practical insights regarding deployment of light weight LLMs
on commodity devices.

Moving forward, we would like to propose three possible applications of privacy-preserving lightweight LLMs to existing
products that can be developed in the future to support different groups of GUI users. Firstly, a CA can support developers
who could use it on demand from the command line interface. Alternatively, such a CA can be also embedded in integrated
development environments such as Visual Studio Code [https://code.visualstudio.com/]. Secondly, designers
can benefit from a CA integrated into interface design tools like Figma [https://www.figma.com/] or Sketch [https:
//www.sketch.com/] to assist them in collaboratively creating new interfaces. In this context, the CA could aggregate
anonymised user queries in an ethical way (e.g. removing brand names or entities using NLP methods) for users who opt-in to
improve the CA functionality by informing a third party service. Thirdly, since end-users are mostly concerned about privacy
features27, we suggest that CAs could be integrated in Google Play [https://play.google.com/store/games] or
the iOS App Store [https://www.apple.com/app-store/] so that users can query privacy and other metadata related
features of specific applications.

To conclude this section, we would like to acknowledge that, despite its privacy-enhancing potential, fine-tuning LLMs on
our own premises can raise some ethical issues. Since there is no oversight regarding how the models will be deployed “in the
wild”, they could potentially be applied to malicious activities such as stealing user credentials (cf. FraudGPT [https://
thehackernews.com/2023/07/new-ai-tool-fraudgpt-emerges-tailored.html], WormGPT [https:
//www.infosecurity-magazine.com/news/wormgpt-fake-emails-bec-attacks/], and the like). Nonethe-
less, we believe that, all things considered, fine-tuning lightweight LLMs on premise brings more benefits to users than risks.

1The GPU card we used in our experiments costs around $3k.

12/18

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Conclusion
We have studied how to best fine-tune different lightweight pre-trained LLMs for on-device query intent prediction to support
users during GUI-related interactions with CAs. Our results indicate that there exists a middle ground between giving away
our privacy to some third party cloud service in exchange for boosted performance (specially in zero-shot classification
scenarios) and resorting to traditional CA developments that do not scale well. While RoBERTa Large was shown to be the
best performer overall, among all the models explored, RoBERTa Base and XLNet Base offered the best trade-off between
performance (intent prediction accuracy and AUC ROC) and memory footprint, and thus they may be equally suitable for
on-device CA deployment. Taken together, our findings provide valuable insights for different stakeholders who use or
work with GUIs, and who are interested in developing mobile and ubiquitous systems that need to balance performance and
memory footprint while also considering privacy implications. Our model checkpoints and software are publicly available at
https://luis.leiva.name/llmgui/.

Appendix

ChatGPT fine-tuning
We chose the gpt-3.5-turbo-1106 model version because this is the one currently used in the free version of ChatGPT.
This model is specifically designed for “instruction following”, meaning that the model is able to produce concise outputs for
specific instruction-like requests (as compared to longer conversational style replies). The OpenAI API allows to specify only 3
hyperparamters for fine-tuning: n_epochs (which we iteratively increased from 1 to 20), batch_size (we used a value of
64), and learning_rate_multiplier (we used 2),

The training data was formatted as a JSONL file to be sent to the fine-tuning endpoints, where every line in that JSONL file
consists of a dictionary with three entries: system content (contextual prompt), user content (query), and assistant content (query
label). We used the following contextual prompt template: “Please determine the {intent} of the given query. Possible
values are listed here: {labels}. Please respond only with one values from the list, no other text.” where {intent} is
one of the four intent names (e.g. query scope) and {labels} is the list of possible intent labels (e.g. for the ‘query scope’
intent, the list is {App-level, Dataset-level, UI-level}). An instantiated prompt example for the ‘response format’ intent is
the following one: “Please determine the response format of the given query. Possible values are listed here: ["Binary",
"Image", "Numeric", "Textual"]. Please respond only with one value from the list, no other text.” According to recent prompt
guidelines98, we tried to introduce ChatGPT itself in the prompts with a concrete role (e.g. “You are an assistant that helps
users to answer their queries” or “You are a query itent classifier”) but unfortunately this did not improve performance.

The remainder of this fine-tuning procedure is exactly the same as the one we followed for the lightweight LLMs; i.e.,
iterative fine-tuning up to 20 epochs over the training data and subsequent evaluation over the testing data.

Additional datasets
We replicate our fine-tuning methodology on 4 additional (public) datasets, depicted in Table 5. These datasets are well-
established benchmarks for query classification experiments and conversational question answering systems. The “chatbot
style” column indicates whether queries are very short, unstructured, and command-like99. The “constrained data” column
indicates that the amount of training data is rather small99.

Both TREC datasets below were compiled by Li and Roth100. In TREC-6 each query is labeled according to one of 6 possible
intents (e.g. ‘entity’, ‘location’, ‘number’), whereas in TREC-50 the number of possible intents is 50 (e.g. ‘entity:animal’,
‘entity:event’, ‘location:country’, ‘location:other’). The Chatbot and AskUbuntu datasets were compiled by Braun et al.101.
Queries in the Chatbot dataset are labeled according to 2 intents (either ‘FindConnection’ or ‘DepartureTime’), whereas in the
AskUbuntu dataset, queries are labeled according to 5 intents (e.g. ‘Setup Printer’, ‘Software Recommendation’, ‘Shutdown
Computer’).

Dataset Intents Queries Chatbot style Constrained data

TREC-6 6 5952 No No
TREC-50 50 5952 No No
Chatbot 2 206 Yes Yes
AskUbuntu 5 162 No Yes

Table 5. Overview of the additional datasets.
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We report in the following plots the results of fine-tuning all the model considered, both in terms of balanced accuracy
(Figure 5) and AUC ROC (Figure 6). We can observe very similar trends as those shown in the plots of the “Conversations with
GUIs” dataset, namely: (i) excellent zero-shot performance of ChatGPT, but outperformed by other models after fine-tuning;
(ii) stabilization to a “sweet spot” overall; and (iii) a quick (logarithmic) convergence to such as sweet spot after 3–5 epochs
when the number of intent classes is small (otherwise the convergence happens rather slowly). RoBERTa models were again
the best performers overall. We also observed the same poor performance of ALBERT models, in particular ALBERT Large.
Therefore, we can conclude that, all in all, it is beneficial to do on-premise fine-tuning of lighweight LLMs, considering the
privacy implications of accessing larger models via clouds services or web APIs.
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Figure 5. Balanced accuracy results on additional datasets.
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Figure 6. AUC ROC results on additional datasets.

Data availability
The datasets analyzed during the current study are publicly available:

Conversations with GUIs: https://osf.io/g25wh/

TREC-6 and TREC-50: https://huggingface.co/datasets/trec

Chatbot and AskUbuntu: https://github.com/sebischair/NLU-Evaluation-Corpora
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Legends
Figure 1: Overview of some popular LLMs. Axes are in logarithmic scale to ease the visualization (almost a linear relationship
between model size and model parameters). Each model has different variants available, such as Base and Large (see the plot
annotations). As discussed in the next section, we set 2 Gb as the upper-bound for LLM size so that it can be deployed on
commodity mobile and ubiquitous devices (see ‘Models’ section for more details). Therefore, in this paper, only the models
below such an upper-bound are considered lightweight.
Table 1: Query examples (verbatim, in no particular order, chosen at random) for different user groups. We provide an id for
each query that refers to the row number in the “Conversations with GUIs” dataset.
Figure 2: Class distribution of the considered target variables in our study. From left to right: Query scope (3 classes), Query
purpose (6 classes), Response format (4 classes), and Information feature (13 classes).
Table 2: Description of the studied pre-trained lightweight LLMs. Model size is proportional to the number of Layers, Attention
Heads, and trainable Parameters.
Figure 3: Balanced accuracy results. From left to right: Query scope, Query purpose, Response format, and Information
feature. The plots show that, over time, most models converge to an optimum value or “sweet spot”.
Figure 4: AUC ROC results. From left to right: Query scope, Query purpose, Response format, and Information feature. The
plots show an analogous trend to the results observed in the Balance Accuracy experiments
Table 3: Summary of top performing models for each task, based on the achieved balanced accuracy (higher is better) and
number of epochs (lower is better). Fine-tuning times (lower is better) are computed until the best epoch reported in their
respective row.
Table 4: Examples of classifications errors committed by the top-3 performing models.
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