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ABSTRACT
Predicting user engagement with direct displays (DD) is
of paramount importance to commercial search engines, as
well as to search performance evaluation. However, under-
standing within-content engagement on a web page is not a
trivial task mainly because of two reasons: (1) engagement
is subjective and different users may exhibit different be-
havioural patterns; (2) existing proxies of user engagement
(e.g., clicks, dwell time) suffer from certain caveats, such
as the well-known position bias, and are not as effective in
discriminating between useful and non-useful components.
In this paper, we conduct a crowdsourcing study and exam-
ine how users engage with a prominent web search engine
component such as the knowledge module (KM) display. To
this end, we collect and analyse more than 115k mouse cursor
positions from 300 users, who perform a series of search tasks.
Furthermore, we engineer a large number of meta-features
which we use to predict different proxies of user engagement,
including attention and usefulness. In our experiments, we
demonstrate that our approach is able to predict more ac-
curately different levels of user engagement and outperform
existing baselines.
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Figure 1: The KM display (in red border) and video
snippets (in orange border) on the Yahoo SERP for the
query “interstellar”.

1. INTRODUCTION
In recent years, direct displays (DDs) have become a stan-

dard component on the search engine result pages (SERPs)
of all major web search engines, where they display vertical
search results, i.e., focused, specific content. One such promi-
nent example is the knowledge module (KM) display (Fig. 1),
which provides users with information about the named enti-
ties they are searching for as part of their search tasks. The
content presented in the KM display is typically obtained
in a semi-structured format from curated entity databases,
such as Freebase or Wikipedia, and often includes both quan-
titative and qualitative information (e.g., domain-specific
knowledge) about the queried entity. This raw information
can be further enriched by the search engine, e.g., by showing
a ranking of related entities, accompanied with explanations
of their relationship. Often, the KM display is complemented
with additional content, such as multimedia or social media
content associated with the entity, typically obtained from
third-party data sources.

In practice, DDs serve two main purposes. First, they pro-
vide the users with a well-structured summary of information
which, otherwise, would be difficult or time-consuming to
access. That is, the information is made available within the
SERP itself and thus the user is not required to actively look
for it and navigate away from the SERP. Second, DDs help
tidy up the SERP section that contains the universal search
results (i.e., the mix of main web search results, vertical
search results and various DDs). For example, image and
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video results can now be displayed under the KM display,
making the interaction with textual results an easier task.

In this context, most research has focused on general back-
end system tasks, the most important being knowledge base
construction [6, 11, 14, 24, 41], or more specific backend
tasks, such as related entity recommendation [9, 10]. With
the exception of a recent query log analysis on exploratory
search [34], so far little has been done to understand the
way web search users interact with the frontend system and
the embedded DDs. Our work attempts to understand how
users engage with a prominent DD like the KM display in
entity-centric search tasks. In particular, we are interested
in predicting user engagement with a DD in the absence of
explicit feedback (e.g., self-report data). To this end, we
consider three proxies of engagement with online content:
(1) attention, (2) usefulness and (3) perceived task duration,
which all together reflect relevant cognitive and emotional
processing.

Existing modelling techniques make a simplifying assump-
tion when analysing web search log data: the user is assumed
to be equally engaged with all parts of the SERP. However,
in practice this assumption is not always true. For example,
a user may click on certain links on the page, but not all
links. Similarly, she may read a certain result snippet in the
SERP, but not necessarily the entire list of results. She may
even ignore the SERP content completely and focus only on
the images shown in the KM display or other DDs. In sum,
user interests inferred from the parts of the SERP the user
did not engage with may not reflect the true reason for user’s
interests in the SERP. We believe that the users’ interests can
be better captured by analysing their within-content activity
and, for this reason, we need to go beyond the existing user
modelling techniques that assume a uniform user engagement
with the page content. To meet this objective, one potential
approach is to analyse the mouse cursor data of the user to
identify the DDs that captured user’s attention and lead to
a deeper engagement with the SERP content. The proposed
method relies on the use of simple yet highly discriminative
features that lack the computational complexity of other
methods, such as those that necessitate the extraction of
cursor motifs. More importantly, it offers better granularity
of user interactions, on a DD-level basis, especially in the
absence of explicit user feedback (e.g., clicks or dwell time).

2. RELATED WORK
There has been an enormous body of research investigating

user interactions from mouse cursor data. Mouse cursor
tracking is considered today as a low-cost yet scalable proxy
for user’s attention, and so we focus our review of related
work in this research area. Concretely, we will focus on web
search and interaction mining as foundational precursors of
user engagement research.

Early works considered simple, coarse-grained features de-
rived from mouse cursor data to be surrogate measurements
of user interest, such as amount of cursor movements [17, 39]
or cursor travel time [12]. More recently, fine-grained cursor
features have been taking into consideration, which have been
proved more useful. For example, Guo and Agichtein [18]
found differences in cursor travel distances between informa-
tional and navigational queries, and could classify the query
type using cursor movements more accurately than using
clicks. Guo and Agichtein [19] also used interactions such
as cursor movement, hovers and scrolling to accurately infer

search intent and interest in search results. They focused on
automatically identifying a searcher’s research or purchase
intent based on features of the interaction. Huang et al. [26]
sought to understand result relevance and search abandon-
ment by mining cursor behaviour on SERPs. This work was
extended by Diriye et al. [13] to investigate the use of cursor
interactions for classifying the reason why a user abandoned
a query, whether it was because they were satisfied because
they found the information they were seeking or dissatisfied
at the point of abandonment. Finally, Huang et al. [25]
and Speicher et al. [40] modelled user cursor interactions on
SERPs by extending click models to compute more accurate
relevance judgments for the search results.
Mouse cursor data have also been used for more prac-

tical tasks. For example, to investigate the usability of
online forms [5], prototype website redesigns [4, 28] cluster
documents according to users’ interactions [30] and predict
page-level measurements such as dwell time, number of clicks
or scroll reach [31].
In sum, previous approaches that relied on mouse cursor

feature engineering have been directed at predicting general-
purpose web search tasks like document relevance [20], search
success [21] or searcher’s frustration [16]. However, little work
has been done on predicting user engagement within page
content. The following are the most prominent works in
this regard. Arapakis et al. [1, 2] extracted mouse gestures
to measure within-content engagement on news pages and
predict reading experiences, and Arapakis et al. [3] conducted
a preliminary study which revealed the potential benefits of
the KM display and its overall utility w.r.t. user experience.
Lagun et al. [27] introduced the concept of frequent cursor
subsequences (namely motifs) in the estimation of result
relevance, which is a more general approach but does not
address the problem user engagement prediction. Finally,
Liu et al. [32] have applied the motifs concept to SERPs
in order to predict search result utility, searcher effort and
satisfaction at a search task level. However, it has been
always assumed a uniform engagement with all parts of the
page. In contrast, our work is the first to investigate user
engagement within particular components of SERPs, in this
case the KM display.

3. CROWDSOURCING STUDY
To understand how web search users engage with DDs like

the KM display, we conducted a crowdsourcing study and
collected feedback from participants who performed short,
entity-centric search tasks using the Yahoo web search engine.
With this study, we aim to predict: (1) when a user notices
the KM display on the SERP, (2) if it is perceived as a useful
aid to their search tasks and (3) whether interacting with
the KM display alters the users’ perception of how fast they
complete the search tasks.
Crowdsourcing offers several advantages not available in

other experimental settings [33], such as access to a large
and diverse pool of participants with stable availability, as
well as collection and analysis of real usage data at a large
scale. Another advantage of crowdsourcing is the low cost of
the tasks, which makes it a preferable solution over the more
expensive laboratory-based experiments. On the downside, a
limited range of parameters can be explored in a controlled
manner and experimenters have to account for potential
threats to ecological validity, distractions in the physical
environment of the user, and privacy issues, to name a few.
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Table 1: Examples of search query patterns. Asterisks represent multi-answer questions to increase the difficulty of
the search tasks.

Category Question Pattern Question Example Suggested Query

People Who is X <wife | husband | sons> Who is X’s husband|wife? Who is Orlando Bloom’s wife?
People What is X doing now What is X’s current occupation? What is Gisele Bundchen doing now?
People Where was X born Where was X born? Where was Ernest Hemingway born?
*People X movies Name two movies that X plays in Peter Seller’s movies
Movies How long is the movie X How long is the movie X? How long is the movie Tron?
Movies When is X coming out When is movie X coming out? When is Mad Max Fury Road coming out?
Movies What is X rated What is movie X rated? What is Anchorman rated?
Movies What is X about What is movie X about? What is Taxi Driver about?
Athletes X salary What is X’s salary? Lebron James salary
Athletes X draft What is X’s draft? Andrian Peterson draft
Athletes X weight What is X’s weight? Jimmy Graham weight
Athletes X team In which team X plays? Joe Thomas team
Sport Teams X head coach Who is the head coach of the team X? Miami Heat head coach
*Sport Teams X players Name two players of the team X Houston Rockets players
Sport Teams X official website What is the official website of the team X? Sacramento Kings official website
Sport Teams X record What is the record of the team X? Oakland Raiders record

cursor timestamp xpos ypos event xpath attrs extras
0 1405605225834 390 195 mousemove /html/body/p[2] {"P":{}} {"tr":451,"tl":277,"br":473,"bl":313,"mid":317}
...

Figure 2: Example of a mouse cursor log, including the distance of the cursor to 5 control points of the KM display:
tr (top right corner), tl (top left corner), br (bottom right corner), bl (bottom left corner), mid (center).

In our study, we used the Amazon Mechanical Turk service.
All of the aforementioned limitations were taken into consid-
eration and preventive measures were put into practice to
discount low-quality responses. Also, strict selection criteria
were applied to exclude unsuitable participants (e.g., HIT
approval rate ≥ 98%, number of HITs approved ≥ 1,000).

3.1 Experimental Design
The experiment had a repeated measures design with one

independent variable: KM display (with two levels: “visible”
or “hidden”). The KM display visibility was controlled with
client-side scripting, removing the KM display from the
SERP in the “hidden” condition. The dependent variables
(Section 3.4) were: (i) KM display noticeability, (ii) KM
display usefulness and (iii) perceived task accomplishment
speed. The experiment consisted of two short search tasks
that were completed using the Yahoo search engine, one task
with the KM display on the SERP and one without it. To
control for order effects, we counterbalanced task assignments
using a Latin square design.

Participants accessed the search engine through a custom
proxy which did not alter the original look and feel of the
SERPs. This allowed us to instrument the browsed pages on
the fly and capture user interactions with the SERP without
interfering with the actual web search engine interface in
production. The proxy had a common entry page for all
participants. For each search task, participants were pre-
sented with a question and were suggested a search query
to begin with. The suggested queries were all picked from a
pool of queries that triggered the KM display on the SERP,
independent of the KM display visibility (Section 3.2).

3.2 Search Query Sample
Our query set consisted of 32 unique query patterns that

were selected after a large-scale query log analysis. All queries
would trigger the KM display on the Yahoo SERP, so we could
ensure that in all tasks the KM display would be displayed
on the SERP, thus allowing us to choose between leaving it

visible or hiding it, depending on the control (hidden) and
experimental (visible) conditions.

The selected query patterns belonged to four different top-
ics (celebrities, movies, athletes, sport teams) and required
either single or multiple answers. An example of a single-
answer query is “Who is the head coach of the team X?”
while an example of a multi-answer query is “Who are X’s
children?”. To diversify our search query pool, we produced
three questions per query pattern, as can be seen in Table 1,
while we introduced some additional multi-answer questions
(marked with *) to increase the difficulty of the search tasks.
In total, our query set included 144 different queries.1 In the
study, the query set was repeated as many times as needed
to accommodate all participants. Each query was answered
under each condition by at least two participants and at most
six participants.

3.3 Mouse Cursor Tracking
As previously stated, all users performed the search tasks

through a web proxy. This allowed us to automatically
instrument all browsed pages with mouse cursor tracking.
For this, we used evtrack,2 an open source JavaScript
event tracking library that is part of the smt2ǫ system [31].
evtrack makes it possible to specify what browser events
should be captured and how they should be captured, i.e.,
via event listeners (the event is captured as soon as it is
fired) or via event polling (the event is captured at fixed-
time intervals). Concretely, we captured all regular browser
events (e.g., load, click, scroll) via event listeners and only
mousemove via event polling (at 150ms), since this event may
introduce unnecessary overhead both while recording on the
client side and while transmitting the data to the server [29].

Whenever an event was recorded, we logged the following
information (Fig. 2): cursor id (0 for desktop browsers, a
number identifying the touch point for mobile browsers),
mouse cursor position (x and y coordinates), timestamp,

1
http://personales.upv.es/luileito/kme/queries.tsv

2
https://github.com/luileito/evtrack

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Figure 3: Example of the mini-questionnaire inserted at the bottom of the instrumented SERPs.

event name, xpath of the DOM element that relates to the
event, DOM element attributes, and the Euclidean distance
to 5 control points of the KM display (Fig. 2). The data
were saved as CSV files, one browsed page at a time.

3.4 Self-Reported Measures of Engagement
In addition to recording mouse cursor data, the web proxy

inserted a mini-questionnaire on the SERPs where the KM
display was visible (experimental condition), in order to
gather ground truth labels for the mouse cursor data; see
Fig. 3. The mini-questionnaire was initially hidden, in order
not to interfere with regular browsing, and was shown to the
user just before leaving the SERP. The mini-questionnaire
comprised 3 questions:
1. Did you notice the knowledge module? [yes/no]
2. To what extent did you find the knowledge module useful
in answering the question? [1–5 Likert-type scale]
3. To what extent did the knowledge module help you answer
the question faster? [1–5 Likert-type scale]
The labels of Likert-type scale was 1: not at all useful/faster,
. . . , 5: very useful/faster (Fig. 3).
Our ground truth thus consists of three user engagement

proxies, all of them being considered intrinsic components
of engagement, as traditionally measured using question-
naires [36].

3.5 Participants
We recruited 612 participants through Amazon Mechanical

Turk. From this initial sample, we approved assignments for
533 participants (female = 226, male = 307), aged from 18
to 66. Participants were of mixed nationality (e.g., Amer-
ican, Belgian, British, Finnish, German) and had varying
educational backgrounds: 29.98% had a high school diploma,
18.98% had a college diploma, 41.56% had a BSc degree,
7.97% had an MSc and 1.52% had a PhD. All participants
were proficient in English, 98.31% being native speakers.
Finally, the majority were full-time (60.41%) or part-time
(9.76%) employees while the remaining were either full-time
students (7.69%), pursuing further studies while working
(10.69%), performing home duties (6.75%) or other (4.69%).

3.6 Procedure
To begin, participants were informed about the terms and

conditions of the study, followed by a short description of
the SERP. The study had to be done in a single session.

Participants could opt out at any moment, in which case
they would not be compensated. Participants were asked
to “evaluate two different backend systems of Yahoo web
search by performing two search tasks”. For each task, par-
ticipants had to answer a question by searching for relevant
information on the proxified search engine. As previously
mentioned, in one task the KM display would be hidden
(control condition) and in the other task it would be visible
(experimental condition). The order of the tasks was random-
ized for each participant. Participants were also presented
with a suggested query to begin their search, although they
were free to submit additional queries (e.g., if the suggested
query did not lead to the answer) and examine as many
results as necessary to complete the search task. We used
informational, entity-centric queries to introduce a common
starting point across all participants. Upon finishing each
task, participants were instructed to submit their answer and
complete a post-task questionnaire. The study concluded
with a demographics questionnaire. The payment for partici-
pation was $1.20 and each participant could take the study
only once.

4. MODELLING USER ENGAGEMENT
In this section, we present our methodological approach

for predicting the three user engagement proxies discussed
in Section 3.4. By demonstrating that we can successfully
model within-content interactions with DDs, using an inex-
pensive and scalable feedback like mouse cursor information,
will allow us to derive more accurate and valid signals for
predicting user engagement. In addition, with the proposed
method we could infer with higher granularity which parts
of a SERP or a web page the user truly notices and engages
with, while lacking the additional cost of computationally
expensive techniques for mouse cursor analysis.

4.1 Mouse Cursor Data
From our initial sample of 533 participants, we conclude to

a subset of 300 participants, after excluding those cases which
had incomplete mouse cursor logs. Our final dataset consists
of 115, 699 cursor positions, collected during 600 search task
sessions. Out of those 600 search task sessions, we further
analyse the 300 cases that correspond to the experimental
condition with the visible KM (Section 3.1) in the SERP.
We note that cases are generally balanced, with 176 users
having reported noticing the KM display. As a last step,
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Table 2: Features used in the classification task to predict user engagement.

Base features Meta-features Aggregate functions∗

Viewport (width, height) # Moves (towards, away) KM xmin, xmax

Cursor positions and timestamps # Moves (towards, away) KM within dist. d Σ, µ, x̃
Unique cursor positions # Clicks (inside, outside) KM σ2, σχ, SST
Normalised viewport positions Time to first click on KM

∑
intra-distances of cursor positions w.r.t. KM

Unique normalised viewport pos. # Preceding clicks to KM Shannon entropy
Subsequent points’ distance # Hovers over KM Permutation entropy (w ∈ {2, . . . , 5})
Subsequent points’ duration # Hovers over other elements Weighted Permutation entropy (w ∈ {2, . . . , 5})
Cursor distance from KM # Hovers over KM vs. other elements Approximate entropy (w ∈ {2, . . . , 5})
Cursor speed # Preceding hovers over other elements FFT: ith most powerful frequency (i ∈ {1, . . . , 5})
Cursor normalised speed Time to first hover (KM, other elements) Multivariate KL div. (symmetric, non-symmetric)
Cursor acceleration Time hovering (KM, other elements) Earth mover’s distance
Cursor normalised acceleration Distance traversed overall Hausdorff distance
Cursor position status wrt. KM Distance traversed (inside, outside) KM
Vector angles Distance from KM (corners, center)

# Cursor positions within distance d from KM

* These functions are computed for most base and meta-features.

we normalise the values for each computed feature in the
range [0, 1] so that feature values that fall in greater numeric
ranges do not dominate those in smaller numeric ranges.

4.2 Feature Engineering
Our task is to predict user engagement solely on the basis

of inexpensive, easy-to-acquire user interaction signals. To
this end, we explored a large number of basic as well as high-
level meta-features that we engineered from the mouse cursor
data we collected. We treated each data sequence as a time
series and examined the statistical, spectral and temporal
properties through the application of a number of aggregate
functions. Each mouse cursor log was encoded as a feature
vector of 638 components. In Table 2 we summarise these
features under different categories and also list the aggregate
functions applied to them. In what follows, we provide a
brief description of the most important feature categories.

Temporal. Previous works [22, 35] have shown that ac-
counting for the temporal characteristics of mouse cursor
interactions can improve user profiling and prediction meth-
ods. Similarly, we considered the temporal dimension and
measured (in milliseconds) the duration of cursor movements,
the duration of hovering events and the total time up to the
first click or hover, among others, both inside and outside of
the KM display.

Spatial. Spatial features include the distance that the cursor
has traveled overall. We considered both the Euclidean
distance and the per-pixel travel distance on the x and y
axes. In addition, we recorded the Euclidean distance of the
mouse cursor to five reference points of the KM (Section 3.3).
Finally, we recorded the status of the cursor position with
respect to the KM display (inside, outside).

Direction. For every three subsequent mouse cursor posi-
tions, we determined the vectors they form and computed
their angle in degrees. We also computed the direction of
the mouse cursor movement with respect to the KM display.

Speed. The speed of mouse cursor movements has discrim-
inative characteristics and can help disambiguate user in-
tent [20]. For example, slow movements may indicate that
the cursor is resting while the user is engaged in a cognitively
demanding task such as reading carefully. On the other hand,
ballistic movements suggest that the user is performing a

quick scan to locate an information of interest in the text. In
our analysis, we computed the speed for the distance that the
mouse cursor travelled between subsequent pairs of positions.
We considered both the Euclidean distance and the per-pixel
travel distance on the x and y axes.

Acceleration. We also measured the acceleration for the
distance that the mouse cursor travelled between three sub-
sequent positions. As previously, we considered both the
Euclidean distance and the pixel travel distance on the x
and y axes.

Clicks. We considered the number of clicks performed inside
and outside of the KM display, their ratio, as well as the
number of preceding clicks prior to the first click on the KM
display. The number of clicks has been used extensively in
web search for decades, and is considered one of the most
prominent features in user engagement research.

Descriptive statistics. This type of statistics provide sim-
ple, quantitative summaries of the data, such that patterns
can emerge. In our analysis, we employed two general cate-
gories of descriptive statistics: measures of central tendency
and measures of spread, motivated by the visualisations of
the gathered mouse cursor trails (Figs. 4 and 5). The first
category describes the central position of a frequency distri-
bution for a dataset. Such examples in our feature set are the
mean and the median. The second category describes how
spread the scores in a dataset are distributed. To determine
this spread, we computed the variance, sum of squares, stan-
dard deviation, kurtosis and skewness. Finally, we considered
other simpler statistics, like the min, max and sum of values
for each mouse cursor trail.

Distribution. These features include the sum of the mouse
cursor positions’ intra-distances, both inside and outside the
KM display as well as overall, which indicate how compact
or dispersed is the distribution of mouse cursor positions.

Shannon entropy. In information theory, entropy mea-
sures the disorder or uncertainty associated with a discrete,
random variable, i.e., the expected value of the information
in a message. The Shannon entropy [38] allows to estimate
the average minimum number of bits needed to encode a
string of symbols in binary form (if log base is 2) based on
the alphabet size and the frequency of the symbols. Given

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



(a) Did not notice the KM display (b) Noticed the KM display

Figure 4: Examples of the mouse cursor data by a user who did not notice the KM display (a) and a user who noticed
the KM display (b). Green cursors represent the entry coordinate (first point of the mouse cursor trail). Red cursors
represent the exit coordinate (last point of the mouse cursor trail). White crosses represent the centroid of the mouse
cursor trail. Blue circles represent clusters of interacted areas.

a finite time series X(t) = (xt : 1 ≤ t ≤ T ), the Shannon
entropy can be expressed as

H(X) = −
∑

t

p(xt) log p(xt), (1)

In our prediction task, we used Equation 1 to characterise
the complexity of our mouse cursor trails and applied it to
several meta-features. As we demonstrate later, this feature
is useful in discriminating between engaged vs. non-engaged
users, depending on the level of uncertainty exhibited by the
mouse cursor data.

Permutation entropy. Permutation entropy [7] provides a
fast and robust method for estimating the complexity of time
series, by considering the temporal order of the values. More
specifically, it calculates the variety of different permutations
appearing at the components of a time series such as our
mouse cursor trails.

Denoting Sn the set of all possible n! permutations π of
order n for a time series X(t), the relative frequency for each
π ∈ Sn is defined as

p(π) =
#
{
t | 0 ≤ t ≤ T − n, (xt+1, . . . , xt+n) has typeπ

}

T − n+ 1
(2)

Then, the permutation entropy of order n ≥ 2 is defined as

H(n) = −
∑

π∈Sn

p(π) log p(π) (3)

This feature can be calculated for arbitrary real-world time
series, and particularly in the presence of dynamical and
observational noise. We computed the entropy for all permu-
tations of order n = 2, . . . , 5.

Weighted Permutation entropy. The Weighted Permu-
tation entropy [15] extends the concept of Permutation en-
tropy and addresses certain limitations such as its inability to
differentiate between distinct patterns and their sensitivity.

This feature is computed in two steps. First, the weighted
relative frequencies for each mouse cursor trail:

pw(π
n,τ
i ) =

∑
j≤N 1u:type(u)=πi

(Xn,τ
j ) · wj∑

j≤N 1u:type(u)∈∏(Xn,τ
j ) · wj

(4)

where 1A(u) denotes the indicator function of set A defined
as 1A(u) = 1 if u ∈ A and 1A(u) = 0 if u /∈ A. The Weighted
Permutation entropy is then computed as

Hw(n, τ) = −
∑

i:π
n,τ
i ∈∏

pw(π
n,τ
i ) log pw(π

n,τ
i ) (5)

where n and τ denote respectively the embedding dimension
and time delay. The Weighted Permutation entropy is dif-
ferent from the Permutation entropy in the sense that the
former is suitable for cursor trails with considerable ampli-
tude information. For the range of trails that do not satisfy
this property, the Permutation entropy might be a better
alternative. We computed the entropy for all permutations
of order n = 2, . . . , 5.

Approximate entropy. The approximate entropy [37] ex-
presses the (logarithmic) likelihood of similar patterns to be
followed by similar observations. In other words, it quantifies
the amount of regularity and the unpredictability of fluctu-
ations in a time series. A low entropy indicates that the
time series is deterministic, whereas a high value indicates
randomness.

Denoting m the length of the compared data and r a filter
factor (vector-wise comparison distance), we can define the
approximate entropy ApEn of a time series X(t) as

ApEn(m, r) = Φm(r)− Φm+1(r) (6)

We computed the entropy for m = 2, . . . , 5. We set r =
0.2 SD, where SD is the standard deviation of the sequence
values. The approximate entropy can be computed for any
time series, chaotic or otherwise, at a low computational cost,
and even for small data samples (T < 50).

Fast Fourier Transform. We performed a spectral analy-
sis to determine the frequency components of our time series
data. We used the fast Fourier transform (FFT), which is a
more efficient way to compute the discrete Fourier transform
(DFT). Given a time series X(t) of length T and assuming a
period T , the FFT computes two T/2 + 1 point frequency
domain signals

Xk =
∑

t

xt e
−i2πk t

T , k = 0 : T − 1 (7)
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(a) Did not notice the KM display (b) Noticed the KM display

Figure 5: Heatmaps of mouse movements for all users who did not notice the KM display (a) and all users who
noticed the KM display (b). The SERP shown here is an example to illustrate its parts and structure.

The two signals in the frequency domain are the real part and
the imaginary part, and hold the amplitudes of the cosine
and sine waves respectively. This frequency representation
indicates how much of the variability of the data is due to
low or high frequencies. In our analysis, we computed the
amplitudes of all frequencies in our time series data and used
their rankings as features, i.e., first most powerful frequency,
second most powerful frequency, and so on.

Multivariate Kullback-Leibler divergence. We com-
puted the multivariate Kullback-Leibler (MKL) divergence
between 2 joint distributions:

DKL(N1‖N2) =
1

2

[
log

|Σ1|
|Σ2|

+ tr(Σ−1
1 Σ2)

+ (µ1 − µ2)
TΣ−1

1 (µ1 − µ2)− l

] (8)

where µ is the mean vector, l is the length of the mean vector
and Σ is the covariance matrix. The way we employed the
multivariate KL divergence in our experiments is as follows.
Initially, we used a set of training data (see Section 4.3) to
learn the joint distributions of x and y mouse cursor posi-
tions for both engaged and non-engaged users. The browser
viewport was normalised in [0, 1] and discretised into 20 bins
of size 0.05. This way, the cursor positions were split across
the bins so that we could derive their distributions. Next, we
computed the symmetric and non-symmetric KL distances
between these two joint distributions and the training exam-
ples. Finally, we used these KL distances as features in our
prediction task.

Earth Mover’s Distance. Another feature we considered
is the Earth Mover’s distance (EMD), which is a measure
of distance between two probability distributions. More
specifically, the distributions are sets of weighted features
that capture the distributions and the EMD is defined as the
minimum amount of work needed to change one sequence
into another. The notion of work is based on a unit of ground
distance. Similarly to the KL divergence, we computed the

EMD between the normalised mouse cursor positions in our
training examples and the distributions of both engaged and
non-engaged users.

Hausdorff Distance. The Hausdorff distance (HD) is the
maximum distance of a set to the nearest point in the other
set. More formally, the HD from set X to set Y is a maximin
function defined as

dH(A,B) = max
{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

(9)

where sup is the supremum (least upper bound of a set), inf
is the infimum (greatest lower bound of a set), x and y are
coordinates of sets X and Y respectively and d(x, y) can be
any distance function (e.g., Euclidean) between these coordi-
nates. We computed the HD for the different distributions
of mouse cursor positions in the same manner as described
in the previous two features.

4.3 Prediction Task
In this section we demonstrate that our modelling approach

can predict successfully the three proxies of user engagement
discussed in Section 3.4, and that it outperforms the standard
baseline methods. The value of our prediction task lies in the
fact that we use highly discriminative yet low-cost features.
For each user engagement proxy, we trained a random forest
(RF) classifier using the feature set described in Section 4.2.

As a first step, we performed a correlation analysis and
excluded from our feature set those features that are highly
correlated (r ≥ .80, p < .05) and/or linearly dependent.
Then, prior to training our models, we performed feature
selection using a wrapper method that uses recursive feature
elimination until finding the optimal feature set that max-
imises model’s performance. To get performance estimates
that account for the variation due to feature selection, we
applied a 10-fold cross-validation and used the Area Under
Curve (AUC) as the performance measure to optimise. By
applying this step, we avoided overfitting our models and
excluded noisy features that would not contribute to the
accurate prediction of our classes.
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Table 3: Top-10 features of each user engagement proxy according to the mean decrease in accuracy (MDA).

Attention (52 feat.) MDA Usefulness (103 feat.) MDA Task Duration (81 feat.) MDA

CD minCursorDistFromKGMiddle .0105 CD medianCursorDistFromKGTopRight .0056 CD meanCursorDistFromKGMiddle .0063

CD minCursorDistFromKGBottomRight .0066 CD meanCursorDistFromKGMiddle .0054 E consecutivePointsDistXYAPE2 .0053

H noHoversKGOverNoHoversOtherElements .0062 emd None .0042 CD medianCursorDistFromKGTopRight .0049

CD cursorDistYOverCursorDistXYInsKG .0061 emd Notice .0041 CD meanCursorDistFromKGTopRight .0044

CD minCursorDistFromKGTopRight .0057 S sdCursorSpeed .0033 H noHoversKGOverNoHoversOtherElements .0039

H timeHoverKG .0049 CD cursorDistX .0032 DL noMovesTowardsKGWithinDistX .0038

CP noCursorPosInsKGOverNoCursorPosOutKG .0045 E consecutivePointsDistXYAPE2 .0031 emd Notice .0033

CD cursorDistXOverCursorDistYInsKG .0042 MKL SymmetricNoneIn .0030 MKL SymmetricNoticeIn .0024

H timeHoverKGOverHoverOtherElements .0042 MKL SymmetricNoticeIn .0028 E consecutivePointsDistXYAPE4 .0021

S medianCursorSpeedInsKG .0041 S meanCursorSpeedOutKG .0026 MKL SymmetricNoneIn .0021

Next, we performed a 10-fold cross-validation using strat-
ified sampling, to create balanced splits of the data that
preserve the overall class distribution. In each fold, we used
90% of the data for training and 10% for testing. Addition-
ally, we held out a validation set from the training set for
fine-tuning the classifier’s hyperparameters (e.g., ǫ-threshold,
number of trees). We then applied the optimal parameter val-
ues to our final model and evaluated its performance against
the test set, and in comparison to several baselines.

Our choice of baselines was informed by existing research
as well as current practices in industry [19, 20, 25, 26, 42].
More specifically, we considered if the user has clicked on the
KM display (hasClickedKM, binary classifier), if the mouse
cursor has hovered over the KM display (hasHoveredKM, bi-
nary classifier), and the time spent on the page (dwellTime)
as a feature to the same RF classifier. For assessing the mod-
els’ performance, we considered the standard IR metrics of
precision, recall and accuracy. Traditionally, the most fre-
quently used metrics are accuracy and error rate. However,
metrics like accuracy can be deceiving in certain situations
and are highly sensitive to changes in data [23]. Therefore,
we also computed the F-Measure, which combines precision
and recall as a measure of the effectiveness of classification in
terms of the weighted importance on either recall or precision
as determined by the β coefficient (we use β = 1). Last,
because F-Measure is sensitive to data distribution, we used
as an additional performance criterion the AUC.

4.4 Results
In what follows, we report the results of our prediction

task for each user engagement proxy. A Kruskal-Wallis test
for stochastic dominance was statistically significant in all
cases. We therefore conducted a post-hoc analysis involving
multiple pairwise comparisons, for which we corrected the
level of significance to control the false discovery rate by using
the Benjamini-Hochberg correction [8]. We note that the
final performance values reported in Table 4 are the macro-
averages across all ten folds. We highlight all cases where
our model performs significantly better than the different
baselines and provide the corresponding Z statistic.

4.4.1 Attention
The first proxy of user engagement we predicted is the

noticeability of the KM display. More specifically, we were
interested in detecting accurately if the KM display captures
the user attention even at the absence of events such as
clicks or hovers. For training our model, we used a sub-
set of 52 features (some examples are shown in Table 3)
from our initial feature set of 638 features. The top sec-
tion of Table 4 reports the performance of our classification
model in comparison to the different baselines. As we can
observe, our model’s predictive performance is better than

any of the competitor baselines. This improvement is evi-
dent across all performance metric that we considered, but
more importantly with respect to F-Measure, where our
model introduces an improvement over all baselines of 13.8%
(hasClickedKM), 15.6% (hasHoveredKM), 24.6% (dwellTime)
and 9% (joint model) respectively. Another encouraging
result is our model’s performance with respect to the AUC
which, given existing research conventions, can be considered
as excellent/good. On the other hand, the AUC achieved
by the baselines indicates no discrimination between the
predicted classes.

4.4.2 Usefulness
The next proxy of user engagement that we considered

is the usefulness of the KM display. The highly subjec-
tive nature of this engagement metric suggests that it is a
more challenging task, something which is made evident
by the overall performance degradation observed in the
hasClickedKM baseline. Nevertheless, our model appears
to be the best performer in comparison to the other base-
lines and maintains its advantage (using an extended set
of 103 features shown in Table 3), as indicated by the re-
ported measures. From the results shown in the middle
section of Table 4, we can see that the difference between
our model and the other baselines in terms of F-Measure
is widened to 44.1% (hasClickedKM), 9.8% (hasHoveredKM),
7.2% (dwellTime) and 2% (joint model) respectively.

4.4.3 Perceived Task Duration
We conclude our prediction task with a final proxy of user

engagement: the perceived task duration. Here, we aimed
to predict whether users felt that they completed their task
faster, given that this belief is attributed to the examined DD
(in our case the KM display). For this task, we learned a RF

model using the 81 top-ranked features shown in Table 3. We
performed the same 10-fold cross-validation to ensure that
our model’s performance is not over-optimistic. As shown
in the bottom section of Table 4, the performance of our
model did not change much despite the prediction challenge
that the targeted concept posses. The differences in the F-
Measure scores between our model and the baselines (39% for
hasClickedKM, 14.3% for hasHoveredKM, 9.5% for dwellTime
and 10% for the model that combines all baselines) indicate
once more the capacity of the proposed method to capture
this aspect of engagement and provide accurate predictions
on future user engagement for a DD.

4.5 Computational Complexity
As a side contribution, we comment on the computational

complexity of recent approaches to mouse cursor analysis, in
terms of temporal cost, and compare them with our proposed
method. On the one hand, the Mouse Gestures technique [2]
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Table 4: Performance metrics for the proposed method and the different baselines. Scores in parentheses are Dunn’s
pairwise Z statistic. A bold typeface denotes the best result in a row.

Performance Metric Our method hasClickedKM hasHoveredKM dwellTime All baselines

A
tt
e
n
ti
o
n (Weighted Avg.) Precision .77 .62 (3.08)∗∗ .67 (1.96) .50 (4.81)∗∗∗ .74 (0.56)

(Weighted Avg.) Recall .76 .62 (3.21)∗ .61 (3.58)∗∗∗ .52 (5.38)∗∗∗ .69 (1.57)

(Weighted Avg.) F-Measure .76 .58 (3.86)∗∗∗ .60 (3.48)∗∗∗ .51 (5.23)∗∗∗ .68 (1.53)

(Weighted Avg.) Accuracy .76 .62 (3.21)∗ .61 (3.58)∗∗∗ .52 (5.36)∗∗∗ .67 (1.51)

AUC .86 .42 (5.31)∗∗∗ .51 (4.18)∗∗∗ .53 (3.59)∗∗∗ .72 (1.51)

U
se
fu
ln
e
ss (Weighted Avg.) Precision .74 .74 (0.43) .69 (0.86) .62 (2.76)∗ .65 (2.23)

(Weighted Avg.) Recall .74 .33 (4.86)∗∗∗ .61 (3.02)∗∗ .73 (0.39) .74 (0.64)

(Weighted Avg.) F-Measure .74 .30 (5.56)∗∗∗ .64 (2.78)∗∗ .66 (2.07) .68 (2.05)

(Weighted Avg.) Accuracy .74 .33 (4.86)∗∗∗ .61 (3.02)∗∗ .73 (0.39) .74 (0.64)

AUC .71 .45 (4.80)∗∗∗ .58 (2.22)∗ .57 (2.47)∗ .60 (2.24)∗

T
a
sk

D
u
r. (Weighted Avg.) Precision .74 .77 (-0.96) .63 (1.88) .62 (2.01) .64 (1.55)

(Weighted Avg.) Recall .73 .40 (4.77)∗∗∗ .57 (2.81)∗∗ .70 (0.86) .66 (1.28)

(Weighted Avg.) F-Measure .73 .34 (5.46)∗∗∗ .59 (2.67)∗∗ .64 (2.16)∗ .63 (2.16)∗

(Weighted Avg.) Accuracy .73 .40 (4.77)∗∗∗ .57 (2.81)∗∗ .70 (0.86) .66 (1.28)

AUC .77 .41 (5.60)∗∗∗ .55 (3.41)∗∗ .62 (2.25)∗ .59 (2.76)∗∗

Significance levels (two tails, corrected for multiple comparisons): ∗p < .05; ∗∗p < .01; ∗∗∗p < .001.

relies on principal component analysis (PCA) preprocessing
and k-means clustering. The cost of PCA is O(p2N + p3)
(covariance matrix computation + eigen value decomposi-
tion) with p features and N data points, whereas k-means
has O(i cN) with i iterations and c clusters. On the other
hand, the algorithms used in Cursor Motifs [27, 32] use both
dynamic time warping (DTW), which has cost O(N2), and
k-nearest neighbours (kNN), which has cost O(N2k2) with k
neighbours. Our method has computations of O(N) (linear)
or O(N logN) (quasilinear) cost, instead of the cubic and
quadratic cost associated to the other approaches. Most
important, our method is straightforward to implement and
highly discriminative. As such, we expect that it may be of
practical value in several problems that make use of mouse
cursor analysis.

5. DISCUSSION AND CONCLUSIONS
With the rising presence of direct answers in search results

where no click is required to acquire relevant information,
the need to understand the utility of within-page interactions
becomes critical. Whether a DD like the KM display is useful
is hard to determine, particularly if the information the user
is seeking is on the module itself. To this end, this work
has examined the impact of DDs in web search, providing
empirical evidence of their overall utility. We conducted a
crowdsourcing study that revealed the potential benefits of
using mouse cursor data to predict user engagement with
DDs. In particular, we showed that our feature selection
model outperforms the standard baselines to measure three
user engagement proxies with the KM display.

With respect to the noticeability proxy, our initial results
clearly suggest that it is possible to predict when the user
attention is captured by a DD like the KM display using only
a simple, yet highly discriminative, set of features derived
from mouse cursor activity. This is an important finding
considering that existing online user engagement metrics
assume a uniform engagement with the web page content
and do not distinguish well enough between attended and
ignored DDs. If we can predict accurately if a DD was truly
noticed although it was not clicked or hovered, then we can
be more confident that the user engaged with it and improve
our true negative prediction rate. On the other hand, if we

can predict when a DD was indeed not noticed, although it
was clicked or hovered, we can reduce our false negative rate.

Regarding our second user engagement proxy, usefulness
of the KM display, we observe that the dwellTime model
managed, to some extent, to capture how users engage with
the DDs by considering the amount of time they spend on the
page. In fact, the model that combines the three baselines
performs equally good as ours in terms of accuracy and recall.
However, it lacks the precision of our model. In other words,
when that model predicts the positive class it will be less
often correct and, as a result, will not provide trustworthy
judgements. Our model’s ability to predict more accurately
when a user finds a DD useful has important implications on
the methodology for understanding the impact of launching a
new DD, modifying its existing design, and how that change
may affect web search UIs.
In the final proxy of user engagement, perceived task du-

ration, our model was able to discriminate more accurately
than any baseline when users felt that they have completed
their task faster, given that this belief is attributed to the
examined DD. This information, combined with the previ-
ous grounds truths that we predicted successfully allows us
to understand better, for example, how users engage with
ads, images or videos; something which existing click-based
models do not address adequately due to their current biases
and limitations.
While our prediction tasks may be useful for descriptive

analysis, the main practical use of our models is perhaps
to automatically select or lay out the DDs. This is an
interesting research avenue, because DDs are optional for
the SERPs and so the user behaviour could provide signals
about whether DDs should be shown or not in particular
queries. Ultimately, modelling user engagement with DDs has
wide-ranging applications in web search ranking, evaluation
and interface design. Therefore we anticipate that further
research on this topic may have an important impact on
future web search interfaces.
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