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ABSTRACT
We introduce KeyTime, a new technique and accompanying
software for predicting the production times of users’ stroke
gestures articulated on touchscreens. KeyTime employs the
principles and concepts of the Kinematic Theory, such as
lognormal modeling of stroke gestures’ velocity profiles, to
estimate gesture production times significantly more accu-
rately than existing approaches. Our experimental results ob-
tained on several public datasets show that KeyTime predicts
user-independent production times that correlate r= .99 with
groundtruth from just one example of a gesture articulation,
while delivering an average error in the predicted time magni-
tude that is 3 to 6 times smaller than that delivered by CLC,
the best prediction technique up to date. Moreover, KeyTime
reports a wide range of useful statistics, such as the trimmed
mean, median, standard deviation, and confidence intervals,
providing practitioners with unprecedented levels of accuracy
and sophistication to characterize their users’ a priori time
performance with stroke gesture input.
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INTRODUCTION
Stroke gestures, such as those produced on touchscreens, have
gained considerable interest in the research and practice of user
interface design as excellent shortcuts for specific functions
or sequences thereof [6,21,38,52]; e.g., a letter “B” drawn
on the home screen of a smartphone could be mapped to
a tedious sequence of commands, such as “go to Settings
→ Battery and Performance → Power Settings and tog-
gle the Balanced option.” Compared to traditional input tech-
niques based on item selection from menus, stroke gestures are
not only faster, but they also reduce users’ cognitive load and
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True production time:
µ = 600ms

State-of-the-art estimation:
M = 1,793ms (off by 66.5%)

KeyTime estimation:
M = 655ms (off by 8.4%)
SD = 37ms
CI95% = [634, 677]ms

Figure 1. KeyTime predicts users’ performance for a given gesture by
computing a representative, user-independent prototype of that gesture
(thick line) using synthetic articulations (thin gray lines) automatically
derived from a single example provided by the designer. Additionally,
unlike other techniques, KeyTime delivers a wide palette of predictors
for production times, such as variances and confidence intervals.

visual attention [6,53] and increase usability [21,24]. More-
over, stroke gestures represent the only effective input tech-
nique for some user categories to operate touchscreen devices
effectively, such as users with visual impairments [17]. In fact,
popular screen readers, such as VoiceOver and Google Talk-
Back, already employ a large variety of such stroke gesture
commands, e.g., a two-finger flick down reads the screen from
the VoiceOver cursor to the end of the current page.1

The production time of a stroke gesture, i.e., how long it
takes users, on average, to produce a 2D handwritten trace
on a touch-sensitive surface, is one essential aspect of user
performance with gesture input [9,11,37,47]. Such insightful
information about users’ performance represents a valuable
asset for practitioners to inform gesture design directly, e.g.,
what are the fastest gestures to produce [6,11] or indirectly,
e.g., what are the easiest gestures to execute from a given
set [37,47]. In fact, the research literature has repeatedly
stressed the importance of designing gesture commands that
are easy to understand, learn, and recall and, consequently, fast
to articulate [6,11,19,38,53]. Moreover, gesture production
time turned out to be an excellent predictor of users’ subjective
perceptions of the difficulty to articulate stroke gestures [37,
47]. In this context, it is important for user interface designers
to be able to estimate a priori, as accurately as possible, users’
input performance in order to save considerable time and effort
demanded by subsequent user evaluations and/or gesture set
redesigns.

1https://apple.com/voiceover/info/guide/1131.html
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The problem of predicting gesture production times has been
addressed in the community with various techniques, from
simple estimation rules [16] and training procedures [47] to
complex models of the geometry of stroke gesture paths [9].
However, today’s best technique to predict the production
times of stroke gestures, known as the Curves, Lines, and
Corners (CLC) model [9], was derived more than 10 years ago
when the state of the art in stroke gesture processing, analysis,
and recognition was not as mature as it is today [3,21,36,39,40,
43,44] and, unavoidably, came with important limitations in
terms of flexibility and accuracy [9,11]. For instance, CLC can
only provide a single prediction value,2 which is insufficient
to characterize the variation in gesture articulation within and
between users [3,43,44] (low flexibility). Also, although being
accurate at providing a relative ranking of gestures according
to their production times [9], CLC is known to overestimate the
actual magnitudes of predicted times [9,11,47] (low accuracy).
Therefore, better models of gesture articulation in the time
domain are needed to assist designers with accurate predictions
of users’ time performance with gesture input on touchscreens.

In this paper, we introduce KeyTime, a new technique that
relies on the principles of the Kinematic Theory [31,32,33]
to predict the production times of stroke gestures. In its sim-
plest form, KeyTime delivers a very accurate prediction of the
user-independent production time of a given gesture type, e.g.,
the expected time of the gesture shown in Figure 1 is 655ms,
which is off by just 55ms from the actual measured time com-
pared to CLC’s estimation of 1,793ms. In its true strength,
however, KeyTime computes a variety of predictors for pro-
duction times: mean, median, trimmed and winsorized means,
variance, standard deviation, standard error, and confidence
intervals that, together, deliver a rich and sophisticated char-
acterization of users’ time performance with stroke gesture
input; e.g., the 95% confidence interval predicted by KeyTime
for the gesture shown in Figure 1 is [634, 677]ms.

A practical example
In the following, we show with a straightforward example the
advantage of estimating gesture production times not with a
single value, but rather with ranges of variation, expressed
in this case with the standard deviation and 95% confidence
interval. Imagine a designer who wants to decide which of
three gestures, A, B, or C, to use for popping up a contextual
menu in some graphical interface. Knowing that the task will
be executed frequently by users, the associated gesture com-
mand should be “fast and easy to perform.” By employing
a production time estimator such as CLC [9], the designer
finds that gesture A will take approximately 972ms to per-
form, gesture B will take 1,090ms, while C will be executed
in about 2,886ms.3 Based on this information, the designer
decides to assign gesture A to the high-priority contextual
menu function and use gesture B for another, less frequent
task. Given that A is faster than B, A is also going to be
perceived by users easier to execute than B according to the
first rule of estimating gesture difficulty of Vatavu et al. [47]

2 We will use the terms “prediction” and “estimation” interchange-
ably in this work to denote “an approximation of a result.”

3Actual values computed on the GDS dataset [52] (A: “triangle”,
B: “pigtail”, C: “star”), which we analyze later in this paper.

(p.101), so the designer can rest assured that both design cri-
teria are met. The application is released and, surprisingly,
feedback reports start coming in that users struggle with the
contextual menu feature. The designer looks at the applica-
tion logs and notices that gesture A not only is performed
slower than B but also with larger variability (SD = 925ms,
CI95% = [1202, 1402]ms), while gesture B has narrower vari-
ation (SD = 606ms, CI95% = [886, 1017]ms). In fact, users
are much more precise at executing gesture B than A, an
outcome that unfortunately impacted negatively the usability
of the interface. In this case, the designer did not dispose of
sufficient information and, consequently, adopted a subopti-
mal decision. Other similar examples can be easily imagined
by the reader, such as the time predictor being not accurate
enough [11] or its parameters needing to be tweaked to specific
users to maximize prediction accuracy [9] (p.1502).

Contributions
To enable effective gesture designs, the production time of
a gesture needs to be accurately estimated. This process,
however, requires computing both measures of central ten-
dency (i.e., the expected production time of a gesture) and,
equally important, measures of variation as well; i.e., how
much are users expected to deviate their production times
from the mean? Given that users are known to vary their
gesture articulations [3,44], it also causes variation in their
production times. Thus, the mean time taken alone cannot
provide a realistic picture of the expected user performance.
As shown before in the literature, the CLC model can be far
off [11] and, unfortunately, the HCI community has not been
offered yet a more accurate estimator. Our new technique is
not only far more accurate than the state of the art [9,16], but
the extra information given by location and dispersion-based
measures can tell the practitioner the range in which the mean
time is likely to lie and also how much to expect individual
times to deviate from the mean. Therefore, with this work,
we touch a key aspect by showing that the problem of time
estimation is not a punctual one (i.e., a single value), but it
should rather be approached from the perspective of variation,
for which the “interval” (e.g., 95% or 99% CIs, ±SDs, etc.) is
the appropriate concept to employ.

Our contributions in this work are as follows:

1. We introduce KeyTime, a new technique grounded on the
solid foundation of the Kinematic Theory [31,32,33] to
compute accurate predictions of stroke gesture production
times, articulated e.g. on a touchscreen.

2. We present an evaluation of KeyTime on three public
datasets (14,240 unistroke gestures collected from 35 par-
ticipants), and we show that KeyTime outperforms state-
of-the-art techniques [9,16] both in terms of relative and
absolute prediction accuracy.

3. We also show how KeyTime can be used to compute a wide
range of useful predictors of location (e.g., mean, median,
95% and 99% confidence intervals) and dispersion (e.g.,
variance and standard deviation), one of the unique features
of KeyTime, unmatched by and unattainable with any of the
techniques before it.
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Figure 2. The KeyTime web application reports a wide range of statistics to characterize user-independent stroke gesture production times from just
one provided example. The application is available at https://luis.leiva.name/keytime/.

Predicting production times with KeyTime
Before proceeding further, we take a brief moment to illustrate
how KeyTime operates and how easy it is for designers and
researchers to access a wide range of time statistics regard-
ing users’ a priori gesture input performance. Suppose that a
designer wishes to implement a “delete” command with the
gesture depicted in Figure 1 (which is actually the “delete”
gesture of the GDS dataset [52] that we borrow here to il-
lustrate our example). The designer wants to know how fast
users will be able to produce this gesture. Normally, the task
would be challenging, because of the within and between-users
variation in producing gestures, as documented in the litera-
ture [3,43,44]. However, KeyTime turns the prediction task
into a simple, one-click procedure (see Figure 2), as follows:

a. The designer draws the “delete” gesture in free form once,
using the KeyTime web interface and clicks on the ‘Submit’
button.

b. KeyTime automatically computes a wide range of statistics
that characterize the user-independent time performance
expected for the provided gesture type; see Figure 2.

The results are available in the web application, as shown
in Figure 2 or, for custom setups, they can be queried using
KeyTime’s JSON RESTful API, as shown in Figure 3.

RELATED WORK
We review in this section prior work that examined user perfor-
mance with stroke gesture input. We also discuss applications
of this prior work to gesture recognition, synthesis, and analy-
sis, highlighting the importance of production time as a key
feature for gesture-based user interfaces.

Evaluating users’ stroke gesture input performance
Researchers have employed a variety of measures to char-
acterize users’ performance with stroke gesture input. For
example, Blagojevic et al. [8] examined 114 distinct gesture
features to inform the design of an accurate feature-based

HTTP/1.1 200 OK
Connection: close

{
"errors": null,
"result": {

"confidence_intervals": {
"99%": [796, 814],
"95%": [799, 812],
"90%": [800, 811]

},
"max": 1776,
"mean": 805
"median": 815,
"min": 129,
"range": 1647,
"standard_deviation": 337,
"standard_error": 34,
"trimmed_mean": 797,
"values": [884, 841, 626, ...],
"variance": 113428,
"winsorized_mean": 791,

}
}

Figure 3. KeyTime API response for the gesture shown in Figure 2.

statistical recognizer. Other researchers looked for representa-
tive features to depict various aspects of users’ performance.
For example, Anthony et al. [3] evaluated gesture articulation
consistency, and showed that users are highly consistent (eval-
uations within-users showed .91 on a scale of 0 to 1), but also
highly individual (between-users consistency was .55). The
study also reported a log-linear relationship with the number
of strokes: less consistency was observed for gestures that
were produced with more strokes.

Gesture features and measures were also used to inform the
design of gesture sets. For example, Long et al. [25] were
interested in gesture shapes that would be easy for users to
learn and recall. They found that users’ perceptions of ges-
tures’ visual similarity were related to several gesture features
(such as gesture length, area, or various angles), and derived a
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model for perceived gesture similarity that correlated r= .56
with groundtruth.

Researchers have also employed gesture measures to under-
stand differences in users’ input performance between vari-
ous user categories or input conditions. For example, Vatavu
et al. [46] employed “path accuracy” measurements to quan-
tify deviations from ideal straight-line paths for drag-and-drop
gestures produced by small children on touchscreens. Kane
et al. [18] examined specific gesture features, such as “loca-
tion accuracy” or “line steadiness” to contrast touch gestures
produced by people with and without visual impairments. Tu
et al. [41] also introduced various specialized geometric and
kinematic features, such as “axial symmetry” or “intersect-
ing points deviation,” to understand the differences between
gestures produced with pen and finger.

Interested in a more sophisticated characterization of the
amount of variation in articulation along the gesture path,
Vatavu et al. [44] introduced a set of relative accuracy mea-
sures of performance to describe the geometric, kinematic,
and articulation accuracy of stroke gestures with respect to
canonical gesture templates, such as those present in recog-
nizers’ training sets. A follow-up work introduced “gesture
heatmaps” as colorful visualizations of stroke gesture paths to
facilitate understanding of recognition errors and to highlight
differences in articulation under various conditions [45].

Such gesture measures and features introduced by prior work
have proven very useful to characterize various aspects of user
performance with stroke gesture input, as well as to inform
gesture user interface design. However, another line of work
has focused on a more fundamental understanding of human
movement during stroke gesture production by recurring to
key aspects from the motor control theory. We discuss this
work in the following section.

Time performance models for stroke gesture input
Simple forms of stroke-based input, such as pointing and item
selection from menus, have been extensively studied with Fitts’
law and its variations [7,13,51], the steering law [1], or the
Keystroke-Level Model (KLM) [10]. However, more complex
stroke input techniques, such as handwriting or free-form ges-
ture paths drawn on touchscreens, need more sophisticated
models to characterize human performance effectively. Com-
prehensive surveys in this area are provided by Quinn and
Zhai [36] and Müller et al. [29].

Isokoski [16] proposed a first-order rank model for stroke
gestures that used the number of approximating line segments
as a predictor of that gesture’s shape complexity. Although
Isokoski’s model did not attempt to quantify production time
explicitly, it was nevertheless found to predict the relative
ranking of gestures by their production times with reasonable
accuracy [16]. In contrast, Cao and Zhai’s CLC model [9]
was specifically designed to predict the actual magnitudes of
stroke gesture production times. The CLC model operates
by dividing the gesture shape into curves, straight lines, and
corners, for which production times are estimated individually.
The predicted time for the gesture is computed as the sum of
the individual production times needed to articulate each of

the gesture’s elementary parts. The CLC model works very
well as a first-order predictor, but it tends to overestimate
production times [11,47], presumably because of its inability
to compensate for users’ articulation skills [9]. Nevertheless,
CLC represents the state of the art in predicting stroke gesture
production times.

Other gesture models have addressed specific application do-
mains for stroke gesture input, such as text entry. For example,
Quinn and Zhai [36] developed a model of gesture produc-
tion that can predict realistic gesture trajectories for arbitrary
shapewriting tasks. The model employs “statistical via-points”
located in each key traveled by the finger with distributions
that reflect the sensorimotor noise and speed-accuracy trade-
off while typing. However, Quinn and Zhai’s model assumes
interaction with a keyboard layout and does not predict abso-
lute movement time [29].

Viviani et al. [48,49] were among the first researchers to in-
vestigate the fundamentals of human handwriting and drawing
behavior, which led to the 2/3 power law of curvature that
connected the speed of articulation with the curvature of the
produced stroke. An interesting line of research has been
the application of minimization principles to motor control,
among which Flash and Hogan’s minimum-jerk theory [14]
has become particularly influential in the HCI literature [36].
This theory argued that human trajectories chosen by the motor
system converge toward path smoothness, and can be used to
successfully predict the bell-shaped velocity profiles of articu-
lated strokes observed experimentally. Further investigations
of human movements showed that lognormal-based models,
such as those postulated by the Kinematic Theory [31,32,33],
are arguably the most accurate descriptors of human move-
ments known today, compared to which “other models can be
considered as successive approximations” [12].

The Kinematic Theory is strongly supported mathematically
by an extension of the Central Limit Theorem [35], and has
been extensively verified experimentally [30]. In the context
set by this theory, gestures are planned in advance in terms
of their spatial organization described by a map of “virtual
targets.” This map is activated as a sequence of commands
and the human peripheral system reacts to these commands.
The overall gesture trajectory is the result of the time superim-
position of the different velocity profiles, and the articulation
fluency is directly linked to the quality of this superimposition.

The Kinematic Theory has recently found many applications
to stroke gesture input. For example, the “Gestures à Go
Go” (G3) application [22,26] was introduced to synthesize
stroke gestures from just a single example provided by the
designer. Leiva et al. [22,23,24] evaluated the articulation
characteristics of synthetic stroke gestures under various con-
ditions, such as pen vs. finger input, slow vs. fast speed, or for
various user categories. They showed that synthetic gestures
possess the same characteristics as gestures produced by ac-
tual users [20,23], with direct application to training gesture
recognizers efficiently and to synthesize stroke gestures across
user categories [24]. In this work, we rely on the concepts and
principles of the Kinematic Theory to introduce the KeyTime
technique.
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Summary
Next to recognition accuracy, the production time of a gesture
represents the essential aspect that determines human perfor-
mance directly: fast gestures make for ideal shortcuts [6]. The
overall goal of every user interface designer is to optimize
input efficiency, which has been traditionally evaluated with
error rates and task times. For the specific domain of stroke
gestures, however, production time represents an instance of
“task time” and, consequently, stands as a direct measure of
input efficiency. Moreover, production time also describes
other aspects of user performance with stroke gesture input,
indirectly. For example, Rekik et al. [37] and Vatavu et al. [47]
found that production times correlate very strongly (r ≥ .95)
with users’ perceptions of the difficulty to articulate gestures.

In this context, it is important for designers to be able to
estimate users’ stroke gesture time performance a priori to
inform their gesture set designs. In this work, we show that
existing models [9,16] are neither accurate or precise and,
consequently, new techniques are needed to the predict gesture
production times reliably. KeyTime comes to address this
need by delivering very accurate, rich, user-independent time
predictions of users’ performance with stroke gesture input.

KEYTIME
We introduce in this section our new technique for predict-
ing the production times of stroke gestures by relying on the
theoretical concepts and practical principles of the Kinematic
Theory. KeyTime employs an internal model, i.e., the Sigma-
Lognormal model (ΣΛ) of the Kinematic Theory [31,32], to
describe users’ gesture articulations in the time domain as an
optimum set of lognormal-based velocity profiles, and then
uses the model to synthesize as many articulation variations
as possible for a given gesture type, reflective of the actual
articulations of the users [22,23]. The production times of
all synthesized gestures are then compiled into an accurate,
user-independent estimate of that gesture’s production time.
Before we describe the KeyTime technique, we review the core
concepts of the Kinematic Theory, such as computing the ΣΛ
model from one single articulation sample [22], the concept of
virtual targets [31], and computation of the model parameters,
referred to as the central and peripheral parameters [31,32].

Technical overview of the Kinematic Theory
The Kinematic Theory is a solid framework for studying hu-
man movement production, which has been recently adopted
in HCI for stroke gesture synthesis and recognition [22,23,24].
The latest instantiation of this framework is the Sigma-
Lognormal model [34], which was demonstrated to outperform
many other models [12,33].

The Kinematic Theory assumes that a complex handwritten
trace, e.g., a character, word, signature, or stroke gesture, is
composed of a series of primitives4 connecting a sequence
of “virtual targets”, such as those illustrated in Figure 4. The
virtual targets correspond to near-zero-velocity peaks in the
gesture strokes and are automatically computed by the ΣΛ

4The Kinematic Theory uses the term “stroke” to denote what we call
“primitive” in this paper. In HCI, we refer to a gesture stroke as the sequence
of points bewteen two consecutive pen-down and pen-up events.
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Figure 4. Left: A gesture stroke (thick line) is described by a series of
primitives (dotted arcs) that connect virtual targets (black dots). Right:
primitives are described in terms of their lognormal velocity profiles.

model [31,32]. These primitives form the “action plan” of the
user in relation to a specific gesture type which, by means of
the neuromuscular network, will produce a path trajectory in
the form of a handwritten trace on the touch-sensing surface.

The ΣΛ model computes the velocity profile of each primitive
(~vi) according to the lognormal function illustrated below,
which is defined by a set of central (D,t0,θ) and peripheral
(µ,σ) parameters of ΣΛ [31]:

‖~vi(t)‖ = DiΛ(t; t0i ,µi,σ
2
i )

=
Di

σi

√
2π(t− t0i)

exp

(−[ln(t− t0i)− µi]
2

2σ2
i

)

(1)

~v(t) =

N∑

i=1

~vi(t) =

N∑

i=1

[
cosφi(t)
sinφi(t)

]
DiΛ(t; t0i ,µi,σ

2
i ) (2)

φi(t) = θsi +
θei − θsi

2

[
1 + erf

(
ln(t− t0i)− µi

σi

√
2

)]
(3)

We employ the ΣΛ extractor from Martín-Albo et al. [28]
to compute the parameter values that best fit the observed
velocity profiles. Once the gesture primitives are modeled,
perturbations can be added to the model parameters in order
to produce different gesture variations, as follows:

p∗i = pi + npi (4)

where pi = {µi,σi,Di,θsi ,θei} denote the ΣΛ parameters and
npi

= U(−ni,ni) the noise applied to each primitive accord-
ing to a uniform distribution centered around that particular
ΣΛ parameter [23]. For example, perturbations in µ and σ
mimic peripheral noise, e.g., a user who articulates the same
gesture slightly different each time; perturbations in D and θ
refer to central fluctuations that occur in the position of the
virtual targets of the action plan from one articulation to the
next.

For more details, we refer the reader interested in the ΣΛ
mathematical formulation to Plamondon et al. [31,32,34] and
to Leiva et al. [22,23,24] and Martín-Albo et al. [27,28] for
applications to stroke gesture input and handwriting analysis,
respectively. These works also include diverse studies on noise
variation and how it impacts recognition performance.
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The KeyTime technique
KeyTime provides a prediction (t̂) of the expected production
time (t) of a given gesture type g, e.g., 1,250ms for a “square”
gesture, starting from one sample of g that can be provided
by the designers themselves. The gesture sample is used to
synthesize many different potential articulations of g as in
Leiva et al. [22], each articulation having different yet real-
istic production times. This technique was demonstrated to
produce human-like synthetic gestures that possess the same
articulation characteristics as actual gestures produced by real
users, with comparable variations in path length, area size,
production time, and articulation speed [20,23].

Following the principles of the Kinematic Theory, KeyTime
constructs a model for gesture g as the summation of its stroke
primitives [31]; see Figure 4 on the previous page. The ending
time of a single primitive is given by:

tei = t0i + exp(µi + 3σi) (5)

At this time, 99.97% of the trajectory distance pertaining to the
gesture stroke has been already covered by the ith primitive.
Then, the production time of the modeled gesture is teL − t01 ,
where L denotes the last primitive.

Let n be different variations generated by KeyTime for gesture
g, for which the corresponding production times computed
with the approach described above are ti, i = 1..n. Starting
from these values, KeyTime computes a prediction of the
expected production time of g as follows:

t̂ = F(t1, t2, . . . , tn) (6)

where F is a positive real-valued function. In this work, we
implement and evaluate the following variants for F :

1. The arithmetic mean (t̂M) of the arguments represents the
average production time of all the synthesized versions of
gesture g:

t̂M =
1

n

n∑

i=1

ti (7)

2. The median (t̂Mdn) is the middle value i = n+1
2 , assuming

all values are sorted, or, equivalently, the second quartile
of ti, i = 1..n. Unlike the mean, however, the median is
much less affected by outliers and, consequently, it should
provide a better estimate of the expected production time
given ti.

3. The 20%-trimmed mean (t̂.20) is computed by sorting the
values of the arguments ti, removing the lowest 20% as
well as the highest 20%, and then averaging the values
that remain in the center, i.e., 60% of the data. The 20%-
trimmed mean represents a robust measure of location [50]
especially when distributions are skewed. Although various
trimming percents can be applied (e.g., 5%, 10%, etc.), a
20% trimming is generally considered to deliver a consid-
erable advantage over no trimming at all (i.e., the mean)
or over the median (50% trimming) [50]. We compute the

20%-trimmed mean as follows:

t̂.20 =
1

n

[0.8n]∑

i=[0.2n]

tσ(i) (8)

where tσ(i) denotes the ascending ordered list of the ti
values and [·] is the integer part function.

4. The winsorized mean (t̂W) replaces the lowest and high-
est p% of the ti values with the smallest and highest non-
trimmed value, i.e., the smallest p% of the observations
are pulled up to the smallest ti value coming right next,
while the largest p% are pulled down to the largest value
just before them. We use p = 20% for the same reasons
presented previously. The winsorized mean is the average
of the winsorized values:

t̂W =
1

n

n∑

i=1

t′σ(i) (9)

where t′i equals ti for values located in the center (60% of
the values), t[0.2n] for the lowest 20% of the values (i <
[0.2n]), and t[0.8n] for the highest 20% (i > [0.8n]).

Table 1 shows a calculation example of these four measures.
While the arithmetic mean employs all the values to produce
an estimate of central tendency, the 20%-trimmed mean dis-
cards the values in gray (12, 28 and 90, 192, respectively),
and the winsorized mean replaces those values with the next
eligible ones (40 and 87), highlighted in orange. This example
illustrates how various measures of central tendency are more
or less representative of the underlying “true” distribution.

Sample time values ti (i = 1..10) t̂M t̂Mdn t̂.20 t̂W

12, 28, 40, 48, 48, 58, 85, 87, 90, 192 68.8 53.0 61.0 62.0

Table 1. The mean (t̂M), median (t̂Mdn), 20%-trimmed mean (t̂.20),
and the winsorized mean (t̂W) of a set of 10 values.

In this work, we use n = 100 for the number of synthetic
gestures and corresponding production time values ti, i =
1..n, that KeyTime synthesizes to predict the production time
of a given gesture type. Although in theory n could be chosen
as large as desired, previous work has shown that values of
n > 100 do not necessarily contribute to substantial variation
in the pool of synthetic gestures that are being generated with
the ΣΛ model; see Leiva et al. [22] (p.19).

EVALUATION
We conducted an experiment to evaluate the accuracy of Key-
Time for predicting the production time of stroke gestures.

Experiment design
We manipulated one independent variable, TIME-PREDICTOR,
with three levels: (1) KeyTime, our new technique, (2) CLC,
the best competitor from the literature [9], and (3) groundtruth,
the control condition, represented by the actual production
times of gestures articulated by users. The performance of
the time predictors was evaluated with the following accuracy
measures, acting as dependent variables in our experiment:
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(a) GDS dataset (16 gesture types) (b) Difficulty-1 dataset (18 gesture types) (c) Difficulty-2 dataset (20 gesture types)

Figure 5. Gesture types (actual examples) from the GDS, Difficulty-1, and Difficulty-2 datasets [47,52].

1. RANKING-ACCURACY (or RELATIVE-ACCURACY) eval-
uates the extent to which a TIME-PREDICTOR is able to
deliver the correct ranking of gestures according to their pro-
duction times. For example, if the mean production times
of the “square” and “arrow” gesture types are 1,778ms and
1,900ms, respectively, and their predicted production times
also respect this relative order, i.e., t̂square < t̂arrow, then the
relative prediction is accurate. For the general case with
more than two gestures, the ranking accuracy can be directly
evaluated against groundtruth times using Spearman’s rank
correlation coefficient rs. The closer rs to 1, the more ac-
curate the TIME-PREDICTOR is for reporting the relative
order of gesture production times.

2. ABSOLUTE-ACCURACY evaluates the extent to which a
TIME-PREDICTOR delivers the correct magnitude of the
expected production time of a given gesture type. The
closer the predicted time to the groundtruth time, the more
accurate the TIME-PREDICTOR is.

Datasets
We employed the following publicly available gesture datasets:

1. The GDS dataset [52] contains 4,800 samples of 16 distinct
gesture types (see Figure 5a) performed by ten participants
with a stylus on an iPAQ Pocket PC. Because participants
were asked to articulate gestures at three different speeds
(slow, medium, and fast), we predicted production times
separately for each articulation speed, which corresponds
to using three sub-datasets in our analysis:

1.1. GDS-fast: 1,600 gestures performed by ten partici-
pants at fast speed (10 executions per participant per gesture
type). Participants received the instruction “go as fast as
you can.”

1.2. GDS-medium: 1,600 gestures performed at medium
speed by the same participants (10 executions per partici-
pant per gesture type). Participants received the instruction
“balance speed and accuracy.”

1.3. GDS-slow: 1,600 gestures performed at slow speed
by the same participants (10 executions per participant per
gesture type). Participants received the instruction “be as
accurate as possible.”

2. The Difficulty-1 dataset [47] contains 5,040 samples of
18 distinct gesture types (Figure 5b) performed by 14 par-
ticipants with a stylus on a Wacom DTU-710 display (20
executions per participant per gesture type).

3. The Difficulty-2 dataset [47] contains 4,400 samples of
20 distinct gesture types (Figure 5c) performed by 11 par-
ticipants with a stylus on a Wacom DTU-710 display (20
executions per participant per gesture type).

In total, we evaluate the prediction performance of KeyTime
on 14,240 samples of 48 distinct gesture types collected under
various conditions [47,52] from 35 participants. These gesture
types represent a good mixture of geometrical shapes, letters,
digits, and symbols with a large variety and wide range of
complexity levels (assessed using Isokoski’s shape complex-
ity measure [16] between 2 for the “check” [52] and “right
arrow” [47] gestures up to 10 for the “triangles chain” sym-
bol [47]), and a good balance between familiar (i.e., known and
practiced) and non-familiar (i.e., first time seen) symbols [47].

Methodology
CLC production times were generated with the PlayCLC appli-
cation5 provided as companion to the CLC paper [9]. PlayCLC
enables the designer to create gesture models as a sequence
of lines and curves, from which it automatically computes a
prediction of that gesture’s production time.

In our own testing, we observed that results vary with the
designer’s ability to draw curves. To address this aspect, three
researchers used PlayCLC to create models for the gestures in
Figure 5 and the resulted production times were averaged for
each gesture type.

foreach gesture g ∈ [1..G] do
foreach participant p ∈ [1..P ] do

foreach execution e ∈ [1..E] do
T ← generate N samples of type g from e using ΣΛ

t̂← AVERAGE(T )
ttrue ← te ∈ {P ∩ p}

Figure 6. The user-independent, leave-one-out cross-validation proce-
dure employed in our evaluation experiment. The function AVERAGE
from this pseudocode implements any variant of KeyTime measures.

We computed production times for KeyTime using the leave-
one-out cross-validation procedure depicted in Figure 6, which
considers each execution e from each gesture g produced by
each participant p as the representative gesture sample from
which the ΣΛ model parameters are computed. Notice also
that the true time is not known by KeyTime.

5http://www.cs.toronto.edu/~caox/PlayCLC/PlayCLC.
htm (now defunct, but accessible via http://web.archive.org).
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Figure 7. Predicted production times for each gesture from the evaluation datasets. In these figures, we show the arithmetic mean (t̂M) for KeyTime.
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Figure 8. Predicted production times delivered by CLC and KeyTime vs. groundtruth (True). Error bars denote the standard error of the mean.

RESULTS
We start our analysis of the results by discussing the rela-
tive accuracy of production times delivered by each TIME-
ESTIMATOR. Then, we analyze the accuracy of the absolute
magnitudes of predicted times, which is a much stronger per-
formance criterion.

Ranking accuracy: the relative order of production times
Figure 7 plots predicted times delivered by KeyTime and CLC
vs. groundtruth for each dataset. It is easy to see that CLC
values tend to accumulate below the diagonal line, a result that
confirms previous observations from the literature about CLC
overestimating the magnitude of predicted times [9,11]. Key-
Time, however, seems to deliver predictions that are very close
to the diagonal line, which in turn represents the performance
of an ideal time predictor. We verified these initial observa-
tions with Spearman correlations between CLC, Isokoski’s
shape complexity measure, and KeyTime, respectively, against
groundtruth data; see Table 2. While the correlation co-
efficients for CLC reached a maximum of .620 (p < .01),
all coefficients for KeyTime’s t̂ predictor were above .979
(p< .001) with a maximum of .992 for the GDS-medium
dataset. Fisher tests revealed statistically significant differ-
ences between CLC and KeyTime correlation coefficients for
all datasets (p < .001).

Absolute accuracy: the magnitude of production times
Figure 8 illustrates the magnitudes of production times pre-
dicted by KeyTime and CLC, respectively, vs. groundtruth for
each evaluation dataset. Overall, KeyTime delivered time pre-
dictions that were much closer to the actual production times
than the predictions delivered by CLC; e.g. for a groundtruth

average of 1,876ms in the Difficulty-1 dataset KeyTime pro-
vided an estimation of t̂W = 1,864ms, whereas CLC esti-
mated 2,764ms. As noted before, CLC predictions tended to
overestimate the magnitude of production times, except for
the GDS-slow dataset, for which participants were actually
instructed to spend more time to articulate gestures as accu-
rately as possible. KeyTime predictions were very close to the
groundtruth for all datasets, with average error offsets from as
low as 5ms reached by t̂M for the GDS-fast dataset.

A one-way ANOVA procedure showed a statistically signif-
icant effect of TIME-ESTIMATOR for four out of our five
datasets; see Table 3. Post-hoc pairwise t-tests (Bonferroni
corrected) revealed better performance of all implementations
of KeyTime (t̂M, t̂Mdn, t̂.20, t̂W) compared to CLC for all
datasets (p < .05) excepting GDS-slow, in which case all
time estimators performed equally (p > .05). In any case, we
found no statistically significant differences between KeyTime
and true times, which builds our confidence that KeyTime does
not only produce more accurate time predictions than CLC,
but that KeyTime’s predictions are also on par with users’ ac-
tual time performance with stroke gesture input. Additionally,
we found no statistically significant differences between the
various implementations of KeyTime predictors.

These results show that KeyTime is much more accurate than
its direct competitor CLC. Our user-independent evaluations
also confirm previous results from the literature that one ges-
ture sample is sufficient to generate a reliable ΣΛ model of
the gesture path [22] that, when instantiated with represen-
tative values for the model parameters [23], can generate
synthetic gestures with human-like appearance and charac-
teristics [20,23]. In the next section, we show how KeyTime
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Characteristics of the evaluation datasets Spearman correlations

Dataset
Distinct
gestures

Total
gestures

Num.
participants

Average
gesture time Isokoski CLC KeyTime predictors

t̂M t̂Mdn t̂.20 t̂W

1. GDS-fast 16 1,600 10 667 ms .64 ⋆⋆ .517 ⋆ .991 ⋆⋆⋆ .976 ⋆⋆⋆ .991 ⋆⋆⋆ .988 ⋆⋆⋆

2. GDS-medium 16 1,600 10 1153 ms .63 ⋆⋆ .614 ⋆ .992 ⋆⋆⋆ .935 ⋆⋆⋆ .947 ⋆⋆⋆ .938 ⋆⋆⋆

3. GDS-slow 16 1,600 10 1761 ms .65 ⋆⋆ .620 ⋆⋆ .979 ⋆⋆⋆ .867 ⋆⋆⋆ .947 ⋆⋆⋆ .961 ⋆⋆⋆

4. Difficulty-1 18 5,040 14 1878 ms .81 ⋆⋆⋆ .013 n.s. .975 ⋆⋆⋆ .979 ⋆⋆⋆ .975 ⋆⋆⋆ .975 ⋆⋆⋆

5. Difficulty-2 20 4,400 11 2088 ms .78 ⋆⋆⋆ .627 ⋆⋆ .985 ⋆⋆⋆ .974 ⋆⋆⋆ .986 ⋆⋆⋆ .992 ⋆⋆⋆

Average performance .70 .478 .984 .946 .969 .971
Best (max) performance .81 .627 .991 .979 .991 .992

Table 2. Spearman correlation coefficients (rs) between predicted production times and groundtruth. Gesture datasets are ordered by their average
gesture production times. The highest correlation coefficients are highlighted for each dataset. Statistical significance is denoted as follows: p < .05 (⋆),
p < .01 (⋆⋆), and p < .001 (⋆⋆⋆).

Dataset ANOVA (F -test) p-value η2
p

1. GDS-fast F(5,90) = 36.77 p < .001 .67

2. GDS-medium F(5,90) = 8.92 p < .001 .33

3. GDS-slow F(5,90) = 0.35 p > .050 .02

4. Difficulty-1 F(5,102) = 3.82 p < .010 .16

5. Difficulty-2 F(5,114) = 2.23 p < .050 .09

Table 3. Statistical results for production times predicted by KeyTime’s
t̂M, t̂Mdn, t̂.20, t̂W, CLC, and groundtruth.

provides a rich variety of statistical predictions for production
times, unmatched by any technique before it.

TOWARD RICHER PREDICTIONS OF PRODUCTION TIME
KeyTime employs a set of production time measurements ti,
i = 1..n, corresponding to the n synthetic gesture articulations
that it generates under the hood for a given gesture type g.
These individual measurements are employed to deliver a
richer characterization of users’ time performance with stroke
gesture input, as follows:

1. Variance and standard deviation. KeyTime employs the
n time estimates to compute the unbiased sample variance
(s2) and unbiased standard deviation (s) of the predicted
production times for a given gesture type, as follows:

s2 =
1

n− 1

n∑

i=1

(
ti − t̂

)2
(10)

s =
√
s2 (11)

By replacing t̂ in these equations with any of the other time
predictors described in the ‘KeyTime’ section, our technique
provides up to four different computations of variance and
standard deviation for the predicted production times. In
this section, we discuss and evaluate the variance of the
median, as it leads to better difference estimates between
groups while retaining good statistical power [42].

2. Confidence intervals. KeyTime also computes confidence
intervals using the unbiased standard deviation s, as follows:

CIz =

(
t̂− z∗

s√
n
, t̂+ z∗

s√
n

)
(12)

where z∗ =1.645 for 90% CIs, z∗ =1.96 for 95% CIs, and
z∗ =2.576 for 99% CIs.

Figure 9 illustrates 95% confidence intervals predicted by
KeyTime vs. actual groundtruth for the production times of
the gestures from each dataset. For example, the 95% confi-
dence interval predicted by KeyTime’s t̂Mdn for the GDS-fast
dataset was [580,769]ms, very close to the actual interval of
[554,757]ms. As we expected, given KeyTime’s very accu-
rate predictions so far, the Levene’s test for equality of vari-
ances was not statistically significant on any of our evaluation
datasets (0.03 < W < 0.08, p > .05).

These results reconfirm that KeyTime is able to provide un-
precedented levels of accuracy to characterize users’ stroke
gesture production times. Moreover, KeyTime is able to de-
liver sophisticated predictions for production times beyond a
single estimation point (such as the mean), by reporting ac-
curate estimations of the variance, standard deviation, range,
standard error, and customized confidence intervals for pre-
dicted production times.

DISCUSSION
KeyTime delivers accurate predictions of users’ stroke gesture
production times with no effort required from designers. In
this section, we discuss several practical aspects of using Key-
Time with our companion web application, and we point to
some limitations, but also opportunities for future work.

KeyTime as a practical tool over the web
KeyTime is available as a web application at https://luis.
leiva.name/keytime/. Designers draw in free form the ges-
ture type for which they wish to obtain time prediction data
(see Figure 2) and the web application computes and reports
all KeyTime’s location and variation estimators. One require-
ment of KeyTime is that the gesture example provided by the
designer should be reconstructed with high quality, as defined
by the signal-to-noise ratio (SNR) [22]. Previous work sug-
gested that SNR values below 15 dB denote poor execution
quality [2,22,23] and, in such cases, the input gesture should
be discarded. To address this aspect, the KeyTime application
alerts the designer when the provided gesture example does
not have enough quality to generate synthetic gestures. This

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



True t̂M t̂Mdn t̂.20 t̂W
0.0

0.5

1.0

1.5

2.0

2.5

3.0
·103

554

757

606

817

570

751

580

769

587

784T
im

e
(m

s)
GDS-fast

True t̂M t̂Mdn t̂.20 t̂W

·103

948

1293

972

1317

848

1165

888

1213

909

1230

GDS-medium

True t̂M t̂Mdn t̂.20 t̂W

·103

1436

1977

1414

1959

1249

1830

1321

1858

1341

1890

GDS-slow

True t̂M t̂Mdn t̂.20 t̂W

·103

1493

2258

1546

2349

1465

2148

1472

2193

1485

2242

Difficulty-1

True t̂M t̂Mdn t̂.20 t̂W

·103

1749

2424

1798

2457

1738

2369

1744

2371

1752

2383

Difficulty-2

KeyTime KeyTime KeyTime KeyTime KeyTime

Figure 9. Confidence intervals (at 95%) for groundtruth times (True) and production times predicted by KeyTime implementations.

preliminary validation represents an important feature of Key-
Time, which comes as a direct consequence of the fact that
lognormal velocity profiles are the ultimate impulse response
of a human movement [33]. However, we found this situa-
tion to appear extremely rarely in practice: out of the 14,240
stroke gestures that we evaluated in this work, only 22 samples
had SNR< 15 dB, which represents a merely 0.15% of the
datasets.

Accurate estimations from one gesture sample only
KeyTime only needs one gesture example to deliver accurate
predictions of stroke gesture production times, as we showed
in this work with our leave-one-out cross-validation methodol-
ogy. Although using only one gesture example could be seen
as a limitation (i.e., time predictions are bound to the sample
gesture provided by the designer), our experiments revealed
that KeyTime is a very accurate user-independent predictor, re-
porting production times very close in magnitude to the actual
groundtruth data. This performance is explained by the fact
that the gesture synthesizer employed by KeyTime under the
hood [22] uses generic, user-independent value ranges for the
ΣΛ parameters, which were empirically derived from and val-
idated for many user categories by prior work [15,22,24,27].
Concretely, we used in Equation 4 the following noise val-
ues [15,22]: nµ = 0.15, nσ = 0.35, nD = 0.25, nθ = 0.3.
Although we should note that different values may be needed
for different user categories, such as gestures articulated by
visually impaired users [24].

Limitations and future work
We evaluated KeyTime on three public stroke gesture datasets
representing a large total number of 14,240 samples, which
gives us strong confidence in the reliability of our results. Even
if all the gestures from the evaluation datasets were collected
using styli [47,52], we are confident that our results transfer to
touch gestures articulated with the finger as well. In support of
this statement, we refer to previous recent work that actually
compared synthetic versions of gestures articulated with the
finger and the stylus with the same technique as ours involving
the ΣΛ model of the Kinematic Theory [23]. Concretely, em-
pirical results from Leiva et al. [20,22,23] showed that stroke
gestures synthesized from examples collected using the finger
or the stylus are similar (i.e., non-statistically significant differ-
ences) in terms of their geometric, kinematic, and articulation
characteristics [44]. In this context, it is reasonable to conclude

that our results do transfer to finger touch gestures as well,
but further evaluations are always recommendable, which are
left for future work as a sensible reconfirmation of KeyTime’s
performance. More interesting future work includes extending
KeyTime’s applicability to estimate the production times of
multistroke and multitouch gestures, i.e., gestures composed of
more than one stroke and/or articulated with more than one fin-
ger, given the large interest for such gestures types [3,4,5,43].
Also, bimanual gestures, performed with both hands touching
the surface in parallel and/or in sequence [37], represent an-
other challenging direction for further extension of KeyTime.
We leave these interesting explorations as an opportunity for
future work.

CONCLUSION
KeyTime is a new high-performing technique informed by
the Kinematic Theory that delivers very accurate predictions
of users’ stroke gesture production times. Through careful
evaluations, we showed that KeyTime’s predictions are very
close to the actual production times of stroke gestures artic-
ulated by real users. Moreover, KeyTime only requires one
gesture example that designers can produce themselves, and
is readily available to any practitioner both as an online ap-
plication and a RESTful JSON API. KeyTime also raises the
bar for future research on stroke gesture time prediction and
analysis by delivering a wide palette of predictors of location
and dispersion for production times. It is our hope that Key-
Time will provide researchers, designers, and practitioners
with unprecedented levels of accuracy and sophistication to
characterize their users’ a priori time performance with stroke
gesture input, informing better gesture user interface designs.
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