
0

Automatic Internationalization for Just In Time Localization of
Web-based User Interfaces

LUIS A. LEIVA and VICENT ALABAU, Universitat Politècnica de València

The need to modify an application so that it can support different languages and cultural settings can ap-
pear once the application is finished and even in the market. This may introduce serious time delays and
an increase in costs. We solve this problem for web-based software through JITL, a post-hoc method to auto-
matically internationalize websites and web-based applications, without having to modify the source code.
With JITL, users can pull resource strings out of an arbitrary website and perform on-demand localization
tasks. Based on this novel capability, JITL enables a complete infrastructure for collecting, storing, sharing,
and delivering website translations, which invokes a number of exciting scenarios. Our studies show that
JITL leads to significant savings in terms of user effort and, in consequence, money. With JITL, now it is
possible to localize what is needed, when it is needed.

Categories and Subject Descriptors: H.5.2 [User Interfaces]: Prototyping; H.5.3 [Group and Organiza-
tion Interfaces]: Web-based interaction; D.2.2 [Design Tools and Techniques]: User interfaces

General Terms: Human Factors, Languages, Design

Additional Key Words and Phrases: JIT; Internationalization; i18n; Localization; L10n; Translation

1. INTRODUCTION
In order to support a multilingual audience, applications must follow a sequential and
often iterative process based on two equally important levels: first internationalization
(i18n), then localization (L10n). Internationalization consists in decoupling translat-
able text out of the application source code, basically by wrapping each message or
“resource string” with a translation-capable function. After internationalization, the
application is ready to support the requirements of different locales, i.e., specific lan-
guages and countries of the target audience. Then, software localization focuses on re-
flecting the conventions of said target audience, by operating on two sub-levels [Hsieh
et al. 2008; Sun 2001; Yeo 2001]:

(1) Language translation, including jargon, technical terms, etc.
(2) Aesthetic adaptation, including images, colors, branding, etc.

Most companies are well aware of both sub-levels but often opt for the former due
to time and budget limitations [Abraham 2009; Esselink 2000; Esselink 2003; Hogan
et al. 2004; McKethan and White 2005]. After all, while it is true that aesthetic adap-

This work is part of the Valorization and I+D+i Resources program of VLC/CAMPUS and has been funded
by the Spanish MECD as part of the International Excellence Campus program. This work is also supported
by the 7th Framework Program of the European Commision (FP7/2007-13) under grant agreements 287576
(CASMACAT) and 600707 (tranScriptorium).
Authors’ address: L. A. Leiva (corresponding author) and V. Alabau, PRHLT Research Center, Departa-
ment de Sistemes Informàtics i Computació, Universitat Politècnica de València. Camı́ de Vera, s/n – 46022
València, Spain; corresponding author’s email: llt@acm.org.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0000 ACM 1073-0516/0000/-ART0 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:2 L. A. Leiva and V. Alabau

tation can enhance the user experience [Reinecke and Bernstein 2011], an application
cannot be considered as being localized if it does not speak the language of its users.

In short, an internationalized product needs to be localized to a specific audience.
However, localization cannot take place without internationalization. Furthermore,
there are currently no proven techniques for automated approaches for software inter-
nationalization. Our work is aimed at tackling this challenge.

In this article, we focus on web-based UIs, motivated by the fact that today people
use web browsers more than any other class of desktop software on a daily basis.
Moreover, multilingual websites and web-based applications, much like any other type
of software, are crucial to almost every player in the industry [Hogan et al. 2004; Sun
2001]. Thus, as businesses continue to globalize, localizing web-based UIs becomes
more compelling. Last but not least, localization is a unique opportunity of preserving
a language [Keniston 1997; Leiva and Alabau 2012], which puts forward its notable
importance on culture and society.

1.1. Motivation: Lowering i18n/L10n Costs
Software internationalization often occurs during the earliest life-cycle phases of an
application [Hogan et al. 2004; Luong et al. 1995]. However, the need to adapt software
to support different languages and cultural settings can appear once the application
is finished [Wang et al. 2009] and even in the market [Cardeñosa et al. 2006; Troyer
and Casteleyn 2004]. This may introduce serious time delays and an increase in costs,
which go far beyond just engineering. For instance, big companies typically invest $2M
and 12–18 months of their engineering resources in internationalization and delivery
of the first foreign language [SurveyMonkey 2013]. Then, fully localizing a software
product for one additional language can add up to $100K, whereas Microsoft estimates
its costs are $300K or more per product [Collins 2002]. This can be a tall order for small
software companies, but also for big companies to target languages with low strategic
value in terms of market share.

We believe that, for web-based software, it is possible to significantly lower these
costs, inspired by the following principle. In industrial design, Just In Time (JIT) pro-
duction [Ohno 1988] is about having the right material, at the right time, at the right
place, and in the exact amount. Similarly, our method aims to minimize assets (man-
power, effort, time, and, in consequence, money) by only localizing what is required,
when it is required. We have named our method ‘JIT Localization’ (JITL) for obvious
reasons.

1.2. The JITL Concept
Before we get into the details of our technology, it is worth mentioning the basics of
current software localization workflows, as they provided us with a number of design
notions and ideas for improvement.

The localization workflow is usually convoluted and communication-intensive over-
all [Muntés-Mulero et al. 2012; Patel et al. 2009], as it may involve many thousand
people scattered in virtually every country of the world [Huang and Trauth 2007;
Keniston 1997]. The traditional localization workflow can be summarized in the fol-
lowing iterative steps, see Figure 1:

(1) Internationalization, in order to extract resource strings from the UI. Software
developers first generate a message catalog file by extracting resource strings from
the UI. The most popular format for message catalogs in open source software is
the Portable Object (PO), which is basically a collection of resource strings together
with their eventual translations.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:3

(2) Translation of resource strings. This is typically done by editing the message cata-
log file offline, although there are online tools to support this task.

(3) Text insertion of the translated resource strings into the UI. The translated mes-
sage catalog is compiled by the developer and placed into a special directory so that
the UI can fetch the localized strings at runtime.

(4) Evidence sampling. The developer takes some screenshots of the localized UI, so
that translators can validate the translations in context.

(5) Quality control, based on the aforementioned evidence sampling. This process is
highly iterative and usually highly resource-consuming, because any string with a
translation error must be re-translated and re-inserted into the UI.

(6) After quality control, a validated message catalog is generated. The developer in-
serts again all translated resource strings into the UI, as indicated in step (3).

(7) Finally, the UI can be tested with native speakers of the target language.

en-US

Developers

Translators

End users

Traditional Localization Workflow

JITL’s Localization Workflow Legend

(1) (2) (3) (4) (5) (6) (7)

fr-CA

en-US en-US fr-CA fr-CA

Fig. 1: In current localization workflows, resources are pushed by a company. With
JITL, resources are automatically pulled out of the UI.

For most companies, translation is often outsourced to a translation agency. Thus,
at least steps (2) and (5) are performed outside the facilities of the company. This typ-
ically hinders communication and introduces time delays. Since translations become
decoupled from the UI, if an error happens at an early stage, then it is likely to be
propagated to later stages, forcing thus a new iteration loop that will probably cost the
company both time and money.

In contrast, our approach follows the JIT philosophy, and thus is aimed at localizing
what is needed, when it is needed, in order to save time, costs, and user effort. JITL
wants to bring together developers, translators, and end-users with the aim of inte-
grating all parties into the whole localization process, placing a special emphasis on
the end-users. After all, there is no better representative user sample than the actual
users of a website or a web-based application. In sum, all of these target groups can
potentially contribute to localizing web-based software, either by submitting initial
translations or by providing an alternate translation for a particular widget, so that
these are better tailored to a specific locale or country region. The roles of these groups,
however, do change in JITL with respect to the traditional localization workflow.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:4 L. A. Leiva and V. Alabau

First, developers are mostly interested in internationalizing the UI, since it is often
their sole responsibility within the software company. They usually perform an im-
portant re-engineering effort, to ensure later UI localization, by decoupling all trans-
latable strings from the source code. This is by far the most complex and expensive
part of the traditional localization workflow. JITL alleviates this problem since now
developers do not need to worry about internationalization, as it is performed auto-
matically on the client side. As a result, this allows them to concentrate on website
development. However, if developers are not involved in internationalization anymore,
how can strings be traced from UI to code? Actually, JITL manages localization on the
client side, so backtracing to code is not necessary. In fact, JITL has no access to the
source code on the server side. Thus, if backtracing is a must (e.g., the website owner
wants full control over which strings can be localized) then some manual interven-
tion is inevitable. Even so, JITL can be very beneficial to improving both localization
quality and coverage, by allowing regular users to contribute.

Second, end-users are mostly interested in using the application or the website, as
ultimately they will consume its contents. Moreover, end-users are implicitly trained
in the specific software, as they often make intensive use of it. Consequently, we argue
that end-users are best suited to judge if a particular UI localization is correct or not.
For instance, if a particular translation of a menu entry does not reflect what the menu
entry actually does, then it is expected that end-users would notice it immediately.
Hence, JITL allows end-users to gain some control over the localization process, by
being able to translate and correct errors as they go. This way, the texts shown on the
UI can fit with the intended use of the website.

Finally, translators are mostly interested in localizing the UI, since they are often
hired by the software company as external workers. Usually, translators are quali-
fied editors and technically proficient in the context of the software being localized.
Therefore, their work is essential (and central) to the traditional localization work-
flow. Nevertheless, they are not necessarily required to localize a website with JITL;
such work is actually surrogated to the end-users. However, at some point the website
owner could realize that having the site professionally translated into a particular lo-
cale is beneficial; e.g., because visits from that locale have increased substantially and
are generating an important revenue for the company. But, how can the owner know
that the website is fully localized? And more important, is it correctly localized? In
principle, these questions cannot be answered by the end-users, as they are expected
to localize the site by following the JIT philosophy, i.e., what is needed, when it is
needed. Therefore, we consider translators to be a last resort for achieving a profes-
sional localization. Apparently, this will come at a lower cost, since the website would
have been partially localized by casual users and volunteers.1 Thus, instead of having
to navigate through all of the pages on the website, JITL allows translators to auto-
matically generate localization files by collecting all the strings on the web pages the
users have visited. Furthermore, JITL provides pointers to UI elements so that the
visual context is always available to the translator (cf. Section 4.2).

1.3. Contributions
JITL has the critical advantage over current approaches to web-based localization that
UIs do not need to be internationalized: resources are automatically pulled out of the
UI, instead of being pushed by a company or a developer. This means that it provides
end-users with a means to localize any website to their specific locale. This novel capa-

1It is important to remark that users’ contributions are not immediately applied to the website; they are only
visible to the user until she decides to contribute. Then, the website owner decides when should contributions
be made visible to the public. See Section 3.10.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:5

bility enables a complete infrastructure for collecting, storing, sharing, and delivering
UI translations, which invokes a number of exciting scenarios. In this article, we make
the following contributions:

— A detailed description of the technology behind JITL, so that others can build sim-
ilar systems upon our work.

— A number of applications that illustrate a range of complexity in developing with
JITL.

— Evaluation of JITL’s automatic internationalization capability, showing that it can
save a significant amount of manual work for developers.

— Analysis of JITL’s coverage on the top 25 websites according to the Alexa ranking,
showing that our method can be applied safely and successfully in complex pages.

— A user study of collaborative in-place UI localization, followed by a number of anal-
yses which suggest that JITL transforms the localization process in a naturally easy
task.

1.4. Organization
The remainder of this article is organized as follows. Section 2 discusses related work.
Section 3 describes JITL’s implementation details. Section 4 provides a number of de-
ployment possibilities, together with a number of already-implemented applications.
Section 5 evaluates JITL’s capabilities from different perspectives. Section 6 discusses
the implications and limitations of JITL. Finally, Section 7 gives a number of conclud-
ing remarks and provides opportunities for future work.

A Note for Practitioners. We believe this article will be useful for both practitioners
and researchers. However, practitioners are likely to only care about a small portion
of the article: the details of the implementation (Section 3) and the deployment pos-
sibilities (Section 4). We encourage practitioners to read also subsections 5.1 and 5.2,
as they provide evaluation results on actual websites. Practitioners may also benefit
from reading Section 6, as that section highlights the merits and demerits of JITL.

2. RELATED WORK
Almost every software development kit provides some kind of internationalization pos-
sibilities (e.g., Xcode,2 Qt linguist,3 or Facebook Translations4), though their practica-
bility is still limited to one development platform. For this reason, we discuss here
previous work that provides developers with value-added tools to internationalize UIs,
not only web-based, beyond an expected basic support.

2.1. Approaches to Automatic UI Internationalization
To the best of our knowledge, there is no generalized approach to automatically per-
form web-based UI internationalization, even less using a web browser alone. The clos-
est approaches in spirit to ours are a number of desktop-oriented tools, which means
that either an IDE or a specific framework is required for these tools to work. Notable
examples in this regard are the following.

TranStrL [Wang et al. 2009] is an Eclipse plugin that takes the source code of a Java
application and automatically produces a list of need-to-translate strings. Smartling5

has an Objective-C library that achieves the same effect by adding minimal modifi-

2 http://developer.apple.com/internationalization/
3 http://qt.gitorious.org
4 http://www.facebook.com/?sk=translations
5 http://smartling.com

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:6 L. A. Leiva and V. Alabau

cations to the application’s source code. Finally, Globalyzer6 and World Wide Navi7

provide a suite of desktop tools to analyze, test, and fix internationalization issues in
different programming languages.

Taking a different tack, Wang et al. [2010] extended TranStrL to locate need-to-
translate strings in web applications. They used context-free grammars and a lexical
parser to differentiate strings that belong to HTML tags and strings that are displayed
onscreen. Results were promising, however the need to analyze server-side code may
render this approach impractical for translators and end-users, who are unlikely to be
able to access and manipulate an application’s source code.

2.2. Engineering Translatable Interfaces
Hunt [2013] devised a cost-effective method to localize UI strings inspired by crowd-
sourcing. The method allows end-users to translate the resource strings of the UI us-
ing a dedicated tool, which means that the UI must be internationalized beforehand.
A more interesting approach is ScreenMatch [Kovacs 2012], a Java system to assist
software translators by showing UI screenshots alongside each localizable string.

Tschernuth et al. [2012] aimed to unify translation for several platforms through
CATT, a generic and context-aware navigation tool. CATT is based on an interface
definition language that creates an abstract description of the UI, and a meta-model
that represents both UI content and structure. This idea could be explored further
for web-based software, though eventually a deep refactoring would be required to
integrate CATT in an already deployed product.

Context-aware UI translation has been a subject of study for a wide number of
desktop-based tools; e.g., Passolo,8 Catalyst,9 Multilizer,10 or RCWintrans.11 However,
these tools force developers to code according to particular guidelines and particular
programming languages. More importantly, software localizers are forced to switch
and use said tools, which may prevent them from contributing. In contrast, JITL can
be integrated off the shelf, without having to modify a single line of code.

Dixon et al. [2010; 2011] were able to build a structured representation of a UI by us-
ing pixel-based manipulation procedures. This enables a way to reverse-engineer UIs
and interpret their content, which can of course be leveraged to automatically trans-
late them. However, an important limitation of this method is that translated strings
are painted onto the original interface, so the font size of the translated text must be
adjusted to fit in the available region; see e.g. [Dixon et al. 2011, p.2]. Unfortunately,
this can render a UI unusable if there is a significant variation in the number of char-
acters between source and target languages—e.g., sentences in French and German
are on average 30% longer than English texts [Esselink 2000].

Moreover, what all these tools display as UI is not the actual UI users will operate,
just a static visualization. We believe this is rather limited when it comes to interna-
tionalizing web-based UIs, since these are inherently dynamic and therefore change
often over time. The TOCHI website, for example, is mostly static but actually changes
content and structure in subtle ways.

6 http://lingoport.com/globalyzer
7 http://kokusaika.jp/en/product/wwnavi.html
8 http://www.passolo.com
9 http://www.alchemysoftware.ie
10 http://www2.multilizer.com
11 http://www.schaudin.com

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:7

2.3. Other Approaches to Internationalize Web-based UIs
Some professional translation tools such as TRADOS,12 or Google Translator Toolkit13

do support automatic translation of web pages. Translating web pages is also sup-
ported natively by some browsers like Google Chrome14 or SlimBrowser.15 All these
tools can significantly speed up the localization workflow, despite of their low quality in
comparison to human-generated translations [Pérez-Quiñones et al. 2005]. However,
these automatic tools are oriented to translate content like text documents or static
HTML files, and hence they do not support a proper internationalization method. For
instance, some UI elements such as placeholders or drop-down lists cannot always be
localized. We also must emphasize that these tools do not support the JITL concept, as
they are just read-only automatic translation applications. For instance, they do not
allow users to edit and save the translated texts, contribute with a custom translation
for a given UI element and populate it through the website, or export localization files
on the fly.

2.4. Making Websites more Accessible
Researchers have observed that users who want access to inaccessible content must
ask the site owners for help [Chilana et al. 2012; Kawanaka et al. 2008; Takagi et al.
2008]. This process is slow and too often the need is mooted before the content becomes
accessible. As a result, Takagi et al. [2008] and Kawanaka et al. [2008] introduced
a web-based annotation tool aimed to drastically reduce the burden on site owners
and to shorten the time to provide accessible content by allowing volunteers to insert
custom metadata on webpages. Then, site owners can introduce “accessibility renova-
tions” based on the volunteers’ metadata. A very similar approach in this vein is the
project Wikify16 (no longer maintained). It was aimed at applying the collaborative
wiki content model to any website, by allowing the community to “exchange ideas, up-
date content, fix errors, parody, and improve the Internet as a whole”. Another related
approach is the AnswerDash project,17 a “self-service contextual help for websites and
web applications”. AnswerDash is a spinoff of LemonAid [Chilana et al. 2012], and pro-
vides users with a point-and-click support to both retrieve and raise questions as they
browse websites. For instance, a user that wants to buy a laptop can go to an online
shop and click on the image search results to ask for the laptop case that best fits with
the selected laptop image, without having to leave the online shop or having to wait
for the customer service to be available.

With these approaches, users can contribute to arbitrary websites. Edits and anno-
tations are stored on a centralized server, where other users can retrieve them, view
them, and contribute more. These approaches, although not related to software inter-
nationalization, share our vision of how the Web should actually be; i.e., a place where
anyone can truly contribute to enhance and reshape its contents.

3. SYSTEM DESCRIPTION
JITL is a novel approach to internationalize web-based UIs. It allows arbitrary users
to translate and modify the texts on any web page, in order to improve its localization
without requiring explicit owner’s consent. In this section we describe our technology,
together with a series of design principles that make JITL possible. We believe that

12 http://www.trados.com
13 http://translate.google.com/toolkit/
14 http://www.google.com/chrome/
15 http://www.slimbrowser.net/
16 https://code.google.com/p/wikify/
17 http://www.answerdash.com/

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:8 L. A. Leiva and V. Alabau

understanding these principles will be useful to researchers trying to build similar
tools. Figure 2 depicts the fundamental steps followed by JITL, once the Document
Object Model18 (DOM) has been loaded and is thus ready for manipulation. The system
architecture is shown in Figure 3.

El
em
en
t
id
en
tifi
ca
tio
n

El
em
en
t
in
de
xi
ng

timeSt
rin
g
to
ke
ni
za
tio
n

Te
xt
di
re
ct
io
na
lit
y

St
rin
g
pr
op
ag
at
io
n

Ev
ol
vi
ng

D
O
M

Ev
en
t
bi
nd
in
g

D
yn
am
ic
ch
an
ge
s

D
at
a
st
or
in
g

D
at
a
sh
ar
in
g

Fig. 2: JITL as explained in the next subsections.

Event Manager

Element Indexer

String Tokenizer L10n Propagation

Translation Memory

Local Storage

Lang. Detector

DOM Internationalization

Web Browser Web Server

External Storage

Admin Site

Ajax

Fig. 3: JITL system architecture. A web server centralizes all user contributions.

3.1. Identification of Localizable Elements
First of all, we should identify every text node in the DOM that can be internation-
alized and thus localized. However, there are text nodes that must be left untouched.
For instance, HTML comments and text inside <script>, <code>, or <textarea> elements
should not be localized. Therefore, a per-element node analysis becomes necessary.
Currently, there are three methods for achieving this: (1) recursive DOM tree traver-
sal, (2) plain XPath selection, and (3) TreeWalker iterator. Among these, we decided to
implement TreeWalker, as it has been shown to outperform all other methods, some-
times with more than one order of magnitude in runtime performance; see [Steiner
et al. 2012, fig.2]. TreeWalker is supported by all major browsers, and enables an easy
way to filter nodes through the DOM. Concretely, JITL uses TreeWalker to recursively
descend through the DOM and process node leaves, which are the nodes that contain
text, ensuring that the parent node is eligible for internationalization.

18The DOM defines an internal representation of web pages based on a node hierarchy.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:9

3.2. Indexing UI Elements
Additionally, we also need a way to uniquely identify all UI elements on a page, in
a manner that also lets us correctly identify the same elements on other web pages
in the same web site. In web-based software, the DOM can be queried using XPath
expressions, which represent the sequence of nodes and their indices from the root
node down to a particular node. Therefore, using XPath alone should suffice to point
to arbitrary DOM elements. However, given that internationalization must be carried
out in a per-domain (instead of a per-page) basis, the same XPath may have different
source texts from page to page on the same website. For that reason, we decided to
index UI elements by a hash consisting of XPath plus source text. This proved to be
a solid approach to begin with, although a number of corner cases remained to be
resolved. We discuss them in the next subsections.

3.3. String Tokenization
Resource strings are then extracted from the localizable elements and tokenized to
support the so-called “format strings” macros, i.e., using %d to indicate a digit (e.g., "%d
items") or %s to indicate string substitution for those messages that can be identified
by means of regular expressions. JITL can automatically detect digits, URLs, emails,
hashtags (strings starting with #), and mentions (strings starting with @ as in Twitter
or starting with + as in Google Plus). Eventually, it is possible to add any other cases
as long as they can be expressed by means of a regular expression.

String tokenization facilitates propagating localization information to other UI ele-
ments that share the same source text tokenization, avoiding thus having to localize
near-duplicate strings (c.f., "5 items" and "12 items"). Then, the text that is rendered
on UI elements comprises untokenized strings, to make localization easier for non-
experienced users; i.e., without being aware of this tokenization process.

Sometimes it may be necessary to tell the difference from a templatizable digit and
a digit just used in a string (e.g., "Step 1:"). While both cases are internally handled in
the same way, JITL can actually tell the difference between them both. For instance,
if a user translates "Step 1:" to "Paso A:", then the translated text would not be to-
kenized (as it has no digit) and so this translation would not be propagated to other
elements with the same source text; e.g., an element with "Step 2:" would be left un-
touched.

We assume that texts consisting on their entirety of format strings macros are not
eligible for human localization, as they do not contain user-generated content and so
translators would not be able to produce any meaningful localization. For instance, the
element <tt>email@address.com</tt> would be automatically internationalized as "%s"

so it should not be considered for human localization.

3.4. Checking Text Directionality
Different page layouts are often required for right-to-left (RTL) languages, as most
RTL languages should be right-aligned rather than left-aligned. By inspecting previ-
ously translated strings, JITL modifies the text direction accordingly; e.g., if the user is
localizing into Arabic, the text orientation of UI elements is set to RTL so that the text
flows right-to-left. In addition, the UI is adapted for these RTL languages, essentially
mirroring the layout of the default UI language (Figure 4). This is accomplished by
adding a dir="rtl" attribute to the <body> element. More advanced techniques might
be devised in future work for handling unexpected corner cases, but so far this ap-
proach has proved to work well. The most interesting part here is that JITL can tell
RTL and LTR languages apart without prior training or using a language model, just

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:10 L. A. Leiva and V. Alabau

by means of a single unicode-capable regular expression. Therefore, it is a very scalable
approach.

Fig. 4: JITL changes the text direction and UI layout according to the target language
the user is localizing into.

3.5. Loading and Propagating Translations
With JITL, localized content can be loaded either from previous browsing sessions or
from a centralized server. A recurrent problem we have observed is that the same
source text may appear in a different DOM position on the same page and even in
another UI element on another page. Also, many websites reuse the same words and
phrases on many different pages. To avoid having to translate each string separately,
JITL incorporates the following propagation mechanism.

In its most basic instantiation, source-target localization pairs are used to build a
translation memory, regardless the DOM information, which can be seen as an internal
“dictionary” that allows non-localized elements to be adequately initialized. Moreover,
since the translation memory is built as the UI gets localized, subsequent localization
updates can be successfully propagated to other UI elements on the website. Thus, the
same source text does not have to be translated more than once, unless it should have
two different translations. This corner case is illustrated in Figure 11.

3.6. The Evolving DOM Problem
Looking under the hood of many modern websites, it is not uncommon that their DOM
changes over time, even if the visual appearance is not altered dramatically. This may
be problematic if two (or more) previously localized elements having the same source
text but different translations are now in a different DOM position, because in princi-
ple it would be necessary to translate again those “orphan” elements (i.e., previously
translated elements that are no longer located in the DOM). However, it is also true
that the updates performed to the DOM are not dramatically substantial. For instance,
common DOM updating operations are wrapping (e.g., a button is surrounded by a
new <div> element) or insertions (e.g., a new paragraph is added to the DOM, either
well before the previously localized element or far away from it). Thus, to keep JITL
translations in the long term as the website evolves, we have incorporated an efficient
recovery mechanism of localized content (Figure 5).

When there is an orphan element, JITL first normalizes its XPath as well as the
XPath of all nodes that have the same source text. This normalization process rewrites
their XPaths using a more compact, symbolic representation. Next, the Damerau-
Levenshtein distance from the orphan XPath to the candidate XPaths is computed,
operating over the aforementioned symbolic XPath representations. This allows JITL
to successfully perform fuzzy matches, even when the original element (e.g. <button>)
is replaced by another element (e.g. <input>). When the closest node is found, it is
assigned the previously localized string and JITL’s internal indexing structure is ac-
cordingly updated, replacing the old XPath by the new XPath.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:11

Originally localized elements, now orphan Symbolic XPath

/html/body/p ABC
/html/body/a ABE

Non-localized elements, with same source text but different translations Symbolic XPath

/html/body/div/a ABDE
/html/body/section/p ABFC

If we rely on the original XPaths, /html/body/div/a would be assigned the translation of /html/body/p
and /html/body/section/p will assigned the translation of /html/body/a, since:
d(/html/body/p, /html/body/div/a) < d(/html/body/p, /html/body/section/p) and
d(/html/body/a, /html/body/div/a) < d(/html/body/a,/html/body/section/p).

In contrast, using the Symbolic XPaths yields the correct assignments, i.e., /html/body/div/a is
assigned the translation of /html/body/a and /html/body/section/p is assigned the translation of
/html/body/p, since d(ABC,ABDE) < d(ABC, ABFC) and d(ABE, ABDE) < d(ABE, ABFC).

Fig. 5: Recovery mechanism for localized content on a web page.

3.7. Binding Interaction Events
Ultimately, event listeners are attached via document.addEventListener so that JITL can
receive user interaction. This mainly allows the user to localize the UI on demand, but
it also enables other applications, such as supervising the internationalization result
(see Section 4.1) or amending localization errors as soon as they are spotted. Attaching
events only once to the document element instead of to every UI element precludes any
performance hit. Further, the addEventListener method avoids to conflict with existing
event handlers on a web page.

Currently JITL listens to mouse hovering (to highlight elements), clicks (to edit the
i18n/L10n of an element), and key strokes (to save editing changes). These actions only
take place if a special key is pressed (currently the Control key), in order to allow for
regular interaction with the UI otherwise. It is worth noting that browsers completely
ignore interaction on form fields that have a disabled attribute. To solve this problem,
disabled elements are automatically wrapped in a proxy node that can detect user
interaction, thus adequately forwarding event data.

3.8. Tracking Dynamic DOM changes
Dynamic web applications frequently introduce changes to the DOM, e.g., to inform
the user about some error or an update. Also, potentially translatable resources are
sometimes not just text, but a regular expression with text and other fields that are
filled in at runtime. JITL addresses this job by monitoring the MutationObserver events,
which make it possible to look for all dynamic modifications in the DOM, including e.g.
node subtrees, attributes, and character data. When this occurs, the modified elements
are internationalized from scratch and localized, if there is information available to
do so. JITL provides fallback events such as DOMNodeInserted or DOMSubtreeModified for
older browsers that do not understand MutationObserver events.

3.9. Storing i18n/L10n Data
Of special importance is deciding how localization resources and other user-generated
metadata should be stored. Because JITL can target websites that are not under the
developer’s control—e.g., one of the most interesting uses of JITL is on-demand local-
ization; see Section 4—the data should be stored in principle on the client side. This
also avoids hitting a remote server (if any) frequently, and thus only submitting the
data to a centralized server when it is really needed; see Section 3.10. Currently, there

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:12 L. A. Leiva and V. Alabau

are three competing approaches for saving serious amounts of data (i.e., persistently
and bigger than cookies) locally in the browser: (1) Web Storage (2) Indexed Database,
and (3) Web SQL Database. Among these, we decided to use Web Storage because it
has a simple API and is already available in all major browsers.

Conversely, when JITL targets the application developer, it features an additional
storage mechanism on the server side, in plain JSON files. This is interesting to save
internationalization data whenever a page is requested, which can be used to generate
a localization file for offline edition, as currently held by professional translators; see
Section 4.

3.10. Sharing Localization Data
JITL makes it possible to build a number of exciting applications, some of them relying
on external workers or arbitrary end-users. For these cases, all translated strings and
metadata (e.g., user agent string, browser’s locale, geolocation) should be submitted to
a centralized repository.

Also, it is important to decide how localization data should be submitted to the repos-
itory. For example, is it after explicit user consent, or whenever n elements have been
localized, or some other criteria? We opted for the former method, since it allows users
to review their contributions before deciding when it is best to submit. This way, a
full website or web application can be incrementally and collaboratively localized. Of
course, ultimately the website’s owner must decide whether to make all users’ contri-
butions visible or not. A public website that is partially localized may cause companies
to lose potential customers.

4. DEPLOYMENT AND APPLICATIONS
JITL has three different instantiations, each one aimed at fulfilling a different purpose
on the basis of its potential usage.

For developers. JITL is basically a collection of small JavaScript libraries, and so
developers can easily incorporate JITL to their websites so that it can be automatically
internationalized or to allow others to contribute to localizing it. A developer just would
add a <script> element to those pages that should be automatically internationalized.
In practice, a website has a header or a footer part that is common to all of the pages
on the site. Therefore, the developer can place the <script> element in any of these
common parts, allowing thus the whole website to be automatically internationalized
over time. In this case, localization data are stored on the server side, so they are
readily available for offline localization; c.f. Section 4.2. Moreover, by means of a special
code, the developer can retrieve localized data from a centralized server. This allows
the website to be automatically translated with the strings that have more consensus
among the community.

For translators. Software translators are often interested in localizing a company’s
website only once, who then submit their translations to the company for review. But
it could happen that JITL has not been enabled on the website. So, we provide a simple
one-click tool to add internationalization and localization functionality to the browser
by means of a bookmarklet. Bookmarklets are snippets of JavaScript code that can
be bookmarked, i.e., saved as a favorite, and are browser-independent. A translator
would install the bookmarklet from the JITL project page,19 by simply dragging a link
to the bookmarks bar of the browser (Figure 6a). Moreover, the translator can generate

19 http://personales.upv.es/luileito/jitl/

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:13

a localization file for offline processing. This makes it possible to work with a preferred
editor or even other localization tools.

(a) (b)

Fig. 6: Both the bookmarklet (a) and the browser extension (b) inject a single line of
JavaScript code to the DOM so that the required libraries are automatically loaded.

For end-users. Arbitrary users may also be interested in localizing some parts of the
UI; for instance, because everything but one widget is speaking their native tongue,
or because there is some text that bothers them; see e.g. the Twitter’s “Who to follow”
issue.20 Then, to support these usage cases it is desirable to 1) automatically allow
users to localize the website on demand; and 2) detect that the website should be auto-
matically localized to users if they had previously done so. To achieve this, an end-user
would install JITL as a browser extension (Figure 6b). Extensions adds functionality
to the browser without diving deeply into native code. The JITL extension enables a
dedicated menu entry on the browser by which the user can localize any web-based UI
on demand. In order to avoid writing specific code for each browser, we have tapped
into Kango,21 which provides cross-browser extension deployment.

JITL enables a set of applications that until now have been either not supported
or only available for other platforms or programming languages. Because of this, we
validate and provide insight into our work through a number of scenarios that illus-
trate a range of complexity in developing applications with JITL. We confirm that the
following applications are implemented and work on all major browsers.

4.1. Interactive Internationalization
Due to a design decision, only leaf DOM nodes are automatically internationalized,
since leaf nodes are the ones that contain text. As we will show in Section 5.1, this
may provide an internationalization result that is not perfectly aligned to what a pro-
fessional developer would produce. In consequence, JITL can operate in “interactive
i18n mode”, by allowing developers to intervene in the internationalization process.

Furthermore, in a professional localization scenario, some strings should not be
translated, such as company names, catch phrases, and so on. By means of this inter-
active internationalization application, it is possible to indicate which elements should
be localized by simply CTRL+clicking on them, and which elements should not be lo-
calized by CTRL+SHIFT+clicking. On the other hand, if a resource string should be
made up of two or more leaf nodes, it is possible to indicate so by CTRL+selecting
them (Figure 7). This way, the string will be assembled using the text of the closest
common ancestor of the selected leaf nodes.

20 http://stancarey.wordpress.com/2012/04/05/who-to-follow-is-grammatically-fine/
21 http://kangoextensions.com

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:14 L. A. Leiva and V. Alabau

Fig. 7: JITL supports the aggregation of different DOM nodes into the same resource
string, provided that those nodes share a common direct ancestor.

On the other hand, since JITL can generate a PO file on the fly, strings that cannot
be localized at runtime can be eventually localized offline. This may include messages
that appear for a short amount of time (e.g. "Loading...") or elements that display
additional text on hover events (e.g., tooltips). An experimental procedure to handle
these cases is shown in Figure 12.

Once the desired UI elements have been internationalized, the remaining elements
are internally marked with a jitl-nonlocalizable data attribute. In the end, a UI in-
ternationalized this way is eventually supervised by a human and of high quality. To
our knowledge, JITL is the first approach that provides this capability.

4.2. Automatic Generation of Localization Files
After internationalization, JITL already knows which resource strings are available
for translation. Therefore, one immediate application is the on-the-fly generation of a
localization file. Some well-known formats are PO, TMX, and XLIFF. Currently JITL
exports to PO (Portable Object) format, since it is widely used at present, although
localization data are sufficiently abstracted in the web storage (as JSON files) and
thus it should be easy to export to other localization formats.

In short, PO files are collections of source (msgid) and target (msgstr) entries in plain
text.22 In the traditional localization workflow, the PO file is delivered to the translator,
who translates all PO entries. Developers then produce an MO file (Machine Object,
binary code) and place it into a special directory so that the application can fetch the
appropriate locale for the resource strings. When JITL is installed on the server side
(see Section 4), it can also generate PO files, so they would be immediately available
to the translator. Conversely, when JITL is invoked as a bookmarklet or as a browser
extension, a dedicated menu entry makes it possible to download the PO file.

Moreover, JITL enhances the utility of these automatically generated PO files by
augmenting each msgid with a link to the element where such msgid belongs to. The
link actually points to the element’s page URL, together with a special URL parameter
that indicates the element’s XPath (Figure 8). By signaling such a special URL param-
eter, JITL loads a highlighting module so that the translator can visually notice where
is exactly located each resource string on the UI. If the resource string appears in more
than one element, only the first element is shown, since the purpose of the highlight-
ing module is to provide translators with an example of the element’s visual context.
Nevertheless, this could be easily adapted to support highlighting multiple elements
that share the same msgid. Finally, it is worth mentioning that when dynamic DOM
changes are detected, the corresponding source-target entries are automatically ap-
pended to the PO file. Hidden elements cannot be highlighted unless the user triggers
first the action that reveals those elements.

4.3. Real-time Localization of UIs
JITL was designed to perform localization manually, without any machine translation
engine. However, we have observed that major search engines are able to translate

22 http://www.gnu.org/software/gettext/manual/

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:15

(a) Regular UI view (b) Highlighted element

Fig. 8: Automatic PO generation augmented with visual context hints. Each resource
string is attached a URL that provides translators with an example of the element
containing such string.

web content in real time, though with some limitations, c.f. Section 2. Therefore, we
decided to integrate this capability into JITL in order to match industry’s standards.

Tapping into the automatically extracted text from the DOM, JITL can submit all
resource strings to a number of online translation services and present thus the trans-
lated content on the original UI in a transparent way for the user. This way, users can
browse the site in their native language when it is not natively supported by the site.

Currently JITL can interface with Apertium,23 an open source machine translation
platform, although the communication API is ready to be extended to other translation
services, even to custom machine translation engines like Moses.24 The latter integra-
tion is especially interesting since it would allow building systems tailored to translate
UI strings, which is a very challenging task because machine translation engines do
not deal with the (structural) context of the UI [Muntés-Mulero et al. 2012].

Another convenient feature derived from real-time translation is that, since a web-
based UIs is rendered on a browser, translated strings can naturally take up as much
space as needed (Figure 9). It is because browsers use a flow-based layout model,25 in
contrast to other UIs that are constraint-based, so that the position and geometry of
the UI elements are recalculated whenever the DOM content is modified. This is worth
considering, as strings usually change size in translation, so if there is not enough
space on the UI, some strings could overlap other controls.

Some web applications use fixed positioning for navigation bars or menus. In these
cases, automatic reflow is not possible, but JITL allows the user to see the broken
wrapped result immediately and try for a shorter translation. For instance, imagine
that the "Ok" button in Figure 9 had a fixed width. If a Spanish user translates it to
"Aceptar", the string would overlap the "Cancel" button; in which case she could use an
alternate, shorter translation such as "Sı́".

4.4. In-place Localization
This is perhaps a radical departure from the traditional model of software localiza-
tion, although we believe it may gain notable acceptance in the industry. For instance,
Facebook and Google+ allow users to request an inline translation of post comments.
By clicking on a link, the comment is replaced by an automatic translation. Never-

23 http://www.apertium.org/
24 http://www.statmt.org/moses/
25 http://www.mozilla.org/newlayout/doc/

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:16 L. A. Leiva and V. Alabau

(a) English dialog (b) Spanish translation

Fig. 9: Content reflow after translation, showing in red the redraw regions of the af-
fected elements. Notice that the translation of the "Ok" string would overlap the Cancel
button if the UI content could not reflow accordingly.

theless, website users are not allowed to correct translations errors or even contribute
with another translation, since that could incur in a serious case of impersonation.26

In JITL we extend this concept to produce localization data that is properly con-
textualized, by allowing users to edit or translate texts on the UI at will. We find it
especially appropriate to foster contributions from arbitrary users, because of its low
entry cost, i.e., there is no need to switch to using a dedicated localization application.
For instance, if a user finds an untranslated sentence, a grammatical error, or she
thinks of a translation that fits betters her linguistic preferences, she can contribute
with a new translation on demand.

(a) (b)

Fig. 10: JITL shows two different menus to the user, one for first-time users (a) and
other for returning users (b).

In our current implementation, a welcome screen (Figure 10a) provides the user
with the basic instructions to translate the UI in-place. To capture user input, if an
element supports the contentEditable attribute, JITL allows the user to type right over
the element, as shown in Figure 11. For the remainder UI elements, a pop-up dialog is
used instead. We should mention that this point-and-click interaction technique is not
novel by itself; see Section 2.4. However, it nicely fits in with the JIT philosophy, since
it allows to localize only what is needed, when it is needed.

The following particular case is worth of discussion. On dynamic websites, a number
of strings appear only for a short amount of time. While it is possible to generate a PO
file with all strings that have been shown on the UI for offline translation, we have
devised a way to do it online. As shown in Figure 12, the browser extension displays a
queue of all seen strings that were removed from the DOM. Each string in the queue is

26For instance, if user A writes the text "I like your site." and user B rewrites A’s text as "I don’t
like your site at all.", then it may cause some trouble for user A, who is the post author but now
has been impersonated by user B.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:17

(a) (b) (c) (d) (e) (f)

Fig. 11: Localizable UI elements are highlighted when hovered with the mouse cursor
(a). Then the user simply clicks on the element to translate it in-place (b). Translations
are propagated to other non-localized elements (c). If the same source string should
have a different translation (e.g., because of the UI context) the user can proceed (d, e)
and the previously localized element will be left unchanged (f).

clickable, in which case a pop-up dialog allows the user to enter the desired translation.
By now it is an experimental feature, and may be subject to further changes in future
work.

Fig. 12: Envisioned alternate mechanism to process seen but not localized strings.
Google and the Google logo are registered trademarks of Google Inc., used with per-
mission.

4.5. Collaborative Localization
JITL allows end-users to contribute with their translations by pressing a ‘Contrib’ but-
ton (Figure 10b). By doing so, all localized items for the currently browsed domain are
submitted to a centralized repository (Figure 13a). This repository relies on an infras-
tructure that should be configured by the owner of the website, or the organization
that will incorporate JITL into their localization workflow.

Localized items are then statistically processed to find the most probable agreement
level among all submitted strings and to handle variance on translation skills among
all contributors. For doing this, we tap into the Fleiss’ kappa (κ) [Landis and Koch
1977], which is a well-established measure of agreement rate [Bentivogli et al. 2011;
Paul et al. 2012]. Basically, κ discounts the probability of chance agreement, Pr(e),

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:18 L. A. Leiva and V. Alabau

(a) (b)

Fig. 13: Localization resources can be submitted to a centralized repository (a) for later
postprocessing (b). In our implementation, each contributor is assigned a unique iden-
tifier and resources are grouped by domain.

from the observed probability of agreement, Pr(a):

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1)

The estimation of these probabilities requires the specification of a number of items
and a number of item categories. In this case, such items are the resource strings,
whereas the different categories are the translations that can be assigned to each re-
source string. Unfortunately, it is not possible to anticipate the exact number of all
possible translations for a given resource string. Hence, only the observed translations
are considered as categories.27

5. EVALUATION
In order to assess whether JITL can achieve its intended goal, we analyzed it from
several points of view. This section summarizes three studies performed so far. First,
we show the value of JITL as an automatic internationalization tool. Then, we evaluate
the impact on runtime performance incurred by JITL. Finally, we perform a controlled
in-lab evaluation aimed at assessing how JITL would be used by end-users.

5.1. Automatic Internationalization
The fundamental feature of JITL resides in the capability of being able to interna-
tionalize web-based UIs automatically. Therefore, we felt that an evaluation of this
capability was necessary in any case. Concretely, we aimed to answer the following
questions:

27This is a pessimistic approach, since the number of observed translations is always less or equal than the
number of possible translations. Thus, Pr(e) is overestimated and, in consequence, Pr(a) is underestimated.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:19

(1) Time: How fast is JITL when it comes to internationalizing a website in an auto-
mated way? Does it scale well?

(2) Precision: Among all translatable strings that were automatically identified, how
many of them do match those manually defined?

(3) Recall: Among all translatable strings that were manually defined, how many of
them were successfully identified by JITL?

(4) F-measure: What is the overall accuracy of JITL while retrieving all of the rele-
vant translatable strings?

First, we compared JITL against manually internationalizing a small airline website
(Figure 14a), so that we could estimate the overall performance of our method. Then,
we repeated the same analysis with Wordpress (Figure 14c), the popular content man-
agement system,28 which is already internationalized and would thus provide us with
a unique opportunity to test our method in an actual and a very popular product. All
experiments were performed on a GNU/Linux machine, i386 dual core @ 1.3 GHz and
2 GB of RAM.

(a) Airline website, home page. (b) Airline website, search page.

(c) Wordpress website, dashboard page.

Fig. 14: Screenshots of the analyzed websites. The WordPress name and logo are reg-
istered trademarks of the WordPress foundation, used with permission.

28 http://www.wordpress.org

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:20 L. A. Leiva and V. Alabau

5.1.1. Procedure. Two professional developers that have worked as software localiz-
ers were recruited to internationalize the airline website. The website had 5 sections
that were dynamically assembled using 10 PHP files. Both developers were told to be
as accurate and quick as possible at decoupling all resource strings from the source
code, resulting in 32 and 33 minutes each. Then, all identified resource strings were
extracted using the xgettext command, which is available in all Unix systems. As a
result, the corresponding localization files were generated: one PO file per developer,
each comprising 92 strings in total.

We noticed a couple of discrepancies after using the diff command over both PO
files. One developer considered that the site name should be internationalized, because
it was inside a visible <h1> element. The other developer thought that the copyright
text " c© Site 2013 - All rights reserved" that appeared at the bottom of the website
should be internationalized in its entirety, while the other developer thought it should
be only the "All rights reserved" part. Thus, both developers were told to discuss these
discrepancies and reach an agreement. In the end, they decided that the site name
should not be internationalized, and that the copyright text should be partially inter-
nationalized. Finally, a single PO file was compiled as a result of the manual interna-
tionalization, which would be used as ground truth data.

We should mention that Wordpress is already internationalized and even provides
an official PO file. Therefore, no manual intervention was performed to the Wordpress
site. The official PO file would be used as ground truth data as well.

In order to make results comparable, we decided to follow a common procedure for
evaluating JITL on both the airline website and the Wordpress admin site. We included
JITL as a <script> element and opened all site pages by clicking on all links of the
navigation menus (5 pages for the airline website, 37 pages for the Wordpress admin
site). Every time a page was requested, we logged the time required to internationalize
it and a list of the automatically identified strings. Then, we averaged logging times
and compiled a unique list, removing string duplicates.

5.1.2. Results and Discussion. Table I summarizes the performance that JITL achieved.
As observed, on average just 11 and 30 ms were required to internationalize each page
at the respective websites. It is clear that this is extremely fast in comparison to man-
ual work (c.f., developers spent half an hour internationalizing the airline website),
and that it scales really well (c.f., it takes an increment of 20 ms to scale from 92 to
1,687 strings). However, as expected, because JITL performed the internationalization
process without human supervision, it may not be perfectly accurate.

Indeed, more resource strings than necessary were automatically extracted from
both websites. This is because, in its current state, only leaf DOM nodes are automat-
ically internationalized, i.e., the nodes that contain text. Therefore, if a string in the
reference PO file is composed of HTML elements, then JITL would retrieve different
strings for each of the leaf DOM nodes. For instance, for the resource string "Insert

your name here" JITL would generate three different strings: "Insert your",
"name", and "here", as these are the leaf DOM nodes of the resulting HTML code. Con-
sequently, the previous example would reduce the recall counts by one item (the miss-
ing "Insert your name here" string) and the precision counts by three items29

(the three strings into which the original string would be split). This example is actu-
ally considered a bad practice in the localization industry, because it couples markup

29Although one may think of clever ad-hoc rules to solve this shortcoming, in practice we have observed
many corner cases that would invalidate such rules, not adressing the errors but also leading to a different
kind of internationalization errors.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:21

structure with resources. However, we observed that it happened in about 10% of the
strings in the Wordpress PO file.

Website No. Strings Time (ms) Precision (%) Recall (%) F-measure (%)

Airline 92 11 ± 4 75.4 96.7 84.8
Wordpress 1,687 30 ± 17 61.5 67.0 64.0

Table I: Automatic internationalization results for the airline website and Wordpress.

Fortunately, recall shows very promising results. For the airline website, JITL was
able to retrieve 96.7% of the strings we were looking for, whereas for Wordpress 67%
of the strings were correctly retrieved. It must be reminded that recall accounts for
the strings that were internationalized exactly as they were manually defined in the
reference PO file. Therefore, in the end a lower precision is less important provided
that recall is high. This allows developers to better refine the internationalization of
the UI (cf. Section 4.1). In principle, it is easier to ignore irrelevant strings than hav-
ing to manually specify the missing ones. For completeness, we report in Table I the
F-measure (the harmonic mean of precision and recall) to illustrate the overall re-
trieval performance of JITL. It can be observed that automatic internationalization is
currently possible.

On another line, JITL also found some strings worth internationalizing that were
not included in the reference PO files. This is particularly interesting to detect changes
introduced to the UI that may have passed unnoticed. For instance, it may happen that
a new widget goes quickly from testing to production on an already internationalized
website, the widget being partially internationalized, or not at all.

Overall, these results put forward the fact that JITL can save a significant amount
of manual work for developers. For instance, JITL can be used to extract all potentially
translatable strings and create a single localization file, then iterate over that file to
achieve a high-quality result. Another application to achieve this result consists in
operating under an interactive setting, which has been discussed in Section 4.1.

5.2. Tokenization and Interaction
JITL enables in-place localization by injecting JavaScript code on web pages. For this
reason, we decided to evaluate the impact of said injected code on page performance.
In particular, the goal of this evaluation was to identify whether our methods for to-
kenization (Section 3.3) and event binding (Section 3.7) would work well on complex
websites. For the former case, we were interested in assessing how many strings could
be automatically tokenized, as the untokenized ones would potentially increase trans-
lation effort. For the latter case, we were interested in knowing how many elements
could be localized by end-users, for which event binding should succeed without im-
pacting regular page browsing. We queried the top 25 Alexa30 global sites to conduct
these experiments.

5.2.1. Procedure. We instrumented the JITL bookmarklet in order to gain insights
about the goals discussed above. First, we computed the number of strings before tok-
enization, i.e., the original strings as shown on each browsed site. We also computed
the number of unique strings, removing duplicates, as they are theoretically the ones
that should be translated. Next, we computed the number of unique strings that were
automatically tokenized. Then, we computed the number of strings after tokenization,

30 http://www.alexa.com/topsites

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:22 L. A. Leiva and V. Alabau

i.e., the strings that should be eventually translated. With this information, we com-
puted the effort saving that is achieved by string tokenization. In addition, all of the
tokenized strings were stored in a flat file database, in JSON format. This way, tok-
enization results could be manually inspected later.

On the other hand, JITL’s event handlers were modified to increment a global
counter that accounted for the number of events that were successfully triggered in
an automated way. Therefore, after attaching a click event listener to the document el-
ement, all localizable UI elements were programmatically forced to trigger a mouse
click event. This simulates what a user would actually do on each page to localize a
particular UI element. Whenever the global counter were increased, it would mean
that event binding had succeed for such element. Otherwise, the event would have
been prevented by other event handlers attached to that element, e.g., because the
developer has specified event.stopPropagation().

We executed the bookmarklet on the 25 Alexa top sites as of Jun 2014, excluding
non-English sites since we were interested in manually inspecting both localized and
localizable strings afterwards. For all websites, we inspected the home page if it had
informative content. Otherwise, we issued the query “TOCHI” in a search form, if
available. If no search form was available on the site, we clicked on the navigation
menu links until finding a page with informative content.

5.2.2. Results and Discussion. The results of this experiment are shown in Table II. The
“No. Strings” column indicates the number of strings found on the websites, before
tokenization. The “To Translate” column indicates the number of strings that should
be translated, after tokenization, together with the effort saving introduced by string
tokenization. Finally, the “Actionable” column indicates the number of strings that
could be localized on demand by the user.

We observed that for online shopping websites such as aliexpress.com, the proportion
of tokenized strings is fairly high. This is mainly explained by the large amount of
price and date-related strings, which are more prone of being localized. Conversely, we
observed that informational websites such as twitter.com have less text that is suitable
for tokenization. Overall, 26,208 strings were analyzed, of which 15,485 are unique. In
principle, these unique strings are the ones that should be translated. However, 690
of the unique strings can be tokenized, leading to savings of 45.9%; i.e., overall near
half of the strings would have to be eventually translated. This suggests that string
tokenization actually leads to important effort savings.

However, was our tokenization method missing important tokenization patterns? A
manual inspection of the tokenized strings revealed that most of the potentially tok-
enizable strings were indeed well tokenized. Nevertheless, there were some rare cases
where developers seemed to have templatized strings; e.g., we believe that "Welcome

back, John" is likely to be templatized by "Welcome back, %s". Interestingly, we observed
that for most of these cases the templatized string was wrapped in DOM elements such
as <a> or ; e.g. "Welcome back, John". Therefore, JITL was able
to avoid repeating translations like these, since duplicated strings were placed at dif-
ferent text nodes and were thus translated only once. In any case, we observed that the
number of missed tokenization cases was merely anecdotal on the analyzed websites.

Additionally, JITL only parsed digits, not floating point numbers or negative signs.
While regular expressions for matching all kind of numbers are well-known, some-
times they could introduce undesirable errors. For instance, the string 3-4 would be
parsed as %d%d. However, %d-%d is preferred, since in a specific locale the - symbol could
be replaced by a different symbol. Furthermore, month names, week days, PM, AM,
etc. were not tokenized. Although it would seem logical to try to tokenize dates and
hour-related strings as a whole, that would prevent users to localize them properly,

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:23

Website No. Strings Tokenized To Translate Actionable

Total Unique Unique Saving (%)

activities.aliexpress.com 3,045 1,677 69 350 79.1 3,045
best-of-tumblr.tumblr.com 191 78 9 77 1.3 191
darraghdoyle.blogspot.com 1,182 744 24 628 15.6 1,182
blog.wordpress.com 354 276 14 244 11.6 354
wikipedia.org 92 90 5 90 0.0 92
go.com 189 162 7 160 1.2 189
imgur.com 6,750 2,369 100 1,018 57.0 6,750
newyork.craigslist.org 502 325 19 220 32.3 502
stackoverflow.com 1,427 988 40 514 48.0 1,427
store.apple.com 480 259 24 195 24.7 480
vube.com 1,190 1,116 21 330 70.4 1,190
amazon.com 803 629 36 581 7.6 803
ebay.com 849 664 56 559 15.8 849
imdb.com 347 283 23 240 15.2 347
microsoft.com 204 129 21 121 6.2 204
neobux.com 357 324 29 191 41.0 357
pinterest.com 511 282 5 251 11.0 511
reddit.com 4,817 3,478 81 1,223 64.8 4,817
search.yahoo.com 166 117 11 113 3.4 166
twitter.com 943 394 24 369 6.3 943
adcash.com 121 70 3 70 0.0 121
facebook.com 566 299 12 241 19.4 566
google.com 319 198 29 189 4.5 319
linkedin.com 392 255 12 195 23.5 392
youtube.com 411 279 16 209 25.1 411
Total 26,208 15,485 690 8,378 45.9 26,208
Mean 1,048.3 619.4 27.6 335.1 45.9 1,048.3
Median 480 283 21 240 15.2 480
SD 1,577.1 805.1 24.6 285.1 64.5 1,577.1

Table II: Statistics of tokenizable and localizable strings for the top 25 Alexa global
sites in English. All results depict the total number of strings found in each category.

e.g., translating the name of the months separately. Therefore, these strings should
not be tokenized so that users can translate them the way they want to. Also, speech
marks (e.g. quotes, dashes, hyphens, or brackets) were not tokenized because they are
language-dependent.

Finally, the last column in Table II represents the number of strings for which event
binding succeed. In comparison to the total number of strings, it can be observed that
each and every UI element could be localized with JITL. Therefore, we can say that our
method for providing user interaction is quite robust, at least for the websites analyzed
so far.

5.3. Collaborative In-place Localization
This experiment was aimed at assessing how JITL would be used by end-users. Thus,
we performed a controlled in-lab evaluation. We recruited 10 Spanish speakers aged

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:24 L. A. Leiva and V. Alabau

26–36 with an advanced English level. All participants were aware of the basis of
software localization.

5.3.1. Procedure. Participants were told to translate the Wordpress website (see Sec-
tion 5.1) into their native language, using our browser extension. Since Wordpress
has a large number of sections, participants were told to “localize the elements that a
Spanish speaker [with no English knowledge] would need in order to understand how
to manage the blog posts.” This statement led participants to consistently browse 3
pages at most: the login page, the dashboard, and the ‘admin posts’ page. At the end of
the session, participants submitted their translations to our server and were rewarded
with a gift voucher.

5.3.2. Results and Discussion. Results were quite encouraging. In just 5 minutes, 57 dif-
ferent UI elements were collaboratively translated, resulting in 410 localization pairs
(i.e., source texts plus their target translation) including duplicated pairs, too. We iden-
tified at most 291 potentially localizable elements among all of the pages that partic-
ipants browsed, including hidden help messages and items in deep menus. Therefore,
not everyone localized the exact same number of elements. Nevertheless, given the
high-level articulation of the task, it is understandable that many elements were left
untranslated as long as they would not be crucial to achieve the task goal.

On average, each user contributed with 41 translations (SD = 8.6). Figure 15a shows
the histogram of resource strings with different translations. It can be observed that
more than half of the UI elements were assigned a couple of different translations,
while it was not unusual to have up to 4 translations for each string. We observed that
most of the differences among submitted translations were due to the use of synonyms
and punctuation symbols; c.f. Figure 13b.

(a)

1 3 5 7 9

0

10

20

30

No. Different translations

N
o.

S
ou

rc
e

st
ri

ng
s

(b)

Po
or

S
lig

ht

Fa
ir

M
od

er
at

e

S
ub

st
an

tia
l

P
er

fe
ct

0

10

20

30

40

Agreement level

Fr
eq

ue
nc

y
(%

)

Fig. 15: Distribution of submitted translations per source strings (a) and histogram of
user agreements (b).

Figure 15b shows the relative frequency of user agreements, according to Eq. (1)
and the following categories [Landis and Koch 1977]: poor, slight, fair, moderate, sub-
stantial, or perfect. It is worth noting that for one third of the source strings the user
agreement was considered “perfect.” This is explained in part because some UI ele-
ments were fairly simple to translate (such as navigation links) and thus it was ex-
pected that in these cases users would submit very similar translations. Indeed, short
strings are a particular feature of UI localization [Muntés-Mulero et al. 2012; Leiva
and Alabau 2014], and we believe that JITL is specially interesting to deal with such

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:25

strings. Additionally, the remaining translations were uniformly distributed between
“slight” and “moderate.” These results can be leveraged as a means of setting up a level
of confidence for a particular translation. This way, the webmaster or the application
owner could decide that, e.g. in case of an overall poor agreement, the corresponding
resource string should be sent to a professional translator.

In general, participants reported that they were happy to test JITL. They felt the in-
place technique was really easy to use, and they expressed the intention to contribute
with translations for their favorite websites. Hence, it seems plausible that further
deployment of JITL would be successful.

Note that, as commented in Section 1.2, measuring the time required by end-users
to explore all pages on a website would not be a natural comparison with respect to
the time it would take translators to use conventional localization software. JITL users
are expected to localize when they need it, and so they would seldom crawl a complete
website in a row. Hence, we did not considered this metric in the current experiment.
However, the interested reader is referred to Leiva and Alabau [2014] where the au-
thors looked at this very specific topic.

5.3.3. Visualization Analysis. We visualized the gathered data in order to gain more in-
sights about the localization process followed by our participants. Interestingly, we
observed that there was an evident consensus regarding which elements should be lo-
calized to achieve the task goal, even regarding the order in which localization should
take place. In the following we describe the main results derived from this analysis.

Fig. 16: Visualizing localization results on the Wordpress login page. Circle radii indi-
cate the number of times an element was localized, whereas lines depict the localiza-
tion order. The WordPress name and logo are registered trademarks of the WordPress
foundation, used with permission.

Figure 16 displays the frequency of localized UI elements along with the localization
trails followed by all participants on the Wordpress login page. Circle radii represent
the number of times an element was localized. As observed, all strings were localized
by all participants on that page. Additionally, one participant tried to sign in without
filling in the login form, so an error message showed up. That specific message was not
shown to the rest of the participants, and thus it was not translated 90% of the time.
Nonetheless, according to the JIT philosophy, UI elements are localized only when they
are needed. Hence, as observed, frequent errors like this one would be localized soon
enough in a real setting.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:26 L. A. Leiva and V. Alabau

Fig. 17: Visualizing localization results on the Wordpress ‘edit posts’ page. Circle radii
indicate the number of times an element was localized. Hidden localized elements such
as dropdown items are not shown in the figure. Lines highlight the first 10 elements
localized by 2 users, illustrating two of the strategies that users followed on this page.

After logging in to Wordpress, users were redirected to the dashboard section and
quickly navigated away to the ‘admin posts’ section using the aside menu. Figure 17
shows a similar visualization to Figure 16 where, for illustration purposes, we display
the localization path of the first 10 elements that followed two participants. In contrast
to the patterns observed on the login page, here both participants chose completely
different strategies to start localizing the UI. Although not shown in the figure, strings
in drop-down lists and other hidden elements were also localized for that particular
page. These results put forward the fact that translations are propagated to similar
UI elements having the same source text; see e.g. the elements at the bottom part of
Figure 17.

A more detailed analysis revealed that UI elements that trigger some “action” such
as buttons, menu links, and table headings were typically localized earlier than less
important parts such as dates or text paragraphs. We believe this information is of
special relevance to inform about UI element localization preference; see next analysis.

5.3.4. Localization Order Analysis. In light of the previous visualization results, we won-
dered if there would be any significant correlation regarding the order that users
followed while localizing each page. Figure 18 shows the rank correlation coefficient
(Spearman’s ρ) against the number of localized elements. For each value in the x-axis
we considered the order in which the first n elements were localized. The order fol-
lowed by each participant was set as ground truth and compared to the order followed
by the rest of the users. Thus, each value in the y-axis accounts for the average ρ up to
n localized elements.

It can be observed that the first 6 elements, which belong to the login page, accounted
for a large consensus (ρ > 0.9, p < .01). As previously explained, that page is rather
simple and it seemed natural to follow a visually sequential order. Then, consensus
dropped for about the next 10 elements to stabilize at ρ = 0.74. This is due to the
fact that participants took different routes to approach the localization of the UI. For
example, most users decided to localize the main menu in the first place, whereas
other users focused on localizing table headers and links to begin with. Then, after
localizing about 10 menu items, the first group of users switched to localizing the main
table, which increased consensus to ρ = 0.79 around n = 30 elements. Afterward, the
remaining elements were considered as less relevant, and so they were localized in

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:27

5 15 25 35 45
0.6

0.7

0.8

0.9

1

Number of localized elements (n)

S
pe

ar
m

an
’s

ρ

95% CI

Fig. 18: Localization order analysis. Correlation is shown as a function of the number
of localized elements. Shaded area represents 95% confidence intervals.

random order to a greater or a lesser extent. As a result, consensus decayed again
to stabilize in ρ = 0.71. All in all, ρ was found to be greater than 0.7 in all cases,
which means that there was significant consensus regarding to which strings should
be localized earlier.

These results are particularly interesting for practitioners because it seems to be
highly predictable which UI elements are likely to be localized in the first place. Fur-
thermore, often it is necessary to localize just the essential parts of a UI, either because
of competitive advantage or economical reasons. For instance, an advanced word pro-
cessor may comprise an important number of menus and options, but actually only a
few of these will be used by regular users. Then, localizing first what is most impor-
tant would allow to reach emerging markets or even introduce a new product sooner
than the competence. Therefore we believe JITL is an appealing approach from this
perspective.

6. DISCUSSION AND IMPLICATIONS
Software internationalization has not changed substantially in the last years, mainly
because it is still a process that takes place deep in the source code [Gross 2006]. Fur-
ther, it is difficult to provide automation for something that usually is done by hand. In
this regard, JITL provides a clear advantage over current internationalization technol-
ogy for websites and web applications. We now briefly highlight the key features of our
method, as compared to the traditional i18n+L10n process, followed by a discussion
about its limitations.

First of all, JITL empowers the user (pull strategy), while the traditional process
requires the intervention of a website owner (push strategy). This should be the take-
away message from this article, see Figure 1. To make such pull strategy possible, JITL
enables localization without previous internationalization. This eventually results in
lower development costs and less iterations in the localization process, saving thus
time and money. Also, less iterations allow for frequent updates at a faster pace in
comparison with the traditional process.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:28 L. A. Leiva and V. Alabau

JITL Traditional

Localization strategy pull push
Manual internationalization no yes
Costs (manpower, time, money) low high
Frequent & immediate updates yes no
Runtime overhead yes no
Localization metadata yes no
Dialect variants yes no
Community-based localization yes no*
In-place localization yes no*
Partial localization yes* no
Prioritized localization yes no
Trusted localization no* yes
Infrequent & dead-code translations no* yes

Table III: Approaching UI localization in “the JITL way” vs. the traditional i18n+L10n
process. An asterisk indicates that some exceptions apply, which we comment below.

As a result of automatic internationalization, JITL introduces a runtime overhead
(in the order of milliseconds, though). In contrast, the traditional process is mostly
static, as typically UI strings are compiled to machine-readable code.31

Both JITL and the traditional process allow localization data to be exported as an ex-
ternal file, but JITL also exports localization metadata; e.g., each string is augmented
with a URL that points to the UI element that contains such string. Among other ap-
plications, these metadata make it possible to generate dialect variants for the same
language over time. For instance, by geolocating the user IP we can estimate better
user agreement rates (e.g. in USA, American English words should be worth more
than British English words) or infer linguistic divergence (e.g., one word may have
different interpretations in the same country). In the traditional process this is by far
more costly or difficult to achieve, as translators for each possible dialect are hard to
find. What is more, translating to such dialects or minor languages may have a low
strategic value for the company, ending up not being localized. However, this can be of
great interest or cultural value for the user, who now is empowered by JITL to do so.

JITL enables community-based localization out of the box. To achieve the same ef-
fect with the traditional process, a third-party tool and possibly some engineering ef-
fort would be required. Because JITL enables in-place localization, the user can correct
mistakes as they go and the visual context is always available to the user. In the tra-
ditional process this capability is seldom available, see Section 2.

JITL makes it easier to produce an incremental localization, e.g., one page at a time.
This is specially interesting not only to companies that cannot afford the entire lo-
calization of an application, but also to shorten times to show an implemented idea
to an international audience, develop early prototypes when there is no option for
turnaround times, or promoting the ease of access to people that do not have suffi-
cient linguistic competence to use the application in a particular foreign language.

Through the traditional process, an application is localized all at once and always at
the testing phase. JITL fundamentally operates at the distribution phase, according
to the JIT philosophy. This typically results in prioritized localization, since the most
relevant strings (according to the users’ criteria) are translated in the first place. On
the other hand, it is possible to use JITL during testing as well. This would resonate
with the JIT philosophy, as strings would no longer be translated “only when they

31Dynamic string localization is also possible, which avoids locale recompilation.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:29

are needed.” Instead, the user would have to translate all strings showing up during
testing.

JITL entails a great opportunity for open source projects or freely available web
pages, since users can seamlessly contribute to produce translations into potentially
every language. This in turn can be leveraged to construct feature-rich multilingual
corpora to train machine translation systems [Alabau and Leiva 2014], for which
translating UI messages is still a challenging issue [Muntés-Mulero et al. 2012]. Nev-
ertheless, JITL translations in principle are less confident in comparison with the tra-
ditional process, since potentially anyone can contribute with JITL. Therefore, JITL
requires data analysis methods such as input agreement (Section 5.3) or simply pay-
ing for human revision.

JITL can also be used to identify “dead code;” for example, a software patch that has
removed some widgets from the UI but has forgotten to remove their associated lists of
options. As Kovacs [2012] pointed out, identifying and removing this dead code could
make the codebase more robust, and reduce the burden on translators, as they would
no longer need to localize these strings. On the contrary, everything gets translated
under the traditional process. Moreover, in JITL infrequent messages are translated
as soon as they appear.

Finally, we should mention that the checklist shown in Table III is not definitive
nor exclusive. For instance, JITL can be integrated in already-internationalized code.
Simply put, the developer should instrument the function used for translating text
(e.g. gettext(), translate(), or similar) so that each UI element gets the data attribute
jitl-localizable="true". This can be achieved by writing a function decorator; i.e., the
translation function does not only return plain text, but also the translated text is
enclosed by a element. In any case, having already internationalized elements
marked up in the source code would allow JITL to skip the first four steps described in
Section 3; see also Figure 2.

6.1. Limitations of Current Implementation
We have shown that JITL enables a number of interesting scenarios, nonetheless our
implementation is not exempt of limitations. First and foremost, because of its auto-
mated nature, in principle only leaf DOM nodes are internationalized, since leaf nodes
are the ones that contain text. This may lead JITL to mismatch relevant resource
strings, although most of them are correctly retrieved, which ultimately allows de-
velopers to save an important amount of engineering effort; see Section 5.1. Also, it
is possible to supervise all strings that should be decoupled from the source code by
using the interactive internationalization application; see Section 4.1.

One technical limitation that cannot be avoided is the localization of buttons that do
not have a value attribute (e.g., <input type="file" />). These particular form elements
are internally handled by the browser itself, and so they are unfortunately out of JITL’s
control. This means that they would be localized into the browser’s language according
to the localization guidelines of the browser vendor, instead of a particular user’s needs.

String tokenization is a critical procedure in order to get the UI internationaliza-
tion right. So far, there might be some exceptions where our approach fails, but until
now we are not aware of any failure case because of an ill-executed regular expres-
sion. However, it might be desirable to make string tokenization more sophisticated.
A particular case would be the automatic detection of entities (e.g., names, verbs, etc.)
or user IDs (e.g., login names). For achieving this, highly refined techniques would be
needed, such as integrating a lexical parser. However, this would not scale well because
of the potential languages and/or locales that JITL would need to support. Moreover,
our highest priority was keeping JITL simple.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:30 L. A. Leiva and V. Alabau

JITL makes user interaction performance-friendly by attaching event listeners
to the document element. As a downside, there is a special case where this would
preclude user interaction. This is is the case of elements that have specified
event.stopPropagation() in mouseover, click or keyup event handlers, provided that these
handlers were attached prior to loading JITL. In our Tokenization and Interaction
study (Section 5.2) we have not observed any collision in this regard, but we believe it
is worth mentioning for the insightful reader.

Another limitation, derived from the in-place localization capability, is related to
those elements that are difficult to localize at runtime; e.g., messages that appear for
a very limited amount of time on the UI (e.g., "Loading..."). To address this issue,
we have mentioned two alternatives. On the one hand, since JITL can generate a PO
file on the fly, strings that cannot be localized at runtime can be eventually localized
offline. On the other hand, the browser extension provides a queue of all seen strings
that would allow the user to localize those strings online. Also, we should mention
that some texts only appear under special circumstances like error messages or hidden
options in menus, and so they would be localized less frequently than elements that
are visually salient.

A problem that arises by the fact that only text nodes are localized is when
these nodes should change order in the translated language. Ideally, interac-
tive internationalization (Section 4.1) could be used to mark those nodes, and
then expose the sub-DOM tree to the user so that she can rearrange both
text and tags. For instance, This is a test

messsage. could be translated into Esto es un

mensaje de prueba.. However, this would imply that users could insert
and modify any HTML in the text, leading to a potential security flaw. Hence, node
reordering could be approached in a more explicit way, possibly by means of a drag-
and-drop interaction that rearranges the inner nodes in the desired order.

It must be pointed out that DOM modifications may cause CSS and JavaScript er-
rors when these are tightly coupled with the DOM structure. Although we have not
observed this problem in any of the analyzed websites, we are well aware that, in this
specific situation, DOM modifications could prevent a site to behave as it was designed.
At this moment, this cannot be easily solved, and thus we would need the user inter-
vention to inform that a page is problematic for JITL. Then, we could investigate ways
to address that particular issue.

True to its philosophy, JITL aims to localize what is required, when it is required.
This is the best case scenario, i.e., when a user spots a sentence that has not been
translated into her language, or a translation error is bothering her, she is simply
able to amend the text on the UI. Therefore, end-users are not expected to perform
an exhaustive exploration of the pages on a website and so it is not clear when the
website would be localized in its entirety. One option would be building a crawler with
node.js (so that it can execute JavaScript code) and keep track of the less browsed pages
or the less interacted elements. Then, when users had collaboratively localized, say,
half of the site, the site owner could be informed so that she could hire a professional
software translator to complete the localization of the site. In addition, we foresee
other incentives to motivate people to contribute and share their localization data.
Just to name a few: rely on volunteers’ work or pay the users straight away, introduce
gamification techniques, or encourage people to practice their language skills.

It is also worth of discussion the “tracing from code to UI” question. For instance, how
much restructuring of an existing site can be made to accommodate professional-level
localization? How could developers integrate persistently all user-submitted transla-
tions in their website? We have discussed that JITL could be integrated in already-
internationalized code. Furthermore, we argued that developers can include a single

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:31

line of JavaScript code that retrieves all user contributions from a centralized reposi-
tory (Section 4). This is of special importance for websites deployed at a shared host-
ing, like Google sites or Github. Websites at most of these shared hostings cannot be
internationalized, either because the shared hosting does not allow it or just because
developers do not have the appropriate tools (e.g. PHP was compiled in the shared
hosting without gettext support). Even in this case, these sites could be benefited from
JITL, since it does not have to manipulate server-side code. All in all, JITL can be seen
as an additional, textual layer that sits on top of any website.

Finally, UI localization may require incorporating changes to aesthetics and colors,
something our method cannot cope with at the moment. This is definitely a research
avenue worth considering for future work. All in all, we believe that JITL might in-
fluence largely the way the Web can be localized, specially for those companies with
highly valued products but with low budgets, and open source projects with low eco-
nomical resources but with a huge user base.

7. CONCLUSION
JITL notably advances the state of the art on web-based software localization. Our
work contributes with core methods and implementation design principles for au-
tomatically internationalizing web-based UIs, together with demonstrations of their
value through a number of implemented applications and a series of empirical evalu-
ations.

We apply an industrial design principle: resources are pulled out of the UI, not
pushed by a company. To date, UI internationalization requires explicit webmaster’s
intervention to deploy translation resources. In contrast, because of its automated na-
ture, JITL allows developers, translators, and arbitrary users to localize websites that
are not under their control. This is specially interesting for websites or web-based
applications that companies do not have in mind to localize. Ultimately, JITL could
become the right approach for localizing the “long tail” of websites, and for expanding
the number of languages that are available in the Web. Our work thus connects with
HCI researchers and practitioners interested in making web-based UIs linguistically
accessible to users worldwide.

There is still an opportunity for future work that characterizes other localization
methods. For instance, although we have primarily focused on web-based UIs, we be-
lieve that our method could be extrapolated to other applications that support struc-
tured data hierarchies; e.g., interfaces created in XUL, ActionScript, or GTK. As a
consequence, we are studying how JITL could be deployed in other platforms beyond
the browser. Another avenue for future work is studying how the JITL idea could work
outside of structured platforms, for instance, in compiled software like C++ applica-
tions.

Looking forward, we believe this work enables research opportunities in web-based
software localization that were inconceivable in the past. It is our hope that JITL will
be a useful and complementary method to existing techniques, and that end-users,
translators, and other professionals working in the localization industry will appreci-
ate such a help. JITL is released as open source software, so that anyone will be able
both to contribute and benefit from it.

ACKNOWLEDGMENTS

We thank Germán Sanchis-Trilles and Roberto Silva for fruitful discussions about the potential of JITL. We
also thank the anonymous TOCHI reviewers for providing valuable feedback to strengthen this manuscript.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

0:32 L. A. Leiva and V. Alabau

REFERENCES
L. R. Abraham. 2009. Cultural differences in software engineering. In Proceedings of International Solvent

Extraction Conference (ISEC). 95–100.
V. Alabau, and L. A. Leiva. 2014. Collaborative Web UI Localization, or How to Build Feature-rich Multilin-

gual Datasets. In Proceedings of the European Association for Machine Translation (EAMT). 151–154.
L. Bentivogli, M. Federico, G. Moretti, and M. Paul. 2011. Getting Expert Quality from the Crowd for Ma-

chine Translation Evaluation. In Proceedings of MT Summit. 521–528.
J. Cardeñosa, C. Gallardo, and Álvaro Martı́n. 2006. Internationalization and Localization after system

development: a practical case. In Proceedings of i.TECH, Information Research and Applications. 1–8.
P. K. Chilana, A. J. Ko, and J. O. Wobbrock. 2012. LemonAid: Selection-based Crowdsourced Contextual

Help for Web Applications. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (CHI). 1549–1558.

R. W. Collins. 2002. Software Localization for Internet Software: Issues and Methods. IEEE Software 19, 2
(2002), 74–80.

M. Dixon, and J. Fogarty. 2010. Prefab: Implementing advanced behaviors using pixel-based reverse engi-
neering of interface structure. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (CHI). 1525–1534.

M. Dixon, D. Leventhal, and J. Fogarty. 2011. Content and hierarchy in pixel-based methods for reverse en-
gineering interface structure. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (CHI). 969–978.

B. Esselink. 2000. A Practical Guide to Localization. John Benjamins Publishing Company.
B. Esselink. 2003. The evolution of localization. Position paper. Available at http://isg.urv.es/seminars/

2003_localization_online/esselink.pdf. (2003).
S. Gross. 2006. Internationalization and Localization of Software. Master’s thesis. Eastern Michigan Uni-

versity.
J. M. Hogan, C. Ho-Stuart, and B. Pham. 2004. Key challenges in software internationalisation. In Proceed-

ings of the second workshop on Australasian information security, Data Mining and Web Intelligence,
and Software Internationalisation (ACSW Frontiers). 187–194.

A. Hsieh, T. Hausman, N. Titus, and J. Miller. 2008. If you build it, they will come... if they can: pitfalls
of releasing the same product globally. In Proceedings of Extended Abstracts on Human Factors in
Computing Systems (CHI EA). 2591–2596.

H. Huang, and E. Trauth. 2007. Cultural Influences and Globally Distributed Information Systems Develop-
ment: Experiences from Chinese IT Professionals. In Proceedings of the ACM SIGMIS CPR conference
on Computer personnel research. 36–45.

T. Hunt. 2013. Cost effective software internationalisation. Journal of Applied Computing and Information
Technology 17, 1 (2013), 1–6.

S. Kawanaka, Y. Borodin, J. P. Bigham, D. Lunn, H. Takagi, and C. Asakawa. 2008. Accessibility Commons:
A Metadata Infrastructure for Web Accessibility. In Proceedings of the International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS). 153–160.

K. Keniston. 1997. Software Localization: Notes on Technology and Culture. Working Paper #26, Mas-
sachusetts Institute of Technology. (1997).

G. Kovacs. 2012. ScreenMatch: providing context to software translators by displaying screenshots. In Pro-
ceedings of Extended Abstracts on Human Factors in Computing Systems (CHI EA). 1375–1380.

J. R. Landis, and G. G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics
33, 1 (1977), 159–174.

L. A. Leiva, and V. Alabau. 2012. An automatically generated interlanguage tailored to speakers of minority
but culturally influenced languages. In Proceedings of the SIGCHI conference on Human Factors in
Computing Systems (CHI). 31–34.

L. A. Leiva, and V. Alabau. 2014. The Impact of Visual Contextualization on UI Localization. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems (CHI). 3739–3742.

T. V. Luong, J. S. H. Lok, D. J. Taylor, and K. Driscoll. 1995. Internationalization: Developing Software for
Global Markets. John Wiley & Sons.

K. A. McKethan, and G. White. 2005. Demystifying Software Globalization. Translation Journal 9, 2 (2005),
1–8.

V. Muntés-Mulero, P. P. Adell, C. España-Bonet, and L. Màrquez. 2012. Context-Aware Machine Translation
for Software Localization. In Proceedings of the European Association for Machine Translation (EAMT).
77–80.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Automatic Internationalization for Just In Time Localization of Web-based User Interfaces 0:33

T. Ohno. 1988. Toyota Production System: Beyond Large-Scale Production. Productivity Press.
D. Patel, C. Lawson-Johnson, and S. Patel. 2009. The Effect of Cultural Differences on Software Develop-

ment. In Proceedings of ICT Structural Development. 250–263.
M. Paul, E. Sumita, L. Bentivogli, and M. Federico. 2012. Crowd-based MT Evaluation for non-English

Target Languages. In Proceedings of the European Association for Machine Translation (EAMT). 229–
236.

M. A. Pérez-Quiñones, O. I. Padilla-Falto, and K. McDevitt. 2005. Automatic Language Translation for User
Interfaces. In Proceedings of the 2005 Conference on Diversity in Computing (TAPIA). 60–63.

K. Reinecke, and A. Bernstein. 2011. Improving performance, perceived usability, and aesthetics with cultur-
ally adaptive user interfaces. ACM Transactions on Computer-Human Interaction (TOCHI) 18, 2 (2011),
8:1–8:29.

T. Steiner, R. Verborgh, and R. Van de Walle. 2012. Fixing the Web One Page at a Time, or Actually Imple-
menting xkcd #37. In Proceedings of the World Wide Web conference (WWW). 1–3. Developers Track.

H. Sun. 2001. Building a culturally-competent corporate web site: an exploratory study of cultural markers
in multilingual web design. In Proceedings of the Annual International Conference on Design of Com-
munication (SIGDOC). 95–102.

SurveyMonkey 2013. SurveyMonkey Goes Global – A case study. Available at http://www.smartling.com/
static/pdf/smartling-case-study-surveymonkey.pdf. (2013). Retrieved Aug 2, 2013.

H. Takagi, S. Kawanaka, M. Kobayashi, T. Itoh, and C. Asakawa. 2008. Social Accessibility: Achieving Acces-
sibility Through Collaborative Metadata Authoring. In Proceedings of the International ACM SIGAC-
CESS Conference on Computers and Accessibility (ASSETS). 193–200.

O. D. Troyer, and S. Casteleyn. 2004. Designing Localized Web Sites. In Proceedings of Web Information
Systems Engineering (WISE). 547–558.

M. Tschernuth, M. Lettner, and R. Mayrhofer. 2012. Unify localization using user interface description lan-
guages and a navigation context-aware translation tool. In Proceedings of the ACM SIGCHI symposium
on Engineering interactive computing systems (EICS). 179–188.

X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. 2009. TranStrL: An automatic need-to-translate string locator
for software internationalization. In Proceedings of the International Conference on Software Engineer-
ing (ICSE). 555–558.

X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. 2010. Locating Need-to-translate Constant Strings in Web Ap-
plications. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE). 87–96.

A. W. Yeo. 2001. Global-software development lifecycle: an exploratory study. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (CHI). 104–111.

ACM Transactions on Computer-Human Interaction, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

