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Abstract—Handwriting movements can be leveraged as a
unique form of behavioral biometrics, to verify whether a real
user is operating a device or application. This task can be framed
as a “reverse Turing test” in which a computer has to detect if
an input instance has been generated by a human or artificially.
To tackle this task, we study ten public datasets of handwritten
symbols (isolated characters, digits, gestures, pointing traces, and
signatures) that are artificially reproduced using seven different
synthesizers, including, among others, the Kinematic Theory
(ΣΛ model), GANs, Transformers, and Diffusion models. We
train a shallow recurrent neural network that achieves excellent
performance (98.3% AUC score and 1.4% EER on average across
all synthesizers and datasets) using non-featurized trajectory data
as input. In few-shot settings, we show that our classifier achieves
such an excellent performance when trained on just 10% of
the data, as evaluated on the remaining 90% of the data as
a test set. We further challenge our classifier in out-of-domain
settings, and observe very competitive results as well. Our work
has implications for computerized systems that need to verify
human presence, and adds an additional layer of security to
keep attackers at bay.

Index Terms—Biometrics; Classification; Verification; Reverse
Turing Test; Deep Learning

I. INTRODUCTION

ONLINE fraud often involves identity theft, and most of
today’s security measures are weak or can be spoofed.

A plausible next level of security is to identify people using
behavioral information, since it is much harder to copy or
imitate. However, recent work [1] noted that synthetic mouse
movements can be used effectively as reply attacks. This
kind of machine impersonation is extremely scalable because
in a matter of seconds it is possible to generate hundreds
of thousands of artificial data samples (or specimens) for
malicious use. Furthermore, some websites are starting to ask
their users to solve some form of handwritten captcha [2],
[3], based on the assumption that handwriting input is a very
natural action for humans.

In this context, we can think of a new form of biometric
authentication for online services based on handwritten sym-
bols such as gestures (geometric shapes or marks), characters,
digits, or signatures that users would have to enter on some
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touch-sensitive surface such as a mobile phone or tablet. The
main advantage is that these symbols are short and easy
to enter for humans. In addition, gestures and digits are
language-independent, so they are equally easy to learn for
everyone. Finally, signatures comprise overlearned ballistic
movements that people articulate almost without thinking.
Therefore, we can expect an increasing adoption of some
form of handwriting-based verification or re-authentication
mechanisms in the future.

Several computational models have been developed to cre-
ate synthetic on-line handwriting.1 For example, Generative
Adversarial Networks (GANs) [1], cognitive models [4], and
computational models based on neuromotor principles [5] have
allowed for a sophisticated and human-like generation. In this
article, as described later, we consider several state-of-the-art
(SoTA) handwriting generation models, including e.g. GANs,
Transformers, and Diffusion models.

In previous work we compared different model architec-
tures to distinguish between human and machine-generated
handwriting movements [6], including convolutional neural
networks (CNNs) and recurrent neural networks (RNNs). We
proposed a shallow RNN architecture that used the pen-tip
velocity as sole input feature, motivated by the fact that
velocity is a significant feature in handwriting recognition [7],
considered the fundamental motor control variable in human
handwriting [8]. That classifier achieved 96% AUC (averaged
over 4 datasets). In this article, we propose a classifier
based on that RNN architecture but using unprocessed (non-
featurized) movement sequences as input. Doing so allows
the model to learn the best internal representation, instead
of doing the feature engineering ourselves. We substantially
challenge the robustness of this classifier using more, larger,
and more diverse public datasets, and using new synthetic
data generation approaches. We were able to improve model
performance systematically, with over 98% AUC (averaged
over 10 datasets and 7 different synthesizers). Importantly,
our findings are consistent across a large variety of on-line
handwritten symbols articulated on different devices (e.g.,
smartphone and tablet) using different input methods (e.g.,
stylus and finger) and across several SoTA data generation
methods, as explained later. We also conducted few-shot and
out-of-domain classification experiments to prove further the
generalization capabilities of our classifier. In sum, this article
makes the following contributions:

• We propose a classification model for conducting reverse
Turing tests that takes as input just plain trajectory data.

1The handwriting recognition community uses the term “on-line” to denote
sequential data, as opposed to the term “off-line” which denotes non-
sequential data, such as a scanned image of a handwritten signature.
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• We provide comprehensive experiments that demonstrate
the robustness and generalizability of the model, includ-
ing few-shot and out-of-domain scenarios, and analyses
of movement complexity.

• Our results are consistent across ten datasets and seven
handwriting generators.

Ultimately, this research has key implications for researchers
interested in understanding the differences between human
and machine movements. If online services are to rely on
behavioral data to prevent fraud, then we have to ensure that
it is possible to distinguish between human and synthetic
data reliably. This idea is similar in soul to the concept of
“liveness detection” in the biometrics community [9]. In short,
biometric systems without liveness detection may be fooled
very easily and the consequences might be fatal [10]. Our
classifier achieves a remarkably high performance over all
the datasets and all the generation approaches considered,
therefore it can be seen as a compelling production-ready
reverse Turing test, where a computer (instead of a human)
distinguishes between human and machine-generated data.

II. RELATED WORK

Among soft biometrics technologies, the ones based on
handwriting movements are increasingly being used to au-
thenticate people. Signatures are perhaps the most popular
approach, however there are more options to verify online
users by means of handwriting input. For example, Acien et
al. [1] considered mouse movements for online verification
coupled with a captcha. In Highlighting CAPTCHA [2] the
user had to trace an obfuscated word with a stylus, and
µcaptcha [3] required the user to trace a math equation.

To verify legitimate human presence on websites and online
services, a simpler and more fundamental approach is the one
we envision in this article: Just ask the user to handwrite
anything and verify if the resulting data was actually produced
by a human. Note that the goal is to allow a computer to
recognize any human handwriting data from any machine-
generated data, i.e., to develop a reverse Turing test. A key
aspect to consider is that handwritten data is of sequential
nature, therefore we can assume they will be spatiotemporal
sequences of (x, y, t) tuples. This combination of spatial and
temporal information is hard to replicate. This relevant aspect
was highlighted by Elarian et al. [11], who concluded that on-
line handwriting velocity is particularly difficult to simulate
reliably.

One of the most successful techniques to generate realistic
handwriting data are movement simulation approaches based
on human neuromotor control and feedforward models of
locomotion. A notable approach in this regard is the Kine-
matic Theory [12] and its associated Sigma-Lognormal (ΣΛ)
model. According to this theory, aimed human movements
(i.e., “movements with intent”) are defined by elementary
movement units, also known as components or primitives, that
are superimposed to produce the resulting trajectory. The ΣΛ
model has been successfully used for synthesizing handwriting
gestures [5] and signatures [13], among other types of human
movements.

The majority of previous work in handwriting genera-
tion has focused on Latin scripts, although we can also
find language-specific synthesizers for Bengali and Devana-
gari [14], Chinese [15], and Arabic [16]. Autoregressive meth-
ods for on-line handwriting generation have become popular,
since they allow end-to-end modeling based on examples,
following machine learning principles. For example, some re-
searchers have proposed RNNs in combination with Gaussian
mixture models to generate plausible handwritten texts [17],
[18]. Other researchers have proposed Variational Autoen-
coders (VAEs) to generate sketches [19] and diagrams [20]
in addition to handwritten text [21]. Disentangling writer
and character styles has also been the subject of recent re-
search [22]–[24]. More recently, researchers have investigated
Transformers [25], [26] and Diffusion models [27], [28],
achieving compelling results.

We showed in previous work [6] that on-line handwriting
can be classified more confidently than off-line handwriting,
and proposed a recurrent model architecture that was tested on
four datasets. As discussed in Section I, that model required
a feature engineering step prior to model training, as it
relied on the pen-tip velocity as input data. In this work,
we use the same model architecture but use plain trajectory
data as input, thereby allowing the model to learn the best
internal representation. We also analyze six additional datasets
that include more challenging and more diverse types of
handwriting data such as mouse and mid-air movements. We
also consider more ways of synthesizing handwriting data
in addition to the ΣΛ model: analytical ΣΛ reconstructions,
affine transformations, GANs, Transformers, and Diffusion
models. Finally, we also conduct few-shot and out-of-domain
experiments that, together, demonstrate the robustness and
generalizability of our model. In sum, this article substantially
advances our previous work and sets a new state of the art in
the task of telling human and machine handwriting apart. Put
simply, our work is essential to prevent spoofing attacks, when
a malicious attacker tries to defeat a biometric system through
the introduction of fake biometric samples.

III. METHODOLOGY

We first introduce the different synthetic handwriting gen-
eration approaches considered, and then we describe our
classifier to tell human and computer handwriting apart.

A. Handwriting Synthesizers

We use three different approaches to synthetically reproduce
human handwriting: two neuromuscular-based methods, four
SoTA data-driven generation methods as reported by Diaz et
al. [29], and an affine-based synthesis method. We produced
one synthetic version for each human sample in the datasets
using each synthesizer.

1) Neuromuscular-based synthesis: We consider two ap-
proaches based on the ΣΛ model, which has a biological back-
ground and, as mentioned before, has been used extensively
for the generation of many kind of handwriting movements.

Kinematic-wise reconstruction r̂ is the analytical recon-
struction of a given real sample r, according to the extracted
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ΣΛ components.2 This reconstruction has the same duration as
the input trajectory, but it is resampled uniformly at the same
input frequency. The pen-tip velocity is analytically parame-
terized using a lognormal extractor from ScriptStudio [30], an
application that uses the “Robust XZERO” algorithm. Since
a complete treatment of this approach is outside of the scope
of this article, we refer the interested reader to the work of
O’Reilly et al. [30] for more details.

Kinematic-wise synthesis sk takes as input an analytical
reconstruction and applies random perturbations to its ΣΛ
components, according to the expected bounds of human
variability. Several ranges are reported in previous work to
generate synthetic samples [5], [13], [31], among which we
followed the ones proposed in [13] as they have proven to
be the more general ones, allowing us to generate realistic
characters, digits, gestures, pointing traces, and signatures.
Then, each component’s duration is randomly expanded or
contracted by 10% of its original duration at the same input
frequency. To introduce further variability, each component is
displaced up to a maximum distance of 10% of its previous
position.

For both cases, i.e., r̂ and sk, all components are concate-
nated in order to produce the final synthetic trajectory. Figure 2
depicts some handwriting examples both in the spatial (left
columns) and temporal (right columns) domains.

2) Data-driven synthesis: We describe the four SoTA mod-
els we considered, followed by the specific training details, as
indicated in their respective papers. All models were trained
using Adam optimizer with decay rates β1 = 0.9, β2 = 0.999,
unless stated otherwise below. None of the models have been
tested before on our handwriting datasets (Table I).

BeCAPTCHA [1] sb is a GAN designed to distinguish
between mouse movements generated by human and bots
solving Google’s visual captchas. The GAN takes as input
a seed vector of 100 random numbers and produces a se-
quence of {x,y} coordinates assuming a fixed sampling rate
of 200 Hz [1]. Under the hood, BeCAPTCHA uses the ΣΛ
model to extract features from mouse dynamics. We trained
BeCAPTCHA for 50 epochs using a batch size of 128 samples
and learning rate η = 0.0002.

DeepWriteSYN [21] sw is another SoTA handwriting syn-
thesizer. It comprises two modules: (i) temporal segmentation
of handwriting data into short-time segments, using the ΣΛ
model; and (ii) on-line synthesis of those short-time segments
using Sketch-RNN [19], a sequence-to-sequence VAE. The
main advantage of DeepWriteSYN is that it operates in short-
time segments, overcoming the length limitation and drifting
issues of Sketch-RNN [32]. We trained DeepWriteSYN for
100 epochs using a batch size of 100 samples and learning rate
η = 0.0001. The loss function is a combination of a recon-
struction term and the (weighted) Kullback-Leibler divergence
(wKL = 0.25). For generation, we used a temperature τ = 0
(deterministic output), as suggested by Tolosana et al. [21].

Disentangled Transformer (SDT) [26] st is a recent
synthesizer that consists of a dual-head style encoder, based

2A handwriting movement is decomposed into several sub-movements, or
components, each represented by a lognormal function that has two peripheral
and four control parameters.

on ResNet18 [33] and a Transformer content encoder, and
a Transformer decoder with 15 attention heads. It employs
two complementary contrastive objectives to extract the style
commonalities of reference handwriting samples, which allow
it to generate realistic synthetic samples. We trained SDT
for 200000 steps (which corresponds between 400 and 4000
epochs, depending on dataset size) using a batch size of 32
samples and learning rate of η = 0.0002.

Finally, Diffusion model for handwriting generation
(DHG) [27] sd is another SoTA data-driven synthesizer that
we considered for our study. The model consists of two parts:
(i) a text and style encoder based on MobileNetV2 [34], to
represent the desired text and stylistic handwriting features;
and (ii) a diffusion probabilistic model comprising a UNet-
based backbone [35]. We trained DHG for 60000 steps (which
corresponds between 400 and 4000 epochs, depending on
dataset size) using a batch size of 96 samples and learning
rate of η = 0.0001.

3) Affine synthesis: We also consider a basic method based
on affine distortions for on-line data. Affine synthesis distorts
the input trajectory by applying a cognitive model [4] followed
by naı̈ve transformations. Like in the previous method, a
handwriting trajectory is first divided into components. Then,
a sinusoidal transformation is applied to each component,
which introduces intra-personal variability. Next, the spatial
coordinates are interpolated by a cubic spline and resampled
at 100 Hz, which randomly lengthens or shortens the trajectory
up to 10% of their original duration. Then, inter-component
variability is added by randomly displacing each component.
Finally, the components are merged, and two affine geometric
transformations are applied: one mimics handwriting slant
and other mimics handwriting skew, producing the resulting
artificial movement data sa.

B. Classifier architecture

Since our goal is a binary classification task (i.e., telling
human and computer handwriting apart), instead of clas-
sic handwriting classification tasks (e.g., decoding symbol
classes or identifying the writers), we considered the archi-
tecture proposed in our previous work [6] but considering
trajectory-based representations in addition to velocity-based
(Section IV-B).

Our classifier has a single Gated Recurrent Unit (GRU)
hidden layer [36] with 100 neurons (embedding size) followed
by a Dropout layer with a drop rate q = 0.25, for regular-
ization purposes, and followed by a single output neuron,
since the classifier outputs the probability of a movement
being synthetic. Specifically, a movement z is classified as
being synthetic when P (synth|z) > 0.5 and human other-
wise. Figure 1 depicts the architecture. Essentially, GRU is
a simplified version of the popular Long Short-Term Memory
(LSTM) cell [37]. In the following, we briefly explain the main
differences between these RNN cells.

Vanilla RNN cells consist of a cyclic (or loop) connection,
which enables the model to update the current state based on
past states and current input data (Figure 1). However, vanilla
RNNs are not capable of handling long-term dependencies.
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Fig. 1. Overview of RNN cells (top left) and our model architecture for sequence classification.

To solve this issue, the LSTM and GRU cells were developed
(Figure 1). LSTM cells have two kinds of hidden states [38]:
a “slow” state cj that keeps long-term memory, and a “fast”
state hj that makes decisions over short periods of time.
In practice, the activation functions Ψ and σ are hyperbolic
tangent and sigmoid, respectively. However, other non-linear
functions have been promoted in the research literature; see
A note on activation functions later for a brief discussion. On
the other hand, GRU cells control the flow of information
like LSTM cells, but without having to use memory, since
the full state vector is output at every time step. Furthermore,
performance-wise the GRU cell is on par with the LSTM in
many problems [39] but it is computationally more efficient
because of its less complex structure. Therefore, our classifier
uses GRU cells for its recurrent layer.

A note on activation functions: Researchers have favored
the rectified linear unit (ReLU) as non-linear activation func-
tion since it considerably speeds up training convergence.
In our experiments, however, we noted that ReLU does not
achieve good performance for sequence classification tasks.
Others have also noted that ReLU is not a good activation
function for RNNs [40], mainly because of the vanishing gra-
dient and exploding gradient problems [41], [42]. To overcome
these problems, we need an activation function whose second
derivative can sustain for a long range and that can saturate for
positive and negative gradients. Therefore, our classifier uses
tanh as the main activation function and sigmoid activation
for the recurrent steps.

IV. EXPERIMENTS

A. Datasets

We consider ten large-scale public datasets of isolated sym-
bols, digits, and characters as well as pointing movements and
complex signatures acquired with different sensors and often at
non-uniform sampling frequencies. While many other datasets
are also available [43]–[45], our selection covers a wide range
of different handwriting application domains. Table I summa-
rizes the datasets. Aiming at investigating potential effects of
the input device in classification performance, we split the
two device-dependent datasets $N-MMGS and BioSign for

analysis as follows: $N-MMGS (stylus), $N-MMGF (finger),
BioSignS (stylus), and BioSignF (finger).

All datasets comprise spatiotemporal sequences of (x, y, t)j
tuples, where (x, y)j refer to the jth spatial coordinate of
the pen tip and tj refers to the time at which the coordinate
occurred, which can be provided in many different forms, for
example: Unix timestamps, millisecond-precision offsets, or
systematically constant values (if coordinates were acquired
at a uniform sampling rate).

B. Input Representations

We consider two data representations as input to our
classifier. The first representation is pen-tip “velocity”, an
engineered feature proposed in previous work [6], defined as
the Euclidean distance between two consecutive points divided
by their time difference. The second representation is pen-
tip “trajectory”, computed as the offsets between consecutive
points: (∆x,∆y,∆t), to make the classifier independent of
the scale of the input device. Notice that, by feeding the
classifier with non-featurized data, just the differences between
consecutive spatiotemporal points, it has to learn the best
internal (hidden) representation of the input sequence for
classification.

C. Classifier training

Our proposed model is trained with the Adam optimizer
using decay rates β1 = 0.9, β2 = 0.999 and learning rate
η = 0.0005. The loss function to minimize is binary cross-
entropy, since our task is a two-class classification problem.
We feed the classifier in batches of 128 sequences each and use
up to 400 epochs for training. We also use early stopping with
patience of 40 epochs, to prevent overfitting, with classification
accuracy as the monitoring metric. We train the classifier on
70% of the data, validate on 10% of the data, and test on the
remaining 20% of the data, which simulate unseen data. These
splits are random, aiming for a user-independent classifier,
which is a more challenging and a more general scenario than
a user-dependent classifier. The splits are also stratified, to
ensure that the ratio in the training/validation/testing partitions
is always 50% human and 50% synthetic samples.
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TABLE I
SUMMARY OF THE EVALUATED DATASETS. THE ‘TRIALS’ COLUMN DENOTES THE NUMBER OF EXECUTIONS PER SYMBOL CLASS, WHEREAS

‘INSTANCES’ DENOTES THE TOTAL NUMBER OF SAMPLES IN THE DATASET.

Dataset Source Movement type Device type Users Classes Trials Instances Rate (Hz)

$1-GDS [46] gestures pocket PC 11 16 30 5,280 60*
$N-MMG [47] gestures tablet PC 20 16 30 9,600 60*
Chars74k [48] handwriting tablet PC 55 62 1 3,410 100
SUSIGv [49] signatures ePad-ink tablet 94 1 20 1,880 100*
Biosecure [50] signatures digitizer tablet 132 1 16 2,112 100
MCYT-100 [51] signatures digitizer tablet 100 1 25 2,500 100
MobileTouch [52] handwriting smartphone 217 72 1 15,624 N/A
BioSign [53] signatures notebook and digitizer 65 1 32 2,080 200*
Mouse [54] pointing computer mouse 20 1 48 960 60*
ProjectedSign [55] signatures optical hand tracking 80 1 20 1600 60
* denotes non-uniform sampling rates.

We set a maximum capacity for our RNN to be 400
timesteps, so that longer sequences are truncated to 400
timesteps and shorter sequences are padded with zeros up to
400 timesteps. We train a model per dataset and only once,
given that, according to previous experiments with different
network initializations with different random seeds, we have
observed no differences in classification performance.

D. Evaluation metrics

We report Area Under the ROC Curve (AUC) and Equal
Error Rate (EER) as our main performance metrics. AUC
informs about the discriminative power of any classifier,
whereas EER is the rate at which a classifier is equally likely to
wrongly accept a synthetic sample as human (false acceptance
rate) as it is to wrongly reject a human sample as synthetic
(false rejection rate).

V. RESULTS

Our goal is to develop a reverse Turing test as general
as possible, therefore we train user-independent and device-
independent classifiers on all datasets. We also conduct few-
shot and out-of-domain classification experiments to prove
further the generalization capabilities of our classifier.

A. Detecting synthetic movements

As can be observed in Figure 3, ΣΛ model reconstructions
are a bit more challenging to distinguish from genuine human
movements when using the pen-tip velocity as input to the
classifier (see ‘Velocity’ group). This is because the ΣΛ
model creates a high-fidelity representation of velocity profiles
that often results in an accurate spatiotemporal trajectory.
Nevertheless, we can see that when our classifier is fed with
plain trajectory data, the human and artificial samples are
very easy to tell apart (see ‘Trajectory’ group in Figure 3).
With only three exceptions (SDT in Chars74k and both ΣΛ
reconstruction and DHG in Biosecure) where our classifier
achieved 71% and 86% AUC, in the other 70 experiments it
turned out that AUC was 100% or close to 100%.

On the other hand, the affine method turned out to be
the easiest to detect. This is explained by the fact that the
simulated timestamps do not follow plausible spatial locations,

and the classifiers exploited that to their own benefit [56]. Be-
CAPTCHA’s generated samples were also very easy to detect.
Overall, we argue that it is easier to simulate a univariate
time series (i.e., velocity) than a multivariate time series, i.e.,
sequences of (x, y, t) tuples, and as such the human-likeness
aspect is more challenging to achieve in the latter case with
any computerized model simulation.

B. Few-shot classification
Few-shot classification aims to train a competitive recog-

nizer using limited training data. To further challenge our clas-
sifier, we systematically train it on small stratified splits (10%
and 50%) of each dataset and test it over the remaining data
(90% and 50%, respectively). The results of these experiments
are shown in Figure 5. In all cases, we use a random split of
20% of the training partition as validation data. That is, for the
10% training split case, we actually use 8% for training and
2% for validation. Similarly, for the 50% training split case,
we actually use 40% for training and 10% for validation.

Notice that the smaller the training split, the more likely
that user-dependent samples will be left out. While this setup
does not guarantee a proper user-dependent scenario, nor is
it the goal of our work, it lowers significantly the chance
of observing samples from a training user in the test set,
considering the sample size of the training splits. As can be
observed, classification performance remains about the same in
all splits. This puts forward the fact that our classifier can learn
an efficient decision boundary with as few training samples as
10% of the available data. Note that the test partition in these
experiments is different from the one used in the previous set
of experiments.

Again, it is the non-featurized input representation the one
that provides better performance results in all cases. The only
exceptions are Biosecure, MCYT-100, and ProjectedSign at
10% for ΣΛ related samples, where the velocity representation
achieves better AUC results, sometimes by a large margin (see,
e.g., the Reconstruction results for Biosecure and Projected-
Sign at 10%). Then, as more training data are considered,
the non-featurized representation outperforms the velocity
representation in every case, often by a large margin (see, e.g.,
the boost in Reconstruction classification for ProjectedSign at
50%).
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(a) $1-GDS (b) $N-MMGS (c) $N-MMGF (d) Chars74k

(e) Biosecure (f) MCYT-100 (g) SUSIGv (h) BioSignS

(i) BioSignF (j) Mouse (k) MobileTouch (l) ProjectedSign

Fig. 2. Examples of movement trajectories and their corresponding velocity profiles for a real sample (top row, vr) and seven synthetic counterparts, each
generated with one of the proposed methods, from top to bottom: ΣΛ reconstruction (v̂r), ΣΛ synthesis (vk), BeCAPTCHA (vb), DeepWriteSYN (vw), SDT
(vs), DHG (vd), and affine transformations (va).

C. Out-of-domain classification

In light of the exceptional results observed in the previous
experiments, we decided to challenge our classifier further. In
out-of-domain (OOD) classification, the distribution of the test
data is completely unknown to the recognizer. In contrast with
the few-shot classification scenario, in OOD classification the

decision boundary is potentially infinite [57] and so the train-
ing data might not efficiently reflect the test data. This scenario
aligns better with our end goal of developing a general reverse
Turing test, where the provenance of a handwriting movement
is unknown to the classifier. We mimic this OOD scenario by
testing our already trained classifiers from Section V against
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Fig. 4. Classification of human vs. synthetic samples: EER results (lower is better).
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Fig. 5. Few-shot classification of human vs. synthetic samples: AUC results (higher is better). The ‘Training size’ legend group denotes the number of
training instances, as a ratio of the original dataset size.
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Fig. 6. Few-shot classification of human vs. synthetic samples: EER results (lower is better). The ‘Training size’ legend group denotes the number of training
instances, as a ratio of the original dataset size.

all the other datasets altogether. Each of the test datasets
contributes with a random split of 30% of their samples. The
results of these experiments are reported in Figure 7.

We can see that all classifiers generalize reasonably well
to unseen data from any of the other datasets. However, it
is the classifier trained on the MobileTouch dataset the one
that achieves better performance, both in terms of AUC and
EER. We argue this is so because the MobileTouch dataset is
very diverse in terms of symbols (72 different classes) and
input devices (94 different smartphones). Also importantly,
this dataset has many more training samples than the other
datasets; e.g., it is three times larger than $1-GDS and almost
one order of magnitude larger than ProjectedSign.

Based on our results, we would recommend training on
MobileTouch data to learn a general representation of what
constitutes a competent detector of synthetic handwriting
movements of potentially any type, including gestures, letters,
symbols, signatures, and mouse movements. Of course, if we
can afford training on more datasets, this detection task would
become even more accurate. By way of example, Table II
shows some OOD classification examples, picked at random,
of both successful and failed cases. We also report in the table
the classification probability, to give a sense of how confident
our classifier was in each case. It can be observed that, even
when the classifier is wrong (Type I or II errors), it is so
by a small margin. We remind the reader that our classifier
outputs the probability of a sample z being synthetic, and uses
P (synth|z) > 0.5 for classification.

TABLE II
OOD CLASSIFICATION EXAMPLES.

Specimen (z) Outcome True label Prediction P (synth|z)

Success Synthetic Synthetic 0.9999

Success Human Human 0.0003

Type I error Human Synthetic 0.6989

Type II error Synthetic Human 0.4305

D. Putting it all together

As final experiment, we investigated further the generaliza-
tion abilities of our classifier by training and evaluating in
all datasets combined. In total, we used 267K samples for
training, 53K for validation, and 29K for testing.

Table III summarizes the results. Again, the trajectory-based
classifier outperformed the velocity-based one, although this
time the differences between both approaches were not as
large as in the individual experiments. We attribute this result
to the significantly large scale of these experiments, more
than two orders of magnitude as compared to the individual
experiments. In addition, and more critically, it is important to
mention that in these experiments we considered all generated
samples from each synthesizer. Therefore the proportion be-
tween human and synthetic samples is highly imbalanced, with
six times more synthetic samples than human samples being
considered. The results reported in the table are weighted by
class proportion, to account for the aforementioned imbalance.

We repeated these experiments but considering the same
proportion of human and synthetic samples for train-
ing/validation/testing. Table IV summarizes the results. We
can observe that the differences between input representations
are more apparent, with four absolute points of difference in
terms of AUC, Accuracy, and F-score. These results reject
the idea that data imbalance may benefit the velocity-based
classifier. Rather, the reason why both classifiers performed
similarly in Table III is because they learned much more about
the distribution of the synthetic data than the human data,
so the nuances and details of real human movements became
less noticeable to the classifiers, as they were less frequently
represented in the training data.

TABLE III
PERFORMANCE EVALUATION RESULTS (IN %) ON ALL DATASETS

COMBINED. ARROWS INDICATE THE DIRECTION OF BETTER
PERFORMANCE.

Representation AUC↑ EER↓ Bal. Accuracy↑ F-score↑
Velocity 91.71 14.53 96.14 96.12

Trajectory 92.54 14.03 97.19 97.14

VI. DISCUSSION

As shown in Figure 3, our classifier can effectively dis-
tinguish whether a trajectory was synthetically generated,
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Fig. 7. OOD classification of human vs. synthetic samples: AUC results (higher is better). Our classifier is trained on a single dataset, denoted in the ‘Source’
column, then tested against a random sample from all the other datasets altogether (each dataset contributes with a random 30% of their data).
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Fig. 8. OOD classification of human vs. synthetic samples: EER results (lower is better). Our classifier is trained on a single dataset, denoted in the ‘Source’
column, then tested against a random sample from all the other datasets altogether (each dataset contributes with a random 30% of their data).

TABLE IV
PERFORMANCE EVALUATION RESULTS (IN %) ON ALL DATASETS
COMBINED AND ENSURING THE SAME NUMBER OF HUMAN AND

SYNTHETIC SAMPLES FOR TRAINING/VALIDATION/TESTING.

Representation AUC↑ EER↓ Bal. Accuracy↑ F-score↑
Velocity 92.13 5.01 92.13 92.27

Trajectory 96.03 2.66 96.03 96.06

achieving perfect (or very close to 100%) AUC scores across
all datasets when using trajectory data as input. Using velocity
data as input proved to be more challenging for classification,
as we observed lower AUC scores overall, with a minimum
value of 65% achieved in the ProjectedSign dataset. A similar
observation can be made in Figure 4, where a lower EER
(often 0%) was observed when using trajectory data as input.
Given the results of our comprehensive study, we can conclude
that it is possible to tell human and machine handwriting apart
because, as the saying goes, the devil is in the details.

The research literature has shown that computational models
like ΣΛ can synthesize human movements with remarkable
precision. However, replicating intricate movement details re-

lated to high-frequency components remains an open research
question. It turns out that human handwriting movements are
imperfect, in the sense that they contain non-stochastic spa-
tiotemporal variations that computational models are unable
to reproduce reliably. These minor, sometimes imperceptible,
motor variations are rapidly recognized by our GRU classifier.

To shed more light on our experimental results, we esti-
mated the movement complexity in each dataset. Concretely,
we analyzed the distribution of the number of extracted stroke
components, denoted as nbLog in the research literature, which
is linked to the complexity of handwriting movements [58].
A lower nbLog value, in conjunction with a higher Signal-to-
Noise Ratio (SNR), indicates a better adherence to the log-
normality principle [59]. But nbLog alone is not comparable
across datasets, since complexity is higher if the input signal
is longer, so we normalize nbLog by the duration of the input
signal, nbLog/s, to make results more comparable.

We use the iDeLog method [60] to detect the number of
components in the synthesized specimens, to make it indepen-
dent from the ΣΛ synthesizers we used (see Section III-A).
iDeLog also allows for greater flexibility in calculating the
number of components for handwriting acquired with dif-
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(a) $1-GDS (b) $N-MMGS (c) $N-MMGF (d) Chars74k

(e) Biosecure (f) MCYT-100 (g) SUSIGv (h) BioSignS

(i) BioSignF (j) Mouse (k) MobileTouch (l) ProjectedSign

Fig. 9. Density distributions of nbLog/s (s−1) analyzed with iDeLog [60] in terms of real samples (r), ΣΛ reconstructed samples (r̂), synthesized samples
with the kinematic model (sk), affine transformations (sa), BeCAPTCHA (sb), DeepWriteSYN (sw), SDT (vs), and DHG (sd).

ferent digitizers. Our hypothesis relies on the dissimilarities
between distributions: the higher the overlap between human
and synthetic distributions, the better the synthetic data would
approximate the human data.

In principle we could assume that the smoother (and more
predictable) the human movement, the closer its synthetic
version will be and therefore the harder it will be to classify.
The reason is that a computer-generated movement is more
“regular” than a real human movement, as human handwriting
is articulated by heterogeneous factors such as the person’s
stance, posture, cognitive state, etc. These regularities in
artificially generated handwriting are more easily detected
while analyzing movement dynamics rather than analyzing
their visual appearance [6].

As can be observed in Figure 9, there are subtle differences
between human and synthetic data. Interestingly, we can iden-
tify three groups across all datasets. The first group comprises
the real and affine-wise data. Their distributions tend to appear
centrally in the plots and are very similar in many cases, which
in principle indicates that these specimens would be harder to
classify. However, as we already know, this is not the case.
The second group comprises ΣΛ, DHG, STD, and DeepWrite.
Notably, a consistent behavior was observed in the distribution
plots. We should point out that these approaches do not operate
on a geometric space (as the affine approach does). More

interestingly, the ΣΛ distributions are systematically shifted to
the left as compared to the real data. The reason is the signal
processing in ScriptStudio, which removes the imperfections
from the input signal as a result of its preprocessing, which
results in a reduced number of lognormals detected by iDeLog.
Finally, the third group consists solely of BeCAPTCHA data.
We note that their distributions are systematically shifted to
the right as compared to the real data. The reason is that
those samples contain more number of components that the
samples generated by the other approaches, as can be observed
in Figure 2. Therefore, iDeLog needs more lognormals to ap-
proximate the BeCAPTCHA-generated samples, which results
in a higher number of nbLog/s values as a result.

Other interesting observations are worth of discussion. First,
signatures collected with good-quality input devices, such
as those in the Biosecure and MCYT-100 datasets, have
lower nbLog/s values. This happens to be correlated with
the classification performance of our classifier when using
velocity as input representation; cf. Figure 3. On the other
hand, in the Mouse dataset, both the ΣΛ reconstructions and
the kinematic-wise samples have a shifted distribution. This is
again caused by the signal processing of ScriptStudio. It is also
correlated with the lower performance observed in Figure 3.
This was somehow expected, since this dataset comprises
mostly straight movements. Therefore, a few lognormals per
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second are expected to model such movements. What is inter-
esting, however, is that, obeying the lognormality principle, the
number of extracted lognormals can explain the classification
performance: the lower the nbLog/s the lower the AUC scores.

Finally, we should point out that our work has a noteworthy
limitation. While our classifier is independent of the writer,
synthesizer, and language, aiming at a general-purpose reverse
Turing test, it requires a collection of examples of human and
machine-generated movements to be trained on. Most of our
datasets comprise signatures, gestures, and mouse movements.
Only two datasets (Chars74k and MobileTouch) comprise
handwritten characters, which happen to be in English. Future
work should consider handwritten characters in non-Latin
writing scripts such as Chinese or Arabic. Future work could
also consider a one-class classification approach, where for
example the model is trained on human movements only. This
task can be framed as an anomaly detection problem instead of
the binary classification problem we have tackled in this work.
In addition, future work could also consider explainability
tools in order to better understand the discriminating capability
of the trained models. Looking forward into the future, it
would be interesting to consider other input representations,
following emerging research directions on the analysis of high-
dimensional inertial data [61]–[63].

VII. CONCLUSION

We have contributed a comprehensive study and a very
accurate classifier to tell human and machine handwriting
movements apart. It can distinguish many different types
of symbols, from isolated characters and digits, to gestures,
pointing traces, and signatures. Our experiments prove the
robustness and generalizability of our approach to several data
generation methods, to few-shot training, and to out-of-domain
classification.

Our results are key not only to biometric systems, but also
to other research fields that need to understand the nuanced
differences between human and machine movements. For
example, in robotics, our model can be used to improve the
realism of synthetic but human-like end-effector trajectories,
which is a very demanding task for robot arms with flexible
links [64]. In sum, our approach not only allows distinguishing
next-generation bots trying to impersonate human handwrit-
ing, but also has important implications for human behavior
analysis and motor control understanding.
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1978, respectively. In 1978, he joined the faculty of École Polytechnique,
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