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ABSTRACT 

Objective: Evaluate the effectiveness of machine learning (ML) algorithms in classifying mild cognitive impairment (MCI) 
and Alzheimer’s disease (AD) using features derived from the House Drawing Test (HDT). Methods: The HDT was 
administered to 58 participants, categorized into AD (n = 22), MCI (n= 25), and Healthy Controls (HC, n = 11). Drawings 
were simultaneously captured using an electronic pen (on-line format) and scanned (off-line format). Results: The models 
achieved high classification accuracy across all groups: HC vs. MCI (67%), MCI vs. AD (70%), HC vs. AD (76%). Our 
results showcase the potential of ML for early screening of neurodegenerative diseases. 
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1. INTRODUCTION 

Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) present significant challenges in an aging 
society, necessitating early diagnosis for effective disease management. MCI, often a precursor to AD, is 
characterized by a cognitive decline that, while noticeable, does not yet significantly impair daily activities. 
Identifying MCI as early as possible is essential, as it allows for interventions that may delay the onset of AD. 
There is thus an urgent demand for diagnostic tools and strategies to facilitate early detection and intervention 
[Liss et al., 2021; Wimo et al., 2023]. 

Cognitive assessments have become a focus for early detection of MCI and AD, particularly relying on 
drawing tasks that assess constructional abilities [Knechtl and Lehrner, 2023; Tsatali et al., 2022], such as the 
Rey-Osterrieth Complex Figure [Cheah et al., 2019], the Clock Drawing Test (CDT) [Cilia et al., 2022], and 
the House Drawing Test (HDT) [Youn et al., 2021]. However, traditional cognitive assessments, based on pen 
and paper, are often time-consuming, prompting the development of quicker, semi-quantitative alternatives 
[Chan et al., 2021; Kobayashi et al., 2022]. Drawing tests based on electronic pens provide more quantifiable 
metrics (e.g., drawing latency or visual quality) to differentiate between individuals with and without 
neurodegenerative diseases [Xu et al., 2020; Öhman et al., 2021]. Despite these advancements, little research 
has compared how traditional (off-line, scanned images) and digital (on-line, time series) drawings perform in 
practice. While previous work noted that on-line representations offer richer features than off-line data 
[Bensalah et al., 2023; Cilia et al., 2021], a systematic comparison between these input types for diagnostic 
accuracy is currently lacking. To bridge this gap, we investigate the impact of data augmentation (DA) on both 
off-line and on-line representations for MCI and AD screening. 
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We focus on HDT drawings given the test’s complexity and its demand for visuospatial and cognitive 
planning abilities, as previous research has shown that more complex tasks are more sensitive to early cognitive 
impairments [Trojano and Gainotti, 2016]. Further, the HDT’s requirement for participants to draw from 
memory, as opposed to copying, places a higher cognitive load, making it a robust tool for early detection of 
conditions like MCI and AD [Rouleau et al., 1996]. 

2. RELATED WORK 

Handwriting analysis1 has emerged as a cost-effective and reliable method for early detection of AD and MCI. 
Various studies (e.g., [Ghaderyan et al., 2018]) have used handwriting-based features to differentiate between 
AD, MCI, and Healthy Controls (HC). However, task effectiveness can vary significantly; for example, 
symbols like the spiral may not fully capture the fine-grained details of spatial awareness, planning, and 
memory, which are particularly affected in MCI and AD patients. 

Garre-Olmo et al. [2017] analyzed kinematic and pressure features of handwriting in 52 participants. The 
tasks included drawing of crossed pentagons, spirals, 3D houses, and the CDT. Their study highlighted the 
potential of on-line features in distinguishing between healthy subjects and those with cognitive impairments. 
Supporting these findings, [Werner et al., 2006] reported significant differences in temporal measures and 
pressure among AD, MCI, and HC groups. 

Traditional off-line cognitive assessments have primarily focused on identifying outlines and details using 
scoring systems, often overlooking the sequence of drawing actions. A limited number of studies have 
employed digital tools, such as pens or tablets, to record the drawing process (see, e.g., [Cilia et al., 2022]). 
Poreh et al. [2020] used a digital pen to analyze continuity and symmetry variables, offering insights into 
cognitive functions beyond traditional methods. Similarly, Kim et al. [2020] used a tablet to automatically 
extract stroke parameters and spatial information. They found that AD patients produced more fragmented 
drawings, took longer pauses, and demonstrated lower accuracy than individuals with normal cognition. 

Our study contributes to the research literature by evaluating the effectiveness of various computational 
models for detecting AD and MCI (e.g., [Chen et al., 2020; Hosseini-Kivanani et al., 2024]). For example, 
digital parameters of the CDT have effectively demonstrated cognitive processes and distinguished between 
patients with amnestic MCI, mild AD, and those with normal cognition [Zhang et al., 2021]. However, specific 
drawing behaviors in MCI patients remain underexplored. 

3. METHODOLOGY 

We sought to explore cognitive and motor functions through a drawing task designed to assess creativity and 
precision across different cognitive stages (HC vs. MCI, MCI vs. AD, HC vs. AD). We recruited 58 
participants from [redacted], including 11 HC, 25 with MCI, and 22 AD. Cognitive status was assessed using 
the Mini-Mental State Examination (MMSE). A Chi-square test showed no significant association between 
sex distribution and diagnosis group, χ2(1, N = 47) = 2.09, p = 0.148, and a t-test indicated no significant age 
differences between HC and MCI groups (t(36) = 0.65, p > .05) (Table 1). However, a significant difference in 
MMSE scores was found, indicating lower cognitive function in individuals with MCI compared to healthy 
controls (t(36) = 3.38, p <.05) (Table 1). 

 

 

 

 

                                                 
1 In this paper, we consider handwriting and hand-drawing interchangeably, as both involve similar neurophysiological and peripheral 
processes involved in motor control. 

ISBN: 978-989-8704-62-7 © 2024

204

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Table 1. Summary of user demographics (Mean ± SD) and Age-MMSE correlations 

Characteristic HC 

(n=11) 
MCI 

(n=25) 
AD 

(n=22) 
Total 

(n=58) 
Age (years) 82.6 ± 2.5 81.4 ± 5.9 79.4 ± 4.1 80.9 ± 5.0 
MMSE Score 29.9 ± 0.8 26.0 ± 2.1 23.5 ± 3.6 26.6 ± 3.3 
Gender (F/M) 8/3 15/10 17/5 40/18 

Age-MMSE 
Corr. 

-0.16 0.28 -0.23 0.15 

p-value .170 .030 .310 .200 

3.1 Data Collection and Preprocessing 

Participants were instructed to draw a house symbol on a Repaper tablet (dimensions: 10.9 inches)2 with a 
blank sheet of paper affixed and using a standard pen equipped with an accelerometer. This setup replicated a 
typical pen-and-paper drawing experience while capturing digital data via Bluetooth to the Repaper app.  
A total of 58 drawings were collected. The on-line data, representing discrete point sequences, were initially 
saved as SVG files and then converted to JSON format, containing multivariate sequences of (x,y,t) points. 
The off-line data, captured as high-resolution images using an HP Color LaserJet Pro scanner, were stored as 
PDFs, converted to PNG format, and resized to 224x224 pixels to standardize inputs for deep learning (DL) 
models. This resizing aligns with common computer vision practices for compatibility with pretrained DL 
models. To further enhance image quality, the Canny edge detector was applied to highlight edges in the 
scanned images. 

Figure 1. Sample of off-line and on-line drawing with standard and AVC augmentation 

Data Augmentation: To improve model robustness and generalizability, we applied DA techniques to both 
on-line and off-line versions. For off-line version, we used geometric transformations such as rotation, 
translation, scaling, and flipping to increase variability and reduce overfitting. For on-line version, we 
employed standard techniques such as jittering and, based on recent findings by the AVC technique proposed 
by [Maslych et al., 2023]. The AVC included Gaussian noise addition, frame-skipping, spatial modifications, 
perspective adjustments, and scaling. After DA, the dataset included 300 images (off-line version) and  
300-point sequences (on-line version), evenly distributed across 100 observations per group. 

3.2 Experimental Setup 

Our study employs Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to 
analyze handwriting for cognitive impairment assessment. CNNs are used to analyze pixel-based images, 
detecting spatial patterns and textures that are indicative of subtle cognitive changes. We use three CNN 
architectures: ResNet50 [He et al., 2016], which employs skip connections to maintain information across 
deeper layers; DenseNet121 [Huang et al., 2017], known for efficient feature propagation through densely 

                                                 
2 https://www.iskn.co/eu 
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connected layers; and EfficientNet [Tan and Le, 2019], which optimizes the network’s architecture to handle 
diverse handwriting styles effectively. 

In addition to image-based analysis, RNNs are applied to interpret stroke sequences. This approach captures 
temporal dynamics and sequential nuances in handwriting, providing insights into the cognitive processes 
underlying stroke patterns. We implement three types of RNNs: the Bidirectional Vanilla RNN (BiRNN) for 
straightforward sequential tasks; Bidirectional Long Short-Term Memory (BiLSTM) [Hochreiter and 
Schmidhuber, 1997] for retaining information across longer sequences; and Bidirectional Gated Recurrent Unit 
(BiGRU) [Cho et al., 2014], which balances computational efficiency with performance. 

Training Details: All models were trained using the Adam optimizer with a learning rate of η = 0.001 and 
decay rates of β1 = 0.99 and β2 = 0.999. We used binary cross-entropy as the loss function for all binary 
classification tasks (HC vs. MCI, MCI vs. AD, and HC vs. AD). We used a batch size of 32 and up to 100 
training epochs, with early stopping (patience of 40 epochs) to avoid overfitting. The augmented dataset was 
split into 80% for training and 20% for testing, ensuring the test set represented unseen data. Stratified 5-fold 
cross-validation was conducted on the training set to maintain class proportions across folds. Model 
performance was evaluated using classification accuracy (Acc.) and the Area Under the ROC Curve (AUC). 

4. RESULTS AND DISCUSSION 

Our experiments are crucial for understanding the progression of cognitive decline and distinguishing between 
HC, individuals with MCI, and those with AD. As highlighted in previous research [Ding et al., 2022; Werner 
et al., 2006], distinguishing MCI from HC and AD can be particularly challenging due to overlapping 
characteristics. 

Table 2 summarizes the Accuracy and AUC results for both on-line and off-line datasets, comparing models 
with and without DA. The data reveal that applying DA, particularly standard DA (StdAug), consistently 
improves performance across all models and settings. 

Off-line Data: EfficientNet demonstrated significant performance gains across all binary classification 
tasks when standard DA was applied. Specifically, for “HC vs. MCI,” accuracy increased from 50%—52% to 
65%—66%, for “MCI vs. AD” from 49%—49% to 69%—70%, and for “HC vs. AD” from 53%—55% to 
76%—77%. This indicates that off-line data setups benefit substantially from standard DA. 

On-line Data: BiGRU was the top performer for on-line data, showing marked improvements post-DA.  
In the “HC vs. MCI” task, performance increased from 51%—54% to 67%—69%, in “MCI vs. AD” from  
47%—45% to 70%—72%, and in “HC vs. AD” from 45%—47% to 75%—76%. While on-line data also 
benefitted from DA, results varied more between models. 

Comparison of DA Techniques: The comparison between standard DA and AVC DA shows that standard 
DA generally yields higher performance gains. For example, in the “HC vs. AD” group, GRU achieved similar 
results with standard DA (75%—76%) and AVC DA (68%—70%), but overall, standard DA consistently 
outperformed AVC across different settings. 

The improvements observed in our study align with existing literature that suggests data augmentation can 
enhance ML model performance by providing more diverse training data, thereby improving generalization 
[Shorten and Khoshgoftaar, 2019]. Specifically, our findings underscore that standard DA outperforms more 
complex techniques like AVC DA, particularly in tasks that require distinguishing subtle cognitive differences, 
such as between HC and MCI. This suggests that simpler, well-tuned DA methods might be more beneficial 
for certain medical datasets, where the quality and interpretability of data are paramount [Perez and Wang, 
2017]. 
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Table 2. Binary classification results achieved before and after DA (Standard & AVC) for different DL Models 

 HC vs MCI MCI vs AD HC vs AD 
Off-line On-line Off-line On-line Off-line On-line 

B
ef

o
re

 

S
td

A
u

g
 

B
ef

o
re

 

S
td

A
u

g
 

A
V

C
a
u

g
 

B
ef

o
re

 

S
td

A
u

g
 

B
ef

o
re

 

S
td

A
u

g
 

A
V

C
a
u

g
 

B
ef

o
re

 

S
td

A
u

g
 

B
ef

o
re

 

S
td

A
u

g
 

A
V

C
a
u

g
 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

(A
cc

.|A
U

C
) 

R
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 42 | 48 57 | 49 N/A N/A N/A 46 | 47 63 | 65 N/A N/A N/A 51 | 50 65 | 64 N/A N/A N/A 

D
en

 49 | 51 61 | 63 N/A N/A N/A 49 | 50 60 | 62 N/A N/A N/A 51 | 50 73 | 77 N/A N/A N/A 

E
ff

 50 | 52 65 | 66 N/A N/A N/A 49 | 49 69 | 70 N/A N/A N/A 53 | 55 76 | 77 N/A N/A N/A 

R
N

N
 N/A N/A 50 | 51 61 | 60 56 | 59 N/A N/A 50 | 53 61 | 65 55 | 59 N/A N/A 48 | 52 72 | 75 60 | 58 

L
S

T
M

 N/A N/A 50 | 55 65 | 66 59 | 59 N/A N/A 47 | 49 65 | 66 60 | 57 N/A N/A 46 | 52 75 | 75 59 | 59 

G
R

U
 N/A N/A 51 | 54 67 | 69 59 | 60 N/A N/A 47 | 45 70 | 72 61 | 64 N/A N/A 45 | 47 75 | 76 68 | 70 

 

4.1 Limitations and Future Work 

Our study has some limitations worth of mentioning. Mainly, the small sample size, which is a pervasive 
problem in medical studies [Chen et al., 2016; Hosseini-Kivanani et al., 2024; Impedovo and Pirlo, 2018], and 
the focus on a single type of drawing task may limit the generalizability of our findings. Additionally, the 
study’s reliance on a specific neuropsychological test (the HDT) may not fully capture the diversity of cognitive 
impairments across different populations and tasks. Future research should explore other cognitive assessment 
tasks to validate further our findings. Despite these limitations, our results hold promise and could pave the 
way for future clinical applications using a simple handwriting test as a non-invasive, low-cost method. 
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