
Gustav: Cross-device Cross-computer Synchronization
of Sensory Signals

Kayhan Latifzadeh
Luis A. Leiva

name.surname@uni.lu
University of Luxembourg

Luxembourg

ABSTRACT
Temporal synchronization of behavioral and physiological signals
collected through different devices (and sometimes through differ-
ent computers) is a longstanding challenge in HCI, neuroscience,
psychology, and related areas. Previous research has proposed to
synchronize sensory signals using (1) dedicated hardware; (2) dedi-
cated software; or (3) alignment algorithms. All these approaches
are either vendor-locked, non-generalizable, or difficult to adopt
in practice. We propose a simple but highly efficient alternative:
instrument the stimulus presentation software by injecting super-
visory event-related timestamps, followed by a post-processing
step over the recorded log files. Armed with this information, we
introduce Gustav, our approach to orchestrate the recording of
sensory signals across devices and computers. Gustav ensures that
all signals coincide exactly with the duration of each experiment
condition, with millisecond precision. Gustav is publicly available
as open source software.

CCS CONCEPTS
· Human-centered computing → Laboratory experiments;
Interaction devices; HCI design and evaluation methods.

KEYWORDS
Orchestration; Synchronization; Behavioral/Physiological Sensing
ACM Reference Format:
Kayhan Latifzadeh and Luis A. Leiva. 2022. Gustav: Cross-device Cross-
computer Synchronization of Sensory Signals. In Proceedings of ACM Con-
ference (Conference’17). ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Every user interaction, whether concious or unconcious, emerges
as a result of complex cognitive processes (central nervous sys-
tem) and motor control mechanisms (peripheral nervous system).
These can be measured for example through brain activity [3, 17],
heart rate variability [23], keystrokes [12], or mouse [8] and eye

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ttt

(a) Single-device
Single-computer

(b) Multi-device
Single-computer

(c) Multi-device
Multi-computer

Setup complexity

Logging

Post-processing

Step 1:

Step 2:

t1 t1 t1 t1

t1 t2 t1 t2 t1 t2 t1 t2

t2 t2 t2 t2

Figure 1: Gustav injects a supervisory timing signal t that
helps orchestrating the experiment conditions across devices
and computers, from simple (a) to complex (c) setups. Then,
after post-processing, the time offsets of the recorded signals
are corrected and each signal is assigned the same starting
and end timestamps, thus keeping all signals in sync.

movements [14, 22]. To that end, in order to better understand the
user, researchers often collect different behavioral and physiologi-
cal signals simultaneously [5, 21], in order to have complementary
data sources for inference and analysis. However, the collection of
simultaneous data streams from multiple devices (and sometimes
multiple computers) has been a longstanding challenging in HCI,
neuroscience, psychology, and related areas.

If the recorded signals are not properly synchronized in time, we
might draw wrong conclusions about the analyzed situation [2]. For
example, while watching a video in which nothing is happening,
the brain activity of the participant is reporting high values in the
frequency bands associated to resting states [4] while after a few
seconds those values are very low but the eye tracking data reports
significant pupil dilations, which are associated with cognitive
processing [6]. This will result in contradictory conclusions for the
described situation, therefore temporal synchronization is critical.

We introduce Gustav,1 a simple yet effective software-level ap-
proach for orchestrating the recording of sensory signals across
devices and computers. Gustav contributes to solving three main
challenges in this regard. First, it standardizes and consolidates the
timeline of recorded signals based on the injection of event-related
timestamps. Second, it removes unnecessary data from the recorded
signals (e.g. some seconds before or after the onset of a new stimu-
lus). Third, it adjusts the timestamp offsets of the recorded signals,

1Named after the orchestra composer Gustav Mahler (7 July 1860 ś 18 May 1911).

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Conference’17, July 2017, Washington, DC, USA K. Latifzadeh and L. A. Leiva

with millisecond precision, so that every signal coincide exactly
with the duration of each experiment condition. Moreover, Gustav
does not depend on any particular hardware or software program,
so it can be incorporated to virtually any existing experiment de-
sign solutions such as PsychoPy,2 PsychoJS,3 OpenSesame,4 or
Paradigm.5 In sum, Gustav is a general and easy-to-use solution
to synchronize sensory signals across devices and computers, cov-
ering thus any king of experimental setups, as shown in Figure 1.
Gustav is available as open source software.

2 RELATEDWORK
Previous research has proposed to synchronize sensory signals us-
ing (1) dedicated hardware; (2) dedicated software; or (3) alignment
algorithms. In this section we show that all these approaches are
either vendor-locked, non-generalizable, or difficult to adopt in
practice.

OpBox [7] is an integrated hardware and software toolkit for
simultaneous electroencephalogram (EEG) and electromyography
(EMG) signals using Matlab. The recording of other sensory signals
is not supported, which makes this toolkit limited in scope. A more
comprehensize solution was developed by Notaro and Diamond [9]
but it is only available for the Windows Operating System.

The Observer XT [24] is also only available for Windows but
it supports the design and recording of many different sensory
signals. Interestingly, the user must provide visual or auditory cues
to synchronize behavioral events. Automatic synchronization of
physiological data can be achieved by sending out a synchroniza-
tion signal through a cable that connects the computer running
the stimulus presentation software and the sensory device. Other
researchers have also proposed to send out a synchronization sig-
nal with dedicated hardware, such as a light-emitting diode [13] or
transistor-transistor logic [20].

Ragot et al. [11] recorded cardiac and electrodermal signals and
mentioned that they developed a custom program for synchro-
nization. However, no technical details were given. Xiao et al. [19]
proposed an algorithm to synchronize physiological signals, based
on the direct cross-correlation of their temporal amplitudes. This
method assumes that there is a common signal pattern across all
the recording devices. Similarly, Wolling et al. [18] used short-time
Fourier transform and Pearson’s normalized cross-correlation to
detect skin landmarks in order to synchronize wearable devices.

Szajerman et al. [15] synchronized EEG and eye-tracking data
by detecting key events from eye movements such as blinking.
Bñkgaard et al. [1] proposed to do so from the EEG signal instead.
Finally, Taib et. al [16] extracted key events from a driving simu-
lator’s accelerator (as it showed sharp high spikes in the recorded
signal) to guide the synchronization of several heterogeneous phys-
iological and behavioral sensors.

To the best of our knowledge, Gustav is the only offline syn-
chronization solution that can be seamlessly integrated with any
existing recording software. This makes it very convenient and

2https://www.psychopy.org
3https://github.com/psychopy/psychojs
4https://www.opensesame.com
5http://www.paradigmexperiments.com

easy to use, since researchers only have to proceed with their ex-
periments as they would normally do, and Gustav will process the
acquired data once the experiment logs are stored on disk.

3 GUSTAV
Our approach for temporal syncronization of sensory signals con-
sists of two indenpendent components: an event logger and a file
post-processor. In this section we describe each component in detail.

3.1 Event logger
The logger records event-related timestamps in Unix time format,
i.e. the number of (milli)seconds ellapsed since January 1, 1970. This
time format is a POSIX standard. It is widely used in most Operating
Systems and in all programming languages, since it provides an
easy and compatible method of computing time differences. The
logger is currently available in Python, JavaScript (both for the
browser and for nodeJS applications), and Java.

We should mention that the events to be logged can be user-
defined, although one would want to log just the beginning and end
of each stimulus condition. These timestamped events are stored
as a CSV file in the computer that runs the stimulus presentation
software.

3.2 File post-processor
The post-processor takes as input the logged timestamped events
and any number of log files from any of the recording devices. Those
recorded log files (having the sensory data) should be stored as CSV
files in each of the logging computers. Otherwise, we provide a
conversion utility to transform tabular data in various formats
(Matlab, EDF, etc.) to CSV. The post-processor performs signal
syncronization in two steps: first slice the log file based on the
timestamped events created by Gustav’s logger, then correct the
time offsets of every signal value. The post-processor is written in
Python, since it is platform independent and therefore can be run
in any Operating System.

Gustav can recognize automatically whether a column in a log
file holds Unix timestamps. If they are not available, the post-
processor can insert them automatically based on the file creation
date and any timing information that is available in the log files.
For example, some devices provide the number of seconds since
the last calibration or since the device was turned on.

4 USE CASE EXPERIMENT
We implemented the Posner cueing task [10], a popular neuropsy-
chological test to assess user attention. For each trial, a cue pointing
right or left appears in the center of the screen, then a target will
appear on the right side or left side of the screen. A participant
must click on the target as fast as possible. For the experiment, we
recorded EEG brain signals, mouse movements, and eye movements.
The experiment setup is illustrated in Figure 2.

First, we designed the experiment in PsychoPy, which provides
a graphical user interface and then generates a Python program
for running the experiment. Then, we instrumented the generated
Python program by inserting the Gustav logger before and after
the corresponding stimulus event callbacks. Finally, after having

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

Gustav: Cross-device Cross-computer Synchronization of Sensory Signals Conference’17, July 2017, Washington, DC, USA

A B

1

2

3

Figure 2: Arrangement of the multi-device multi-computer
experiment. The brain-computer interface (1) is connected to
the leftmost computer (A)which has a independent recording
software (Unicorn Recorder). The eye-tracker (2) and the
mouse (3) are connected to the rightmost computer (B). The
recording software of the eye-tracker (Gazepoint Analysis),
the mouse tracker (MouseCursorTracker Python library),
and the stimulus presentation software (PsychoPy) are all
running on computer B.

recorded all the signals in their respective log files, we ran the post-
processor to automatically slice and correct the offsets of each log
file. As a result, all recorded signals were synchronized accordingly.
The supplementary video illustrates this process.

5 LIMITATIONS AND FUTUREWORK
Gustav is software-agnostic, so its event-related logging hooks must
be manually added. Our goal is to automate this in the future, for
which we plan to develop third party plugins for existing experi-
ment design solutions like the ones mentioned in the Introduction:
PsychoPy, OpenSesame, etc.

Gustav cannot fix hardware-related lags, though they are typi-
cally very small, often under 10ms [16], hence below the sampling
resolution we set to achieve. In addition, under the multi-computer
scenario, Gustav requires that each computer has an up-to-date in-
ternal clock. Operating Systems do it by pinging public time servers
over NTP,6 therefore as long as each computer has Internet access,
this requirement is fullfilled. Note that computers do not need to
be in the same timezone, they only need to be łon time.ž

Finally, Gustav relies on an offline post-processing step to keep
all the recorded signals in sync. While real-time synchronization
is currently out of scope, it would be possible to achieve it with
socket programming: all logging computers could send the data to
a centralized server, be post-processed on the fly, and sent back to
the logging computer before actually writing the log file.

6 CONCLUSION
Gustav is a simple yet efficient approach to orchestrating the record-
ing of sensory signals across devices and computers, regardless the

6NTP is a networking protocol for clock synchronization over packet-switched
variable-latency data networks.

complexity of the experimental setup, the hardware, or the stimu-
lus presentation software. Gustav ensures that all recorded signals
are in sync, with millisecond precision. It is publicly available at
https://gitlab.uni.lu/coin/gustav.

ACKNOWLEDGMENTS
This work was supported by the Horizon 2020 FET program of
the European Union through the ERA-NET Cofund funding grant
CHIST-ERA-20-BCI-001 and the European Innovation Council Path-
finder program (SYMBIOTIK project).

REFERENCES
[1] P. Bœkgaard, M. K. Petersen, and J. E. Larsen. 2014. In the twinkling of an eye:

Synchronization of EEG and eye tracking based on blink signatures. In Proc. CIP
Workshop.

[2] A. Borawska, J. Duda, and K. Biercewicz. 2021. Best practices of neurophysiolog-
ical data collection for media message evaluation in social campaigns. Procedia
Comput. Sci. 192 (2021).

[3] C. de la Torre-Ortiz, M. M. Spapé, L. Kangassalo, and T. Ruotsalo. 2020. Brain
relevance feedback for interactive image generation. In Proc. UIST.

[4] J. C. de Munck, S. I. Gonçalves, R. Mammoliti, R. M. Heethaar, and F. H. L. da
Silva. 2009. Interactions between different EEG frequency bands and their effect
on alphaśfMRI correlations. NeuroImage 47, 1 (2009).

[5] K. Huo, T. Wang, L. Paredes, A. M. Villanueva, Y. Cao, and K. Ramani. 2018. Syn-
chronizAR: Instant synchronization for spontaneous and spatial collaborations
in augmented reality. In Proc. UIST.

[6] D. Kahneman and J. Beatty. 1966. Pupil Diameter and Load on Memory. Science
154, 3756 (1966).

[7] E. Y. Kimchi, B. F. Coughlin, B. E. Shanahan, G. Piantoni, J. Pezaris, and S. S. Cash.
2020. OpBox: Open source tools for simultaneous EEG and EMG acquisition
from multiple subjects. eNeuro 7, 5 (2020).

[8] L. A. Leiva and R. Vivó. 2012. Interactive hypervideo visualization for browsing
behavior analysis. In Proc. WWW Companion.

[9] G. M. Notaro and S. G. Diamond. 2018. Simultaneous EEG, eye-tracking, behav-
ioral, and screen-capture data during online German language learning. Data
Brief 21 (2018).

[10] M. I. Posner. 1980. Orienting of attention. Q. J. Exp. Psychol. (Hove) 32, 1 (1980).
[11] M. Ragot, N. Martin, S. Em, N. Pallamin, and J.-M. Diverrez. 2017. Emotion

Recognition Using Physiological Signals: Laboratory vs. Wearable Sensors. In
Proc. AHFE.

[12] M. Richardson, M. Durasoff, and R. Wang. 2020. Decoding surface touch typing
from hand-tracking. In Proc. UIST.

[13] E. J. Shah, J. Y. Chow, and M. J. Lee. 2020. Anxiety on Quiet Eye and Performance
of Youth Pistol Shooters. J. Sport Exerc. Psychol. 42, 4 (2020).

[14] Y. Sugano, X. Zhang, and A. Bulling. 2016. Aggregaze: Collective estimation of
audience attention on public displays. In Proc. UIST.

[15] D. Szajerman, P. Napieralski, and J.-P. Lecointe. 2018. Joint analysis of simultane-
ous EEG and eye tracking data for video images. In Proc. IEEE ISEF.

[16] R. Taib, B. Itzstein, and K. Yu. 2014. Synchronising Physiological and Behavioural
Sensors in a Driving Simulator. In Proc. ICMI.

[17] C. Thanh Vi, K. Hornbñk, and S. Subramanian. 2017. Neuroanatomical correlates
of perceived usability. In Proc. UIST.

[18] F. Wolling, C. D. Huynh, and K. Van Laerhoven. 2021. IBSync: Intra-body syn-
chronization of wearable devices using artificial ECG landmarks. In Proc. ISWC.

[19] R. Xiao, C. Ding, and X. Hu. 2022. Time Synchronization of Multimodal Physio-
logical Signals through Alignment of Common Signal Types and Its Technical
Considerations in Digital Health. J. Imaging 8, 5 (2022).

[20] J. Xue, C. Quan, C. Li, J. Yue, and C. Zhang. 2017. A crucial temporal accuracy
test of combining EEG and Tobii eye tracker. Medicine 96, 13 (2017).

[21] D. Yoon, N. Chen, F. Guimbretière, and A. Sellen. 2014. RichReview: blending ink,
speech, and gesture to support collaborative document review. In Proc. UIST.

[22] X. Zhang. 2021. Evaluating the Effects of Saccade Types and Directions on Eye
Pointing Tasks. In Proc. UIST.

[23] Y. Zhao, B. Li, Y. Li, J. Zhou, J. Cao, Y. Luo, X. Zhou, C. Yao, L. Shi, and G. Wang.
2021. Rope X: Assistance and Guidance on Jumping Rope Frequency, based on
Real-time, Heart Rate Feedback During Exercise. In Adj. Proc. UIST.

[24] P. H. Zimmerman, J. E. Bolhuis, A. Willemsen, E. S. Meyer, and L. P. Noldus. 2009.
The Observer XT: A tool for the integration and synchronization of multimodal
signals. Behav. Res. Methods 41, 3 (2009).

This is a preprint for personal use only. The published paper may be subject to some form of copyright.

