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Learning GUI Completions with User-defined Constraints
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Given a partial layout and a new 

element chosen by the designer

And generate placement suggestions 

for the new element

The models leverage layout patterns 

uncovered in the design library

Partial layout New element

+

Fig. 1. Completion of a layout with a user-defined element according to layout patterns in reference designs.

A key objective in the design of graphical user interfaces (GUIs) is to ensure consistency across screens
of the same product. However, designing a compliant layout is time-consuming and can distract designers
from creative thinking. This paper studies layout recommendation methods that fulfill such consistency
requirements using machine learning. Given a desired element type and size, the methods suggest element
placements following real-world GUI design processes. Consistency requirements are given implicitly through
previous layouts from which patterns are to be learned, comparable to existing screens of a software product.
We adopt two recently proposed methods for this task, a Graph Neural Network (GNN) and a Transformer
model, and compare them with a custom approach based on sequence alignment and nearest neighbor search
(kNN). The methods were tested on handcrafted datasets with explicit layout patterns, as well as large-scale
public datasets of diverse mobile design layouts. Our results show that our instance-based learning algorithm
outperforms both neural network approaches. Ultimately, this work contributes to establishing smarter design
tools for professional designers with explainable algorithms that increase their efficacy.

CCS Concepts: ·Human-centered computing→ Systems and tools for interaction design; · Comput-
ing methodologies →Machine learning.

Additional Key Words and Phrases: user interfaces, machine learning, design, layouts, layout completion
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1 INTRODUCTION
This paper addresses a key objective in the design of graphical user interfaces (GUIs): consistency [30],
understood as any reoccurring feature across designs. This includes visual attributes, such as
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typography, colors, shapes, etc., but also spatial patterns such as the layout base grid, and recurring
patterns of element groups, e.g., forms or navigation bars. Maintaining design consistency manually
can be difficult and time-consuming [25] and contributes to a substantial amount of time designers
spend on simple and repetitive tasks [31]. Automating such kind of work is expected to increase
designer’s efficiency and allow them to focus on creative thinking instead.
To this end, organizations create design systems that establish consistency between different

screens of a product. Typical design systems maintain a large set of rules and guidelines, for both
layout and GUI elements, that can later be embedded into new designs. However, not all reoccurring
patterns of element placements can be anticipated beforehand. Instead, they emerge in the lifecycle
of a system as an increasing number of screens are designed. We refer to these reoccurring patterns
of element placements as layout patterns. Maintaining consistency of layout patterns between
multiple screens requires, thus, explicit knowledge of all other screens in the company’s design
portfolio. This can become infeasible for large products or new designers in larger organizations.
Previous research into design assistance tools for design systems focused on explicit rules of

such design systems as well as aligning, packing, and optimizing layouts [3, 4, 32]. These goals
can be expressed as mathematical requirements and accurately optimized using Mixed Integer
Linear Programming [29]. However, to the best of our knowledge, consistency of implicit layout
patterns has not been studied yet. Providing design assistance for layout patterns should help
designers create GUIs that are more consistent and at the same time increase their efficiency. Since
layout patterns may not be defined upfront, modeling them with explicit methods is a tedious and
error-prone task. Instead, we focus on machine learning methods to understand these patterns
from examples.

1.1 Problem statement
This work tackles the question of where to place a new element of a specific type and size onto an
existing, partial layout such that the resulting layout is consistent with a set of reference designs.
This is depicted in Figure 1. A consistent placement of a new element is achieved if the layout
patterns exhibited in the set of reference designs are followed. We decompose layout patterns into
two attributes between elements: (1) positional dependencies and (2) alignment relations between
elements. While these attributes may not suffice to describe layout patterns rigorously, we argue
they indicate the most important features in a similar fashion a human designer would describe
them at a high level. subsection 3.2 explains these attributes in more detail.

We focus on flat layouts, i.e., we assume there are no container elements (such as card elements
that may contain images or text). Further, we frame the design process of a new GUI layout as
a sequential process of placing individual elements onto it, one after another. We do not restrict
that a group of elements can only have a single pattern placement but there can be multiple valid
compositions thereof. As such, to best assist human designers, the output is expected to provide
different variations where possible, and declare a measurement of goodness for these variations.
Finally, to allow the integration into the design process, the runtime of a competent method should
provide results in a short amount of time, so that it does not impact the designer’s flow.
We explicitly do not aim for a scenario in which a method produces complete layouts on its

own, as that would require a much deeper understanding of the design task and the goals of a UI
to be applicable to real-world design processes. Instead, we aim to augment the designer in their
current workflow and to assist them in placement decisions based on the context of the existing
design such that they can focus on creative thinking. This approach was informed by the tools and
processes of professional designers that envisaged such a new assisting tool.
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1.2 Contributions
Our work is motivated by reports of professional designers that uncovered consistency as a key
requirement. By considering layout patterns explicitly, we concretize the general layout completion
problem of previous works [10, 23] and make it applicable to real-world, product-focused design
tasks. Focusing on layout patterns allows for a more principled evaluation as opposed to generic
goodness qualities of completions. In contrast to previous work on layout completion [10, 19, 23],
we argue that designers should ultimately be in charge of deciding on the final layout. Since a
specific task requires particular elements, we allow designers to condition the layout completion
process and ensure that user-specified constraints, i.e. element types and sizes, are followed.

We contribute by benchmarking different methods on standard as well as novel data sets that help
to understand the potentials and limits of these approaches in realistic, commercial user interface
design settings. Concretely, we evaluate two recently proposed methods for layout completion, a
Graph Neural Network (GNN) [19] and a Transformer model [10, 23] that have shown promising
results. These approaches have shown state-of-the-art results in related tasks, making them natural
choices given their representative fit to layout problems.
Finally, inspired by the shortcoming of existing neural methods, we present a novel approach

that leverages a sequence alignment algorithm to calculate features based on layout principles
that are used in a nearest neighbor search (kNN). With this work, ultimately, we contribute to
establishing smarter design tools for professional designers that ensure consistency in the design
process and allow them to focus on less repetitive tasks.

2 RELATED WORK
The layout problem or derivations thereof have been approached with combinatorial optimization
techniques, machine learning, and other techniques such as Bayesian methods. In the following,
we provide a brief overview of these techniques that have been applied to either layout generation
or layout optimization with a summary shown in Table 1.

2.1 Layout generation
Hart and Yi-Hsin [11] developed the first formal description of the layout problem as a rectangular
packing problem for integer linear programming. This model aimed to fit as many objects as
possible onto a window without overlap and clipping of the objects and showed that it can be solved
efficiently. Damera-Venkata et al. [2] formulated a probabilistic document model to automatically
generate multi-page document compositions given text and images. It requires a set of probabilistic
templates which are evaluated via a Bayesian Network to find the best combination of templates
and template parameters to achieve the best document layout. Later, Talton et al. [36] proposed a
method that learned design patterns from a set of webpages with Bayesian Grammar Induction.
The learned grammar could then be used to synthesize new web layouts.

O’Donovan et al. [28] developed an energy-based model to automatically generate graphic
designs. The design principles considered include alignment, symmetric balance, white space,
reading flow, overlap, and a saliency model learned via linear regression. Further, model parameters
could be learned from a small number of example designs via non-linear inverse optimization, such
that the style is transferred to the new design.

More recently, methods based on generative adversarial networks (GAN) that have shown success
in natural image generation tasks have been applied to layout generation. With LayoutGAN, Li et al.
[22] proposed a method that captures relations between all elements through stacked self-attention
modules, leveraging geometric features and element probabilities. They found that a discriminator
operating in the visual domain performs better than a discriminator using the generated geometric
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Authors Year Task type Layout Method Design features

Hart and Yi-Hsin [11] 1995 Generation Generic Optimization overlap

Damera-Venkata et al. [2] 2011 Generation Document Bayesian templates

Talton et al. [36] 2012 Generation UI Bayesian templates

O’Donovan et al. [28] 2014 Generation Poster Energy alignment, symmetry, flow,
white space, overlap, saliency

Li et al. [22] 2019 Generation Document,
UI, Scene Deep Learning visual & spatial context

Zheng et al. [40] 2019 Generation Document,
Poster Deep Learning visual & semantic context

Tabata et al. [35] 2019 Generation Document Deep Learning grid alignment, overlap,
visual features

Jyothi et al. [15] 2019 Generation Scene Deep Learning visual features

Johnson et al. [14] 2018 Generation Scene Deep Learning semantic relations

Gajos et al. [6ś8] 2004
ś2010 Adaptation UI Optimization task time, usage pattern,

device, motor capabilities

Kumar et al. [16] 2011 Transfer UI Machine Learning visual features, font size,
colors, structural similarities

Leiva [20] 2012 Adaptation UI Model-free usage pattern

Xu et al. [39] 2014 Optimization UI Optimization alignment

Todi et al. [37] 2016 Optimization UI Optimization sensorimotor performance,
perceptions

Dayama et al. [4] 2020 Optimization UI Optimization grid alignment, rectangularity

Laine et al. [17] 2020 Adaptation UI Optimization selection time, saliency,
device constraints

Swearngin et al. [33] 2020 Optimization UI Optimization size, balance, alignment,
grouping, order, emphasis, grid

Lee et al. [19] 2019 Generation,
Completion UI Deep Learning semantic relations

(size, position)

Li et al. [23] 2020 Completion UI Deep Learning spatial context

Gupta et al. [10] 2020 Completion UI Deep Learning spatial context

Dayama et al. [3] 2021 Transfer,
Optimization UI Optimization grid alignment, templates,

structural similarities

Ours 2021 Completion UI Machine learning spatial context, alignment,
overlap

Table 1. Overview of related work, including task type, layout type, method, and design features used.

features directly. It was applied to both document layouts and mobile app layouts but it lacked
control over the generation process.
Zheng et al. [40] proposed a content-aware GAN for generating magazine layouts that are

conditioned on the desired content, including the topic, keywords, and image contents to be placed.
These conditions are embedded into a feature vector that is then concatenated to the latent vector of
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the generator. It further allows specifying desired locations of certain elements as soft-constraints.
To ensure results follow these additional constraints, a large number of results are generated and
filtered to contain the desired number of elements per type and rough locations.

Focusing on creative results for graphic designs, Tabata et al. [35] created a system that generates
layouts based on the user input of the text and images that need to be laid out. It first generates
a large number of random layouts with a minimum set of rules, such as grid alignment and non-
overlapping, and then scores candidates based on visual features processed by convolutional neural
network layers such that results are similar to real magazine layouts it was trained on.

Representations studied in the field of natural scene generation offer some resemblance but differ
greatly from the requirements of UI layouts. LayoutVAE employs variational autoencoders to
predict bounding boxes of target objects for a new scene which is then filled with images to achieve
the final scene [15]. They did not model any further constraints of the objects and did not consider
alignment, as it is not a requirement in natural images. Similarly, Johnson et al. [14] proposed a
method of encoding the input as a graph that is then used to generate bounding boxes for a scene
image.

2.2 Layout optimization and adaptation
Gajos et al. presented amodel to treat user interface adaptation as a discrete constrained optimization
problem [6ś8]. Their SUPPLE++/ ARNAULD system adapts a UI to different device constraints
and optimizes it for a user’s usage patterns and motor capabilities such that the navigation time
required to navigate the UI is minimized according to the usage history.

Bricolage [16] is one the early works based on machine learning techniques where the content
of a web page is transferred into the style of another. It used 30 manual features to create mappings
between source and target elements, together with a sophisticated tree-matching algorithm whose
weights were learned from human examples via a simple perceptron network. It employed features
from the visual domain, like dimensions, font sizes, and colors, as well as structural similarities
based on sibling and ancestry nodes.
ACE [20] enabled adaptation of web interfaces to a user’s behavior without an explicit user

model. Instead, it leverages information induced by implicit interaction of the user to inform about
the relevance of different parts of the website, which are then slightly modified according to their
relative importance. As such, it uses a straight-forward mathematical formulation for scoring the
website elements without machine learning models or combinatorial optimization.

Xu et al. [39] proposed an optimization model for alignment improvements in UIs with a sparse
linear system solving technique that dynamically evaluates constraints based on the input to find
the optimal layout. They noted the issue of resolving ambiguity from the input and studied a
gesture-based design tool that allows to interactively update the input constraints to best match
the desired properties of the designer.

Sketchplore [37] studied the integration of a layout optimization model into a design sketching
tool. It was designed to assist during the creation process of a new design and inferred the designer’s
task based on the input and offered local and global optimizations. The optimizer used predictive
models of sensorimotor performance and perceptions to find better designs.
GRIDS [4] is a wireframing tool with an integrated grid alignment optimizer based on mixed-

integer linear programming. It follows the assumption that many good layouts are following a grid
system to define placement areas and optimize results with respect to grid alignment, rectangularity
of the overall outline, and respecting preferential placement of elements. While it aims to minimize
the alignment edges of the elements of the layout, it does not follow a predefined grid system
typically found in professional designs.
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Dayama et al. [3] combined layout adaptation based on templates with predefined grid systems
using integer programming optimization to ensure designs adhere to the guidelines and rules of
such a design system. As with most explicit methods, it requires to specify all rules beforehand and
cannot adapt to conventions easily, as well as not providing a method to decide the placement of
new elements.

Further work in this area include Layout-as-a-Service [17] and Scout [33]. The former applies
layout personalization and optimization to websites with different targets such as selection time,
visual saliency, and device size. The latter presented a layout exploration tool based on high-level
constraints that supports alternative design elements, grouping, placement preferences, and others.
As such, it supports exploration for new design ideas but does not consider reference designs.

2.3 Layout completion and assistance
Lee et al. [19] proposed theNeural Design Network to generate and complete layouts with constraints
by representing a layout as a graph and employing graph neural networks. They modeled edges
as component relations of relative position and size as input constraints and constructed a three-
layered system that processes incomplete layout graphs into coordinates. It serves as the basis
for our graph network approach that we extend to support better the alignment requirements of
design systems.

Li et al. [23] designed a system based on Transformers [38] to auto-complete a partial mobile app
layout . Layouts are represented as sequences based on their tree structure and fed into different
transformer structures to predict the types and positions of additional components. However, no
control over the result of the generation was considered. This was addressed recently by Gupta et al.
[10]. They also employed a transformer model to complete a layout based on an input sequence, but
instead of encoding an element as a single embedding, they modeled every element as a sequence
of attributes and tokens. This allows to condition the generation on partial attributes of the next
element. As such, we adapt this proposal in our work and evaluate it according to our problem
statement.

Our work builds upon the recent research by Gupta et al. [10] and Lee et al. [19]. We adjusted their
proposed methods to our particular problem statement and addressed the encountered limitations
in a novel approach as described in the next section.

3 ELEMENT PLACEMENT TASK
Our ultimate goal is to assist designers in the creation process of new designs for software products
and enable them to create more consistent layouts with respect to layout patterns. As such, we
expect that there exists a set of curated designs with a consistent layout following a design system
that can serve as the basis for learning these layout patterns. To formalize this, we introduce a
consistent layout notation and define the layout completion task studied in this paper.

3.1 Layout notation
We denote a layout 𝐿 as an abstract, structural representation of a design canvas with size𝑤𝐿 × ℎ𝐿
(width, height) in pixels. It is composed of a set of elements {𝑒𝑖 , ..., 𝑒𝑛}. Every element is defined by
𝑒 = (𝑐𝑒 , 𝑠𝑒 ) where 𝑐𝑒 ∈ 𝐶 is the component (i.e., functional user interface element with a specific
function, e.g., ‘button’, ‘input field’, etc.) out of the valid component set 𝐶 , and 𝑠𝑒 = (𝑥0𝑒 , 𝑦0𝑒 ,𝑤𝑒 , ℎ𝑒 )
is the ‘size box’ of the element. 𝑥0𝑒 , 𝑦0𝑒 ,𝑤𝑒 , ℎ𝑒 describe the 𝑥 and 𝑦 coordinates, and the width
and height of the element in pixels. Note that the ‘size box’ is not the ‘bounding box’ of an
element 𝑏𝑒 = (𝑥0𝑒 , 𝑦0𝑒 , 𝑥1𝑒 , 𝑦1𝑒 ) since the latter describes the upper-left (𝑥0𝑒 , 𝑦0𝑒 ) and lower-right (𝑥1𝑒 , 𝑦1𝑒 )
coordinate points. Finally, we refer to the ‘center point’ of an element as 𝑥𝑐𝑒 , 𝑦𝑐𝑒 for the 𝑥 and 𝑦
coordinates, respectively.

ACM Trans. Interact. Intell. Syst., Vol. 12, No. 1, Article 6. Publication date: March 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Learning GUI Completions with User-defined Constraints 6:7

In this work, we assume that all elements are rectangular, i.e., the actual area of an element
equals to the area of its bounding box or size box. For many calculations it is useful to standardize
the element size between [0, 1], which is achieved by dividing the width and x-coordinates by
the layout width 𝑤𝐿 , and the height and y-coordinates by the layout height ℎ𝐿 . In this case, the
corresponding (standardized) attributes are denoted with a tilde, 𝑥,𝑦, 𝑤̃, ℎ̃. It applies to all variants
described above.

3.2 Task definition

Buttons are below

forms (positional)

and right aligned 

(alignment)

Most elements

 are left aligned

(alignment)

Fig. 2. A layout exhibiting patterns that should be followedwhen placing new elements in similar compositions.

Figure 2 shows an example of how we describe layout patterns using positional and alignment
relations between groups of elements, assuming further layouts with these compositions in an
existing design library. The layout in this example figure is following a common grid system
(indicated by the reddish columns laid over the canvas) that is overall left-aligned, so most elements
are attached on the left edge to the first layout column. This general pattern implicitly creates an
alignment relation łleft-alignedž between most elements (e.g., the image (blue box) is left-aligned
to the headline (gray box)). There might further be an implicit positional relation between some
elements (e.g., headline being łabovež all other elements), and non-existent between others. On
the contrary, the button element (red box) is shown to be right-aligned to the form element (green
box), and positioned below which constitutes a local pattern. While this is just a single example
for demonstration purposes, design patterns like these will be evident from investigating a set of
reference layouts.

The layout attributes can be described in more detail as follows: Positional dependency refers to
the interplay between elements in which the presence or location of one component influences the
relative position of a second component. For example, a button might be placed directly below a
form if the form is short while it is placed in a fixed position on the bottom of a screen if the form
is long. More specifically, we consider the positional classes above, below, left, right. Figure 3 shows
examples of this relation type. We argue that vertical positioning (above, below) is generally more
descriptive than horizontal (left, right), so, if a component is fully below and to the side of another
one, it will be considered as below only, and not left, or right.

On the other hand, alignment relations refer to whether elements share common alignment lines
of edges or the center, both horizontally and vertically. For example, the button might be always
aligned to the left side of a form while an image might be centered on a page. Alignment relations
are shown in Figure 4. The set of valid relations between two elements depends, however, on their
relative positioning. Elements that are above/below each other can be either left, right, or vertically
center-aligned. Elements to the left/right side of each other can be either top, bottom, or horizontally
center-aligned. Further, we include in this relation category also the relation to the overall canvas of
the layout. If an element is within a reasonably small margin to either of the edges of the screen, it
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Fig. 3. Positional relations towards the center. Fig. 4. Inter-element alignment and to the canvas.

will be described as being at the top, bottom, right or left of the canvas. Finally, as not every element
might be aligned in some way to another component, a special none alignment type exists that
does not restrict the relative placement of the two elements.

As we focus on flat layouts, every component is assumed to be łcompletež by itself such that it
contains every element to make it a meaningful and comprehensive user interface component. This
means in turn, that we do not support containers of elements, nor do we expect that any elements
overlap. Instead, we consider overlaps indicate a bad placement.

The task is then defined as follows: Given a set of reference layouts {𝐿0, ..., 𝐿𝑛}, the user generates
a partial input layout 𝐿 (that might be empty) and picks the next element 𝑒new to be placed, defined
by its component type 𝑐𝑒new and the desired dimensions (𝑤𝑒new , ℎ𝑒new ). A computational model is
expected to return as pair of {𝑥𝑖 , 𝑦𝑖 } coordinates as recommendations for the placement of the
new element 𝑒new. The result is valid if the resulting placement is non-overlapping with existing
elements and its bounding box is completely inside the canvas. Since only coordinates are returned,
placing an element at extreme values of the canvas can produce a placement that extends beyond
the valid canvas size. Further, results should exhibit layout patterns, i.e., relations to neighboring
elements in both positional and alignment terms, that can be found in the set of reference layouts.
Pattern matching is described further in subsection 5.3.

4 METHODS
Layout completion of GUIs is a problem that is less studied than the more generic GUI generation
problem. Previous methods mostly focused on automatic completion without user constraints
(see subsection 2.3). Therefore, we adapt two previously described methods which allow such
conditioning and showed promising results in the more generic layout generation and completion
tasks: the graph-based łNeural Design Networkž (GNN) [19], and the łLayoutTransformerž [10].
As preliminary inspections of results produced by those approaches revealed shortcomings,

we propose a novel sequence-based method that incorporates both layout representations. The
sequence representation is used for determining the rough element insertion based on a sequence
alignment algorithm and nearest neighbor search, and the graph representation powers the place-
ment algorithm given a neighboring layout.

4.1 Layout representations
We employ two complementary layout representations in the evaluated methods: a sequential and
a graph-based representation.

ACM Trans. Interact. Intell. Syst., Vol. 12, No. 1, Article 6. Publication date: March 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Learning GUI Completions with User-defined Constraints 6:9

4.1.1 Representing layouts as sequences. Layouts are most naturally depicted on a 2D canvas.
However, comparing layouts with different elements at different locations is challenging as it is not
straight-forward which element from one layout to compare with from the other. A naïve approach
would enumerate all combinations but this becomes intractable very quickly. One might try to
compare those elements that are closest together but it can fail in cases where similar elements are
shifted as additional rows are present in one layout.
It is desirable to simplify the representation such that the number of mapping combinations is

greatly reduced. To this end, we employ a simple sequence representation by reading elements
from top-left to bottom-right. For western left-to-right systems this representation has been shown
to be resemble user scanning behavior [12], so despite this apparently stark simplification, this
model is able to capture a natural understanding of layouts to a reasonable degree.

Fig. 5. Representing a layout as a sequence. The component view shows a simpler bounding box representation.
The sequence follows the natural reading order from top-left to bottom-right.

Figure 5 shows an example of how a layout is represented as a sequence using this approach.
While there might be ambiguities regarding the perceived element order when hierarchies are
present (e.g., the groups of charts and text), we do not consider container elements currently and
restrict ourselves to flat layouts. As such, elements that are perceived to span łmultiple rowsž are
added the first time they are encountered in a row. More formally, a layout 𝐿 with 𝑛 elements
{𝑒𝑖 , ..., 𝑒𝑛} is represented by its sequence 𝑆𝐿 as follows:

𝑆𝐿 = (𝑒𝑝1 , 𝑒𝑝2 , ..., 𝑒𝑝𝑛 ), (1)

where 𝑒𝑝𝑖 is the 𝑖th element according to the placement order 𝑝𝑖 . The placement order 𝑝𝑖 is
determined according to the reading order from top-left to bottom-right, such that for any two
subsequent elements 𝑒𝑝𝑖 and 𝑒𝑝𝑖+1 the following condition must follow:

𝑦0𝑒𝑝𝑖 ≤ 𝑦0𝑒𝑝𝑖+1 ∧ 𝑥
0
𝑒𝑝𝑖

≤ 𝑥0𝑒𝑝𝑖+1 , (2)

where 𝑥0𝑒 , 𝑦0𝑒 represents the 𝑥 and 𝑦 coordinates of the top-left corner of an element 𝑒 . This is the
same approach as in LayoutTransformer [10].

4.1.2 Representing layouts as graphs. A more flexible representation of a layout can be achieved
by utilizing a graph. Graphs allow capturing certain relations of its elements without operating in
a large pixel space. In this representation, every element is modeled as a node in the graph, and
edges between elements describe some relative features, such as a positional attribute (e.g., ‘left’,
‘above’, etc.). Considering that graph neural networks are using message passing between nodes,
we use bidirectional edges to allow information flowing between all elements, even if it introduces
some redundancy. Since we want to achieve consistent placement of elements according to their
positional and alignment relations, two types of edges are added between elements, one for each
relation type.
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Fig. 6. Graph representation of a simple layout with 3 elements.

More formally, we represent layouts as bidirectional heterogeneous graphs𝐺 = (𝑉 ,𝐴), where
𝑉 = {𝑣𝑖 } is the set of vertices that correspond to the elements of a layout {𝑣𝑖 } = {𝑒0, ..., 𝑒𝑛}, and 𝐴
is the set of labeled arrows (i.e., directed edges) between vertices (𝑣𝑖 , 𝑟 , 𝑣 𝑗 ) where 𝑣𝑖 is the source of
the edge, 𝑣 𝑗 its target, and 𝑟 a relation label from the set 𝑅. To represent both relation types, we
use separate graphs𝐺pos and 𝐺align where the vertices are the same 𝑉 pos = 𝑉 align but the arrows
𝐴 differ in their assigned labels, and based on the valid set 𝑅pos and 𝑅align respectively. We create
bidirectional graphs with redundant edges to allow information to flow in all directions.

For every pair of elements 𝑒𝑖 , 𝑒 𝑗 , two directed edges (𝑒𝑖 , 𝑟 , 𝑒 𝑗 ) and (𝑒 𝑗 , 𝑟 , 𝑒 𝑗 ) are created where 𝑟 is
the inverse relation of 𝑟 (e.g., button śbelowś text and text śaboveś button). This is done for both
graphs 𝐺pos and 𝐺align such that the edges between both are equal except for the relational types.
Finally, the canvas is represented by a separate node. This canvas node has only incoming edges
for specifying the relations of the elements to the canvas but has no outgoing edges. This allows
specifying positions to the canvas, e.g., ‘at top‘ or ‘at right‘. An example layout with a corresponding
graph is shown in Figure 6.

4.2 Graph neural network with constraints
We adapt the ‘Neural Design Network’ by Lee et al. [19] to our layout task. Reasons for evaluating
this method include the strong representative power of the graph-based model, and the natural
capabilities to allow constraining the network to user-defined inputs such that it can be integrated
into a real-world design process. The network model is depicted in Figure 7. It comprises three
modules that operate independently. The first module, Relation Prediction, completes a partial graph
such that a new element has labeled edges to the existing elements. Then, the Layout module decides
on the position of the new element on the canvas given the existing canvas and the completed
input graph. Finally, the Refinement module optimizes the placement so that it better adheres to
alignment rules.

The input layout is modeled as a directed graph𝐺 = (𝑉 ,𝐴), according to the graph representation
explained previously, where vertices 𝑣 ∈ 𝑉 correspond to layout elements and the arrow labels
𝑎 ∈ 𝐴 describe the relationship between two elements. The vertices always hold information about
the component type 𝑐 . In the layout and refinement steps, the existing ‘size box’ 𝑠 is added to the
vertex data as well. The canvas is included as a special node and its size box corresponds to the
canvas size.

The two relation types (positional and alignment) are encoded in two separate sets of edges 𝐴pos

and 𝐴align. This is different from the original implementation, which used relative size as a second
edge type. Since in our work the element sizes are given by the user, we substitute the size property
with alignment, as it follows more closely our problem definition. Then, the canvas element only
has incoming relations that specify special positions of elements inside the canvas (e.g., ‘at top’), if
applicable, or simply ‘in canvas’. All other elements have bidirectional relations.
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Fig. 7. The graph neural network implemented according to [19] is composed of three modules to predict a
location for a new element.

Adding a new element 𝑒new to the canvas is done by inserting a new node into the graph with
type 𝑐𝑒new and the desired size (𝑤𝑒new , ℎ𝑒new ). Edges between this new element and all other elements
are labeled with a special ‘unknown’ category. Through the processing modules of the network, a
final size box for the new element is predicted 𝑠𝑒new that contains the suggested placement position.

4.2.1 Model details. Overall, the network architecture follows the description from [19] and is
detailed in appendix A. However, we focus exclusively on the single element placement task. That
means, only a single new element is added to the partial layout graph that has a defined type and
width and height.

Relation module. The input to the relation module Rel is the partial graph𝐺p where edges to and
from the new element 𝑒new have the special label unknown, and a complete graph 𝐺 is generated
that contains label predictions for the previously unknown edges: 𝐺 = Rel(𝐺p). Depending on
the set of training layouts, there might be cases for which the same partial input graph can have
multiple valid output graphs. That is why the prediction is conditioned on a learned latent variable
𝑧rel that allows representing different output variations.

Layout module. In the layout module, the elements’ size boxes {𝑠𝑒𝑖 } are added to the completed
graph 𝐺 = (𝑉 ,𝐴pos, 𝐴align) to predict the size box of the new element 𝑠𝑒new . We adjust the training
procedure according to our task definition, and convert the recursive approach originally described
to perform a single box generation instead.
Refinement module. The final module takes the generated layout as input, aiming to fine-tune

it. Its input is the completed graph 𝐺 = (𝑉 ,𝐴), with the size boxes of the all elements {𝑠𝑒𝑖 }, and
it produces an updated size box for the new element 𝑠 ′𝑒new . Originally, when multiple elements
are placed in the layout module, this step allowed us to adjust the new boxes knowing the other
placements. However, in our case the refinement module only operates on a single element, so this
step becomes unnecessary. Thus, the output includes both refined and unrefined results to counter
cases with a low rate of valid results and provide a higher variability in the final suggestions.
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Training. Compared to the original description of the method that reconstructed a single training
layout inside the network, we generate separate training items from a single training layout before
training. We refer to subsection 5.2 for more details.

4.3 Transformer-based prediction
Transformers [38] have become a popular and powerful neural network architecture choice formany
problems that can be represented as a sequence. Two recent papers also proposed a transformer-
based model to address layout completion: Li et al. [23] and Gupta et al. [10]. Here, we use a
similar approach to Gupta et al. as it is closer to our stated problem and allows us to specify layout
constraints on prediction more easily.
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Fig. 8. The transformer network, modeled after [10].

4.3.1 Representation of layouts. In this model, layouts are decomposed into sequences of elements
as described in subsubsection 4.1.1. The input is a partial layout 𝐿 and a new element 𝑒new with
a given element type 𝑐𝑒new and size 𝑤𝑒new , ℎ𝑒new . The result of the transformer network is a token
sequence that can be decoded into the positions 𝑥0𝑒new , 𝑦

0
𝑒new .

Instead of combining the properties of an element to form a single embedding for the transformer
network as in [23], the element properties are given as individual tokens that are embedded
separately as in [10]. This makes it possible to condition the network output on the new element
type and size. A single element 𝑒 is represented as (𝑐𝑒 ,𝑤𝑒 , ℎ𝑒 , 𝑥

0
𝑒 , 𝑦

0
𝑒 ). Compared to [10], we move

the width and height of an element in front of the coordinates to allow defining the desired size of
the new element. A layout 𝐿 is then represented by the concatenation of all element attributes in a
flat sequence 𝑆𝐿 :

𝑆𝐿 = 𝑐𝑒0 ,𝑤𝑒0 , ℎ𝑒0 , 𝑥
0
𝑒0 , 𝑦

0
𝑒0 , ..., 𝑐𝑒𝑛 ,𝑤𝑒𝑛 , ℎ𝑒𝑛 , 𝑥

0
𝑒𝑛 , 𝑦

0
𝑒𝑛 . (3)

To form the query sequence with a new element (𝑐𝑒new ,𝑤𝑒new , ℎ𝑒new ) is appended. We apply the
same base grid transformation as in the LayoutTransformer paper [10], thus, reducing the number
of possible tokens. The complete tokenization process is described in appendix B.1.

4.3.2 Model architecture. The model follows a standard transformer architecture [38] and the
data flow is depicted in Figure 8. It is composed of stacked encoders and decoders that consist
of multi-head attention layers and feed-forward layers. They take in embedded token sequences
with explicit positional information. In the decoder, the input must be partially masked to prevent
reverse information flow of the expected output of the sequences. The final step of the decoder is
passing the result through a linear transformation followed by a softmax activation function to
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generate a probability distribution of the next token prediction. We employ similar parameters in
our implementation as proposed by Gupta et al. [10], see appendix B.3.
We specialize our transformer network on the single element prediction task of our problem

statement. For that, we generate the training data to only contain the single next new element to
be added to the design. Training details are described in appendix B.2.

4.3.3 Prediction and decoding. Since a single element is decomposed into 5 distinct attributes, every
position in the token sequence is associated with a particular attribute. Thus, we need to control the
decoding of an output sequence such that valid sequences are produced. During inference, we add a
partially defined element to the end of an input sequences, i.e., the attributes (𝑐𝑒new ,𝑤 ′

𝑒new , ℎ
′
𝑒new ), and

request the prediction of the missing coordinate attributes 𝑥0′𝑒new , 𝑦
0′
𝑒new . Valid tokens must then be

part of the corresponding token ranges {𝑡𝑥 ′}, {𝑡𝑦′}. To achieve this, we restrict the decoding to the
corresponding token range and disregard probabilities for other token ranges (i.e., only considering
the probability distribution over tokens representing x- and y-coordinates in the standard task).
Finally, we use a beam search algorithm to generate diverse variations for the same input,

with a temperature parameter 𝑇 that modifies the output probabilities according to a Boltzmann
distribution which allows controlling the ‘creativity’ of the model. Therein, a low temperature
amplifies high probabilities, while a high temperature levels all probabilities. In our trials, we used
a temperature of 𝑇 = 0.2, which results in a slightly conservative prediction of the model.

4.4 Sequence alignment with nearest neighbors
Achieving consistency with existing designs naturally requires attending to the patterns in those
designs. This can be directly exploited by a nearest neighbor search algorithm that suggests
placements based on specific instances of previous designs without trying to generalize.
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Fig. 9. Process overview of the sequence-aligned nearest neighbor search with neighborhood placement of
the new element.

Our process is visualized in Figure 9. We model the placement problem as finding the best
insertion position in the target layout sequence such that the distance to the layout sequences
in the design library is minimized. The overall process is as follows: (1) For every library layout,
find the insertion point in the target sequence such that the sequence alignment is maximized.
(2) Create features for all aligned layout sequences and run the nearest neighbor algorithm to find
the library layouts with the lowest distance. (3) Place the new element on the target design based on
the neighborhood relations in the library layout. The time and space complexity for the complete
algorithm is Θ(N|Lmax |2) and Ω(N|Lmax |3), where N = |{𝐿𝑙𝑖 }| is the number of library designs and
|Lmax | is the maximum number of elements any layout (library or query) contains.
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4.4.1 Insertion point and sequence alignment. Before we can compare a completed layout from the
library with an input layout, the new element has to be inserted into the target layout sequence. To
determine sensible candidates efficiently, we identify the likely best insertion points by minimizing
the edit distance between the target layout and the new element inserted at position 𝑝 and each
library layout based on the element type sequences 𝑆 type (i.e., ‘button’, ‘text’, etc.). This is described
in more detail in appendix C.1.

For the resulting candidates, we calculate the sequence alignment path according to Hirschberg’s
algorithm [13]. The alignment path allows to construct a pair of target 𝑆𝑡𝑝 and library 𝑆𝑙𝑖𝑝 element
subsequences for every library item. In these subsequences, the type matches are maximized. The
alignment path then provides a mapping between the library and the target layout that is used to
construct the feature representations for the nearest neighbor search.

4.4.2 Feature representation. Every library sequence 𝑆𝑙𝑖 and target sequence 𝑆𝑡 is converted to a
flat feature representation that can be used as input to a nearest neighbor algorithm. Therein, every
element is represented by its top-left coordinate, its width and height, as well as a 25-dimensional
word vector of its type. We use the top-left coordinate of an element and its size instead of a
bounding box to better handle shifted subsequences in which sizes might be very similar but actual
positions are shifted by a fixed value.

More formally, every element 𝑒 in the layout is represented by its feature 𝑓𝑒 = (𝑥0𝑒 , 𝑦0𝑒 , 𝑤̃𝑒 , ℎ̃𝑒 , 𝑣𝑐𝑒 ),
where 𝑥0𝑒 , 𝑦0𝑒 are the standardized coordinates of the top-left corner, 𝑤̃𝑒 , ℎ̃𝑒 the standardized width
and height of the element, and 𝑣𝑐𝑒 ∈ R25 the word vector of the component name. The word
vector encodes the component type and allows calculating a distance between components such
that for similar concepts, e.g., ‘label’ and ‘text’, the distance is smaller, while unrelated concepts
such as ‘button’ and ‘table’ are separated by a longer distance. We use fastText’s pretrained word
representations that are trained on Common Crawl and Wikipedia text [9]. The basic form of the
layout sequence 𝑆 is then a concatenation of the individual element features:

𝑆 = 𝑓𝑒𝑝0 , 𝑓𝑒𝑝1 , ..., 𝑓𝑒𝑝𝑛 , (4)

where 𝑓𝑒𝑝𝑖 is the feature of the element in the 𝑖th position in the aligned sequence. All features are
łunwrappedž to ensure that a 1-dimensional feature representation is created.

The new element of the target layout does not have assigned coordinates yet. Hence, only its
dimensions and area are used to encode it: 𝑓𝑒𝑡 = (𝑤̃𝑒𝑡 , ℎ̃𝑒𝑡 , 𝛼

√
𝑤̃𝑒𝑡 ℎ̃𝑒𝑡 , 𝑣𝑐𝑒𝑡 ). We want to place a high

emphasis on finding a placement for the new element where the reference element in the library
layout has a similar size. Thus, in addition to the width and height of the new element, also a scaled
value of the area is added to its feature representation. To keep it in the same magnitude as the
individual coordinates, the square root of the area is used. This applies both to the new element
in the target layout 𝑒𝑡 as well as the matched element 𝑒𝑝∗ in the library layout according to the
sequence alignment result. With the scaling factor 𝛼 , one can increase or decrease the size matching
requirements for the new element.
In addition, we argue that elements that are closer to the insertion point in the sequence are

more relevant than elements that are farther. So, to accommodate this, we scale each feature vector
by its distance to the insertion point of the new element. See appendix C.2 for more details.
Not all elements of a layout might be directly matched against other layouts in the design

library. For example, if the library contains more elements than the target layout (including the new
element), some elements in the library layout will not be encoded in the feature representation. On
the other hand, the more elements that can be matched, the better. Since the sequence alignment
algorithm finds the best matching component type subsequence, it could suggest a very small
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Fig. 10. Placement approach using relations to neighbor elements.

overlap that could lead to a small distance if mismatches are ignored. To counter this effect, every
element from the target layout that is not matched in the library is added as a penalty feature 𝑓 𝑝𝑒 to
the target layout (but not the other way around). See appendix C.3 for our specific formulation,
and C.4 for an example of a feature representation.

4.4.3 Nearest neighbor search. As the number of elements in the layouts may vary and efficient
search structures require fixed input lengths, short sequences are padded with dummy values.
Further, to be able to use efficient search structures such as Ball Tree or KDTree, the features
must be comparable by a single true metric that exhibits the properties of identity, symmetry, and
triangle inequality. While it is more common to use cosine similarity for word similarity, it has
the disadvantage of not exhibiting the triangle inequality. Thus, we use euclidean distance for all
parts of our feature vectors. Finally, the desired number of neighbors is increased in the neighbor
search by a factor 𝜂 = 3 to account for the effect that a resulting match might not produce a feasible
layout.

4.4.4 Producing final layouts. Once a neighbor for the query layout is identified, the new element
can be placed on it. To avoid collision with existing elements when naively copying the position,
we consider the neighborhood of the mapped element in the neighbor layout and try to apply
the relative positioning rules to the query layout. Specifically, we consider the neighborhood
of the mapped target element in the neighbor layout as the set of elements that have no other
element between the target and itself in any of the four directions (above, below, left, right) of
the element. Of this neighborhood, we consider the graph representation as detailed in section
4.1.2, i.e., the relations in regards to position and alignment, to the mapped target element. These
relations are then applied to the query layout, using the mapping between the elements produced
by the sequence alignment algorithm. Neighbor elements that are not mapped are ignored. This
is shown in Figure 10. If the resulting placement creates an invalid layout because the element is
overlapping with another element or is placed outside the canvas, the relations are successively
reduced according to the distance to the target element such that farther neighbors are ignored for
the subsequent layout trial. If no relaxation creates a good layout, the candidate is discarded. The
resulting layouts are finally presented to the user as placement suggestions, sorted by the distance
computed in the nearest neighbor search (the smaller the distance, the better he suggestion).

4.5 Design tool integration
For these methods to be used properly in a design process it must be integrated into a fully-fledged
user interface design program. For this purpose, we created a plugin for the Sketch application,1 a

1https://www.sketch.com
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Fig. 11. The user interface of Sketchwith our plugin loaded on the right side. It shows the placement suggestion
for a new text element onto the artboard (canvas) in the middle of the screen.

popular design tool used by the designers that motivated our work. Figure 11 shows the plugin
overlaid over the regular Sketch window. Sketch represents designs in a nested structure accord-
ing to its layer-based structure. Since our work focuses on higher-order components instead of
low-level elements (i.e., rectangle), we require that the layout is composed of previously defined
components, known as ‘symbols’ in Sketch. These symbols represent the components that are
available via the design system to the UI designer. To identify components, we assume a naming
convention that allows mapping components and their variations to a set of known components.
For example, a ‘button’ component might have different styles with names such as ‘button/primary’
and ‘button/secondary’, but we consider them both to be of the same component type (‘button’).
The workflow of our plugin is described as follows. First, the user selects the canvas with a

partial layout or any element inside of it. Next, a new element must be added to an area outside
of the canvas and selected. Then, the user can generate placement suggestions in the plugin by
choosing the prediction method and requesting placement candidates by pressing the łPredict
placementž button. A list of candidates is computed in the backend application that communicates
via an HTTP API with the plugin. The plugin generates stylized previews of the suggestions with
the new element highlighted, which can be applied to the design canvas via the łApplyž button.

We should mention that this interaction method may not provide the best user workflow. More
sophisticated techniques such as snapping or ghosting should be considered to display the suggested
candidates. However such techniques cannot be implemented with the existing Sketch plugins
API2 as the current plugins architecture is limited in this regard.

5 EVALUATION
Evaluating the models requires appropriate data sets that can serve as reference layouts for finding
layout patterns. Previous work mostly leveraged the Rico data set [5]. However, it was shown to be
of mixed quality [18, 21]. Further, it contains layouts from various apps, thus, no specific layout
patterns can be expected. While we still evaluate the Rico data set to match previous works, we
note that its expressiveness is limited. To address the quality issue, we test the curated subset of
2https://developer.sketch.com/plugins/

ACM Trans. Interact. Intell. Syst., Vol. 12, No. 1, Article 6. Publication date: March 2022.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Learning GUI Completions with User-defined Constraints 6:17

Rico called Enrico [21] containing well-formed layouts, to assess if this has an effect on the learning
despite it containing a mixture of applications without clear patterns. Lastly, we address the lack
of consistent layout patterns in existing data sets by creating two custom data sets that contain
layout patterns and follow a design system.

After an exhaustive quantitative evaluation, we investigated results across the different methods
and data sets manually to better understand the capabilities of each approach. We evaluate the
methods by measuring the rate of valid results, an alignment score, and a pattern matching accuracy
where applicable. Alignment has been used before to evaluate UI layout generation [19]. We argue
that the rate of valid results is an important measure to estimate the applicability of a method in
practical applications and should be reported to prevent cherry-picking results. Finally, to test for
layout patterns, we leverage the pattern attributes and check for a threshold overlap to determine
whether a pattern was matched or not.

5.1 Data sets
We created two layout data sets with pre-defined patterns using probabilistic templates: Varying
buttons and Artificial web layouts. These allow to test the methods against an applicable benchmark
with layout patterns, similar to existing designs in an organization with professional designers,
where clear layout patterns are expected to be present. While the first data set is small and contains
little variation, the latter consists of dense layouts with a wider variety of patterns and noise levels
resulting in complex layouts representative of real-world designs. On the other hand, both Rico and
Enrico comprise real-world layouts of mobile apps with layout complexity ranging from low to high.
These data sets provide results on common benchmarks and allow to investigate if the training
data size has an effect on the neural network methods. However, they do not allow to evaluate
layout patterns and we can only test general goodness qualities. The different layout complexity of
the studied data set is reported in the column ‘Elements’ in Table 2.

Fig. 12. Layouts in the varying buttons data set.

Varying buttons. This data set consists of small web-like layouts with 3ś7 high-level components
(headline, form, text, button, image, table). The layouts follow a simple 2 column grid layout with the
majority of the elements being positioned in the first column and being left-aligned. While most
components are placed in the same (relative) position, the button component is placed at 5 different
positions: (1) below the headline and left-aligned, (2) below the headline and at the right edge of
the canvas, (3) below the form and left-aligned, (4) below the form and right-aligned, and (5) below
the form and at the right edge of the canvas. This is the main pattern that is encoded in all of the
layouts. Repeated elements form a secondary pattern. Therein, the second element is placed in the
same row next to the first element of the same type. In total, the set comprises 36 layouts of which
25 form the design library, and 11 layouts the test cases. Samples of this set are shown in Figure 12.
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When completing such layouts, the placement of the next element is mostly unambiguous except
for buttons. This represents a simple yet non-trivial case, as there is not a single correct result
in reference to the data set when placing a button. Further, it allows to validate the requirement
that multiple variations are expected when appropriate. A challenge for relation prediction lies
in the imbalance of classes. There exist predominantly vertical positions (above/below), as well as
left-aligned relations.

Artificial web layouts. The second custom data set contains a larger number of more complex
layouts. The layouts use a typical grid system with a horizontally centered, top-to-bottom column
layout. They comprise 2ś3 sections with multiple inner columns and a static navigation bar and
footer. Samples of such layouts are shown in Figure 13.

Fig. 13. The different patterns in the artificial web layouts data set.

We encoded three distinct layout patterns in this data set: (1) data tables, (2) forms, and (3) dash-
boards, and each contains multiple variations. Most layouts contain additional context components
to form more realistic web pages. It consists of 359 layouts of which 52 belong to the test set. The
number of elements ranges from 4 to 38 per layout with 18 different component types. Hence,
repeated components are very common. A detailed description of the patterns can be found in
appendix D.1. Completing such layouts is a more challenging task: Firstly, the layouts are more
packed. Secondly, the context components create a certain noise level. And thirdly, the layouts
contain a high number more components.

Fig. 14. Example layouts from the Rico (NDN) data set. All layouts have less than 10 elements, hence, the
complexity is lower than the Enrico set.
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Rico. (NDN) Rico [5] is a large set of mobile layouts extracted from the Android Play Store. We
employ the same selection method as in the łNeural Design Networkž [19] and retain only layouts
with less than 10 elements that are composed of the most commonly used component types. In
addition, we ignore layouts that have only 1 element and those with overlap. This results in 21,557
layouts for the final data set3. Figure 14 shows example layouts of this data set. One has to bear in
mind that these in-the-wild layouts do not contain common patterns. As such, it is not suitable to
evaluate pattern detection capabilities. Instead, general layouting capabilities are tested on it.

Fig. 15. Example layouts that are considered high-quality based on Enrico and are compatible with our
assumptions (no overlap, valid representations as graphs and sequences).

Enrico. Finally, we evaluate the methods on a subset of łgoodž Rico layouts provided by Enrico
[21]. Taking a set of layouts of better quality could reduce the noise in the data and might increase
the likelihood of commonalities and overall better layout results. We filter the layouts further to
eliminate overlap, resulting in 766 items with element counts between 3 and 38. Examples of these
are shown in Figure 15. For completion, the same considerations as in the Rico superset apply.

5.2 Training and test sets
To generate the training data, the set of reference designs are taken and decomposed sequentially
according to the sequence representation (i.e., scanned in rows from top-left to bottom-right). For
example, a vertical layout with three elements ‘headline’, ‘form’, and ‘button’ below each other
would generate the sublayouts (‘headline’), (‘headline’, ‘form’) and (‘headline’, ‘form’, ‘button’). In
every sublayout created as such, we generate all possible inputs by removing every element once
and marking it as the new element.

This produces an exhaustive number of actual inputs for the methods to be used during training
and for testing generalization capabilities. These numbers are shown in Table 2. For the handcrafted
data sets ‘Varying buttons’ and ‘Artificial web’, the test set is carefully created to contain the
encoded patterns without overlap in the training data. For ‘Enrico’ and ‘Rico (NDN)’, we randomly
sample with a fixed seed 10% of the data set as the test set.

5.3 Evaluation metrics
Predictions should follow general layout principles and be consistent with layout patterns in the
data set. To measure these, we employ the following metrics.

3Out of 66,261; 24,262 contain more than 9 elements, 8,084 contain only 1 element, 12,121 of the remaining are with overlap,
and 237 contain one of the least used components
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Layouts Queries
Data set Train Test Elements Train Test
Varying buttons 25 11 3ś9 355 169
Artificial web 307 52 4ś38 41,284 4,998
Enrico 689 77 2ś38 34,943 2,652
Rico (NDN) 19,401 2,156 2ś9 260,046 25,317

Table 2. Data set statistics. Queries are constructed by decomposing layouts and placing each element in
sequentially growing compositions.

Exact and close match. In case a clear placement expectation exists, which is the case for training
data and our custom data sets, we compare suggestions to this expectation and measure two levels
of matches: exact and close matches as depicted in Figure 22 (appendix). An exact match is achieved
if the predicted placement matches the expectation in terms of relative positions and alignments to
neighboring elements, and the Intersection over Union (IoU) is above a threshold 𝜂exact. We define
the set of elements that are neighboring elements of 𝑒 as 𝐾𝑒 . An element 𝑒 𝑗 is considered a neighbor
of 𝑒𝑖 if you can draw a straight line from any edge of 𝑒𝑖 to 𝑒 𝑗 without crossing any other element 𝑒𝑘 .
Additionally, the special canvas element is always contained in the neighbor set. Since this does not
take into account the exact position, we test the IoU between the prediction 𝑏𝑒 and the expectation
𝑏∗𝑒 (see appendix E). We allow for a small offset of a few pixels (keeping alignment and rel. position
correct), and require an IoU of 𝜂exact > 0.7 to be considered an exact match. In practice, this allows,
e.g., a small offset of 10 pixels for small elements like buttons. If this check fails, we test for a close
match, requiring that the placement has a non-insignificant overlap with the expected placement.
We consider this if the IoU is above the threshold of 𝜂close > 0.15.

Valid results, overlap and outside of canvas. Following our premise of the problem and data, we
do not expect any overlap (see appendix E). Note that we do not consider overlap to occur if
two elements’ borders touch each other, as this can be a valid arrangement in graphical layouts.
Predictions that are overlapping are considered invalid and are counted as 𝑁overlap. Further, if an
element’s bounding box extends beyond the canvas size, it is considered invalid as well, as counted
in 𝑁outside. All other cases are considered valid results. The rate of valid results is then the share of
the results that did not match the overlap and outside-of-canvas tests of the total number of results.

Alignment. We measure the alignment of the generated element placement to the rest of the
layout. For this, we follow a similar approach as described in [19], and calculate the alignment
index 𝛼 as the mean of the horizontal and vertical alignment as the minimum of the distance of
any alignment line of the new element 𝑒𝑛𝑒𝑤 to any other element 𝑒𝑖 in standardized form:

𝛼𝑒𝑛𝑒𝑤 =
1
2 min

𝑒𝑖
{| |𝑥0𝑒new − 𝑥0𝑒𝑖 | |1, | |𝑥1𝑒new − 𝑥1𝑒𝑖 | |1, | |𝑥𝑐𝑒new − 𝑥𝑐𝑒𝑖 | |1}

+min
𝑒𝑖

{| |𝑦0𝑒new − 𝑦0𝑒𝑖 | |1, | |𝑦1𝑒new − 𝑦1𝑒𝑖 | |1, | |𝑦𝑐𝑒new − 𝑦𝑐𝑒𝑖 | |1}. (5)

Figure 23 (appendix) shows an example that depicts the minimum differences of both the hori-
zontal and vertical alignment lines to the other elements.

Test queries: Retrieval and Generalization. We divide test queries into two buckets, depending
on their (dis-)similarity to the training data. We refer to queries that are contained in the training
data as retrieval queries. These types of queries can be objectively compared to a ground truth in all
data sets. However, in the generic Rico-based sets, there are no systematic layout patterns encoded,
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and the ground truth may be ambiguous. These queries test the models abilities against a base
scenario where no generalization is needed and a simpler search algo rithm would solve these
perfectly (excluding ambiguity). They are measured by the exact and close match. Additionally, we
also measure general layout qualities with the valid rate, overlap and outside counts.
Queries that are not exact copies of the training data are referred to as generalization queries.

This is the ultimate target scenario and allows to evaluate whether patterns have been learned or
can be constructed correctly. Since the Rico-based sets have no defined patterns, we can only test
the general layout qualities valid rate, overlap and outside counts, and we cannot ascertain if the
resulting placement is derived from a pattern. However, a good general placement is a necessity
for also pattern-based placements and give an indication to how strong the model is overall. In
the handcrafted data sets, we have encoded specific layout patterns, such that we can construct
new combinations with these patterns. As such, for these data sets, we measure the exact and close
match scores as before, along with the general layout measures. This then, allows to evaluate the
true pattern-learning ability of a model.

5.4 Quantitative results
Since a single input can resolve to multiple valid results (e.g., there are multiple valid positions for
placing a new button), we query 3 suggestions for placement for each prediction task. Increasing
the number of suggestions could increase the matching scores, but might at the same time affect
negatively the alignment scores if more diverse results are generated to account for the higher
number. We found 3 suggestions to leave enough room for predicting useful results with ambiguous
input without largely distorting results. When testing for a placement match for an input query,
we count a match if any of the 3 suggestions results in a match. If an exact match is encountered, it
will be counted only as such, and no count for a close match is given for any other suggestion.

To counter the effect of possible invalid results, we run up to 100 trials per input and take the
first 3 valid placements. We should note that the larger data sets contain a vast number of queries
(as noted in Table 2), and testing every possibility is computationally expensive. Hence, we limit the
number of test queries to 1,000 in each of the retrieval and generalization cases, while preserving
the distribution of element types, and considering all areas of placements on the canvas equally.
Tables 3, 4, 6, and 5 show the quantitative results of our evaluation. The alignment index show the
median.
Overall, the kNN method achieves very high combined retrieval match scores on all data sets

of more than 95%, and the best combined generalization match scores in the custom data sets of
more than 86% with the majority of matches being exact. Only in the first data set, around 20% of
generalization matches are only close (absolute 14%), otherwise less than 1% of matches are not
exact. The rate of valid results decreases as the layouts become more complex, from around 70% in
the simplest ‘varying buttons’ data, to about 25% in the Enrico data set that has the highest number
of elements per layout, with the rate being similar for retrieval and generalization queries. Invalid
results are mainly due to overlap (between 28% and 58%), placements outside the canvas vary
between 5% and 25%. The alignment index (smaller is better) are the lowest between the methods
for all data sets with a median of below 0.1 in all cases.
The Transformer model generates valid results in 30ś50% of cases. The rate of overlapping

elements ranges between 26% and 45%, while placements outside the canvas occur in 20ś30% of
cases. It achieves high retrieval matching scores of 70ś80% of cases except for the Enrico data set,
where it is below 30%. The generalization accuracy is similarly high at around 80%. However, the
rate of exact matches accounts for only 25ś75% of matches. The alignment index are three times
the highest between the methods and surpass 0.1 in two cases. For the handcrafted data sets they
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Varying buttons kNN Transformer GNN

Retrieval
Valid 70.1% 46.0% 50.1%
Overlap 28.4% 31.5% 44.2%
Outside 1.5% 22.5% 5.7%
Alignment .052 .086 .065
Exact match 99.7% 61.2% 0.3%
Close match 0.0% 21.6% 62.9%
Failure 0.3% 17.2% 36.8%
Generalization
Valid 68.5% 46.2% 46.2%
Overlap 29.2% 35.1% 51.1%
Outside 2.3% 18.7% 2.7%
Alignment .046 .086 .055
Exact match 72.4% 36.5% 1.1%
Close match 14.4% 43.1% 48.6%
Failure 13.2% 20.4% 50.3%

Table 3. Evaluation results ‘varying buttons’.

Artificial web kNN Transformer GNN

Retrieval
Valid 37.6% 31.1% 24.8%
Overlap 57.6% 42.0% 64.8%
Outside 4.8% 26.8% 10.4%
Alignment .000 .032 .035
Exact match 99.9% 45.4% 0.3%
Close match 0.0% 33.7% 20.2%
Failure 0.1% 20.9% 79.5%
Generalization
Valid 36.0% 27.5% 26.5%
Overlap 58.6% 44.2% 64.4%
Outside 5.4% 28.3% 9.1%
Alignment .000 .037 .039
Exact match 97.7% 31.9% 0.0%
Close match 0.8% 45.2% 20.6%
Failure 1.5% 22.9% 79.4%
Table 4. Evaluation results for ‘artificial web’.

Rico NDN kNN Transformer GNN

Retrieval
Valid 34.6% 53.2% 27.9%
Overlap 42.6% 26.8% 66.9%
Outside 22.8% 20.0% 5.2%
Alignment .087 .096 .123
Exact match 97.8% 19.2% 1.3%
Close match 1.0% 49.8% 13.6%
Failure 1.2% 31.0% 85.1%
Generalization
Valid 36.0% 53.5% 32.4%
Overlap 39.4% 26.0% 64.0%
Outside 24.6% 20.5% 3.6%
Alignment .092 .112 .128
Table 5. Evaluation results for ‘Rico (NDN)’

Enrico kNN Transformer GNN

Retrieval
Valid 25.8% 35.6% 19.5%
Overlap 53.3% 44.7% 76.3%
Outside 20.9% 19.7% 4.2%
Alignment .056 .096 .067
Exact match 98.4% 8.3% 0.0%
Close match 1.0% 29.5% 9.0%
Failure 0.6% 62.2% 91.0%
Generalization
Valid 23.9% 34.1% 25.4%
Overlap 55.4% 38.0% 68.3%
Outside 20.7% 27.9% 6.3%
Alignment .084 .112 .104

Table 6. Evaluation results for ‘Enrico’.

are similar between the retrieval and generalization queries, while for the mobile layouts Enrico
and Rico, there is an visible increase between the conditions.
The GNN approach produces only 20ś50% valid results on the different data sets and often

produces overlapping placements. While for the smallest and simplest data set ‘varying buttons’ it
closely matches patterns with decent rates of 63% in the retrieval case and 50% in the generalization
case, in the more complex and larger data sets, it drops to less than 10ś20% and around 90%
unmatched patterns. There are hardly any exact matches, only around 1%. The alignment index
varies widely and is very close to the kNN score on the simple data sets but increases to the highest
score for the ‘Rico NDN’ data set where the median is 14ś40% above the alignment index of the
other methods.
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Fig. 16. Qualitative results for all data sets with one retrieval and one generalization query with two results
per method. Invalid results are marked with a red cross.

5.5 Qualitative inspection
To better understand the capabilities of each method, we show results for all data sets and contrast
them with expectations. For each data set, one retrieval query and one generalization query is used
and two results per methods are shown in Figure 16.
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Varying buttons. This data set contains similar placements for most elements except for buttons
that can have multiple valid locations. If two elements of the same types are present, they should be
located next to each other. For the retrieval query, with a varying position in the training set of the
target element, the results are quite different. The GNN method tries to squeeze the button between
headline and form which also exists in a similar composition (although then there is more space
between those elements) and produces overlapping placements. The transformer model suggests
a left-aligned placement and a placement on the right side, which is, however, not following the
pattern of being below the form. The kNN model suggests two placements according to neighbors,
at the right side of the canvas and below the form, which matches different training elements. For
the generalization query, there is only really a single placement possible and valid. As all methods
converge to the same result, only a single variation is shown. The GNN method puts the new table
at the position of the existing table, resulting in an invalid overlapping placement. The transformer
model and the kNN method return the same position at the expected position.

Artificial web layouts. This data set encodes three layout patterns (Table + Button, Form arrange-
ment, and Dashboard layout) which are present in many different contexts. For the retrieval query,
where a small form is already in the layout, one row is with a label but without an input and a
new input should be added. We expect it to be placed next to the label so it aligns well with the
other form rows. The GNN model places the input above the form in both variations, and although
rather aligned, it is not a sensible result in this context. The Transformer suggests the expected
placement next to the label and another one in a new row. The kNN method only suggests the
expected position. For the generalization query, where a new card is to be added to a rather empty
dashboard layout, we expect that it is placed in the second row, and ideally at the start of the
row. The GNN method fails to predict a valid result and shrinks the element unexpectedly. The
transformer model returns two valid positions that both are in line with our expectation, where
one is also placed at the start of the row. The kNN model suggests placements in the new row but
does not return a placement at the start of the row.
Enrico. The mobile layouts based on Enrico’s data set features mobile layouts with element

counts ranging from 2 to 38. As there are no known layout patterns encoded, we can only evaluate
if the generated placements are generally producing well-formed layouts and are valid. In the
retrieval query, a set of list items is present in the layout and another one should be added. The GNN
again fails to present valid non-overlapping results. The Transformer method suggests placements
towards the top of the screen that results in overlaps with existing elements. The kNN approach
returns two placements below the existing list items, and even though the gaps with the previous
list item is not the same as with the other list items, we consider it well-formed suggestions. In the
generalization query, a small image element should be added. The top of the screen is occupied
by existing elements and at the bottom are two other small images and icons. The GNN method
predicts one valid result where the image is centered below the list items and one invalid result
where the image is overlapping with the existing elements. The transformer model shows two
results where the image element is at the edge of the screen, and both can be considered good
suggestions. The kNN model also predicts two valid placements, one where it is well-spaced with
the other small images at the bottom, and one where it is placed between the two small images.
Both can be considered good suggestions.

Rico (NDN). In this data set, the models have a much larger set of training items available where
all layouts have less than 10 elements per page. In the retrieval query, four elements that span the
whole screen already exist in the layout and a pager indicator element is to be added. The GNN
approach places the pager indicator between the text and image elements without alignment. The
Transformer model predicts results where the new element is towards the bottom of the screen
and horizontally centered, but with two different y-coordinates. The first result is aligned with
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the bottom text button, while the second result is only center aligned with the screen. The kNN
method places the pager indicator also either centered at the bottom of the screen, or at the top,
and left-aligned. Both results can be considered good suggestions, thus. In the generalization query,
five image elements are placed at the top of the screen and a new text element is to be added. The
GNN method returns again two invalid positions that overlap with other elements. The transformer
model predicts placements at the top of the screen, above the images, where one result is centered,
and the other left-aligned. The kNN model shows similar results and places the text element above
the images but keeps it left-aligned in both cases. Both the Transformer and the kNN results can be
considered good suggestions.

6 DISCUSSION AND LIMITATIONS
Layout model and representations. We focused on a simple layout model requiring layouts to be

flat (i.e., no hierarchies) and their elements to be non-overlapping. While this does not fully reflect
complex UI layouts, it is expressive enough to be a first model for evaluation, and simplify the task
by eliminating one additional dimension. This simplified model should be solved first before adding
more complexity. To add support for more complex layouts in the GNN, one might add nesting
relations (i.e., ‘inside of’, ‘contains’) to the graph vocabulary or create a tree graph and process the
outer and inner layers separately. For the sequential models (Transformer and kNN), Li et al. [23]
evaluated different tree representations that could be applicable here as well.

Both graph and transformer layout representations contain assumptions that may not always be
valid. In the graph representation, for example, the specific relation categories can greatly affect the
resulting layouts and the expressiveness of the graph representation, and we did not test greatly
varying categorization schemes. Defining relations to the canvas is especially difficult as it can be
unclear whether proximity to an edge is a design decision or an implicit result of a packed layout.
Similarly, the sequential decomposition follows a simple reading order without taking into

consideration nested columns or segments of the layout (e.g., as indicated with whitespace). This is
a difficult problem with existing research on segmenting layouts from visual representations [1].
Encoded hierarchies can create better sequences, taking into account columns and segments, similar
to the tree representation by Li et al. [23].

Evaluation. Requiring a robust and consistent set of layouts is a major obstacle for further
research in this particular area, which may also impact a possible user study. Our main limitation
with regards to such an evaluation is the lack of annotated user feedback that could be used as
reference (or ground-truth) data.

Compared to previous research, we are the first to introduce systematic layout pattern evaluation.
The previous reliance on composite data sets prevents more rigorous studying of layout completion
capabilities, beyond generic goodness qualities. We argue that this is an important characteristic
when evaluating methods for UI design. Certainly, there are general layout principles that indicate
if a layout can be considered well-formed, such as alignment, however, layout assistance tools
should consider the local context (i.e., other elements) as well as the global context (i.e., other
designs) and thus, become more task-aware to better model real-world design scenarios.

We focused on a data-driven evaluation and validated the methods by analyzing layout quality
(both quantitatively and qualitatively) and comparing the results to expected layout patterns where
applicable. However, a user-centered evaluation with professional UI designers is the next logical
step to further validate our approach. Such an evaluation is rather challenging, as it requires
designers to be familiar with a set of reference layouts and the patterns therein, besides a strong
knowledge of user interface design in general. Critically, designer’s acceptance towards this kind of
assistance is dependent (1) on the quality of the suggestions and (2) how well they are integrated
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with the designer’s software and workflow. As discussed previously, our work addresses the former
case but has not considered the latter case, for which a substantial engineering effort is needed to
properly instrument existing design tools. In general, the positive applicability of similar design
suggestions has been shown several times before [4, 18, 37], therefore we believe that similar
findings would be observed in our case as well.

Practical implementation. Connecting with the previous discussion, our interaction method as a
Sketch plugin may not be ideal but we believe it is a good compromise solution. A custom research
prototype, developed from scratch, would allow us to implement better interaction methods to
display the suggested placement candidates, but then UI designers would need to learn how to use
the prototype instead of their own software. Still, a better plugin interface for Sketch would be
possible and could be improved in a subsequent version.

Graph neural network. We found that the graph neural network following the description of
the łNeural Design Networkž [19] achieves the lowest scores among the tested methods across
all data sets. Especially problematic is the high number of invalid results due to overlapping with
other elements. Further, it has the lowest pattern matching scores, indicating that it is not learning
the design patterns as expected. Its ability to produce diverse results was limited, and the model
seemed to have converged to a small region. While high model creativity is not required, there
are often multiple valid placements that would be appreciated if returned. Thus, even though the
graph representation is a natural and useful format for layouts, our implementation is unable to
produce high-quality results most of the time.

Certainly, there are many parameters and details in this method and it cannot be excluded that
differences to previous descriptions are responsible for these low scores. Further, our restrictions
on the problem, requiring non-overlapping results, and performing single-element predictions
might require more substantial changes to the previously proposed model. We tested different
variations to improve the results, but we did not achieve significantly better scores. For example,
we tested using the relation module to produce constraints for a combinatorial optimization system,
however, the predicted edges were often not consistent with each other such that no feasible result
was possible. These conflicting relations might also be a reason for the layout module to produce
overlapping placements. We found that when a consistent set of relations is given directly to the
layout module, the results improved significantly in some cases.

Transformer model. The transformer model following [10] produced acceptable results overall.
It was able to produce close results for most patterns in the custom data sets and generated well-
aligned results in many cases. Modeling element coordinates as categories instead of a continuous
variable allows the model to learn alignment lines of the layouts. That has the disadvantage,
however, that vertically shifted patterns (e.g., due to additional elements in the layout) might not
result in equally shifted predictions. While the results are reasonable even for our small data set,
the results are not consistent and robust enough to be fully usable in practical applications. The
qualitative results show that for new compositions, many predictions are invalid, especially if the
layout is already crowded and only a particular empty space would be available. Since there is no
explicit understanding of the visual nature of the layout, these layout ‘holes’ are not recognized.

Sequence-aligned nearest neighbor search. The custom nearest neighbor method was able to
predict layout patterns with the best scores, as it explicitly leverages the reference designs that
contain these patterns. However, as it does not learn generalizations and takes a single neighbor
as the reference, it is not able to use information from multiple designs to inform the prediction.
Certainly, one possible extension is to take into account multiple neighbors for a single input layout.
However, since element placement is based on the neighborhood relations of the returned neighbor,
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multiple neighbors might return conflicting relation categories. Already with a single neighbor,
our approach can lead to failures when the neighborhood is sparsely populated, or the relevant
reference element for placement is not in the direct vicinity. A more sophisticated placement
module could further improve this approach.

While the instance-based learning approach does not require a large set of data points to be useful,
the set must be comprehensive and representative of the different types and layout compositions
that designers might create, otherwise the generalization capabilities would be limited. On the other
hand, its runtime complexity is unfavorable, rendering this approach unsuitable for very large data
sets: Running on a recent MacBook Pro4, predictions for Enrico with around 700 elements took
usually less than 1 second, while querying the larger Rico data set with over 19.000 elements took
between 10-40 seconds, depending on the target layout size. The biggest bottleneck in this regard
is the enumeration of reference layouts to align each with the input and produce adjusted features.
Intelligent filtering of promising candidates could alleviate this issue and improve its runtime.
Further, it has a limited ability to produce very diverse results and the number of overlapping
results increases with the complexity of the layouts. Since our sequence alignment algorithm does
not consider the final placement (as this is too costly to perform on all candidates in the design
library), there is a certain chance of generating neighbors that cannot be applied to the current
input.

Nevertheless, a major advantage of this method is that it is applicable to many design data sets
found in commercial settings, which are not particularly large. The second benefit of this method
is its high interpretability. Since a result is based on a particular neighbor, the outcome can be
explained to the user; e.g. łthis element is recommended to be placed here because the system found
an existing design layout with the same element in a similar positionž. Additionally, unexpected
or wrong behaviors can be easily investigated. This is in contrast to the neural network-based
approaches which are inherently difficult to interpret as they learn an abstract mathematical model
of the underlying data set. While a lot of progress has been made to make neural networks more
understandable, interpreting the results often requires a solid understanding of machine learning
and neural networks.

7 CONCLUSION AND FUTUREWORK
We evaluated three methods for layout completion with element constraints. We focused on a
practical application for commercial designers by giving them control over the generation process
and having them decide the type of the next element to be added. Following a real-world scenario
for a single design system, we target layout patterns exhibited in a set of reference designs that are
expected to be adhered to when generating new element placements. We modeled these layout
patterns as positional and alignment relations of element pairs.
Our graph neural network mostly failed to produce high-quality results and did not learn fine-

grained patterns. The layout transformer learned many encoded patterns but its generalization
is limited due to its inability to transfer patterns to different areas. Our custom nearest neighbor
search finds insertion points via a sequence alignment algorithm and encodes layout principles in
the feature generation to emphasize local similarity over global matches. The results showed that
layout patterns are returned with high accuracy, and it achieves satisfying alignment scores overall.
Its disadvantages are its limited scalability and limitations of the sequential decomposition and
corresponding alignment. Nevertheless, its interpretability and high overall scores make it most
suitable for practical use of professional designers.

4MacBook Pro 16", 2019, 2,6 GHz 6-Core Intel Core i7, 16 GB RAM
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Future extensions of this research should address our restriction on flat layouts, and expand the
methods to support more complex and hierarchical designs as described in section 6. Further, while
all methods can benefit from improvements, extending our kNN approach appears most promising
by tuning the sequence alignment algorithm and improving the placement strategy. While we
aimed for a rigorous, data-driven evaluation, we did not conduct a user study. Future work should
conduct a user evaluation to further validate our experimental results. Our analysis showed that,
even today, classic machine learning with principled methods for feature generation can be most
suitable for practical applications in commercial environments where consistency of results and
interpretability are important factors. With this work, we have contributed to the understanding of
the practical applicability of different machine learning methods for design assistance tools, which
ultimately will help companies to improve consistency in their GUI designs.
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A GRAPH NEURAL NETWORK DETAILS
A.1 Relation prediction
The input to the relation module Rel is the partial graph 𝐺p where edges to and from the new
element 𝑒new have the special label unknown, and a complete graph 𝐺 is generated that contains
label predictions for the previously unknown edges: 𝐺 = Rel(𝐺p). In this module, the bounding
boxes of the elements are not used as part of the features of the nodes. Depending on the set of
training layouts, there might be cases for which the same partial input graph can have multiple
different valid output graphs. That is why we condition the graph completion task on a learned
latent variable 𝑧rel that allows differentiating between multiple variations of the same input. The
embedded vertices and arrows 𝐹𝑉 , 𝐹𝐴 of the input graph of dimension 𝐷embed are joined by a latent
vector 𝑧rel of dimension 𝐷𝑧rel . During inference, 𝑧rel is sampled from a standard normal distribution
𝑧rel ∼ N(0, 1), while during training, it is encoded from the ground truth graph 𝑧rel = Enc(𝐺∗) to
allow reconstruction of different source graphs from the same input. These joined feature vectors
are the inputs to the actual graph convolution network GCNpred.It produces updated feature vectors
for both nodes and edges Finally, the convoluted feature vectors of the edges are fed into a multilayer
perceptron network MLPpred that performs a multi-class classification task on each input vector,
and returns a probability vector on the relation categories for each edge:

𝐹 ′𝑉 , 𝐹
′
𝐴 = GCNpred ((𝐹𝑉 , 𝑧rel), (𝐹𝐴, 𝑧rel)), (6)

𝑝𝐴𝑟 = 𝜎 (MLPpred (𝐹 ′𝐴)), (7)
where 𝑝𝑟𝑖 ∈ 𝑝𝐴𝑟 are the probability vectors for the label of every edge as returned by a softmax
activation function 𝜎 . The output is then an |𝑅 |-dimensional vector that assigns a specific score
to each possible label category for every input edge. The predicted labels {𝑟𝑖 } are computed by
the argmax on these vectors. By replacing the unknown edge labels from the partial graph with
the predicted labels from the network, a complete graph 𝐺 is generated that can then be used in a
subsequent layouting module. Note that the relation prediction are learned independently for the
two relation categories. Hence, we create two models Relpos, Relalign, one for each relation type.

Latent vector encoding. The latent vector of dimension 𝐷𝑧rel is encoded from the ground truth
graph 𝐺∗. Embedded graph features are passed into a graph convolution network 𝐹 ′𝑉 ∗ , 𝐹 ′𝐴∗ =
GCNenc (𝐹𝑉 ∗ , 𝐹𝐴∗ ), which are then fed into a two-headed dense neural network MLPenc to generate
𝜇, 𝜎 , from which the latent vector is generated via the reparameterization trick 𝑧enc = 𝜇 +𝜎𝜖 , where
𝜖 is a random noise variable sampled from N(0, 1).

Loss. The network is trained with a reconstruction loss Lrec on the category prediction, and
an entropy loss Lkl1 between the generated latent vectors 𝑧rel and the prior distribution N(0, 1):
Lrec1 = CE({𝑟𝑖 }, {𝑟 ∗},𝑤), where CE = −∑ |𝑅 |

𝑛 𝑟 ∗𝑛 log 𝑟𝑛 is the cross-entropy function, {𝑟𝑖 } the set of
predicted relation categories, {𝑟 ∗} the set of true relation categories, and𝑤 is a weight parameter
to account for imbalanced data sets.
Lkl1 = KL(𝑧rel,N(0, 1)), where KL is the Kullback-Leiber divergence function, 𝑧rel the encoded
latent variable, andN(0, 1) the standard normal distribution. Both losses are summed with weights
𝜆rec1 , 𝜆kl1 to form the complete loss for the relation module:

Lrel = 𝜆rec1Lrec1 + 𝜆kl1Lkl1 . (8)

A.2 Layout generation
In the layout generation module, the completed graph𝐺 = (𝑉 ,𝐴pos, 𝐴align) along with the elements
size boxes {𝑠𝑒𝑖 } are used to predict the size box of the new element 𝑠𝑒new , completing the layout.
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We do not need to work with the two relation types separately in the layout module, so the edges
are merged and the vocabulary is combined. In the original description of the method, an iterative
process was used to generate the boxes for new elements, to support adding multiple new elements.
To be consistent with the stated problem, we only consider a single new element and employ a
single prediction step. To do so, first, a learned graph representation is generated by passing the
embedded features through a graph convolution network:

𝐹 ′𝑉 , 𝐹
′
𝐴̂
= GCNlay1 (𝐹𝑉 , 𝐹𝐴̂). (9)

To generate a placement for a new element, the existing standardized size boxes {𝑠𝑒𝑖 } are con-
catenated onto the feature vectors of the nodes, and onto the new element 𝑒new, the half-empty
size box is concatenated 𝑠𝑒new = (∅, ∅, 𝑤̃𝑒new , ℎ̃𝑒new ): 𝐹 ′′𝑉 = (𝐹 ′𝑉 , {𝑠𝑒𝑖 }). To adjust the dimensionality of
the edge vectors 𝐹𝐴 to match the node vectors, a 4-dimensional vector of zeros is concatenated
onto them 𝐹 ′′

𝐴̂
= (𝐹 ′

𝐴̂
, (0, 0, 0, 0)). These features are passed through another graph convolution net-

work GCNlay2, and a variational auto encoder-decoder network of fully-connected layers henc𝑠 , hdec𝑠

generates the box prediction from the new node feature of the new element 𝑒new:

𝐹 ′′′𝑉 , 𝐹 ′′′
𝐴̂

= GCNlay2 (𝐹 ′′𝑉 , 𝐹 ′′𝐴̂ ), (10)

𝑧lay = henc𝑠 (𝑠∗𝑒new ), (11)

𝑠𝑒new = hdec𝑠 (𝐹 ′′′𝑒new , 𝑧lay), (12)

where 𝑠∗𝑒new is the ground truth box of the new element, which is used during training to generate
the latent code from. During inference, the latent code 𝑧lay is sampled from a prior distribution.

Loss. The network is trained with a reconstruction loss Lrec2 on the size box differences, and
an entropy loss Lkl2 between the generated latent vectors 𝑧lay and the prior distribution N(0, 1).
Additionally, to force keeping the input sizes of the elements, a size reconstruction loss Lsize is
added: Lrec2 = | |𝑠𝑖 − 𝑠∗𝑖 | |1, where | | · | |1 is the L1-loss between the predicted box and the ground
truth box 𝑠∗, Lsize = | | (𝑤̂, ℎ̂) − (𝑤∗, ℎ∗) | |1, where 𝑤,ℎ represent the widths and heights of new
elements, and Lkl2 = KL(𝑧lay,N(0, 1)), where KL is the Kullback-Leiber divergence function, 𝑧lay
the encoded latent variable, and N(0, 1) the standard normal distribution. As before, the losses are
summed with weights to form the complete layout loss:

Llay = 𝜆rec2Lrec2 + 𝜆sizeLsize + 𝜆kl2Lkl2 . (13)

A.3 Refinement module
The final refinement module operates on the generated complete layout with the goal of fine-tuning
the previous result and producing a more aesthetically pleasing layout. Its input is the completed
graph𝐺 = (𝑉 ,𝐴), along with the size boxes of the existing layout {𝑠𝑒𝑖 } and the size box of the new
element 𝑠𝑒new , and it produces an updated size box 𝑠 ′𝑒new . The completed layout from the previous
model is concatenated onto the embedded features of the nodes, and the result is convoluted in a
graph convolution network GCNrefine. The updated feature vector of the new element is fed into a
multi-layer perceptron network MLPrefine to generate the refined size box 𝑠 ′𝑒new :

𝐹 ′𝑉 , 𝐹
′
𝐴̂
= GCNrefine ((𝐹𝑉 , {𝑠𝑒𝑖 }), (𝐹𝐴̂, (0, 0, 0, 0))), (14)

𝑠 ′𝑒new = MLPrefine (𝐹 ′𝑒new ). (15)
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Training and loss. To teach the network to refine layouts, the training layouts are perturbed
by a random strength 𝛿 = U (−0.05, 0.05) which is added to the coordinates of new elements
𝑠 ′𝑒new = (𝑥𝑒new + 𝛿,𝑦𝑒new + 𝛿, 𝑤̃𝑒new , ℎ̃𝑒new ). The boxes of the other elements are kept as is such that
there are well-aligned elements to align to. The network is trained with a reconstruction loss Lrec3
on the size box differences Lrec3 = | |𝑠 ′𝑖 − 𝑠∗𝑖 | |1, where | | · | |1 is the L1-loss between the predicted box
and the ground truth box 𝑠∗.

A.4 Graph convolution network
To perform the actual graph convolutions, we use the same approach as described in the original
‘Neural Design Network’ [19] which employs the architecture described in ‘sg2im’ by Johnson et
al. [14].

Fig. 17. The graph convolutional layer. 𝑓𝑣 represents the features of a vertex, 𝑓𝑎 the features of an arrow
(edge). 𝐹𝐶 describe fully-connected layers.

This graph convolution layer GC is depicted in Figure 17. The input are feature vectors of the
vertices 𝑓𝑣𝑖 and of the arrows 𝑓𝑎𝑖 with dimension 𝐷in. First, they are passed as triples in the form of
(𝑓𝑣𝑖 , 𝑓𝑎𝑖 , 𝑓𝑣𝑗 ) where 𝑣𝑖 is a source of the triple 𝑎𝑖 and 𝑣 𝑗 the target through a fully-connected neural
network FC1, resulting in (𝑓 ′𝑣𝑖 , 𝑓 ′𝑎𝑖 , 𝑓 ′𝑣𝑗 ). Vertices that appear multiples times in any of the triples are
then pooled in the next step which is by default implemented as an average pooling, creating {𝑓 ′′𝑣𝑖 }.
The pooled vertex features are finally passed through a second fully-connected neural network FC2
to generate the output of the graph convolution for the vertices {𝑓 ′′′𝑣𝑖 }. The features of the arrows
{𝑓 ′𝑎𝑖 } are output directly from the first network FC1. Every fully-connected layer is followed by an
optional dropout layer, and the output is processed by an activation function 𝜎 . Parameters of this
layer are the input Dimension 𝐷in, the hidden dimension 𝐷hidden and the output dimension 𝐷out.
We will use the shorthand (𝐷in, 𝐷hidden, 𝐷out) to describe the dimensions going forward. Graph
convolution networks as denoted GCN above are then stacked layers of the described GC layer.

A.5 GNN parameters
We use the same parameters as described in the ‘Neural Design Network’ supplementary material
[19]withminor differences. For GC,we present the dimensions of each layerwith (𝐷in, 𝐷hidden, 𝐷out),
and for fully connected layers FC as (𝐷in, 𝐷out), where 𝐷in, 𝐷out denote the input and output di-
mensions correspondingly.

Relation module. In the relation module, the embedding dimension is 𝐷embed = 128 and the
dimension of the latent variable is 𝐷𝑧rel = 32. GCNpred consists of three graph convolutional layers
as detailed in Table 7. MLPpred consists of two fully-connected layers as shown in Table 8. The
embedding dimension of the ground-truth encoding is 𝐷enc

embed = 64, and GCNenc is a three-layered
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graph convolutional network as described in Table 9. MLPenc is a two-headed network shown in
Table 10.

GCNpred 𝜎 𝑑

1 GC(128+32, 512, 128) ReLU 0.1
2 GC(128, 512, 128) ReLU 0.1
3 GC(128, 128, 128) ReLU 0.1

Table 7. GCNpred layers.

MLPpred 𝜎 𝑑

1 FC(128, 512) ReLU 0.1
2 FC(512, |𝑅 |) softmax 0

Table 8. MLPpred layers.

We use the loss weights 𝜆rec1 = 1 and 𝜆kl1 = 0.005.

Layout module. The dimension of the embedding is the same as above with 𝐷embed = 128.
GCNl1,GCNl2 consist of three layers according to the definitions in Table 11 and Table 12.

The variational auto-encoder networks are defined as follows: henc is a network of fully-connected
layers, followed by a two-headed output of 32 again as shown in Table 13. hdec is a simple fully-
connected network with three layers as detailed in Table 14. The dimension of the latent code in
this module is correspondingly 𝐷𝑧lay = 32.
The employed loss weights of this module are 𝜆rec2 = 1, 𝜆rec3 = 10 (to prioritize size reconstruc-

tion), and 𝜆kl2 = 0.01.

Refinement module. The embedding dimension in the refinement module are given as 𝐷refine
embed𝑉 =

60 and 𝐷refine
embed𝐴 = 64. GCNrefine is a graph convolution network with three layers according to

Table 15. Finally, MLPrefine is a network of two fully-connected layers as shown in Table 16.

GCNenc 𝜎 𝑑

1 GC(64, 512, 128) ReLU 0.1
2 GC(128, 512, 128) ReLU 0.1
3 GC(128, 128, 128) ReLU 0.1

Table 9. GCNenc layers.

MLPenc 𝜎 𝑑

1𝜇 FC(128, 32) - 0
1𝜎 FC(128, 32) - 0
Table 10. MLPenc layers.

GCNl1 𝜎 𝑑

1 GC(128, 512, 124) ReLU 0.1
2 GC(124, 512, 124) ReLU 0.1
3 GC(124, 512, 124) ReLU 0.1

Table 11. GCNl1 layers.

GCNl2 𝜎 𝑑

1 GC(124+4, 512, 128) ReLU 0.1
2 GC(128, 512, 128) ReLU 0.1
3 GC(128, 512, 128) ReLU 0.1

Table 12. GCNl2 layers.

henc 𝜎 𝑑

1 FC(4+128, 128) ReLU 0.1
2 FC(128, 128) ReLU 0.1
3𝜇 FC(128, 32) - 0
3𝜎 FC(128, 32) - 0

Table 13. henc layers.

hdec 𝜎 𝑑

1 FC(32+128, 128) ReLU 0.1
2 FC(128, 64) ReLU 0.1
3 FC(64, 4) - 0

Table 14. hdec layers.
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GCNrefine 𝜎 𝑑

1 GC(64, 512, 128) ReLU 0.1
2 GC(128, 512, 128) ReLU 0.1
3 GC(128, 128, 128) ReLU 0.1

Table 15. GCNrefine layers.

MLPrefine 𝜎 𝑑

1 FC(128, 512) ReLU 0.1
2 FC(512, 4) - 0
Table 16. MLPrefine layers.

Training parameters. In all fully-connected layers, we add a batch normalization layer, and a
dropout layer with a rate of 0.1.We use the optimizer Adamwith a learning rate of 10−4, 𝛽 = (.9, .999)
and an l2 regularization of 10−4.
We also tried using only the relation module to produce constraints for a combinatorial opti-

mization system. However, the predicted edges were very often not completely consistent such
that considering all, no feasible result was possible.

B LAYOUTTRANSFORMER DETAILS
B.1 Input tokenization
Since tokens need to be embedded in the network, we limit the amount of coordinate and size
tokens by employing a base grid size 𝑔 onto which all positions and sizes are łsnappedž to. This
is a common approach in user interface design and automatically prevents misalignments by
few pixels. Consequently, all 𝑤,ℎ, 𝑥0, 𝑦0 in the layout sequence are divided by 𝑔 and rounded:
𝑤 ′ = ⌊𝑤𝑔 ⌉, ℎ′ = ⌊ℎ𝑔 ⌉, 𝑥0

′
= ⌊ 𝑥0

𝑔 ⌉, 𝑦0
′
= ⌊ 𝑦0

𝑔 ⌉, where ⌊·⌉ denotes a rounding function to the nearest
integer.
This updated layout sequence is then converted into a token sequence 𝑆 in𝐿 for the transformer

network. For that, a token dictionary is created with specifically allocated ranges for the different
types of element attributes, as well as special transformer tokens for start, end, and padding. The
token vocabulary Vocab is then the following set:

Vocab = (𝑡<pad>, 𝑡<start>, 𝑡<end>, {𝑡𝑐𝑖 }, {𝑡𝑥 ′𝑖 }, {𝑡𝑦′𝑖 }, {𝑡𝑤′
𝑖
}, {𝑡ℎ′𝑖 }), (16)

where {𝑡𝑐𝑖 } is the token set of the different component types (i.e., every component type is as-
signed a token), {𝑡𝑥 ′𝑖 } is the set of tokens for all possible x-coordinates as given by the base grid,
and {𝑡𝑦′𝑖 }, {𝑡𝑤′

𝑖
}, {𝑡ℎ′𝑖 } are defined correspondingly for the other grid-adjusted element attributes.

This requires a maximum canvas size𝑊max, 𝐻max to be defined that determines the maximum
number of tokens for the positions and sizes. With this token vocabulary, each element attribute
is mapped to the corresponding token, i.e., the token representation of an element 𝑒 is given by
𝑡𝑒 = 𝑡𝑐𝑒 , 𝑡𝑤′

𝑒
, 𝑡ℎ′𝑒 , 𝑡𝑥0′

𝑒
, 𝑡𝑦0′

𝑒
. The tokens are encapsulated by a special start and stop token to produce

the final input sequence:

𝑆 in𝐿 = 𝑡<start>, 𝑡𝑐𝑒0 , 𝑡𝑤′
𝑒0
, 𝑡ℎ′𝑒0 , 𝑡𝑥0′

𝑒0
, 𝑡𝑦0′

𝑒0
, ..., 𝑡𝑐𝑒new , 𝑡𝑤′

𝑒new
, 𝑡ℎ′𝑒new , 𝑡<end> . (17)

B.2 Training
We train the network with the cross-entropy loss𝐶𝐸 = −∑𝑇

𝑛 𝑦𝑛 log𝑦𝑛 between the generated token
probability and the ground-truth token with Label Smoothing of strength 𝑙 [34] where 𝑇 = |Vocab|
is the token vocabulary size, and𝑦𝑛, 𝑦𝑛 denote the ground truth probability and predicted probability
of token 𝑛 respectively. Label smoothing puts a high probability on the ground truth category and
distributes a small probability uniformly on the other categories. Using such soft targets has been
shown to improve the learning and generalization capabilities of neural network models [26].
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B.3 Network parameters
The embedding dimensions is 𝐷embed = 512, the number of layers per encoder/decoder is 𝑛layers = 6,
with 𝑛heads = 8 attention heads, and 𝐷ff = 1024 the dimension of units in the feed-forward layers,
with the ReLU activation function in both the attention and feed-forward layers.

As in [10], we use the optimizer AdamW with parameters 𝑙𝑟, 𝛽 that employs learning rate
scheduling such that first a warmup schedule on the learning rate is employed, followed by a
decay schedule of the learning rate [24]. In addition, a dropout layer with a rate of 𝑑 is added after
every layer to counter overfitting. We use a label smoothing strength of 𝑙 = 0.1, a learning rate of
𝑙𝑟 = 10−4 with 𝛽 = (0.9, 0.999), and a dropout rate of 𝑑 = 0.1.

C SEQUENCE-ALIGNED NEIGHBOR SEARCH DETAILS
C.1 Insertion point details
The candidate positions of the target element 𝑝∗𝑡 are defined by:

𝑝∗𝑡 = arg min
𝑝∈[0,𝑛𝑡 ]

editDistance(𝑆 type𝑡𝑝
, 𝑆

type
𝑙𝑖

), (18)

where 𝑝 ∈ [0, 𝑛𝑡 ] are the possible positions in the target type sequence 𝑆 type𝑡 , 𝑆 type𝑡𝑝
represents the

target sequence with the new element inserted at position 𝑝 , 𝑆 type
𝑙𝑖

is the library type sequence and
editDistance is a function that calculates the edit distance between two sequences. For the edit
distance algorithm, we utilize an implementation of the Myers’s bit vector algorithm [27].

C.2 Feature scaling
We scale each feature vector byits distance to the insertion point of the new element 𝑡 (𝑝𝑒 , 𝑝𝑡 ) 𝑓𝑒
where 𝑡 (., .) is a function returning the scaling factor between the position of the current element
𝑝𝑒 and the position of the target element 𝑝𝑡 . For 𝑡 (., .) we use the following formula:

𝑡 (𝑝𝑒 , 𝑝𝑡 ) = max(𝜆min, 1 −min(1, |𝑝𝑡 − 𝑝𝑒 |
2

𝛾2
)), (19)

where 𝜆min is the minimum scaling factor for far away elements, and 𝛾 is the distance at which
point the minimum scaling takes effect.

C.3 Penalty feature
The penalty feature is composed of the distance of the element to an approximate location of the
new element and its size: 𝑓 𝑝𝑒 = (𝛿𝑥𝑒 , 𝛿𝑦𝑒 , 𝑤̃𝑒 , ℎ̃𝑒 ). The distance to the new element is approximated
since the final location is not known yet. For this, the center position of the elements surrounding
the insertion point is taken as an approximation for the new element, and the distance to the center
point of the missing element is calculated:

𝛿𝑥𝑒 = |
(𝑥0𝑒𝑝∗−1 +

𝑤̃𝑒𝑝∗−1
2 ) + (𝑥0𝑒𝑝∗+1 +

𝑤̃𝑒𝑝∗+1
2 )

2 − (𝑥0𝑒 +
𝑤̃𝑒

2 ) |, (20)

where 𝑒𝑝∗−1, 𝑒𝑝∗+1 are the elements before and after the insertion point in the sequence. The same
formula is applied to the y-coordinate with corresponding attributes. Finally, the approximate
distance is inverted so that close elements that are not mapped produce a higher penalty than those
that are far away. The following formula is applied:

𝛿𝑥𝑒 = max(0, 0.5 − 𝛿𝑥𝑒 ), (21)

𝛿𝑦𝑒 = 0.5max(0, 0.5 − 𝛿𝑦𝑒 ). (22)
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The vertical distance is scaled down because we argue that missing elements in the same row are
more relevant than those in other rows even if the horizontal distance is less in the second case.
Lastly, the penalty feature is scaled with the same function 𝑡 (𝑝𝑒 , 𝑝𝑡 ) but with different parameters
𝜆min and 𝛾 .

C.4 Feature representation
The dimension of the feature vector is a function of the number of maximally matched elements 𝑛∗
(incl. the new element) in the sequence: |𝑆 | = 4(𝑛∗ − 1) + 3 + 25𝑛∗. An example is given in Listing 1.

Listing 1. Example feature representation of a 6+1 element layout search.

# box features of matched elements in the layout

(0.02, 0.03, 0.21, 0.03,

0.03, 0.10, 0.79, 0.18,

0.03, 0.35, 0.11, 0.02,

0.03, 0.40, 0.45, 0.08,

0.03, 0.51, 0.37, 0.22,

# box padding to match longest feature sequence

100.0, 100.0, 100.0, 100.0,

# box feature of target element

0.14, 0.04, 3.59,

# word vector of the component names

0.02, -0.01, 0.00, ..., 0.09, -0.02, 0.05, -0.04, -0.03,

0.03, -0.11, -0.02, ..., 0.08, 0.01, 0.05, 0.03, -0.00,

-0.01, -0.13, 0.04, ..., 0.13, -0.01, 0.16, 0.02, 0.04,

0.17, -0.19, 0.00, ..., -0.02, 0.07, 0.04, 0.01, 0.03,

0.07, -0.11, 0.03, ..., 0.02, 0.02, 0.17, -0.10, -0.01,

# word vector padding

10.00, 10.00, 10.00, ..., 10.00, 10.00, 10.00, 10.00, 10.00 ,

# word vector of target element

-0.03, -0.17, 0.15, ..., 0.13, 0.00, 0.05, -0.03, 0.02)

D DATA SET DETAILS
D.1 Artificial web patterns
(1) A data table pattern combines a table component with a button (e.g., to execute an action with a
selection of items from the data table). The button is always right-aligned with the table but can be
on either side. An optional pagination component is vertically centered with the table element if
present. In that case, the button and pagination components must be on the same row.

(2) For forms, we follow a common web pattern where the label is placed to the left of an input
element. The complete form is either arranged in a single column (70 % of times) or in two columns
(30 %). There is a set of fixed elements preceding the form (title, breadcrumb, text paragraph, icon,
link, section title), some of which are exclusive to forms. As before, the submit button has multiple,
valid positions with defined frequencies to simulate major and minor patterns. When only a single
button exists below the form, it is either aligned to the left of the last input field (20%) or right-
aligned (80%). This applies to both column variations. When two buttons are placed below the
form, they are next to each other in the same row, and the right button is right-aligned with the
last input field.
(3) Lastly, different dashboard layouts are present in the data set. It is composed of at least two

rows of different widgets. There are three different layout arrangements: a two-column layout,
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Fig. 18. The set of layouts in the varying buttons data set. Grey boxes correspond to headlines, green boxes
to forms, red boxes to buttons, blue boxes to images, pink boxes to tables and black text represents a text
paragraph. Grey layouts indicate test items that are not used during training.

a four-column layout, and a three-column layout with a separate sidebar column. Each widget
can take the full width of the columns or a single column. There are four different widget types
that are used randomly in every layout (text, chart, table, image). The different layouts are present
uniformly distributed in the data set. For these dashboards, the first section acting as a filler is
optional.

E METRIC DETAILS
Intersection over Union. We calculate the Intersection over Union (IoU) according to:
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Fig. 19. The table pattern. The button accompanying the table is always right-aligned with the table and can
be either above or below it. If the pagination is present, it is next to it.

Fig. 20. The form pattern. There can be forms with one or two columns with the label to the left of the input.
A single button can be either placed left or right-aligned with the right-most input field. With two buttons,
they are placed next to each other and are right-aligned with the last input element.

IoU(𝑏𝑒 , 𝑏∗𝑒 ) =
|𝑏𝑒 ∩ 𝑏∗𝑒 |
|𝑏𝑒 ∪ 𝑏∗𝑒 |

. (23)

Overlap. We use the following formula to determine if there is overlap between two elements
𝑒1, 𝑒2:

min(𝑥1𝑒1 , 𝑥1𝑒2 ) > max(𝑥0𝑒1 , 𝑥0𝑒2 ) ∧min(𝑦1𝑒1 , 𝑦1𝑒2 ) > max(𝑦0𝑒1 , 𝑦0𝑒2 ). (24)

Outside the canvas. The following test determines if an element 𝑒 is outside the canvas of the
layout 𝐿:
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Fig. 21. The dashboard pattern arranges different type of cards in either a 2-column layout, 4-column layout,
or a 3-column layout with an additional sidebar. Cards can either span a single column or all columns.

Fig. 22. Examples of exact and close matches. In the exact match, the alignment to the neighboring element
is according to the expectation in green, even if it has a minor offset vertically. The close match has a major
overlap but misses the alignment.

min(𝑥0𝑒 , 𝑦0𝑒 ) < 0 ∨ 𝑥1𝑒 > 𝑤𝐿 ∨ 𝑦1𝑒 > ℎ𝐿 . (25)
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Fig. 23. Alignment takes the average of the minimum differences between any 𝑥0, 𝑥𝑐 , 𝑥1 of the new element
and the existing elements (shown with Δ𝑥) and between any 𝑦0, 𝑦𝑐 , 𝑦1 of the new element and the existing
elements (Δ𝑦).
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