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ABSTRACT
A�ective computing has potential to enrich the development life-
cycle of Graphical User Interfaces (GUIs) and of intelligent user
interfaces by incorporating emotion-aware responses. Yet, a�ect is
seldom considered to determine whether a GUI design would be
perceived as good or bad. We study how physiological signals can
be used as an early, e�ective, and rapid a�ective assessment method
for GUI design, without having to ask for explicit user feedback.
We conducted a controlled experiment where 32 participants were
exposed to 20 good GUI and 20 bad GUI designs while recording
their eye activity through eye tracking, facial expressions through
video recordings, and brain activity through electroencephalogra-
phy (EEG). We observed noticeable di�erences in the collected data,
so we trained and compared di�erent computational models to tell
good and bad designs apart. Taken together, our results suggest
that each modality has its own “performance sweet spot” both in
terms of model architecture and signal length. Taken together, our
�ndings suggest that is possible to distinguish between good and
bad designs using physiological signals. Ultimately, this research
paves the way toward implicit evaluation methods of GUI designs
through user modeling.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; User interface design; User models; • Computing
methodologies→Machine learning approaches.
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A�ective computing; Neurophysiological and peripheral signals;
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1 INTRODUCTION
Determining whether the design of a Graphical User Interface (GUI)
is good or bad remains a question that needs to be answered as
early as possible (the earlier a design error is detected, the less
costly it will be to repair [35, 69]), as quickly as possible (the more
e�cient the evaluation, the faster it can improve the design, and
the less costly it will prove [23]), and as little interventionist as
possible (the less intrusive the evaluation is for the user, the less
the user will be distracted [77] from participatory design [54]). To
decide which evaluation method to apply among all methods [80],
we can turn to White�eld et al.’s framework [84], which classi�es
these methods according to two dimensions: with users (e.g., by
user testing) or without, based on the real GUI (i.e., executable) or
represented (e.g., mocked-up).

For a long time, methods without users attempted to automate
the evaluation based on heuristics [17], guidelines [79], or user
models of aesthetics [13, 60, 85], based on the assumption that
what is beautiful is perceived as usable [74], even if it is not. These
methods o�er partial results that are subject to interpretation be-
cause their results, good or bad, remain independent of the users
and their context of use [84]. In particular, prior work has focused
on computational models that are expected to evaluate and pre-
dict aesthetics scores [28, 37, 60, 64]. However, these studies noted
that aesthetic preferences are quite diverse, a�ected by the user’s
own taste [28], psychological traits [18], and demographic back-
grounds [64]. Furthermore, aesthetic preferences collected through
self-reported measures are often subject to carry-over e�ects and
too much subjectivity [86].

On the other hand, an evaluation method with users is appreci-
ated for the relevance and context-sensitivity of its results, but its
implementation costs are feared [80]. Such a method is sometimes
set up too late, in a costly and explicit way (the user has to explain
why the design is evaluated as good or bad). We should therefore
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look for an evaluation method that is as early, e�cient, and im-
plicit as possible. While GUI design has been traditionally evaluated
on factors such as usability (which is decomposed into e�ective-
ness, e�ciency, and satisfaction), understanding and evaluating
their emotional impact [44, 45] has gained signi�cant attention
in recent years [76]. For example, Odushegun [57] emphasized
that aesthetics go beyond visual beauty and encompass cognitive-
a�ective responses, and Mastandrea et al. [49] found that positive
aesthetic appreciations are bene�cial to physiological well-being.
Indeed, emotions can play a crucial role in shaping a better over-
all user experience [19, 56, 62], which goes beyond mere usability.
Positive emotional experiences enhance user engagement, foster
brand loyalty and engagement [25], and drive user retention [5].
Conversely, negative emotions can lead to frustration, disengage-
ment, and abandonment of the GUI, resulting in a loss of users and
potential revenue [5].

To bridge the gap between the need for objective measures and
subjective user experiences towards GUI designs, this paper in-
vestigates whether an a�ective evaluation based on measures of
a�ects could allow for a more holistic evaluation, providing a new
angle of how GUI design might impact users. By leveraging a�ect-
aware insights, designers can create GUIs that resonate with users,
foster positive emotional experiences, and ultimately enhance the
user experience. Moreover, this approach allows for implicit evalu-
ation [31, 65], while users perceive and interact with GUIs as they
would normally do. However, detecting a�ect in this context poses
several challenges. While a�ective responses can also vary between
individuals, we hypothesize that they can be more reliably detected
than self-reported measures and lead to an overall consensus based
on the principle that inter-subjectivity [30] among users becomes
objective [86]. Furthermore, developing accurate a�ect detection
models is a challenge in itself, considering that labeled a�ect-related
datasets largely exist for images, pictures, and videos [2], but remain
almost nonexistent for GUI designs.

To pursue this research, we investigate the a�ective responses
that good and bad GUI designs produce on users. Comparing good
GUI designs against bad ones seems straightforward: good designs
focus on simplicity, clarity, consistency [6], and visual aesthet-
ics [60] as opposed to bad designs which su�er from complexity,
clutteredness, inconsistency, and lack of visual appeal. We hypoth-
esize that end users may elicit some a�ective responses toward
GUIs and their aforementioned properties, based on content and
aesthetics. To test this hypothesis, we recorded neurophysiological
and peripheral signals while users were exposed to various good or
bad GUI designs: facial expressions [68], eye activity (e.g., �xations
and pupil dilation) [3], and brain activity (electroencephalography,
EEG) [32]. We also collected scores about users’ subjective experi-
ences and preferences towards GUI designs, as a means to assess
the validity of our �ndings.

Taken together, this paper makes the following contributions:

• A controlled experiment to capture a�ective responses that
good and bad GUI designs elicit on end users (Section 3)
together with discussion about noticeable e�ects that we
observed in the collected data (Section 4).

• Computational models for a�ect recognition that use dif-
ferent physiological signals (Section 5): eye-gaze behavior

(�xations and pupil dilation), facial expressions, and brain
activity (EEG).

• Contextualization of our �ndings with insights for designers
and researchers (Section 6).

2 RELATEDWORK
Our work primarily builds on two research areas: GUI aesthetics
and emotion recognition.

2.1 GUI aesthetics
A GUI design can be evaluated using a large number of di�erent
methods [80], among which (perceived) aesthetics has been found
to impact a variety of features, including e.g. perceived usefulness,
credibility, and intention to revisit [7, 53, 74, 75]. While Gwak and
Park [21] found no signi�cant di�erences in user responses towards
GUI designs, Bölte et al. [7] found that expert and non-expert design-
ers can detect bad designs but experts tend to evaluate good designs
as bad more often than non-experts. An automatic evaluation on
websites and mobile apps [51] reinforced past �ndings [78] that
suggested that people rely on similar visual cues [73], regardless of
exposure duration.

Standardized questionnaires are typically used for GUI evalua-
tion, including a�ect [83] and aesthetics [64], which is again a form
of self-reported measure that requires explicit user feedback. By
relying on neurophysiological measurements, recorded during nat-
ural interactions, we move away from explicit evaluation methods
with users (in which users must explicitly give the result of their
evaluation) and implicit methods without users (in which a user
model is supposed to represent them as accurately as possible).

2.2 Emotion recognition
The research literature on emotion recognition is vast [8, 15, 20,
48, 71], therefore we refer to recent surveys [9, 38] and focus on
recent approaches that used facial expressions, eye tracking, and
brain signals.

2.2.1 Using facial expressions. Toisoul et al. [72] detected basic
appraisals of a�ect1 (valence and arousal) [66] in three datasets,
achieving an average 75% accuracy on both a�ect dimensions. Mi-
naee et al. [50] used an attentional CNN to mask out some face parts
depending on the emotion to be detected. Their model achieved
excellent accuracy (e.g., 98% on CK+ [46] and 99% on FERG [1])
to classify Eckman’s six universal facial emotions, i.e., happiness,
sadness, anger, disgust, fear, and surprise against a neutral status (bi-
nary classi�cation tasks). The main limitation of these approaches
is that they rely on labeled datasets collected from actors, not from
real end users, thus making them unrealistic and impractical for
evaluating GUI designs, as end users typically do not express their
emotions in a clear way when e.g. browsing a website or looking
at a GUI screenshot.

2.2.2 Using eye tracking. Eye movement-based analysis has long
been used for (re)designing [4], generating [11], and evaluating
GUIs [16]. However, very few studies (e.g. [29]) have explored eye

1Arousal is de�ned as the level of autonomic activation caused by an event, and
can range from calm (or low) to excited (or high). Valence is the degree of pleasantness
that an event produces, and is de�ned along a continuum from negative to positive.
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tracking in the context of a�ect for GUI design. Since eye move-
ments have been found to be unreliable for emotion recognition,2
they are typically complemented with other physiological methods,
such as EEG [41]. Partala and Surakka [61] analyzed the valence and
arousal of auditory emotional stimuli and found that the pupil size
was signi�cantly larger for both emotionally negative and positive
stimuli than for neutral ones. Oliva and Anikin [58] showed that
changes in pupil diameter are correlated with task e�ciency and
Holmes and Zanker [26] found that �xations are a good proxy of
GUI’s aesthetic quality. In sum, little is known about eye movement
behavior for a�ective responses to GUI designs.

2.2.3 Using electroencephalography. A�ect recognition using EEG
mainly involves the analysis of various frequency bands, each linked
to speci�c mental states and activities [70]: Delta (X : 0.5 to 4Hz or
less than 4Hz), linked to deep sleep and unconsciousness, Theta
(\ : 4 to 8Hz), associated with light sleep and relaxation, Alpha (U :
8 to 12Hz), connected to wakeful relaxation and tranquility, Beta
(V : 13 to 30Hz), correlated with active thinking and concentration,
and Gamma (W : 30 to 100Hz), involved in sensory processing and
attention [55].

On the DEAP dataset [33], one of the most popular ones for
a�ect recognition, Liang et al. [39] used and unsupervised learn-
ing method that achieved 54.45% (valence) and 62.34% (arousal)
accuracy. Mokatren et al. [52] used wavelet packet decomposition
(WPD) to divide the EEG signal into the �ve sub-bands (X , \ , U , V ,
and W ) and achieved a classi�cation accuracy around 91%. Cheng
et al. [10] achieved over 95% classi�cation accuracy of valence and
arousal with a 2D frame sequence that captured the spatial position
relationships across EEG channels.

2.2.4 Combining multiple inputs. A�ect can be detected using
more than one modality, for example by combining face with voice
expressions [12, 22] or EEG with eye movements [47, 88]. Luo et al.
[47] analyzed EEG signals and eye movements and found that posi-
tive and negative emotions are often confused in the eye domain
but not so in the EEG domain. This multimodal system improved
the unimodal solution by 10 percentual points. Zheng et al. [88]
also combined EEG with eye tracking, and used a Support Vector
Machine (SVM) that achieved better accuracy by combining both
modalities than when using any modality alone.

3 METHOD
We conduct a controlled within-subjects experiment to capture the
a�ective responses that GUI designs elicit from end users. We use
three physiological signals to evaluate whether a GUI design is
perceived as good or bad.

3.1 Stimuli
We selected 40 GUI designs from the LabintheWild dataset [64],
that includes ground-truth judgments on a 9-point Likert scale [40]
of �rst-impression aesthetic appeal of 418 websites from about
32k people around the world. For our experiment, we analyzed
the distribution of the provided user ratings on the Labinthewild
dataset and selected the top-20 rated ones as good designs and

2See e.g. https://www.scienti�camerican.com/article/darwin-was-wrong-your-
facial-expressions-do-not-reveal-your-emotions/

the bottom-20 rated ones as bad designs (see Figure 1). The choice
of top and bottom GUIs re�ects the real-world variability of user
judgements and can help in building a more holistic understanding
of UI design principles.

Figure 1: Examples of a good GUI (left) and a bad GUI (right)
design. These examples received the closest ratings to those
of each group’s centroid.

3.2 Participants
Thirty-two participants were recruited through our organization’s
mailing lists and �yer advertising. Two outliers were removed due
to low data quality and one for data recording failure, which re-
sulted in a �nal user sample of 29 participants (9 females, 20 males)
aged between 18 and 46 years (" =29.28, SD=6.27, Mdn=26.5). Par-
ticipants provided their written consent for the experiment and
were paid 25 EUR. All of them had normal or corrected-to-normal
vision. Most participants (78%) reported that they never attended
any course on GUI design. This study was approved by the Ethics
Review Panel of the University of Luxembourg with ID 22-071.

3.3 Apparatus
Figure 2 shows the experimental setup. We recorded the partici-
pants’ faces with a Logitech C505e HD Business Webcam with 720p
resolution at a frame rate of 30 frames per second. EEG data were
collected using a Unicorn Hybrid Black device, with 8 channels
(Fz, C3, Cz, C4, Pz, PO7, Oz, and PO8) at a sampling frequency of
250Hz and the data were notch-�ltered at 50Hz to remove pow-
erline interferences. While either dry electrodes and conductive
gel can be equally used with this device, we opted for conductive
gel to ensure optimal data quality collection. Eye-tracking data
were recorded with a Gazepoint GP3 Eye Tracker at a sampling
frequency of 150Hz which was mounted on a 21.5" Lenovo L22e-20
monitor, o�ering FullHD resolution (1920 × 1080 px) and a refresh
rate of 75Hz.

3.4 Procedure
A warm-up test allowed participants to familiarize themselves with
the setup before proceeding with the main experiment. They were
presentedwith randomly selectedGUI designs from the LabintheWild
dataset. Note that these GUIs were not included in the actual ex-
periment, only in the warm-up test.

The experiment consisted of two sessions: an initial session for
primary evaluation and a second session for con�rmatory evaluation,
to check whether participants consistently evaluated the GUI de-
signs (test-retest reliability). In each session, every trial started with
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Figure 2: Experimental setup. Participants wore an EEG cap (5) and sat in front of a monitor (1) equipped with an eye-tracker (2)
and a webcam (3). A computer mouse (4) allowed participants to enter ratings (7) after being exposed to each GUI design (6).
User ratings were used only as a quality measure.

a 5-second resting time, that served as a baseline for the physiolog-
ical recordings, followed by a 10-second exposure to a randomly
selected GUI design from the curated dataset, followed by a rating
screen, having: a 9-point slider to provide an overall evaluation as
an answer to the question “How do you feel about this design?”, a
5-point slider in Likert scale [40] to answer the question “Please
rate how pleasant do you �nd this design” ranging from 1 (very
unpleasant) to 5 (very pleasant), and another 5-point slider on a
Likert scale to answer the question “Please rate how exciting you
�nd this design” ranging from 1 (very calm) to 5 (very exciting).
The �rst question allowed us to compare the validity of the dataset,
as discussed in the next section. The second and third questions
were control questions related to valence and arousal (Figure 3),
respectively.

Participants had the �exibility to switch between questions and
adjust their answers accordingly before moving on to the next trial.
Participants completed 20 bad GUI designs and 20 good GUI designs
that were randomly shown to them. A 5min break was allowed
before starting the con�rmatory session with the same stimuli, but
presented in a di�erent (also randomized) order.

4 RESULTS
Figure 4 shows the distribution of participants’ answers to the three
questions about overall rating, valence, and arousal for bad and
good GUI designs. None of them followed a normal distribution (all
Shapiro-Wilk tests returned aW-stat ≥ .05, ? ≤ .01∗∗∗), therefore
we computed a Wilcoxon signed-rank test for each sample to de-
termine whether each distribution signi�cantly departs from their
respective median (Mdn=5 for ratings and Mdn=3 for valence and
arousal).

All values were signi�cantly below their median for bad GUI de-
signs, while all the respective values were signi�cantly above their
median for good GUI designs during both sessions. For example,
the ratings of good GUI designs during the �rst session were sta-
tistically signi�cantly above their median (= = 640, z-score= 11.90,
? ≤ .001∗∗∗ with a moderate e�ect size A = .47). All bad GUI designs
received answers that were not statistically di�erent across sessions
(Kruskall-Wallis tests between sessions were not statistically signif-
icant - for example, regarding the arousal, � = 0.86, ? = .32, n.s.).
The rating for good GUI designs was di�erent between sessions
(Kruskall-Wallis test returned � = 7.88, ? = .004∗∗∗), as well as the
valence (Kruskall-Wallis test returned � = 4.22, ? = .02∗).

To verify the inter-rater consistency, we computed Cronbach’s
U coe�cient for each variable by category of GUI design (inter-
pretation: 0.9>U≥0.8=good, 0.8>U≥0.7=acceptable). All U values
are acceptable for the valence and the arousal and are good for
the ratings (U = .80 for bad GUI designs vs. U = .87 for good GUI
designs). We also computed Spearman’s rank correlation coe�cient
to determine whether the variables are correlated between sessions
(interpretation: d ≥ .70=very strong relationship, .4≤d≤.69= strong
relationship). Since all values range from d = .57 for the arousal
of good GUI designs to d = .76 for the rating of good GUI designs,
these (strongly) positive coe�cients suggest that their respective
values between sessions tend to occur or evolve together.

We also checked whether the participants’ ratings were ade-
quate, since the web aesthetics LabintheWild dataset we used [64]
was compiled ten years ago, therefore we were unsure whether
users would perceive the GUI designs in a similar way. Figure 5a
shows a consistent match in the ratings (Pearson’s A (38) = 0.97, ? <
.0001∗∗∗), indicating that the web aesthetics dataset is indeed ade-
quate for our research. For questions 2 and 3 about pleasantness
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Figure 3: Distribution of samples across the valence-arousal plane for bad (left) and good (right) GUI designs. The circle radius
represents the relative sample density. Colors denote values in each quadrant.
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Figure 4: Distribution of participant’s answers regarding rating, valence, and arousal for bad and good GUI designs.

(valence) and excitement (arousal) with the GUI designs, we plotted
the distribution of participants’ GUI ratings across the valence-
arousal plane; see Figure 5b. The bad GUI designs were rated in
the ‘(low valence, low arousal)’ coordinates, contrary to the good
GUI designs which were rated in the ‘(high valence, high arousal)’
coordinates.

4.1 Investigation of eye activity
We started by analyzing the time series data for pupil size in each
trial, based on three time intervals: the initial second, the �rst 5

seconds, and the complete 10-second duration. Missing values (e.g.
due to blinks) were �ltered out by interpolation. Subsequently, we
smoothed the pupil size signal using a Savitzky-Golay �lter [67]
with a second-order polynomial [59] and a window size of 300ms.
Next, we calculated the di�erences between consecutive smoothed
pupil size values, and then performed a min-max normalization [42]
to adjust the di�erence values between 0 and 100. Figure 6 summa-
rizes the results.

We observed a noticeable di�erence between the pupil size time
series of good and bad GUIs within the �rst second of exposure. A
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(a) Comparison of user ratings. (b) GUI designs in the valence-arousal plane.

Figure 5: Distribution of samples across user ratings (left) and in the valence-arousal plane (right).

C-test revealed statistically signi�cant di�erences (? < .05∗). Upon
closer examination of the data, we identi�ed an initial increase
in pupil dilation occurring approximately within the �rst 200ms,
followed by a subsequent decrease within the initial 500ms. This
pattern suggests that users’ cognitive resources may have been
fully engaged right from the outset when exposed to a poorly de-
signed GUI. Furthermore, this initial pattern noted during the trials
indicates that it may not be necessary to analyze pupil size through-
out the entire duration. Instead, extracting features from the very
beginning of the eye signal (up to 1 s) may su�ce to tell good and
bad designs apart.

We also extracted all �xations that occurred within the trial inter-
val while users were viewing the GUIs, ignoring any �xations that
fell outside these temporal boundaries. As in our initial exploration
of �xation data, we examined various durations (from the �rst 1
second up to the tenth second) and counted the number of �xations
within each interval; see Figure 7. As observed, �xation count is
not a discriminative metric.

We also plotted �xation heatmaps for each design category and
interval duration; see Figure 8. We observed that, overall, good GUIs
tend to concentrate more symmetrical distributions of �xations,
which is reasonable given that good design guidelines recommend
to ensure visual consistency by symmetry [63]. According to the
paired-samples C-test, the di�erences between �xation distributions
are statistically signi�cant for all durations: 1s: C (19) = 2.10, ? =
.04∗; 5s: C (19) = 2.98, ? = .005∗∗∗; 10s: C (19) = 3.63, ? = .001∗∗∗.

4.2 Investigation of face activity
From the camera footage captured during the experiment, we con-
sidered video fragments in which the GUI screenshots were shown
to the participants (i.e., excluding pre-trials and rating times). Each

participant had 40 videos of 10 seconds per session, totalling 80
video �les. We extracted frames for every 0.5 seconds when we only
considered the �rst 5 seconds, and frames for every 2 seconds when
considering the whole duration trial (10 seconds). The total number
of frames when processing only the �rst 5 seconds was 13,041 �les
split into 80-10-10 (80% for training, 10% for validation, and 10%
for testing) whereas the total number when working on the whole
trial (10 seconds) was 6,300 �les and the same splitting method
was applied. We did not consider the 1-second window because the
number of frames was too small to train a competitive model. We
ensured that each video frame contained only the participants’ face,
using the OpenCV library for video processing and the pre-trained
Haar Cascade classi�er [81] for face detection. The frames were
converted to grayscale, to make our model color-invariant to color
and less sensitive to lighting conditions.

In order to gain some insights about the collected data, we trained
a CNN model, to be described in Section 5, and incorporated acti-
vation hooks. These hooks were attached to speci�c CNN layers
that capture the hierarchical features of the input. After feeding
the data to the trained model and generating predictions, we ex-
tracted activation maps for the CNN layers of interest (Conv2 and
Conv3, see Figure 9). These activations maps are essentially visual
representations of the important regions within the images that
the model considers while classifying GUI screenshots.

Figure 9 shows the visualization of the activation maps along-
side the original input face images. We observed clear di�erences
between the visual representations of the last layer (Conv3) when
participants were looking at good and bad GUI designs. Following
these observations, we computed a C-test between the distributions
of feature maps. The results revealed statistically signi�cant dif-
ferences between feature maps for both the Conv2 layer (C (19) =
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Figure 6: Average pupil dilation for good and bad GUIs at di�erent trial durations. Shaded areas represent 95% con�dence
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Figure 7: Average number of �xations for good and bad GUI
designs across various trial durations. Error bars represent
95% con�dence intervals.

2.46, ? < .01∗∗) and the Conv3 layer (C (19) = 2.46, ? < .01∗∗)
between good and bad GUIs.

4.3 Investigation of brain activity
EEG data were analyzed in time windows of 1, 5 and 10 seconds
to �nd speci�c activities or patterns during our experiment. The
data were pre-processed using the MATLAB-EEGLAB toolbox [14].
A Butterworth In�nite Impulse Response (IIR) bandpass �lter was
applied, with the high-pass cuto� frequency set to 0.05Hz to remove
slow drifts and baseline shifts, and the low-pass cuto� frequency
set to 80Hz to eliminate high-frequency noise. Eye movements
and muscle artifacts were removed using Independent Component
Analysis (ICA). In addition, a baseline correction was performed
on the EEG data to mitigate potential drifts and ensure a more
accurate representation of neural activity. Subsequently, the �ltered
and artifact-removed EEG data were categorized into bad and good
GUIs to identify the respective activities and patterns.

TheWelchmethodwas employed to estimate the spectral density
in di�erent time windows, as shown in Figure 10. The magnitude of
the power spectrum is signi�cantly higher for good GUIs compared
to bad GUIs, as illustrated in Figure 10, highlighting a signi�cant
di�erence in spectral patterns between the two types of GUI de-
signs. The spectral activities across di�erent brain regions were
explored using brain topographical maps, as shown in Figure 11.
The topographical maps of EEG were generated using 1, 5 and 10
second time windows of EEG data. In Figure 11, the activities linked

to good and bad GUIs are illustrated in the �rst and second columns
of each subplot, respectively.

The observed brain activity patterns in response to good and
bad GUIs re�ect consistent neural responses. The reduced activ-
ity observed throughout the brain during the initial 5 seconds of
perceiving bad GUIs suggests that users often need to allocate
more cognitive resources to process poorly designed interfaces
(Figure 11a and Figure 11b). The right hemisphere, linked to var-
ious cognitive functions such as complex spatial processing and
problem solving, shows increased activity after 5 seconds while
perceiving bad GUIs, indicating a heightened cognitive e�ort (Fig-
ure 11c). This suggests potential engagement of speci�c cognitive
processes associated with spatial reasoning and problem solving
tasks. On the other hand, the increased activity in the left hemi-
sphere when perceiving good GUIs, particularly in areas Fz, C3,
PO7, and Pz, indicates that users may experience a more focused
and intuitive cognitive engagement when perceiving well-designed
GUIs (Figure 11c). The left hemisphere is often associated with
logical reasoning, and attention to detail.

The consistent activity observed in the Pz electrode (Figure 11b
and Figure 11c) located in the parietal region, suggests that atten-
tion and cognitive processes play a signi�cant role during GUI
perception. The parietal region is known to be involved in spatial
processing and attention, which aligns with the idea that users
may pay more attention to well-designed interfaces. The increased
activity in this area likely indicates that users are more engaged
and attentive when interacting with good GUIs, possibly due to
their more intuitive design.

The desynchronization of energy observed in the central and
fronto-central regions of the brain’s topographical maps signi�es
changes in cognitive processes. This desynchronization is often
associated with executive functions, decision-making, temporal
processing, and attention. The decreased activity in these regions
when viewing good GUIs, as shown in Figure 11, suggests that users
may experience reduced cognitive engagement. One interpretation
of this reduced activity is that users �nd that good GUIs are more
engaging and intuitive, requiring less mental e�ort to navigate
and make decisions. This aligns with the idea that well-designed
interfaces streamline the user experience, leading to smoother and
less mentally taxing interactions. The central region, represented
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Figure 8: Heatmaps of eye �xations for good and bad GUI designs at di�erent trial durations.

(a) Good GUI example (b) Bad GUI example

Figure 9: Visualizing the activation maps of facial expressions while looking at GUI designs.

(a) First second (b) First 5 seconds (c) First 10 seconds

Figure 10: EEG spectral activity at di�erent trial durations.

by electrode Cz, plays a crucial role in motor planning and execu-
tion. It also suggests that users may not need to engage in complex
motor actions when dealing with poorly designed interfaces (Fig-
ure 11). From a neuroscience perspective, this observation implies
that bad GUIs may demand more cognitive e�ort to be processed

visually. Users might struggle to navigate and make sense of subop-
timal interfaces, leading to altered brain activity patterns, including
decreased motor-related activity.
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(a) First second (b) First 5 seconds (c) First 10 seconds

Figure 11: Brain topographic map of power distribution at di�erent trial durations.

5 COMPUTATIONAL MODELS
We investigate three computational models for each of the three
input modalities we have considered: facial expressions, eye track-
ing, and brain activity. To preserve the rating consistency between
the two sessions, we excluded the trials where the di�erence be-
tween the two sessions was greater than 2 points. Eventually, only
328 trials out of 3480 (less than 10% of the trials) were excluded
for model training. In all cases, we considered two categories for
classi�cation: ‘bad’ (GUIs that received low ratings, < 4 points) and
‘good’ (GUIs that received high ratings, > 6 points). As a reminder,
the user ratings were distributed in the [1, 9] range.

5.1 GUI assessment from facial expressions
We used the CNN architecture developed by Haddad et al. [22],
which was speci�cally designed to recognize a�ective responses
from audio-visual inputs. We took the part that works with video
inputs and �ne-tuned the model hyperparameters to suit our data.
We also excluded the multi-layer perceptron (MLP) component for
our model.

Prior to feeding the images into the model, we resized the de-
tected faces in each frame to a uniform size of 62x62 px. We also
applied random horizontal �ipping and rotation (up to 30 degrees)
as data augmentation techniques, to increase the model’s robust-
ness. We considered two durations for data collection (the �rst 5
seconds and the whole trial of 10 seconds). We split the data into
80% of the videos for training, 10% for validation, and 10% for test-
ing. We used cross-entropy loss and the Adam optimizer with a
learning rate of 0.0001, momentums V1 = V1 = 0.99, and a weight
decay of 0.0001. The model was trained for 25 epochs using early
stopping with patience of 5 epochs. It achieved 72% Accuracy and
71% AUC for the �rst 5 seconds, and 74% Accuracy and 74% AUC
for the entire trial duration (10 seconds).

5.2 GUI assessment from eye activity
We trained kNN classi�ers using varying signal durations: 1 s, 5 s,
and 10 s. We determined the best : value by conducting a grid
search over the range of (1, 3, . . . , 9). The accuracy of each classi�er
is presented in Figure 12. The highest performance (71% AUC and
73% accuracy) was achieved by a 7-NN classi�er using 5 s data.

In order to factor in temporal dependencies, in order to capture
patterns over time, we employed three common types of recurrent
neural networks (RNNs) to classify good and bad GUIs: Vanilla
RNN, Long Short-Term Memory (LSTM), and Gated Recurrent Unit
(GRU). Each sample in our classi�cation task comprised a sequence
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Figure 12: Accuracy andAUC of kNNmodels trained on pupil
dilation data at di�erent trial durations.

of �xations, represented by the timestamp of the �xation and its
(x,y) coordinates. For each type of classi�er, we trained two versions:
non-bidirectional and bidirectional. The best classi�cation results
were achieved with a non-bidirectional GRU trained with 5 s of data,
which achieved an Accuracy of 54.1% and an AUC of 53.4%. Results
suggest that neither the number of �xations or their temporal
evolution is discriminative enough for these recurrent models to
tell bad and good GUIs apart.

5.3 GUI assessment from brain activity
We extracted four frequency bands (\ , U , V , and W ) by applying
the fast Fourier transform (FFT) over a temporal window of 5 s.
Subsequently, we computed �ve widely used EEG features: Three
Hjorth parameters (activity, mobility, complexity) [24], spectral
entropy [87], and signal energy. To create samples for EEG signal
classi�cation, we experimented with two di�erent signal durations:
the �rst 5 seconds and the entire trial duration (10 seconds). In
the latter case, we divided each trial’s signal into two samples. We
concatenated features derived from all extracted frequency bands of
each channel into a single feature vector. Subsequently, we divided
the resulting samples into test (20%) and train (80%) sets and trained
SVMs and kNN classi�ers. Both SVMs and kNNs are widely used
in EEG classi�cations since the data is so sparse that deep learning
models tend to over�t [27, 36, 82]. Finally, aiming at identi�ng the
optimal model con�guration, we considered factors such as signal
duration (the initial 5 seconds or the entire trial duration) and the
choice between individual frequency bands or their combination.
The best classi�cation performance (67% Accuracy and AUC) was
obtained by a 1-NN classi�er using the Beta frequency band.
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6 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

Evaluating GUI designs traditionally involves self-reported mea-
sures that are prone to bias and carry-over e�ects (e.g., subjective
user feedback). We have introduced an innovative approach that
considers three types of physiological data: facial expressions, eye
activity (including �xations and pupil dilation), and brain activity
via EEG. In a nutshell, we have conducted a comprehensive ex-
periment aimed at gathering a�ective responses that can help us
distinguish between good and bad GUI designs in a free-viewing
task, without having to ask for explicit user feedback.

Despite previous research suggesting that facial expressions
might not be a reliable source, due to users often maintaining a
neutral expression during interaction [43, 45], our computational
model achieved an accuracy rate of 72% after 5 seconds of exposure
and 74% after the trial duration (10 seconds). This approach can be
bene�cial for designers in quickly evaluating GUI quality based on
facial expressions.

We anticipated observing increased pupil dilation when users
encountered poorly designed GUIs, as it typically correlates with
a higher cognitive load. Surprisingly, within the �rst second of
encountering poorly designed GUIs, we noticed a visible decrease
in pupil size. This contrasts with the conventional pattern observed
in previous studies, where pupillary responses tend to increase
with increasing task demands before stabilizing when cognitive re-
sources are overwhelmed [34]. Furthermore, our �xation heatmaps
revealed that, on bad GUI designs, �xations tend to be distributed
more evenly. This suggests that users shifted their gaze to di�erent
GUI areas, possibly due to an excessive number of GUI elements
(visual clutter) or poorly arranged components.

When it comes to EEG responses, feature engineering remains a
critical aspect of utilizing EEG signals in a�ective computing. It is
worth noting that collecting this type of data is a time-consuming
and costly process, therefore the use of sophisticatedMachine Learn-
ing models, such as deep neural networks, is challenging. Addition-
ally, EEG data augmentation is complicated due to its non-stationary
and noisy characteristics. We explored di�erent frequency bands
and signal durations using simple but e�ective classi�ers. Again,
we observed promising results in using neurophysiological signals
for di�erentiating between good and bad GUI designs.

One of the limitations of our work is that every input modality
is processed with a dedicated computational model. This was so
because each modality has a “preferred” model architecture; for
example, for eye pupil activity we can consider an RNN, whereas
for brain activity we could not consider a neural network, given
the aforementioned problem of data scarcity. Also, each signal has
a “preferred” length; for example, for eye pupil activity, after 1 s
of exposure, the di�erences between groups are not signi�cantly
di�erent. For future work we will try to combine these di�erent
inputs in an end-to-end architecture. Another limitation of our
study lies in categorizing GUIs only as good or bad, neglecting
for example neutral designs or extremely bad (e.g., cluttered) and
moderately bad (e.g., visually confusing) designs. We also did not
consider individual preferences in our computational models, as
they all are user-independent models.

To conclude, our research o�ers a promising avenue for ad-
vancing software interfaces and provides invaluable insights to
researchers and designers. Our �ndings can pave the way for a new
method for a�ective evaluation of GUIs, which hold promise for
an objective assessment of GUIs in the software design industry
and suggest opportunities for advancing progress thanks to more
informed computational models.
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