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True time: 438ms
Our estimation: [436, 442]ms

True time: 1630ms
Our estimation: [1642, 1725]ms

True time: 662ms
Our estimation: [648, 662]ms

True time: 1461ms
Our estimation: [1459, 1484]ms

Figure 1. Examples of articulation patterns representative for pen and touch stroke gesture input: unistrokes (a), multistroke gestures (b), mul-
titouch (c), and bimanual input (d). GATO advances the state-of-the-art in predicting human performance with gesture input, currently limited to
unistrokes (a), by providing accurate user-independent estimations of multistroke and multitouch gesture production times for all these articulation
patterns and more.

ABSTRACT
We introduce GATO, a human performance analysis tech-
nique grounded in the Kinematic Theory that delivers accurate
predictions for the expected user production time of stroke
gestures of all kinds: unistrokes, multistrokes, multitouch, or
combinations thereof. Our experimental results obtained on
several public datasets (82 distinct gesture types, 123 partici-
pants, ≈36k gesture samples) show that GATO predicts user-
independent gesture production times that correlate rs > .9
with groundtruth, while delivering an average relative error of
less than 10% with respect to actual measured times. With its
accurate estimations of users’ a priori time performance with
stroke gesture input, GATO will help researchers to under-
stand better users’ gesture articulation patterns on touchscreen
devices of all kinds. GATO will also benefit practitioners to
inform highly effective gesture set designs.
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INTRODUCTION
Stroke gestures, in the form of flicks, swipes, letters, digits,
and symbols drawn on touchscreens with either the finger or a
stylus, are prevalent on mobile devices, enabling users to per-
form a variety of tasks fast and confidently [48]. For example,
stroke gestures are employed to enter text quickly [28,49,69],
call app functions directly [6,54,71], or get access to content
much faster than by navigating the menus of the graphical user
interface [34,35]. Moreover, gesture input is among the few
modalities for people with motor or visual impairments to em-
ploy mobile touchscreen devices effectively [27,57,67], e.g.,
the Apple VoiceOver and Google TalkBack gesture sets were
specifically designed to assist users with visual impairments
to benefit from mobile smart technology [41,68].

Stroke gesture input has therefore been adopted on mobile de-
vices for reasons of efficiency: a quick swipe on the screen ex-
ecutes a command directly or gets users instantaneous access
to content. The efficiency of human performance with generic
input has been evaluated in the community with task times, the
best known and longstanding example being Fitts’ law [17]. In
the case of gesture input, the production time of a gesture, i.e.,
how long it takes users to produce a path on a touchscreen, is
therefore an essential aspect of user performance [70] that has
been used to inform gesture design [6,12,14] and derive key in-
sights on how difficult stroke gestures are to articulate [52,61].

In this context, it is important for gesture user interface design-
ers to estimate, as accurately as possible, users’ performance
with stroke gesture input. If such insightful information were
available during the early stages of design, it would represent
a valuable asset for practitioners, enabling them to explore
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various gesture set designs with minimum effort (i.e., no ex-
periments or user studies required) to find out which gestures
are faster [6,14] or easier to articulate [52,61]. Such valu-
able information can only be obtained by having access to
models of user performance with stroke gesture input, such
as CLC [12] and KeyTime [32], that were introduced to help
the community model and predict the production times of
unistroke gestures (see Figure 1a). Unfortunately, such mod-
els do not exist for gestures that are more complex than a
mere stroke (such as those illustrated in Figures 1b, 1c, and
1d), leaving designers with no information about their users’ a
priori time performance with multistroke or multitouch input.

Our contributions in this work are as follows:

1. We introduce GATO (the Gesture Articulation Time pre-
dictOr), a new human performance analysis and estimation
technique that predicts user performance with stroke gesture
input of all kinds: unistrokes, multistrokes, multitouch, or
combinations thereof. GATO is based on theoretical and
empirical evidence from the Kinematic Theory regarding
the production of human movement as the effect of multiple
coupled neuromuscular subsystems [44,45].

2. We evaluate GATO on 6 public datasets consisting of
roughly 36k samples of 82 distinct gesture types collected
from 123 participants. Our experimental results show that
GATO predicts user-independent gesture production times
that correlate r > .9 (and up to rs = .99) with groundtruth,
while delivering an average relative error of 10% with re-
spect to actual measured times.

3. We release an online application that practitioners can read-
ily use to estimate accurate, user-independent production
times of multistroke and multitouch gestures by providing
just one gesture example. Moreover, to assist researchers
in their analyses of large gesture datasets, we also release
a RESTful JSON API, which enables easy integration of
GATO with third party applications over the web.

4. During our design and implementation of GATO, we had
to reconsider how multistroke and multitouch gestures have
been defined and represented in the community, and found
those representations unsatisfactory for our purpose. Thus,
we also contribute with a new perspective of representing
multistroke gestures as a sequence of strokes performed
both on the touchscreen and in air, which we believe to be
useful for other gesture investigations as well.

MOTIVATING EXAMPLES WITH GATO
In the following, we present two examples for GATO to show
how easy it is for designers to get predictions of users’ produc-
tion times with our online web application.

Informing gesture design
Imagine a designer who wants to decide which of three stroke
gesture types to use for launching the Twitter app on a smart-
phone. Knowing that the task will be executed frequently, the
gesture command should be easy to remember, fast, and easy
to perform. The options are: (a) the “reply” symbolic icon
from the Twitter user interface; (b) uppercase letter , which
refers to the app name and, thus, acts as a mnemonic short-
cut [54]; and (c) the hashtag symbol , commonly employed

Figure 2. GATO is a generic technique that predicts the production time
of any stroke gesture produced on any touch input device, such as the
letter “T” performed on a smartphone (a) or the small rectangle drawn
on the side touchpad of a pair of smart glasses (b). These are mockup
examples to support the discussion of our two use cases.

for user-generated tagging on microblogging services and,
thus, easily memorable due to association [43]; see Figure 2a.
All the three gesture candidates are easy to remember due to in-
tuitive associations, so the remaining question is how fast they
will be produced by users. The reply icon can be produced
with a single stroke, letter is always produced with two
strokes, while the four-stroke hashtag can be produced with
one finger drawing each of the four strokes or as a multitouch
gesture with two fingers drawing two strokes at once. Using
GATO, the designer enters each of these articulation options
in the online interface and receives the following predictions:
[1833, 1868]ms for the unistroke symbol , [1028, 1044]ms
for the two-stroke letter , and [860, 877]ms for the multi-
touch .1 The designer notes that both multistroke candidates,

and , are about twice as fast as the unistroke symbol with
just small differences between them, and decides to implement
both options to accommodate various user preferences [50].

Predicting variation in gesture input
Now imagine a designer that already has a good gesture to
enable users to quickly capture a photograph with their smart
glasses by drawing on the side touchpad; see Figure 2b. The
gesture is the rectangle shape (reflective of a picture or a
camera symbol), and the designer wishes to know how long it
will take users to produce it using one stroke , two strokes

, and four strokes , respectively, but also how much pro-
duction times will vary across users. The designer enters each
articulation pattern in the GATO web application and gets
the following estimates: µ1 =1258ms, σ1 =476ms for the
unistroke , µ2 =1660ms, σ2 =758ms for the two-stroke

, and µ4 =2843ms, σ4 =1499ms for the four-stroke rect-
angle , respectively. The designer notes that the four-stroke
version takes not only twice as long as the unistroke, but also
that the variation in its production time is three times larger,
which might impact the recognition accuracy of statistical clas-
sifiers that employ temporal features to discriminate between
gesture types [11]. The design decision is to implement the
unistroke version to make both users and the system efficient.

1These ranges represent 95% confidence intervals for the mean production
time estimated by GATO from one articulation of each gesture type.
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RELATED WORK
We review prior work that examined user performance with
stroke gesture input on multitouch surfaces. We discuss ap-
plications of this prior work to gesture synthesis and analysis,
highlighting the importance of production time as a key per-
formance aspect for gesture user interfaces. We also review
methods and techniques that are currently available for esti-
mating unistroke gesture production times.

Stroke gesture input
There are many ways to produce a stroke gesture, depending
on the number of strokes that decompose the gesture or the
number of fingers that touch the screen; see Figure 1 for a
few examples of multistroke and multitouch input. Common
touchscreen technology, such as the one found on commodity
smartphones, can detect up to ten discrete touch points at once,
which enables designers to use gesture types from a rich space
of unistrokes, multistrokes, multitouch, and bimanual input.
Therefore, using more than one finger for stroke gesture input
has become common. For example, pinching the screen with
five fingers takes users directly to the home screen on an iPad.
Expert gesture designs often involve the use of more fingers [8,
9,21,36], various finger parts [23], or even the entire hand for
expressive input [40]. At the same time, users are known
for their variations in articulating multistroke and multitouch
gestures in terms of the number of strokes and fingers [4,52]
when there are no constraints imposed [25,53].

Stroke gesture performance
Researchers have employed a variety of measures to character-
ize users’ performance with stroke gesture input. For example,
Blagojevic et al. [11] examined 114 distinct gesture features
to inform the design of an accurate feature-based statistical
classifier. Other researchers looked for representative features
to depict various aspects of users’ performance. For example,
Anthony et al. [4] evaluated gesture articulation consistency,
and reported high within-users consistency, but also less con-
sistency for gestures produced with more strokes. Gesture
features and measures have been also used to inform the de-
sign of gesture sets. For example, Long et al. [2] found that
users’ perceptions of gestures’ visual similarity correlated with
several features (such as length, area, or various angles), and
derived a model for perceived gesture similarity.

Researchers have employed gesture measures to understand
differences in performance between users or input conditions.
Vatavu et al. [58,59,60] used accuracy measures to quantify
deviations from “ideal” gestures produced by various user cat-
egories. Kane et al. [27] and Tu et al. [55] examined specific
gesture features, such as “line steadiness” or “axial symme-
try,” to understand the differences between stroke gestures
produced with either the pen or the finger [55], or by users
with and without visual impairments [27]. Such gesture mea-
sures have proven very useful to characterize various aspects
of gesture input as well as to inform gesture-based UI design.
However, another line of work has focused on a more fun-
damental understanding of human movement during stroke
gesture production by relating to key aspects from the motor
control theory. We discuss this work in the following section.

Handwriting, gesture input, and the Kinematic Theory
Viviani et al. [62,63] were among the first to investigate the
fundamentals of human handwriting and drawing behavior.
Since then, an auspicious line of research has been the applica-
tion of minimization principles to motor control, such as Flash
and Hogan’s minimum-jerk theory [18]. Further investigations
showed that lognormal-based models, such as those postulated
by the Kinematic Theory [44,45,46], are arguably the most
accurate descriptors of human movement known today, com-
pared to which “other models can be considered as successive
approximations” according to Djioua and Plamondon [16].

In the context of the Kinematic Theory, stroke gestures are
planned in advance in the form of an “action plan” described
by a map of “virtual targets.” The overall gesture trajectory
is the result of the time superimposition of several velocity
profiles of the action plan, approximating each gesture stroke
with one or more “stroke primitives,” i.e., one primitive for
each velocity profile. The gesture articulation is directly linked
to the quality of this superimposition. In a later section, we
provide a more detailed introduction to this framework.

The Kinematic Theory has recently found applications to ges-
ture input. For example, the “Gestures à Go Go” (G3) appli-
cation [30,37] was introduced to synthesize stroke gestures
from just a single example provided by the designer. Leiva
et al. [29,30,31,33,56] evaluated the articulation characteris-
tics of synthetic stroke gestures under various conditions, such
as pen vs. finger input, slow vs. fast speed, or for various
user categories. In this work, we rely on the principles of the
Kinematic Theory to introduce the GATO technique.

Time estimation models for stroke gestures
Simple forms of stroke-based input, such as pointing and item
selection from menus, have been extensively studied with Fitts’
law and its variations [10,17,66], the steering law [1], or the
Keystroke-Level Model (KLM) [13]. However, more complex
stroke input, such as handwriting or free-form gesture paths
drawn on touchscreens, need more sophisticated models to
be able to characterize human performance effectively. Com-
prehensive surveys in this area are provided by Quinn and
Zhai [49] and Müller et al. [42].

Isokoski [26] proposed a first-order rank model for stroke
gestures that used the number of approximating straight line
segments as a predictor of a gesture’s shape complexity. Al-
though Isokoski’s model did not attempt to quantify production
time explicitly, it was nevertheless found to predict the rela-
tive ranking of gesture types by their production times with
reasonable accuracy [26,32].

The problem of predicting gesture production times has been
addressed in the community with various techniques, from
simple estimation rules [26] and training procedures [61] to
complex models of the geometry of stroke gesture paths [12].
Among these, the recent KeyTime technique [32] has shown
excellent performance for predicting production times. How-
ever, all these time estimation techniques were specifically
designed for unistroke gestures, the simplest kind of stroke
gesture input (see Figure 1) and, therefore, their performance
on more complex gesture types is uncertain.
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STROKE GESTURE TIME PREDICTION WITH GATO
We introduce in this section GATO, our technique for estimat-
ing the production times of any kind of gestures.

For all following discussion, we formalize multistroke and
multitouch gestures as sequences of touch and in-air strokes.
Let G denote a gesture composed of M touch strokes, for the
production of which fingers need to land on and lift off of
the touchscreen several times, such as the multistroke illus-
trated in Figure 3. We define G as a tuple of two sets, the
list of touch strokes (S) and the list of in-air movements (Z)
occurring between those strokes, i.e., G = (S,Z). Note that
for some gesture applications, such as gesture recognition or
analysis [30,51,52], such a rigorous representation may not
be important, because the touchscreen can detect only the
fingers moving on the screen and is ignorant of what hap-
pens in-between. However, for other applications, such as
air+touch input [7,15] and especially for our investigation
on predicting production times for multistrokes, in-air move-
ments need to be considered. The distinction between touch
and in-air movements is thus related to a crucial existence
criteria for multistroke input: without the in-air movements
between strokes, a multistroke gesture simply could not exist.

Each touch stroke Sm ∈ S may be produced with one or mul-
tiple fingers that touch the screen at the same time, such as the
first stroke of the example shown in Figure 3. We formalize
this aspect as Sm = {si | i = 1..Fm}, where Fm represents
the number of fingers touching the screen simultaneously and
each finger trace si is composed of Ki points x, y with as-
sociated timestamps t, i.e., si = {(xik, yik, tik) | k = 1..Ki}.
The in-air strokes Z = {ζm |m = 1..M − 1} represent the
movement of the hand between two lift-off and land-on events
on the touchscreen. With these notations, the gesture from Fig-
ure 3 can be described as G = {{s1, s2, s3}, {s4}, {s5, s6}}∪
{ζ1, ζ2}. Note that |ζm| = |Sm| − 1, since in-air movements
always take place between consecutive touch strokes.

Using this formalism, we can easily distinguish between the
following types of stroke gestures relevant for our work, in
increasing order of their complexity of articulation:

1. G is a unistroke gesture i.i.f. M = 1 and F1 = 1, i.e., G
is composed of only one stroke that is performed with one
finger only; see Figure 1a on the first page for an example.

2. G is a multitouch unistroke gesture i.i.f. M = 1 and F1 > 1,
i.e., G is composed of one stroke performed with multiple
fingers, all touching the screen at once; see Figure 1c.

3. G is a multistroke gesture i.i.f. M > 1 and Fm = 1 ∀m,
i.e., there are many strokes, each performed with one finger
only; see Figure 1b.

4. G is a multitouch multistroke gesture i.i.f. M > 1 and
Fm > 1 `m, i.e., G is composed of multiple strokes, but at
least one touch stroke is performed with multiple fingers,
all touching the screen at the same time.

The production time of a multistroke multitouch gesture
The production time of a gesture G = (S,Z) is composed
of the production times of all its strokes performed on the
touchscreen (Sm ∈ S), but also of the time during which the

m,i,time

1,1,5136

...

1,1,5796

1,2,5157

...

1,2,5790

1,3,5172

...

1,3,5730

2,1,6238

...

2,1,6573

3,1,6722

...

3,1,6959

3,2,6734

...

3,2,6997

Finger stroke 1

Finger stroke 2

Finger stroke 3

Finger stroke 1

Finger stroke 1

Finger stroke 2

Stroke 1

Stroke 2

Stroke 3

2

1

33

Figure 3. A multistroke multitouch gesture (right) and its numerical
representation showing strokes Sm and finger traces si (left). Point
coordinates x,y are omitted from this representation for the sake of
brevity. Small dots denote the starting points of each trace si.

hand moves in air (ζm ∈ Z) between those strokes:

t(G) =
M∑

m=1

t(Sm) +

M−1∑

m=1

t(ζm) (1)

The production time of a stroke Sm is computed as the dif-
ference between the maximum and minimum timestamps
of its finger traces si ∈ Sm.2 For our example, t(S3) =
max{6997, 6959} −min{6734, 6722} = 275 ms. The time
needed to move in air between strokes can be computed
from the land-on and lift-off timestamps recorded by the
touchscreen for the adjacent touch strokes. For our example,
t(ζ1) = min{6238} − max{5796, 5790, 5730} = 442 ms.
The overall production time for the gesture illustrated in Fig-
ure 3 is therefore: 660 + 442 + 335 + 149 + 275 = 1861 ms.
Note that we would have reached the same result simply by
subtracting the maximum and minimum timestamps across all
touch points (i.e., 6997− 5136 = 1861 ms), but the calcula-
tion of the production times of individual strokes is important
for how GATO employs stroke gesture synthesis algorithms
under the hood [30,31,32,37] to model the way strokes Sm are
articulated by users in the time domain; see next section.

GATO and the Kinematic Theory
GATO employs the principle of “gesture synthesis” [30,31,
32,37,56] and the concepts of the Kinematic Theory [44,45].
Therefore, we feel that a cursory introduction of the Kinematic
Theory would be beneficial for readers.

The Kinematic Theory is a solid framework for studying hu-
man movement production, which has been recently adopted
in HCI for stroke gesture synthesis and recognition [30,31,37].
The latest instantiation of this framework is the Sigma-
Lognormal (ΣΛ) model [47], which was demonstrated to out-
perform many other approaches [16,46]. The Kinematic The-
ory assumes that a complex handwritten trace, e.g., a character,
word, signature, or stroke gesture, is composed of a series of
primitives3 connecting a sequence of virtual targets, such as

2An alternative computation consists of averaging the contribution of each
finger, but the differences between both approaches are very small in practice.

3The Kinematic Theory uses the term “stroke” to denote what we call a
“primitive” in this paper. In HCI, we refer to a gesture stroke as the sequence
of points bewteen two consecutive touch-down and touch-up events.
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Figure 4. Left: A gesture stroke (thick line) is described by a series of
primitives (dotted arcs) that connect virtual targets (black dots). Right:
primitives are described by their lognormal velocity profiles.

those illustrated in Figure 4. The virtual targets correspond to
near-zero-velocity peaks in the gesture strokes and are auto-
matically computed by the ΣΛ model [37]. These primitives
form the action plan of the user for a specific gesture that, by
means of the neuromuscular network, will produce a path on
the touch-sensitive surface.

The ΣΛ model computes the velocity profile of each primitive
(~vi) according to a lognormal function (Figure 4), which is
defined by a set of central (D,t0,θ) and peripheral (µ,σ) model
parameters [44]. The summation of all velocity profiles en-
ables reconstruction of the original gesture path, the quality
of which is measured with the signal-to-noise ratio and the
number of lognormals. For mathematical details, we refer the
interested reader to Plamondon et al. [44,45,47] and to Leiva
et al. [30,31,33] and Martín-Albo et al. [38,39] for applications
to stroke gesture input and handwriting analysis, respectively.

GATO applies the concepts of the Kinematic Theory to model
stroke gestures with lognormal velocity profiles in a 2-step
procedure: (1) automatic synthesis of new timestamps for the
points making up a gesture path and (2) estimation of gesture
production times based on the synthesized data.

Step 1: Synthesis of stroke gesture timestamps
GATO predicts user-independent production times for mul-
tistroke and multitouch gestures as follows. For each stroke
Sm ∈ S and each finger trace si ∈ Sm, GATO generates new
timestamps (ti) for all the Ki points of si:

ti =
∑

j∈si

max
j

exp(µ∗
j + 3σ∗

j )− t0j (2)

where j denotes the j-th synthesized version of si, t0 is the
start time of each stroke primitive, and µ and σ are the periph-
eral parameters of the ΣΛ model employed by the Kinematic
Theory to synthesize human movements [44].

To introduce variability into the synthesized timestamps, each
stroke primitive is distorted using the following noise model:

p∗j = pj + U (−pj , pj) (3)

where pj = {µj , σj} are the peripheral ΣΛ parameters and
U the noise applied to each parameter. The noise function U
is a uniform distribution centered around the value of each
peripheral parameter (see Leiva et al. [31] for details) with

−pj pj

1
2 pj

f(x)

Figure 5. The uniform probability density function U of the peripheral
noise applied to each primitive to induce variability for stroke gesture
synthesis, to account for the natural variability that is present in user
articulations.

the probability density function depicted in Figure 5. Periph-
eral noise introduces variation in the synthesized production
times, reflective of articulation variation of the same gesture
type by different users. To this effect, GATO employs user-
independent noise values for pj , empirically derived and val-
idated by prior work [20,30,33,38]. Concretely, GATO uses
Uµ = 0.15 and Uσ = 0.35.

Step 2: Estimation of gesture production times
Assume we have n synthetic versions of gesture G, for which
the corresponding production times are denoted by ti, i = 1..n.
Starting from these values, GATO computes a prediction of
the expected production time of gesture G as follows:

t̂(G) = F(t1, t2, . . . , tn) (4)

where F is a positive, real-valued, multivariable function. We
refer to F as the TIME-ESTIMATOR function. The most imme-
diate and simplest instance of a TIME-ESTIMATOR is the arith-
metic mean of the production times of all synthetic versions of
G, i.e., t̂M= 1

n

∑
ti. As we show in this paper, this approach

delivers very accurate results. However, to control for cases in
which the distribution of production times deviates from nor-
mality, we also evaluate other variants of TIME-ESTIMATORS,
such as the median t̂Mdn, the 20%-trimmed mean t̂.20, and the
winsorized mean t̂W. These measures of location are known
for their robustness to outliers compared to the sensitivity of
the mean due to their higher finite sample breakdown points
of 0.2 and 0.5, respectively [64].4

The generic formalization of Equation (4) can be used to es-
timate measures of variation as well. For example, GATO
computes predictions for both the variance and standard de-
viation of the expected production time for a given gesture

type by instantiating F to σ̂ =

√
1
n

∑n
i=1

(
ti − t̂M

)2
for the

standard deviation and to σ̂2 for the variance, respectively.

EVALUATION
We conducted a controlled experiment to evaluate the accuracy
of GATO for predicting the production times of multistroke
and multitouch gestures performed with either the stylus or
the finger. To this end, we compared the predictions delivered
by GATO with the production times of gestures actually articu-
lated by users (i.e., groundtruth) with the following measures:

4The arithmetic mean has a finite breakdown point of 1/n, which means
that a single outlier can alter its value, making it arbitrarily small or large; see
Wilcox [64]. The median has the highest breakdown point of 0.5.
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(a) MMG (b) NICICON (c) MATCHUP (d) MT-STROKES (e) MT-FINGERS (f) MT-SYNC

Figure 6. All the 82 multistroke and multitouch gesture types from the 6 public datasets used to evaluate the prediction performance of GATO.

1. RANKING-ACCURACY evaluates the extent to which GATO
delivers the correct ranking of gesture types according to
their production times. For example, if the mean production
times of gestures A and B are 2000ms and 2500ms, respec-
tively, and their predicted production times also respect this
relative order, i.e., t̂M(A) < t̂M(B), then GATO is accurate.
For more than two gestures, the ranking accuracy can be
evaluated against groundtruth times using Spearman’s rank
correlation coefficient rs. The closer rs to 1, the more ac-
curate GATO is for reporting the relative order of gesture
production times.

2. ABSOLUTE-ERROR evaluates the extent to which GATO de-
livers the correct magnitude of the expected production time
of a given gesture. For example, if the predicted production
time of gesture A is 2100ms, but the groundtruth time is
1989ms, the absolute error is |2100− 1989| = 111ms.

3. RELATIVE-ERROR evaluates the extent to which GATO’s
predictions of production times deviate from groundtruth,
percentage-wise. The relative error for the previous example
is 100·|2100−1989|/1989 = 5.6%.

Datasets
We evaluated GATO on six public multistroke and multitouch
gesture datasets (see Figure 6):

1. MMG: Comprises 16 multistroke gesture types performed
by 20 participants on a Tablet PC with 9,600 samples in to-
tal [5]. Each participant provided 10 executions per gesture
type at three different speeds: slow, medium, and fast. Half
of the participants used their fingers for input, while the
other half used a stylus. Because participants were asked
to produce gestures at three different speeds, we evaluated
GATO separately for each articulation condition, which
corresponds to having six sub-datasets of 1,600 gesture
samples each (10 participants, 16 gestures, 10 repetitions)
corresponding to all 6 combinations of {stylus, finger} ×
{slow, medium, fast} speed.

2. NICICON: Comprises 14 multistroke gesture types per-
formed by 33 participants with a stylus on a Wacom Intuos2
tablet with 13,860 gesture samples in total [65]. Each par-
ticipant provided 30 executions per gesture type.

3. MATCHUP: Comprises 22 multistroke and multitouch ges-
ture types performed by 16 participants on a 3M C3266PW
32” multitouch display. For each gesture type, participants
were asked to produce as many different variations as pos-
sible, and each variation was articulated for 5 times. This
dataset comprises 5,155 gesture samples [51].

4. MT-STROKES: Comprises 10 multistroke multitouch ges-
ture types performed by 18 participants on a 3M C3266PW
32” multitouch display. Each gesture type was articulated
for 5 times under three conditions: using one stroke, two
strokes, and three or more strokes. This dataset comprises
2,700 gesture samples in total [52].

5. MT-FINGERS: Comprises 10 multistroke multitouch ges-
ture types performed by 18 participants on a 3M C3266PW
32” multitouch display. Each gesture was articulated with 5
repetitions under three conditions: using one finger, two fin-
gers, and three or more fingers touching the screen at once.
This dataset comprises 2,700 gesture samples in total [52].

6. MT-SYNC: Comprises 10 multistroke multitouch gesture
types performed by 18 participants on a 3M C3266PW 32”
multitouch display. Each gesture type was articulated for
5 times under two conditions: using one hand (sequential
input) and two hands (parallel, bimanual input). This dataset
comprises 1,800 gesture samples in total [52].

These datasets include 82 distinct gesture types that represent
a good mixture of geometrical shapes and symbols with a
large variety and wide range of complexity [5,51,65], and a
good balance between familiar (i.e., known and practiced) and
non-familiar (i.e., first time seen) symbols [52]. In total, we
evaluate the prediction performance of GATO on 35,815 sam-
ples collected from 123 participants under various conditions.

Methodology
We evaluated GATO with a user-independent, leave-one-out
cross-validation procedure [32], as follows. For each execution
e of each gesture G produced by each participant p ∈ P (e.g.,
|P| = 18 participants and e takes 2,700 values for the MT-
STROKES dataset), GATO used that specific execution as the
sample from which to predict the production time of gesture
type G according to Equation 1 and using n = 100 synthetic
values in Equation (4). The estimated time was compared
to the groundtruth time, computed as the average production
time of all the gestures of type G produced by the rest of the
participants from P − {p}; i.e., participant p was excluded
from the computation of groundtruth data.

RESULTS
We report the prediction performance of GATO in terms of the
RANKING, ABSOLUTE, and RELATIVE error measures.

Table 1 shows Spearman correlation coefficients computed be-
tween the time predictions delivered by GATO and groundtruth
for each dataset. On average, GATO predictions correlated
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Characteristics of the evaluation datasets Spearman correlation Absolute error (ms) Relative error (%)

Dataset
Num.
classes

Num.
samples

Num.
users

Groundtruth
95% CI (ms) t̂M t̂Mdn t̂.20 t̂W t̂M t̂Mdn t̂.20 t̂W t̂M t̂Mdn t̂.20 t̂W

MMG stylus fast 16 1,600 10 [328, 746] .788 .788 .802 .791 76 48 56 61 13.5 8.5 9.9 10.7
MMG stylus medium 16 1,600 10 [425, 911] .900 .902 .902 .902 4 36 24 16 0.7 5.2 3.5 2.3
MMG stylus slow 16 1,600 10 [686, 1335] .932 .958 .932 .941 9 48 21 9 0.9 4.5 2.0 0.9

MMG finger fast 16 1,600 10 [341, 766] .775 .832 .828 .807 188 163 165 171 31.9 27.6 28.1 29.0
MMG finger medium 16 1,600 10 [441, 935] .914 .946 .917 .917 124 80 91 102 16.9 10.9 12.5 13.9
MMG finger slow 16 1,600 10 [697, 1378] .950 .950 .950 .950 104 153 134 125 9.4 13.9 12.1 11.3

NICICON 14 13,860 33 [715, 1082] .907 .907 .907 .907 198 118 135 150 20.7 12.3 14.1 15.6
MATCHUP 22 5,155 16 [1657, 2251] .997 .997 .997 .997 32 191 154 113 1.6 9.4 7.5 5.5

MT-STROKES 10 2,700 18 [2249, 4709] .999 .999 .999 .999 35 304 232 181 0.9 8.0 6.1 4.7
MT-FINGERS 10 2,700 18 [1298, 4079] .987 .987 .987 .987 80 169 125 82 2.7 5.7 4.2 2.8
MT-SYNC 10 1,800 18 [1577, 3808] .999 .999 .999 .999 39 263 212 148 1.3 8.9 7.2 5.0

Overall 82 35,815 123 .914 .933 .929 .927 80 143 122 105 9.1 10.4 9.7 9.2

Table 1. Spearman correlation coefficients (rs) and absolute and relative errors computed for GATO predictors with respect to groundtruth times.
Notes: The highest correlation coefficients are highlighted for each dataset. All correlations are statistically significant at p < .01.
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Figure 7. Production times (t̂M) predicted by GATO vs. groundtruth (tTrue), averaged on a per-gesture basis.
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Figure 8. All GATO’s production time estimators vs. groundtruth (tTrue). Error bars denote the standard error of the mean.
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Figure 9. Standard deviations of GATO’s production time estimators vs. groundtruth (SD tTrue).
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rs > .9 with groundtruth (all correlations are statistically sig-
nificant at p < .01) and the best performance was delivered by
t̂Mdn (avg rs = .933, max rs = .999). The ranking accuracy
of GATO reached .999 for the MT-STROKES and MT-SYNC
datasets, and .997 for the MATCHUP dataset. Figure 7 plots
predicted times vs. groundtruth for each dataset, on a per-
gesture basis. As it can be observed, GATO delivers time
predictions that are close to the diagonal line. (The diagonal
represents the performance of an ideal time predictor.)

Figure 8 shows the magnitudes of production times predicted
by GATO for each dataset and each TIME-ESTIMATOR. A
one-way ANOVA procedure showed a non-significant effect of
TIME-ESTIMATOR on ABSOLUTE-ERROR for any of our eval-
uation datasets (0.02 < F < 1.11, p > .05). These results
suggest that GATO’s predictions are on par with users’ actual
time performance with multistroke and/or multitouch gesture
input. Furthermore, we found low effect sizes

(
η2p < 0.1

)
for

all datasets, showing that the magnitude difference between
predicted and measured times is of small practical importance;
i.e., GATO estimations are very close to the actual production
times. For example, the average absolute difference between
the time predictions and groundtruth was 4ms (relative error
0.7%) for the MMG-stylus-medium dataset, 118ms (12.3%)
for the MATCHUP dataset, and 32ms (1.6%) for the MT-
STROKES dataset.

We should point out that GATO is a flexible predictor of users’
stroke gesture time performance. For example, besides predict-
ing the magnitude of production times, GATO can also predict
measures of variation. In support of this claim, Figure 9 shows
the standard deviations of gesture production times predicted
by GATO for each dataset. As it can be observed, GATO
delivers very similar variation compared to groundtruth; e.g.
SD tTrue of 273ms vs. SD t̂M of 271ms for the NICICON
dataset, 602 vs. 576ms for the MATCHUP dataset, or 1,825
vs. 1,808ms for the MT-STROKES dataset. Considered to-
gether with the previously reported aspects of performance,
these additional results build our confidence that GATO pro-
duces accurate estimations of stroke gesture production times.

GATO APPLICATION AND WEB SERVICE
As a service to the community, we deliver GATO implemented
as a web application and a RESTful web service at the web
address https://luis.leiva.name/gato/.

Using the GATO user interface, designers draw the gesture
type for which they wish to obtain time prediction data, and
GATO computes several estimators of location and dispersion.
Our application can be used directly on any device that can
run a modern browser; see Figure 10 for several examples.

For other touch-capable devices, such as touchpads on watch
straps [19], smart glasses [22], or smart textiles [24], to name
only a few recent trends in touch input on mobile and wearable
devices, gestures can be collected by the designer and sent
to the GATO web service, which will respond with JSON-
encoded time prediction data; see Figure 11 for the response
received from GATO for the two-stroke letter “T” gesture.

Figure 10. The GATO user interface, exemplified in these pictures, al-
lows free-form drawing on a mobile-first, responsive UI, accessible from
any touchscreen device with a modern web browser. In these examples,
the designer gets real-time estimates of production times for gestures
produced with a pen and the finger on three different mobile devices.

HTTP/1.1 200 OK
Connection: close

{
"errors": null,
"result": {

"confidence_intervals": {
"90%": [1925, 1954],
"95%": [1922, 1957],
"99%": [1916, 1962]

},
"max": 5055,
"mean":1939,
"median": 1863,
"min": 501,
"range": 4554,
"standard_deviation": 848,
"standard_error": 87,
"trimmed_mean": 1862,
"values": [1791, 2429, ..., 3841, 1228],
"variance": 718366,
"winsorized_mean": 1882

}
}

Figure 11. Example of JSON API response that makes GATO practical
for gestures collected on any touch input device without a web browser.

DISCUSSION, LIMITATIONS, AND FUTURE WORK
GATO requires only one gesture example (e.g., produced by
the designer) to deliver predictions of that gesture’s production
times. Our experiments revealed that GATO is an accurate
user-independent time predictor, reporting production times
that are very close in magnitude to the actual groundtruth data.
This performance is due to the fact that the gesture synthesizer
employed by GATO under the hood [30] uses generic, user-
independent value ranges for the ΣΛ model parameters, which
were empirically derived and validated for a wide range of
users by prior work [20,30,33,38].

One requirement of GATO is that the gesture example should
be reconstructable with high quality, as defined by the signal-
to-noise ratio (SNR) measure of performance of the Kinematic
Theory [30]. Previous work suggests that SNR values below
15 dB denote poor articulation quality [3,30,31] and, in such
cases, the input gesture should be discarded and a new one
provided. To address this aspect, the GATO web application
alerts the designer when the provided example does not have
enough quality to generate synthetic gestures effectively. This
validation represents an important feature of GATO, which
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helps to confirm that the ultimate impulse response of a human
movement follows a lognormal velocity curve [46].

An intuitive explanation for our accurate empirical results
comes from the fact that GATO computes a numerical approx-
imation for a given estimator of location, such as the mean,
based on a bootstrapping approach [30], i.e., GATO computes
what is known as “the sample mean” for n = 100 possible
articulations for a given gesture type. Considering a large
number of samples (as implemented by our cross-validation
evaluation procedure with ≈36k trials), the central limit theo-
rem indicates that the average sample mean should converge
to the population mean, or the groundtruth mean in our case.
However, for practical applications of GATO, using more than
one gesture example is recommended and, under the above
considerations, we believe that the accuracy of GATO may
improve if more samples were used. That includes both user-
dependent (i.e., the designer enters multiple articulations of the
gesture) and user-independent predictions (i.e., the designer
asks a few colleagues or participants to produce one articula-
tion of the gesture). While we provide empirical results in this
paper for estimating production times based on one gesture
sample only, interesting future work will look at considering
the effect of larger sample sizes (user-dependent and user-
independent) on the prediction performance of stroke gesture
production times, but also at theoretical argumentations to
explain the accuracy performance of GATO.

More complex approaches to prediction, such as based on
more gesture examples, will probably benefit from an adapta-
tion of our evaluation procedure as well. For example, a more
rigorous evaluation scenario for such cases would be picking
one sample of each gesture type G based on some best/worse
performance criteria, such as the highest or the lowest signal-
to-noise ratio among all the reconstructed exemplars, and use
that sample for prediction. This procedure would probably
resemble well to how an end-user would test our web appli-
cation to understand the limits of time performance, i.e., the
best-case and worst-case scenarios.

We also need to point out that the datasets that we considered
during evaluation include gestures that were performed under
laboratory conditions. Thus, participants were able to focus
entirely on their gesture performance. We expect that small
mobile devices, such as smartphones or smartwatches, which
need to be held during input by adopting particular hand poses,
or other contexts of use, such as walking or situational im-
pairments, might affect the hand kinematics. Thus, further
investigation is needed to validate GATO for small screen
devices and mobile or wearable contexts of use.

CONCLUSION
GATO delivers very accurate user-independent predictions of
multistroke and multitouch gesture production times with min-
imum effort required from designers. Specifically, GATO re-
quires just one gesture example that designers can draw them-
selves, and is readily available as an online application on the
web and a RESTful JSON API. GATO provides researchers
and practitioners with unprecedented levels of accuracy and
sophistication to characterize their users’ a priori time per-
formance with stroke gesture input of all kinds: unistrokes,

multistrokes, multitouch, or combinations thereof. We expect
that GATO’s time predictions will advance our capacity as a
community to model, analyze, and understand users’ stroke
gesture articulations on touchscreen devices and, consequently,
will foster more effective and efficient gesture-based user in-
terface designs.
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