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ABSTRACT
The present notion of visual similarity is based on features derived
from image contents. This ignores the users’ emotional or a�ective
experiences toward the content, and how users feel when they
search for images. Here we consider valence, a positive or negative
quanti�cation of a�ective appraisal, as a novel dimension of image
similarity. We report the largest neuroimaging experiment that
quanti�es and predicts the valence of visual content by using func-
tional near-infrared spectroscopy from brain-computer interfacing.
We show that a�ective similarity can be (1) decoded directly from
brain signals in response to visual stimuli, (2) utilized for predicting
a�ective image similarity with an average accuracy of 0.58 and an
accuracy of 0.65 for high-arousal stimuli, and (3) e�ectively used to
complement a�ective similarity estimates of content-based models;
for example when fused fNIRS and image rankings the retrieval
F-measure@20 is 0.70. Our work opens new research avenues for
a�ective multimedia analysis, retrieval, and user modeling.

CCS CONCEPTS
• Information systems→ Users and interactive retrieval.

KEYWORDS
A�ective Computing; BCI; Ranking Relevance
ACM Reference Format:
Tuukka Ruotsalo, Kalle Mäkelä, Michiel M. Spapé, and Luis A. Leiva. 2023.
Feeling Positive? Predicting Emotional Image Similarity from Brain Signals.
In Proceedings of the 31st ACM International Conference on Multimedia (MM
’23), October 29-November 3, 2023, Ottawa, ON, Canada. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3581783.3613442

1 INTRODUCTION
Similarity comparisons are fundamental for many applications that
manage and deliver multimedia content to Web users. For example,
recommender systems use similarity in their loss functions, search
engines use similarity to match content to queries or user pro�les,
and social media services use similarity to estimate user interests
for content to be included in feeds. The present methods for assess-
ing information similarity rely on a fairly simplistic assumption:
items are similar when their content-based features or usage pat-
terns are similar [25, 54, 55]. For example, researchers have used
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visual features extracted from images and videos or textual fea-
tures associated with those (e.g. captions), ignoring the emotional
experiences of users [61].

(a) High valence (positive) (b) Low valence (negative)

Figure 1: An example of two images that are visually similar
but dissimilar in an a�ect they are likely to evoke: fun and
exciting (a), which evokes high valence emotion, vs. fear and
avalanche (b), which evokes low valence emotion.

Cognitive science has shown that human judgements about simi-
larity do not rely merely on objective appraisals of semantic similar-
ity between two items, but involve a�ective appraisals. For example,
the time it takes to make a similarity judgement is strongly related
to the experienced distance between two items [14, 45]. Likewise,
decisions on emotional valence strongly depended on the congru-
ence (i.e. a�ective similarity) between a brie�y presented preceding
prime and the target stimulus [3]. Therefore, if a model of content
similarity is to approximate human judgement, then the a�ective
similarity is of critical importance.

In terms of computational modeling, the lack of a�ective features
in content similarity is often referred to as the ‘a�ective gap’ [63].
For example, Figure 1 shows two images with visually similar moun-
tain scenery. These images, however, are a�ectively very di�erent.
Figure 1a shows an image of skiing associated with positive emo-
tions, while Figure 1b shows an image of an avalanche associated
with negative emotions. Such a�ective di�erences are not captured
by current image similarity models that rely on content-based fea-
tures as opposed to predictions on how users emotionally expe-
rience content. Even computational models of aesthetics [29] fall
short in this regard.

In sum, current methodologies for capturing similarity do not
consider a�ective features, as experienced by users. We also lack
computational tools to predict, decode, and utilize a�ective infor-
mation as part of models that can estimate visual content similarity.

In this paper, we focus on predicting valence (positivity or neg-
ativity) of visual stimuli and use the predicted valence to assess
a�ective similarity. We propose a �rst-of-its-kind methodology
using brain-computer interfacing (BCI) recorded using functional
near-infrared spectroscopy (fNIRS). The advantage of using brain
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signals are that (1) recording such signals does not require any ex-
plicit user interaction to express their emotional experience, instead
it can be directly recorded using wearable sensors; and (2) brain
signals can be directly used to measure the a�ective processing
of stimuli. Consequently, brain signals may be used in combina-
tion with (or even as an alternative for) conventional user input.
Moreover, our approach incorporates subjective emotional experi-
ence as part of the similarity computation process as opposed to
only relying on content-driven signals. Ultimately, in the future,
BCI technology may strongly impact how users’ a�ective states
can be used to interact with computers. With this motivation, we
formulate the following research questions:

(1) Can valence (positive and negative a�ective states) be detected,
predicted, and used for a�ective similarity search?

(2) Does a�ective information complement similarity-based rank-
ing models, as compared to their content-based alternatives?

To this end, we propose to use new technology to estimate af-
fective information and incorporate it into information retrieval
systems. We make the following contributions:

• We report the largest fNIRS in-lab experiment for studying a�ec-
tive image classi�cation and ranking.

• We show how fNIRS brain data can be incorporated in predicting
positive and negative a�ective states of visual content.

• We demonstrate fNIRS as a novel similarity index for ranking
information according to the emotional experience they evoke
in human users and compare them with models that use content-
based features.

2 RELATEDWORK
Image similaritymethods have been largerly based on comparing
either content representations learned from the visual information
of images [55] or text associated to them, such as captions [10].
These can already e�ecively address the ‘semantic gap’ [47] by
detecting images with semantically similar but visually varying
content. However, these methods are not as successful in addressing
the ‘a�ective gap’ [59, 63], which refers to classifying the a�ective
response an image is likely to evoke in users, independently of its
contents.

The a�ective gap has turned out to be more challenging to ad-
dress. Researchers have proposed feature engineering methods that
would better account for a�ective content [33, 57, 62], as well as
deep learning to learn e�cient representations [9, 18, 39]. Despite
these advances, all content-based methods rely on the analysis of
content (as opposed to user experience) to reach a consensus esti-
mate on the perceived emotions that is then used as the dominant
(average) emotion category. Recently, emotions have been studied
in the context of web search and media content analysis [2, 23, 59].
However, the literature is very scarce, currently limited to click-
stream data and explicitly annotated data that does not account for
predicting individually experienced emotions.

Physiological and neuroimaging methods, as opposed to
content-based methods, have been proposed to decode emotional
reponses directly from human cognition [32]. These approaches
allow to capture such emotional responses as they are experienced
by each individual. Typical techniques that have been used include

peripheral sensors [26], electrocorticography (ECoG) [44], elec-
troencephalography (EEG) [21], and more recently fNIRS [19].

While EEG and peripheral wearable sensors have been exten-
sively studied, their use in realistic applications is still limited
[12, 13]. Peripheral sensors do not always provide reliable mea-
surement data and EEG is prone to known artifacts, for example,
due to motor activity and eye movements. fNIRS does not su�er
from these shortcomings. It is a relatively recent technique of neu-
roimaging, which relies on the relationship between neural activity
and blood oxygenation [4, 7]. Thus, by measuring absorption at
di�erent wavelengths of light, fNIRS may quantify cortical activity,
particularly if such areas are near the surface and unimpeded by
tissues interfering with light (e.g. hair). fNIRS has recently been
used in measuring emotion-related activity in frontal areas, for both
discrete emotions [20] and emotional dimensions [5]. For the lat-
ter, the emotional dimension of valence showed a particular e�ect
on negative emotional pictures in the right prefrontal cortex on
oxygenated hemoglobin (O2Hb).

fNIRS technology for emotion recognition has been far less
studied. Recent studies suggest that emotional decoding from fNIRS
data has clear potential [42], although high-accuracy reports have
typically been found in the presence of certain methodological lim-
itations. For example, studies using lengthy video clips of music
videos [6], commercial ads [38], or video games [1] reported high ac-
curacy, between 77% and 91% in detecting self-reported preferences
and emotional valence. The use of limited selections (e.g. 3 per con-
dition in [38] and 5 in [50]) from non-validated stimulus databases,
means that confounds may have arti�cially boosted model accuracy.
For example, if videos in one condition were rated as being more
fun while simultaneously being more dynamic in content or pre-
sentation, classi�ers may have pro�ted from cognitive di�erences
related to processing multiple scenes.

3 fNIRS DATA ACQUISITION
3.1 Participants
Thirty-one volunteers (18 male, 12 female, 1 non-binary with mean
age 31.2 years) were recruited to participate in the study. Partici-
pants were fully informed about the nature of the study, and their
rights as participants, including the right to withdraw at any time
without fear of negative consequences. They signed informed con-
sent. The study was approved by Ethical review board in the hu-
manities and social and behavioral sciences of the University of
Helsinki.

3.2 Stimuli
One hundred and twenty images from the IAPS database [27] were
used in the study. The IAPS database was conceived as a catalog of
pictures that represents the entire range of emotional reactions. It
contains some images of violence, as well as images that are judged
to be erotic, fear evoking, disgusting, and/or repellent by some
viewers. Each image is associated with valence and arousal scores
indicating their positivity and negativity. These scores have been
validated across several studies on various populations. Of these,
sixty were previously tested as having low, or negative, valence
(2.71 ± 0.81 on a scale from 1 to 9) and sixty as having high, or
positive, valence (6.94 ± 0.53). Each participant viewed a random
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selection of forty images, half of them negative and half positive
according to their valence scores. Images were scaled vertically to
a maximum size of 1500x1024 px.

3.3 Procedure
For each participant, upon the signing of informed consent and
after setting up the equipment, we recorded a 1-minute resting-
state activity while a crosshair was shown on the screen. Then,
experimental stimuli were displayed in two blocks of twenty trials
each. Each trial began with an instruction to carefully consider
the subsequent image and to freely associate any emotion. Upon
pressing a key, a �xation cross was shown for 4 s, after which an
image appeared onscreen. Each image was shown for 14 s, followed
by an inter-trial interval showing a black screen for 0.1 s, after
which the trial ended and the participant advanced to the next
trial. The experiment took about 45 minutes to complete, excluding
participant’s preparation and device setup.

3.4 Apparatus
Stimulus display and timing used E-Prime 3 (Psychology Software
Tools, Inc, Sharpsburg, PA) running on a PC under Windows 10.
Synchronization of display with datastreams was achieved using
the DCOM interface to send triggers from E-Prime to the fNIRS
recording software, OxySoft (Artinis Medical Systems, Elst, The
Netherlands).

Optical density data for fNIRS analysis were recorded using the
Artinis Brite-24 device in a con�guration with 10 diodes transmit-
ting light at two wavelengths (760 and 850 nm) and 8 photodiodes
detecting light. Diodes were positioned on an elastic cap and placed
such that the distance between receivers and optodes approximated
30mm and that, as illustrated in Figure 3, each receiver obtained
light from three di�erent transmitters, resulting in OD signals from
12 sources (dotted lines) per hemisphere. Optical densities from
each of the resulting 24 channels were digitized at 50Hz.

3.5 Data preprocessing
Raw optical density (OD) data were exported from OxySoft and
processed using MNE.1 To determine artefactual channels (e.g. due
to poor placement, optode orientation, or hair blocking light), the
scalp coupling index (SCI) [37] was calculated for each channel. SCI
measures the negative correlation between HbO and HbR channels
in the frequency range where the heartbeat is most apparent (0.7 -
1.5Hz). A strong negative correlation indicates that the optodes are
adequately connected to the scalp. Channels suggesting poor con-
tact with the scalp (SCI < 0.8) were marked as bad and interpolated
from neighboring channels. Following, artefacts detected in the
continuous signal were corrected using temporal derivative distri-
bution repair [17]. The OD data were then converted to hemoglobin
concentrations using the modi�ed Beer-Lambert law [15] to derive
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) levels. To
these, a 0.1Hz low pass �lter was applied to remove physiologi-
cal noise, while a 0.01Hz high pass �lter was applied to remove
slow trends in signals that were unrelated to evoked activity. Fi-
nally, the continuous data were time-locked to the onset of stimuli
and segmented into epochs of 17 s, including 5 s of pre-stimulus
1https://mne.tools/stable/auto_tutorials/preprocessing/70_fnirs_processing.html

Figure 2: Topographic and temporal plots of averaged HbO
and HbR responses (in micro moles per liter) for low-valence
(top) and high-valence (bottom) stimuli.

baseline activity. The dataset is available for research purposes at
https://osf.io/pd9rv/ [48].

3.6 Neural activity �ndings
To validate the test setup and estimate the mean e�ect of valence on
stimulus-evoked HbO and HbR levels, the average baseline activity
was subtracted from the �rst 12 s of post-stimulus activity, and
averaged within low-arousal/positive, low-arousal/negative, high-
arousal/positive, and high-arousal/negative conditions for each
participant. To inspect spatial e�ects, we used a montage with only
the transverse transmitter/diode pairs included. These were then
grouped into a four-level left-to-right and a three-level anterior-to-
posterior factor. These two location factors were combined with
valence in a three-way repeated measures ANOVA. The analyses
were conducted separately for HbO and HbRmeasures. Signi�cance
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Figure 3: Optode placement. A: schematic display of the trans-
mitter and the receiver optodes across left and right hemi-
spheres. Dotted lines: areas between diodes measured with
fNIRS (in red: used in validation analysis). B: photograph of
the fNIRS device (blurred for anonymity).

is tested at alpha = .025 to account for in�ated type-I error occur-
rence by performing multiple analyses. Non-signi�cant location
main e�ects are not reported to maintain brevity.

A repeated measures ANOVA on average HbO and HbRwith left-
to-right location, anterior-to-posterior location, and valence (posi-
tive vs negative) as factors, it was found that anterior-to-posterior
signi�cantly a�ected HbO, � (2, 60) = 8.78, ? = .0005, [2? = .23
(HbO: ? = .049). This e�ect further interacted with left-to-right
location in HbO, � (6, 180) = 21.46, ? < .0001, [2? = .42, and HbR,
? = .003. Both the location main e�ect and interaction e�ect indi-
cate regional di�erences in response to viewing an image, regard-
less of the emotional content. More interestingly, a main e�ect of
valence was found for HbR, � (1, 30) = 9.89, ? = .004, [2? = .25,
though not for HbO, ? = .31. Negative valence images evoked
stronger negativity (−0.032 ± 0.006) than positive valence images
(−0.019 ± 0.06). The two location factors signi�cantly mediated the
interaction between left-to-right and anterior-to-posterior location
in HbO � (1, 180) = 12.32, ? < .0001, [2? = .29 (HbR: ? = .035),
indicating the e�ect of valence was localized. As may be seen from
Figure 2, the e�ect of valence on HbO could be characterized as
a stronger negative e�ect for negative valence images in the pre-
frontal lateral areas of the right hemisphere as well as in the medial
dorsal-frontal left hemisphere.

To determine whether the e�ects could also be observed once
specifying the analysis towards the high-arousal stimuli, we re-
peated the same analysis but without the low arousal conditions.
Thus, another repeated measures ANOVA on average HbO was
conducted, with left-to-right location and anterior-to-posterior
location, but now with valence (high-arousal/negative vs high-
arousal/positive) as factors. Now, valence no longer had a signif-
icant main e�ect, � (1, 30) = 1.83, ? = .19, [2? = .06. The anterior-
to-posterior location retained its main e�ect, ? = .02, as did the
interaction between the two location factors, ? < .0001. Finally, a
signi�cant three-way interaction was observed, � (6, 180) = 9.32,
? < .0001, [2? = .24. Thus, valence continued to have a clear, later-
alised e�ect.

4 AFFECT PREDICTION FROM fNIRS
The goal of this task is to classify presented stimuli as low-valence or
high-valence based on the response in fNIRS signal. The same task
is performed for three subsets of the IAPS database, one consisting
of exclusively high-arousal stimuli, one of only low-arousal stimuli,
and other containing both types of stimuli.

4.1 Feature extraction
Feature extraction was conducted for the preprocessed data (subsec-
tion 3.5). In fNIRS, a typical response to visual stimuli is some activ-
ity in a brain region approximately 4 to 12 seconds after the stimuli
and then return to baseline [35, 60]. To capture this e�ect with
a moderately sized feature space, we divided the 12-second post-
stimulus period of each epoch into three 4-second windows and ex-
tracted the mean of each window for each channel. Finally, features
from HbR channels were �ltered out since HbO and HbR channel
pairs are found strongly dependent, resulting in a 72-feature vector
for each epoch.

4.2 Classi�cation setup
We used a logistic regression classi�er for this task. Individual mod-
els were trained for each participant using strati�ed sampling and
10-fold leave-one-out cross-validation. In each fold, fNIRS features
were normalized to zero mean and unit variance based on the train-
ing set. The best combination of model hyperparameters where
optimized with Optuna.2 The classi�er achieved the best results
with !2 regularization and regularization strength � = 0.4.

4.3 Classi�cation results
Table 1 shows the fNIRS classi�cation results and Figure 4 subject-
speci�c ROC-AUC scores. The accuracy and AUC values show clas-
si�cation performance varying from AUC=0.58 to the best achieved
for high-arousal images AUC=0.69. All results are statistically sig-
ni�cant over a random classi�er using permutation testing. As
expected, the results suggest that low-arousal (uninteresting or non-
exciting) a�ective states are more challenging to decode from brain
signals, while high-arousal (interesting or exciting) a�ective states
have a higher classi�cation performance. However, according to
previous experiments, arousal classi�cation can also be conducted
with comparable accuracy [43].

Task No. images Accuracy p-value ROC AUC

High-arousal 60 0.65 ± 0.02 < .01 0.69 ± 0.02
Low-arousal 60 0.56 ± 0.02 < .01 0.58 ± 0.02
Combined 120 0.58 ± 0.02 < .01 0.60 ± 0.02
Table 1: Valence classi�cation results (Mean ± Std. Err.) for
stimuli with di�erent arousal classes.

5 SIMILARITY AND RANKING EXPERIMENTS
We illustrate how our work can be used in a real-world scenario to
retrieve a�ectively similar content, for which we conduct a series
2https://optuna.org/
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Figure 4: Distribution of ROC AUC scores for each subject in
low/high valence classi�cation. Accuracy scores follow the
same distribution pattern.

of query-by-image information retrieval (IR) experiments: given
a query image, all available images in a database are ranked by
similarity and the top- are shown to the user.

We focus on the task of retrieving either high-valence (positive)
or low-valence (negative) high-arousal images. This is motivated
by the fact that currently, IR systems can only account for a�ec-
tive relevance by considering content-based analysis [59], but not
retrieve relevant content based on whether it is positively or nega-
tively experienced by an individual user. It is also understood that
high-arousal stimuli correspond to generally interesting or relevant
high-attention information [24], while low-arousal stimuli evokes
less prominent responses.

The fNIRS classi�er described before was used to assess the
a�ective similarity of high-arousal IAPS images. The performance
and rankings computed, based on the similarity assessments from
brain responses, were compared to content-based retrieval models
using textual (captions) and pixel-level image features.

5.1 Data preparation
The data from the participants who achieved a classi�cation accu-
racy below 50% in our previous experiments were removed, moti-
vated by the “BCI illiteracy” problem, which states that BCI does
not work for a non-negligible portion of users, estimated to be
around 15–30% of the population [53]3 This resulted in valid data
for 23 participants (14% illiteracy rate).

5.2 Experimental setup
We focus on the cross-validated image similarity assessment setting.
Each image, at a time, is used as a query G to rank the rest of the
images according to their similarity to that query. There are 60
images in our dataset, out of which 30 are positive (high-valence)
and the remaining 30 are negative (low-valence) images.

We should note that ranking images instead of �nding the closest
matches according to similarity scores allows for a fair comparison
between di�erent retrieval models, as each model may generate
similarity scores in completely unrelated scales. It also allows for
combining di�erent retrieval models easily, as shown later.

3BCI illiteracy is observed more often in active rather than passive BCI.

Given that we are interested in determining the similarity of
images that evoke similar emotions as to a given query image,
an image will be considered a “match” if it belongs to the same
class (high-valence/positive or low-valence/negative) as the query
image, and vice versa for non-matching images. This is important
for computing Recall, since we know that the maximum number of
matching images we can assess for any query image is 30 (half of
the images in the dataset belong to either the positive or negative
class). For each query image, we evaluate the performance of each
model at di�erent rank positions  ∈ {1, 5, 10, 20}.

5.3 Evaluation measures
The experiments used two distinct evaluation aspects: ranking sim-
ilarity and similarity assessment performance. On the one hand,
ranking similarity indicates whether the di�erent models provide
similar or distinct and complementary performance when com-
pared to others. It is measured using the following metrics (higher
is more similar): Overlap (Agreement rate between rankings),Rank
Biased Overlap (RBO) (Agreement rate between rankings, also con-
sidering their order [56]), Intersection over Union (IoU) (Jaccard
index between rankings). On the other hand, similarity assessment
performance indicates the ability of a model in detecting similar
images when compared to the query image. It is measured using
the following metrics (higher is better): Precision (Fraction of items
among the ranked top- items), Recall (Fraction of matching items
in the ranked top- among all matching items in the database), and
F-measure (The harmonic mean of Precision and Recall).

5.4 Ranking models
Aiming at testing di�erent ranking models, together with our fNIRS
classi�er and a control IAPS (ground-truth) model, we also con-
sidered content-based and text-based models to quantify how the
fNIRSmodel compares to similarity assessed bymodels that use con-
ventional features from images or their associated text descriptions.
Table 2 provides an overview of these models.

IAPS: Our reference model uses the arousal and valence scores
from the original IAPS database [27] as image features. The ground-
truth ranking is computed in a 2-dimensional vector space (arousal
and valence scores) by using the Euclidean distance as the dissimilar-
ity metric. For each query image we will compare this ground-truth
ranking against the other ranking models.

fNIRS: This model uses the softmax vector of the classi�er we
trained in our previous experiments and estimates valence scores
for each image assessed by each user. Since we focus on retrieving
high-valence or low-valence high-arousal images, we set the arousal
score to be the average of the centroid that represents the predicted
class and use the following classi�cation rule to estimate the valence
score:

E (G,D) =
{
minV/? (G,D) if G is predicted as negative
maxV · ? (G,D) if G is predicted as positive

(1)

whereV is the set of all valence scores in our dataset and ? (G,D) is
the classi�cation probability of image G belonging to either the posi-
tive or the negative class, according to our classi�er’s softmax vector
for user D. The idea is to deviate from minimal and maximal values
of valence based on the con�dence of the predictions delivered by
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Model Feature representation Dimensionality Distance Notes

IAPS Arousal & Valence scores 2 Euclidean Ground-truth data
fNIRS Positive/Negative softmax 2 Euclidean Logistic regression
IMAGE RGB Convolution maps 512 j2 Transfer learning w/ ResNet50
TEXT Sentence embeddings 384 Cosine SBERT Lite uncased, image captions

Table 2: Overview of the similarity assessment models.

our classi�er so that each fNIRS ranking is tailored to each partici-
pant and query image. For example, if the softmax vector for a given
user and a given query image G is [? (G,D |−), ? (G,D |+)] = [0.1, 0.9],
it means our classi�er is highly con�dent about G being a posi-
tive image for that user, so the estimated valence score would be
E (G,D) = 0.9maxV and the estimated arousal score would be the
centroid 0(G,D) = 1/|X+ |

∑
8∈X+ 0(G8 ), where G8 is the 8th image in

the set of positive X+ IAPS images. Then, the �nal ranking will
comprise the closest images to these valence values according to
the Euclidean distance to the query image G .

IMAGE: This is a visual content-based model based on the pop-
ular deep residual convolutional network ResNet50 [18] as a fea-
ture extractor. We follow the usual transfer learning procedure for
feature extraction: load a pre-trained model, remove the last fully-
connected output layers, and add a global average pooling layer
in order to get a �attened convolutional map that summarizes the
input image. In this case, we use the j2 distance as a dissimilarity
metric, since it has been shown to work better than the Euclidean
distance with high-dimensional items such as images [34]. We
experimented with other models such as a VGG16 [46] and Incep-
tion [49], however ResNet50 provided higher performance and so
it was selected as the IMAGE model.

TEXT:This is a textual content-basedmodel based on SBERT [41],
amodi�cation of thewell-known pre-trained BERT architecture [16].
SBERT is a Transformer model that was trained using siamese and
triplet network structures to derive semantically meaningful sen-
tence embeddings that can be compared using the cosine similarity
measure. Since the IAPS database does not provide textual descrip-
tions, we use the Microsoft Cognitive Services4 to extract image
captions and use these as the textual descriptions for the images.
We also extracted image tags and experimented with other text
ranking models, such as the classic BM25 [22] and Doc2Vec [28],
but SBERT using image captions provided higher performance and
so it was selected as the TEXT model.

Fused rankings: We also compare rankings using the Recipro-
cal Rank Fusion (RRF) technique [11]. RRF ranks items based on
their (inverted) position, resulting in a fused ranking where the
top-ranked items have high agreement across the combined rank-
ings and vice versa for the least ranked items [58]. Fused rankings
were computed for fNIRS+IMAGE, and fNIRS+TEXT to study the
performance of the models when brain signals were combined with
other features. For each query, we �rst rank the whole dataset (60
images) with each model, then perform RRF, and �nally keep the
top- as the �nal ranking.

4https://azure.microsoft.com/en-us/services/cognitive-services/

5.5 Ranking similarity results
Table 3 shows the ranking similarity according to the selected eval-
uation measures. We can observe that similarity varies considerably
across models and shows rather low overlaps with the ground-truth
IAPS ranking. Interestingly, both fNIRS and IMAGE rankings are
more similar to IAPS rankings. The likely reason is that, while
fNIRS directly captures a�ective information, IAPS images have
been suggested to be confounded with visual features [40]. We also
report the results of comparing against random rakings, providing
thus an empirical lower bound.

Model Overlap RBO IoU

fNIRS 0.18 ± 0.13 0.11 ± 0.10 0.13 ± 0.11
IMAGE 0.21 ± 0.15 0.12 ± 0.12 0.13 ± 0.11
TEXT 0.11 ± 0.04 0.07 ± 0.03 0.06 ± 0.02
fNIRS+IMAGE 0.20 ± 0.14 0.12 ± 0.11 0.12 ± 0.10
fNIRS+TEXT 0.13 ± 0.09 0.09 ± 0.07 0.08 ± 0.06
Random 0.13 ± 0.11 0.06 ± 0.07 0.07 ± 0.07

Table 3: Ranking similarity evaluation (± std) against the
IAPS rankings, using the top-10 ranked results.

We can see that TEXT rankings overlap less with the ground-
truth IAPS rankings. This can be attributed to the quality of the
automatic image captions, which were often inaccurate for many of
the negative images. Recall that the IAPS database contains many
images that can be considered out-ot-distribution for state-of-the-
art image captioning systems. For example, there are many explicit
images (e.g. pornographic and violent content) that can hardly
be captioned correctly in an automated way, given that the vast
majority of image captioning systems are trained on large datasets
such as COCO [30] and Flickr [36], which mainly contain natural
images and general-purpose non-explicit content.

As can be observed, the fused fNIRS+IMAGE rankings do not
agree much more than the individual rankings alone, whereas the
fused fNIRS+TEXT ranking showed a marginal improvement for
the TEXT ranking. A possible explanation for this is that the three
di�erent ranking models were providing orthogonal information.
To study this, we conducted an additional experiment where we
compare the fNIRS rankings against IMAGE and TEXT rankings.
Table 4 shows the results of this comparison and reveals that, indee,
the three ranking models yield di�erent, orthogonal rankings. This
observation, however, is encouraging since it suggests that the
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fNIRS model may provide additional diversity to the rankings pro-
vided by the other models, i.e., information that is emotionally
related to the query images.

Q Model Overlap RBO IoU

10 fNIRS vs IMAGE 0.16 ± 0.10 0.09 ± 0.07 0.10 ± 0.07
10 fNIRS vs TEXT 0.11 ± 0.08 0.06 ± 0.07 0.06 ± 0.05
20 fNIRS vs IMAGE 0.35 ± 0.14 0.21 ± 0.12 0.22 ± 0.11
20 fNIRS vs TEXT 0.21 ± 0.09 0.12 ± 0.06 0.12 ± 0.06

Table 4: Ranking similarity evaluation (± std) of fNIRS
against the other models using top-Q results.

5.6 Similarity assessment results
Individual models: The three leftmost plots in Figure 5 show the
results of the similarity assessment experiments for the individual
models. Statistical analysis were run to compare the performance
of the individual models at  = 20 for Precision and Recall. A j2

test of proportions as omnibus test revealed signi�cant di�erences
betweenmodels in terms of Precision (j2 (2, # = 422) = 35.672, ? <
.001). Pairwise tests of proportions (Bonferroni-Holm corrected) as
post-hoc test revealed signi�cant di�erences between fNIRS and
TEXT (? < .01), and IMAGE and TEXT (? < .001). No di�erences
were found between IMAGE and fNIRS. This suggests that image
features and fNIRS features best capture the emotional information
and yield to comparable precision, around 65% in both cases. In
terms of Recall, the omnibus test was signi�cant (j2 (2, # = 422) =
15.188, ? < .001) and post-hoc tests revealed signi�cant di�erences
between IMAGE and fNIRS (? < .001) and TEXT (? = .021). In
summary, we can conclude that the a�ective states measured from
the brain are equally precise as the image representations, but image
representations yield higher recall.

Fused models: The two rightmost plots in Figure 5 show the
results of the similarity assessment experiments for the fused rank-
ings. Again, statistical analysis were run to compare the perfor-
mance of the fused models and their components at  = 20 for
Precision and Recall. When comparing fNIRS against the fused
models, no signi�cant di�erences were found in terms of Preci-
sion, but there were statistically signi�cant di�erences in terms
of Recall (j2 (2, # = 422) = 87.670, ? < .001). The post-hoc test
of pairwise comparisons (Bonferroni corrected) revealed signi�-
cant di�erences between both fused models and fNIRS (? < .001).
This suggests that, to achieve the best similarity assessment perfor-
mance, one should combine fNIRS with visual features to bene�t
from both image and brain representations. When comparing the
IMAGE model against the fused models, no signi�cant di�erences
were found. When comparing the TEXT model against the fused
models, signi�cant di�erences were found in terms of Precision
(j2 (2, # = 422) = 35.672, ? < .001) but not for Recall. The post-hoc
test revealed signi�cant di�erences for Precision between TEXT
and both fused models (? < .001). In summary, fNIRS and IMAGE
models both assess precise similarity and overall the combination
of fNIRS+IMAGE delivers the most accurate similarity assessments.

5.7 Visual analysis
To provide more insights into our results, we show examples of
top-10 rankings in Figure 6 for both positive (high-valence) and
negative (low-valence) query images. Overall, we can see that the
type of similarity assessed by each model is rather di�erent. This
is in part explained by the tendency of the content-based models
to exploit high-similarity content and “lock” the user by assessing
similarity based on visual and textual similarities that do not count
for a�ective diversity, whereas fNIRS tends to assess more diverse
similarity features that match the a�ective content of the image,
independently of the content features.

Notably, the IAPS database contains very diverse images that can
be considered emotionally similar for a given query image, but that
are not topically or visually similar. This is particularly detrimental
for the IMAGE model, since in IAPS there might be only a handful
of images that are visually similar to a given query. For example,
an image about gun violence is considered a good a�ective match
when searching for negative images, but there are quite many more
images representing negative emotional content that have nothing
to do with gun violence. While this may hurt the performance of
content-based models, it also re�ects real-world scenarios where
users may prefer diverse content matching their information needs
rather than results with highly similar or almost identical content.

6 DISCUSSION
Current similarity assessment strategies rely on objective/semantic
measures rather than subjective/a�ective perception measures.
Such strategies insu�ciently account for the emotional experiences
of users. We have shown that a�ective information can be directly
decoded from brain activity and incorporated into similarity assess-
ment models. In the following, we answer the research questions
posed at the beginning of this paper.

Can valence (positive and negative a�ective states) be de-
tected, predicted, and used for a�ective ranking? Our results
show that valence has signi�cant e�ects in fNIRS responses. Partic-
ularly strong e�ects were found in valence for high-arousal content.
That is, content that is a priori shown to be attention-grabbing
shows the most robust responses between positive (high-valence)
and negative (low-valence) emotional experiences. Classi�cation
results from single-trial decoding experiments show that valence
can be decoded with reasonable accuracy, however the decoding
of low-arousal content is less e�ective. This is somewhat expected,
as low-arousal content is known to evoke diminutive emotional
responses [8]. High-arousal content is also of higher interest for
many applications, as it is associated with more vigorous user at-
tention [27].

Does a�ective information complement similarity-based
ranking models, as compared to their content-based alter-
natives? While the performance of a�ective information decoded
directly from fNIRS is generally less e�ective than the IMAGEmodel
in determining a�ective similarity, the IMAGE model performance
is higher only for high similarity ranks. This suggests, as expected,
that highly similar content features (look-alike images) are good
indicators of a�ective similarity. However, the performance of the
IMAGE model decays rapidly, indicating that it fails to capture simi-
larity that has an a�ective dimension, but di�erent content features
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Figure 5: Similarity assessment performance evaluation results, both for individual models (three leftmost plots) and fused
rankings (two rightmost plots). Error bars denote the standard error of the mean.
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Figure 6: Sample rankings of positive (high valence) and negative (low valence) images for two randomly-chosen users. The
�rst image in each ranking, highlighted in cyan, is always the query image. Images are blurred because IAPS images cannot be
published in any format, to retain their integrity for use in experimental studies. We have indicated the IAPS image IDs to
assist in replication.

(i.e., a�ectively similar but visually dissimilar images). This suggests
that fNIRS and other physiological and brain-computer interfaces
can provide crucial additional information about a�ective similarity
that goes beyond content-based features.

Limitations and future work. The visual stimuli we used
were selected from a standard database widely used for studying
emotional reactions [27]. Yet, there there might be a risk of fNIRS
signals interfering with other a�ective dimensions in�uencing sim-
ilar brain regions such as approach/avoidance that can typically
be triggered by some of the IAPS images. Nevertheless, we should
note that the achieved decoding performance from fNIRS is in line
with previous studies [31, 35, 51, 52] using subject-speci�c models.
While the ability to transfer features between subjects is desirable,
cross-subject performance remains an area for future research.

The content-based models we used represent state-of-the-art ap-
proaches, and they can also be considered fair control conditions to
study the e�ects of emotional and a�ective dimensions of similarity.
Nevertheless, we cannot exclude the possibility that �netuning the
content-based models might lead to improved performance results.

In particular, the full 72-D fNIRS feature vector could be directly
used to learn improved models instead of 2-D logits.

7 CONCLUSION
This work goes beyond the conventional goal of simply optimizing
for content similarity. The a�ective signature obtained from fNIRS
brain signals is utilized to determine a�ective similarity. Brain
signals are not just based on the similarity of content, but on the
similarity of the user-evoked emotional responses. This technique
may have fundamental implications for search, recommendation,
and multimedia content personalization when a�ective similarity
can be deployed in real-world application scenarios.
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