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A�ect decoding through brain-computer interfacing (BCI) holds great potential to capture users’ feelings
and emotional responses via non-invasive electroencephalogram (EEG) sensing. Yet, little research has been
conducted to understand e�cient decoding when users are exposed to dynamic audiovisual contents. In this
regard, we study EEG-based a�ect decoding from videos in arousal and valence classi�cation tasks, considering
the impact of signal length, window size for feature extraction, and frequency bands. We train both classic
Machine Learning models (SVMs and :-NNs) and modern Deep Learning models (FCNNs and GTNs). Our
results show that: (1) a�ect can be e�ectively decoded using less than 1 minute of EEG signal; (2) temporal
windows of 6 and 10 seconds provide the best classi�cation performance for classic Machine Learning models
but Deep Learning models bene�t from much shorter windows of 2 seconds; and (3) any model trained on the
Beta band alone achieves similar (sometimes better) performance than when trained on all frequency bands.
Taken together, our results indicate that a�ect decoding can work in more realistic conditions than currently
assumed, thus becoming a viable technology for creating better interfaces and user models.
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1 INTRODUCTION
Human a�ect is guided by biologically-based action dispositions that play an important role in
the determination of behavior [50]. For example, it is no secret that mood and emotions in�uence
our daily lives, impacting human interactions [3, 13], decision-making [58], world perception [47],
and physical well-being [36]. As researchers have increasingly focused on understanding a�ective
reactions toward computing and digital information, the necessity to compute and decode a�ect has
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also increased [47, 58]. Various measures, including subjective self-reports and neurophysiological
measurements, have been applied for these purposes [3, 26, 37, 58].
However, our understanding of how to detect and decode a�ect in computing applications has

only been explored recently, cf. [85]. Neural mechanisms of emotional functioning and Machine
Learning models have been coupled to decode a�ective responses from the brain in computer-
mediated environments [81]. In particular, brain-computer interfacing (BCI) and physiological
sensing have been developed to detect a�ective states [80], which has been used to model the user’s
context [94] and adapt user interfaces [5], among other tasks.

Among the various BCI technologies available for a�ect decoding, electroencephalography (EEG)
has gained a signi�cant interest among researchers due to its simplicity, a�ordability, portability,
and user-friendly nature [3, 47]. In addition, the number of publicly available EEG datasets has
fostered many research advancements in this regard [19, 41, 44].

1.1 Problem statement
The main focus of previous studies has been on approaches for accurate a�ect decoding, including
determining subject-speci�c, cross-subject, and temporally stable features [70, 118]. Another line
of research has focused on feature engineering [103] and the development of Machine Learning
models for a�ect decoding [4]. Consequently, previous research has focused on the e�ectiveness
of a�ect decoding performance. Less e�ort, however, has been devoted to the e�ciency of these
approaches, i.e., to understand how dynamic and temporally varying stimuli could be exploited for
a�ect decoding in a way that re�ects more closely to real-world user behavior.
In order to make a�ect decoding e�cient, we study how users react to video contents. This

is a challenging but relevant research environment, since users watching videos typically skip
parts or watch them partially, to only concentrate on parts that they �nd interesting. Furthermore,
we rarely can a�ord to use lengthy recordings that have been assumed in idealistic laboratory
settings, but rather only shorter sequences are available in realistic human-computer interaction
(HCI) scenarios. Note that this is contrary to using maximal amount of data to optimize model
performance, as done by all state-of-the-art decoding and classi�cation approaches, which rely on
features computed on the full-length EEG signal [93, 119].

1.2 Contributions
We study e�cient EEG-based a�ect decoding from videos in arousal and valence classi�cation
tasks, considering the impact of: EEG signal length, window size for feature extraction, and EEG
frequency bands. These three aspects are fundamental to ensure an e�ective decoding performance,
as explained next.
In the same way as visual importance evolves dynamically over time [99], so do our a�ective

experiences in both physical and digital environments [15]. A common andwell-justi�ed assumption
is that user’s a�ect do not change during exposure to short-term stimuli. However, this may not
hold for longer and heterogeneous content, such as videos, where our a�ective reactions may be
represented only in some speci�c temporal window and thus may emerge at a certain point in
time. Therefore, by studying the impact of EEG signal length we can better understand the extent
to which the exposure to dynamic contents may in�uence a�ect decoding.

We also systematically study the impact of sampling window size for feature extraction. In this
regard, the community has not found a consensus since some work suggests that smaller window
sizes [71, 112] are preferred over longer window sizes [49, 95]. Therefore, by studying the impact
of window size we can better understand the amount of EEG samples that are required to achieve
optimal decoding performance.
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Finally, we also systematically study the impact of EEG frequency bands, which is particularly
relevant because previous work has argued that higher-frequency bands generally carry the most
discriminative information a�ect-wise [56, 109, 114], yet most of previous work has considered all
frequency bands combined for a�ect decoding [117, 119]. If we could rely on just only one frequency
band, for example, decoding would not only be simpler to achieve but also computationally more
e�cient.

In sum, our work addresses important knowledge gaps in the research literature by performing
a systematic evaluation of key design decisions for a�ect decoding during dynamic contents
perception. To this end, we pose the following research questions:
RQ1: What is the optimal EEG signal length for a�ect decoding during dynamic content perception?
RQ2: What is the optimal temporal window for a�ect decoding during dynamic content perception?
RQ3: Which frequency bands (or their combinations) are associated with a�ective states during

dynamic content perception?
Our �ndings can be summarized as follows:
• Using short EEG signal samples (e.g. 30 seconds) achieves decoding performance comparable
to using longer signals (e.g. 1 min).

• Temporal windows of 6 or 10 seconds for feature extraction are the ones that provide the
best performance results for classic Machine Learning models but modern Deep Learning
models bene�t from much shorter windows of 2 seconds.

• E�ective a�ect decoding can be achieved using a combined set of frequency bands, but a
model trained with the Beta frequency band alone shows performance comparable to using
all bands combined. Results ranged from 65% (valence classi�cation in DEAP) to 88% (arousal
classi�cation in MAHNOB-HCI).

Taken together, our �ndings suggest that a�ect decoding can work in more realistic conditions
than currently assumed, thus becoming a viable technology for creating better interfaces and
user models. These �ndings may allow researchers and practitioners to build a�ective recognition
models that are data e�cient, faster to train, and less prone to signal noise.

2 RELATED WORK
TheHCI community has increasingly studied automatedmethods tomeasure a�ective responses [18,
79], e.g., for making computing systems more natural toward humans’ a�ective experiences [74].
The fundamental enabler for this direction of research is a�ect decoding, as this is the basis for
several downstream tasks, user models, and adaptive systems [60]. For example, Menezes et al.
[70] used EEG signals to model users’ a�ective states based on Russell’s Circumplex Model [84].
They used classic Machine Learning models, namely Support Vector Machine and Random Forest.
Cimtay and Ekmekcioglu [19] aimed to improve subject-independent recognition accuracy by using
pre-trained Convolutional Neural Networks (CNNs). Their approach used raw EEG signals with
windowing, pre-adjustments, and feature normalization. They tested three data-sets: SEED [23],
DEAP [44], and LUMED [19]. The proposed method achieved mean accuracy ranging from 78% to
81% across those datasets.

2.1 Dimensional theory of emotions
A�ect can be understood through di�erent frameworks, including “universal” discrete emotional
states such as joy or fear [54], appraisal models that integrate the situational context of an event [27],
and dimensional models [25], which position emotions on several continuous dimensions that can
be analytically modeled. Due to their properties, dimensional models are particularly useful for
understanding and decoding a�ect in human-computer interaction [63].
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The dimensionality of human a�ect is most commonly represented on a two-dimensional va-
lence/arousal plane [10], see Figure 1. Arousal (or intensity) is the level of autonomic activation
that an event creates, and ranges from calm (or low) to excited (or high). Valence, on the other
hand, is the level of pleasantness that an event generates and is de�ned along a continuum from
negative (or low) to positive (or high). According to previous work, all human emotions can be
located in this two-dimensional plane [50, 51]. For example, happiness has a high arousal and
positive valence, fear has a high arousal and negative valence, and sadness has a low arousal and
negative valence. Therefore, in this paper we will focus on valence/arousal classi�cation as a proxy
for a�ect decoding.

Fig. 1. A�ect (right) and emotion (le�) models according to the valence and arousal dimensions. A: A�ect can
be categorized as: high arousal and high valence (HAHV), high arousal and low valence (HALV), low arousal
and high valence (LAHV), and low arousal and low valence (LALV). Valence is also considered as negative
(low) or positive (high). B: Each of the four a�ect categories includes a subset of discrete emotional states.

2.2 A�ect decoding from EEG
A�ect can be reliably decoded from measurable neurophysiological activity, through BCI or other
physiological sensing devices [58, 70, 90, 111]. Physiological signals are often preferred over
behavioral signals, as they occur implicitly and are not a�ected by concealed feelings, as may be
possible, for example, in the case of users intentionally avoiding or mocking facial expressions or
other behavioral traits.
The large and increasing body of research on a�ect decoding from EEG signals, especially

concerning emotion recognition, is accounted for in recent surveys [1, 3, 98, 101]. This increase
is because electroencephalography o�ers several advantages as a�ect decoding technology, par-
ticularly its resistance to deceptive actions compared to visual or speech signals [19]. However,
the non-stationary nature of EEG recordings poses a challenge for subject-independent decod-
ing [19, 41]. Since a thorough review is not possible, nor is the goal of this work, a few relevant
works are discussed next.

Regarding the stimuli used to elicit a�ective responses, static visual contents (images) are the most
common ones [1], although recently researchers have started to consider dynamic, audiovisual
contents such as videos [29, 68, 76, 116]. Interestingly, a�ective responses elicited from dynamic
and interactive contents have been increasingly considered in broader contexts such as gaming [2,
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22, 45, 48, 97, 120] and education [8, 108, 120]. Less common are a�ective responses elicited while
performing cognitively demanding activities such as stock trading [96].

As for the a�ective measures considered, even though they are mapped to continuous values of
arousal and valence, most research maps them into binary values (i.e., low vs. high) [49]. Predicting
precise values of arousal and valence remains to be a challenging task at present [30]. Further,
depending on the application or research purposes, a�ect decoding is often considered binary
(e.g., like/dislike [29]). We can �nd previous work where a�ective responses were classi�ed into
three classes (positive, neutral, and negative) [77, 117], whereas previous research on emotion
recognition has considered four (happy, sad, fear and relaxed) [68], or even eight [62] classes.
Regarding decoding techniques, many works rely on a variety of traditional Machine Learning

algorithms. For example, Mehmood et al. [69] used a Random Forest classi�er with Hjorth features
(see Section 3.3). Deep Learning approaches have recently been explored as well [17, 96, 113, 117].
Importantly, the use of Deep Learning has its own challenges since training these models requires
a large amount of data, and unfortunately collecting EEG signals is very time-consuming and
costly [52]. To cope with these issues, previous work has suggested a myriad of data augmentation
techniques, with moderate results [16, 38, 52, 65, 66, 87, 104, 115, 117]; for example, performance
gains may only be marginal or not steady. Interesting recent work used self-supervision tech-
niques [59, 115], and contrastive learning for cross-subject emotion recognition [89]. For example,
Gilakjani and Al Osman [31] proposed a Contrastive Learning GAN-based Graph Neural Network
that increased the number of trials for emotion recognition from EEG signals. They benchmarked
the model on DEAP and MAHNOB-HCI datasets, achieving a binary classi�cation accuracy ranging
between 64.84% (valence, DEAP) and 71.69% (arousal, MAHNOB-HCI). They considered full-length
EEG signals and did not explore the role of frequency bands or temporal windows. Li et al. [55]
proposed a neural architecture search (NAS) framework for binary classi�cation of valence and
arousal based on Reinforcement Learning. They achieved around 98% binary classi�cation ac-
curacy for valence and arousal in DEAP and DREAMER [40] datasets. However they adopted a
subject-dependent approach and considered the full-length EEG signals.
Most of previous work on EEG-based a�ect decoding have been conducted using publicly

available datasets. These allow replication and reproducibility of research results, comparing e.g.,
feature engineering and classi�cation approaches [6, 49, 77]. Researchers have reported classi�cation
accuracy ranging from 65% to 80% on the SEED and DEAP datasets, depending on the selected
target variables and the feature selection procedures [62, 68]. All in all, previous work mark a trend
toward di�erent feature engineering approaches for a�ect decoding, mainly focused on models
that can predict valence and arousal values. Yet, much of this work has aimed at maximizing
classi�cation performance rather than investigating model e�ciency, which is crucial for their use
in HCI problems and other downstream applications.

2.3 Extracting a�ect-related markers from EEG
EEG signals are highly complex and multi-dimensional [39], since not only they vary temporally
according to a given stimulus, but they also include the response from di�erent electrodes (the
spatial channels). They involve non-linear brain dynamics [86] and their frequency analysis is also
relevant since it has been found that di�erent frequency bands carry discriminative information for
speci�c tasks [39]. Furthermore, EEG datasets are typically available from a small set of participants
from which brain signals were recorded during one or several experimental sessions. This makes it
challenging to train competent Machine Learning models, as modern models such as those based
on neural networks usually require large amounts of data.
In this context, it is natural to investigate which are the best and most e�cient procedures to

extract valuable information from EEG signals for a�ect decoding, and how the existing approaches
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might be in�uenced by relevant factors. From a hardware perspective, there is a concern about how
e�ective low-cost devices can be compared to clinical-grade ones [46, 78]. To cope with the inherent
di�culty of capturing and processing brain signals, multimodal hybrid systems, which include
additional signals, typically from eye tracking, have been proposed [46, 64, 105, 116]. However, they
introduce non-trivial challenges such as multi-device and multi-computer synchronization [53].
Most of the existing body of work uses speci�c frequency bands that are widely agreed to

work for speci�c tasks [39], which represents a limitation, since other potentially useful bands are
ignored by default. This can be addressed by Machine Learning approaches so that the relevant
bands are automatically attended [43, 117], although this combinatorial problem is not the focus of
our work. Davis et al. [20] proposed crowdsourcing to combine a�ect-related annotations from
multiple participants. Although interesting, they focused on using full-length signals from all
participants, and no temporal analysis was performed. Overall, intra- and inter-subject variability
is an important issue that requires speci�c mechanisms to increase transferability [85] so as to
improve the applicability in EEG and related BCI technology.
Regarding the time domain, it has been found that EEG signals are stable among di�erent ses-

sions [118], which can be seen as a form of long-term analysis. However, the short-term analysis
within a session for a single participant has not been su�ciently investigated. For Alzheimer’s
disease detection, for example, increasingly better performance has been found with longer sig-
nal lengths [100]. For motor imagery classi�cation, longer temporal windows [12] and multiple
frequency bands [91] have been found preferable. A clustering approach has been proposed for
identifying time windows for event-related potentials (ERPs) of interest [67].

Overall, determining the optimal window size for sampling has been considered a controversial
topic. We can �nd studies using widely di�erent window sizes, ranging from 1 second to 30
seconds [56]. In most of these works, the time window refers to slices or chunks of the EEG signal
that are used to extract features. Therefore, given a full-length signal, shorter time windows imply
more chunks, more features to extract, and longer feature vectors to classify. Arguably, feature
extraction is extremely consuming with very short temporal windows (2 seconds or less) [75], so
longer windows should be preferred for practical applications.

Closer to our goals, previous work has found that the last half of the EEG signals recorded while
watching videos turns out to be more discriminative a�ect-wise than other parts of the signal [49].
This is useful to inform a�ective computing systems. However, not only does this approach requires
the lengthy EEG signals being recorded, but the brain responses at a given time are a�ected by
previous exposure to a stimulus [33]. Therefore, to avoid uncontrolled carryover e�ects, our focus
is on varying lengths starting from the onset of the stimulus. Ultimately, our �ndings may have
important practical implications for the design of real-time BCI-based applications.

3 METHODOLOGY
We report experiments on two public datasets that recorded EEG data in response to emotional
videos, and compare a�ect classi�cation using di�erent Machine Learning and Deep Learning
models trained with di�erent signal lengths, window sizes, and frequency bands.

3.1 Datasets
The �rst dataset we used is DEAP [44], which is one of the most well-known publicly available
datasets in a�ective computing [6, 17, 29, 87, 106, 110]. The dataset consists of 1280 EEG recordings
from 32 participants who watched 40 music videos of 60 s duration each. Participants reported their
perceived a�ective responses in terms of arousal and valence in the [1, 9] range after watching
each video. The sample distribution over the valence/arousal plane is illustrated in Figure 2.
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Fig. 2. Distribution of EEG samples from the DEAP dataset in the valence-arousal dimensions. high arousal
and high valence (HAHV), high arousal and low valence (HALV), low arousal and high valence (LAHV), and
low arousal and low valence (LALV). Each sample represents the reported arousal and valence scores by a
participant who watched one of the music videos.

The EEG data comprises 32 channels that were downsampled to 128Hz with electroocoulogram
(EOG) artefacts removed. Also, a bandpass �lter in the 4–45Hz frequency range was applied to
remove signal noise. For example, low frequency noise comes from sources such as movement
of the head and electrode wires, and perspiration on the scalp. In contrast, high frequency noise
comes from sources including electromagnetic interference, and muscle contractions (especially
facial and neck muscles). Therefore, the dataset comprises reliable EEG data in the 4–45Hz range.
The other dataset we used is MAHNOB-HCI [92], which is also very popular for a�ective

computing tasks [32, 83, 107]. This dataset comprises EEG data from 27 participants who viewed
20 videos that lasted between 35 and 117 seconds. These participants provided valence and arousal
ratings using a discrete scale ranging from 1 to 9. The sample distribution over the valence/arousal
plane is illustrated in Figure 3. Various data sources were collected, including EEG, peripheral
physiological signals, face and body video, eye gaze, and audio. The EEG signals were recorded at a
sampling frequency of 256Hz, utilizing 32 channels.

To make both datasets comparable for our experiments, we normalized the data in the following
way. First all EEG signals were down-sampled to 128Hz. Subsequently, we employed the Artifact
Subspace Reconstruction (ASR) method [73] to remove transient and large-amplitude artifacts.
Following that, a band-pass �lter with a range of 4–45Hz was applied. Additionally, we performed
Common Average Referencing (CAR) [9] on the signals for each trial. To ensure uniform trial
lengths comparable, we excluded all MAHNOB-HCI trials with a duration of less than 1 minute
(since all DEAP trials were 1min long) and signals over 1 minute were truncated, so only the initial
60 seconds were considered. As a result, we ended up with 449 trials out of the original 537 trials in
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Fig. 3. Distribution of EEG samples from the MAHNOB-HCI dataset in the valence-arousal dimensions: high
arousal and high valence (HAHV), high arousal and low valence (HALV), low arousal and high valence (LAHV),
and low arousal and low valence (LALV). Since these ratings have discrete values from 1 to 9, radii represent
sample size: a larger radius implies more instances. For example, at (valence,arousal) = (2,9) coordinate there
is only a single instance; at the (6,4) coordinate there are 10 instances; and at the (5,1) coordinate there are 24
instances.

MAHNOB-HCI, all standardized to a signal length of 1min. Both datasets had identical channel
numbers and names, following the 10-20 standardized system for EEG [35, 41].

3.2 Experiment setup
The �rst design decision in our proposed investigation on e�cient a�ect decoding is to determine
the optimal temporal sampling window (F ) to extract features. We studyF ∈ {2, 4, 6, 10} seconds,
according to previous work [7, 42, 71, 112]. The second design decision is to determine the optimal
EEG signal length (; ), in seconds, to work with smaller signal chunks, which is de�ned as:

; = F · =, F, = ∈ N (1)
where = is a positive integer multiple of the window size, indicating the number of chunks into
which the full EEG signal can be divided, i.e. = ∈ {

1, 2, . . . , 60F
}
. In other words, for a given window

size there are = evenly spaced chunks ofF seconds each. For example, forF = 2 s we can have up to
= = 30 chunks of 2 s each, so ; can be 2, 4, 6, . . . , 60 s. Similarly, forF = 6 s we can have up to = = 10
chunks of 6 s each, so ; can be 6, 12, 18, . . . , 60 s. Equipped with this information, we experiment
with increasing values of ; until reaching the full signal value of 60 s. Figure 4 shows an example of
splitting the original signal into di�erent samples according to the selected parametersF and ; .
The next step in our data processing pipeline is to extract the frequency bands from each EEG

chunk: Theta (4–7Hz), Alpha (8–12Hz), Beta (13–30Hz), and Gamma (31+Hz) bands. For this, we
apply the Fast Fourier transform (FFT) over the selected temporal windowF and compute the Hjorth
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Fig. 4. Extracting samples (data instances) by making di�erent signal lengths given a sampling window. This
shows how we can study incrementally di�erent signal lengths with a sampling window of constant size
(here, 6 seconds). The green slices are the extracted EEG samples that we then use for a�ect decoding.

parameters (three features), spectral entropy, and signal energy. Figure 5 summarizes this process.
As detailed below (Section 3.3), the signal energy is computed in the frequency domain while the
other four features are computed in the original time domain after inverting the corresponding
�ltered Fourier transform.

Fig. 5. Extraction of the frequency bands and features from EEG data. As an example, the raw signal shown
here is a real chunk of ; = 10 seconds of the original EEG signal from the DEAP dataset.
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In sum, our design parameters are: sampling window (in seconds)F for feature extraction, signal
length (duration, in seconds) ; , and frequency band 1. By systematically examining di�erent sets
and combinations of {F, ;, 1}, we sought to �nd the optimal parameters for a�ect decoding.

3.3 Feature extraction
We use three types of features, based on previous work, that have proved to work well with EEG
signals: Hjorth Parameters [11, 30, 57, 69, 88, 102], Spectral Entropy [30, 82], and the Energy of the
Signal [88, 102], as detailed below.

3.3.1 Hjorth Parameters. Hjorth parameters [34] describe time series in terms of their power
spectrum: activity, mobility, and complexity. For a signal G (C), the power spectrum is ( (<) =
|- (<) |2, where - (<) is the discrete Fourier transform of G (C).
Hjorth activity is an indicator of the variance of the time series:

Activity = Var (G (C)) = 1
# − 1

#∑
8=1

|G8 − `G |2 (2)

where G (C) is the EEG signal, expressed as a discrete time series with # values, G8 , and `G is the
mean of the signal values.

Hjorth mobility is proportional to the standard deviation of power spectrum:

Mobility =

√√√
Var

(
3
3C G (C)

)
Var (G (C)) (3)

Finally, Hjorth complexity is an indicator of change in the signal frequency:

Complexity =
Mobility

(
3
3C G (C)

)
Mobility (G (C)) (4)

3.3.2 Spectral Entropy. The spectral entropy of a time series is an indicator of the spectral power
distribution [21]. The probability distribution of an FFT-discretized signal - (<) is % (<) = ( (<)∑

8 ( (8) .
The spectral entropy follows the de�nition of Shannon’s entropy:

� = −
#∑

<=1
% (<) log2 % (<) (5)

where # is the number of frequency points.

3.3.3 Energy of Signal. The last feature we extract from EEG signals is the Energy, calculated by
the sum of the square of the signal magnitude, which measures the strength of a time series [28]:

� =
∫ #

0
|G (C) |2 3C (6)

3.4 Classification models
According to literature reviews [30, 98], the most popular Machine Learning models for a�ect
decoding from EEG signals are classi�ers based on Support Vector Machine (SVM) and :-Nearest
Neighbors (:-NN) [29, 30, 76]. Therefore we study these two classi�ers for each combination of
our design parameters {F, ;, 1}. Additionally, we also experimented with Fully-connected Neural
Networks (FCNNs), given their increased relevance in the �eld, and Gated Transformer Networks
(GTN), a kind of state-of-the-art Deep Learning models for multivariate time series classi�cation.
Note that FCNN models are given as input the same engineered features as SVM and kNN models,
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however GTNmodels are given the raw values of each frequency band as input, from which suitable
features are automatically derived.

3.4.1 Target labels. As in the vast majority of previous work, the considered classi�cation tasks
are binary: either predict low/high arousal or low/high valence. Arousal and valence scores are
normalized in the [0, 1] range. High arousal (or valence) classes are those with scores larger than
or equal to 0.5, whereas low arousal (or valence) classes are those with scores lower than 0.5.

3.4.2 Data partitions. We randomly divide our data into training (90% of the data) and test (10%)
sets. We use strati�ed sampling to ensure that both partitions are balanced in terms of our target
classes. For the :-NN and SVM classi�ers, the training set is divided into 10 folds (validation set) for
�ne-tuning model hyperparameters. For the FCNN and GTN classi�ers, the training set is divided
into training (90% of the samples) and validation (10%) sets.

3.4.3 SVM and :-NN Models hyperparameters. In SVM classi�ers we consider the following hyper-
parameters: kernel ∈ {Linear, RBF, Polynomial, Sigmoid}, regularization parameter 0.01 ≤ � ≤ 1000,
decay of non-linear kernels 0.01 ≤ W ≤ 1000, and degree of ploynominal kernel 2 ≤ 346A44 ≤ 6. In
:-NN classi�ers, the following hyperparameters are considered: number of neighbors 1 ≤ : ≤ 20,
neighboring voting weights E ∈ {uniform, distance}, and the metric ?: Manhattan (? = 1), Eu-
clidean (? = 2) and Minkowski !? for ? > 2. Hyperparameter �ne-tuning is achieved with Bayesian
optimization [14] as part of our training pipeline, since grid search becomes unfeasible given the
combinatorial explosion of all possible values of the di�erent model hyperparameters.

3.4.4 Architecture of fully-connected FCNNs. The model consists of two hidden dense layers with
800 neurons each and tanh as activation function. Themodel also incorporates a batch normalization
layer after each dense layer for regularization, to prevent over-�tting and enhance generalization.
The output layer of the model is a single neuron with sigmoid activation, meaning that it returns
a probability and 0.5 is used to classify valence and arousal into low (? ≤ 0.5) and high (? > 0.5)
classes, respectively.
To train this model, we use the Adam optimizer with a learning rate of 10−3 and momentums

V1 = V2 = 0.99. The learning rate is scheduled with a decay of 0.01. We use a batch size of 128
samples. The loss function to minimize is the binary cross-entropy. Training is capped at a maximum
of 200 epochs, but we use early stopping with patience of 50 epochs (i.e., training will stop if the
validation loss does not improve for 50 consecutive epochs and the optimal model weights will be
retained).

3.4.5 Architecture of GTNs. This model consists of two Transformer branches [61]. The left branch
�nds spatial patterns between EEG channels, whereas the right branch �nd patterns in the temporal
domain. We use embedding layers of 256 dimensions and 8 blocks of multi-head attention + fully-
connected layers. The gating layer that merges both Transformer branches performs a weighted
concatenation that helps the model learn channel-wise and step-wise correlations.

To train this model, we use the same optimizer proposed by Liu et al. [61]: Adagradwith scheduled
learning rate 0.0001 and dropout of 0.2. We use binary cross-entropy loss, batch size of 8 samples,
and 100 epochs with early stopping of 10 epochs.

4 RESULTS
We report in Figure 6 to Figure 9 Balanced Accuracy and F-measure (F1 score, or the harmonic
mean of Precision and Recall) considering the combinations of our design parameters (window size
F , signal length ; , and frequency band 1). Balanced Accuracy and F-measure are the most popular
metrics to inform about classi�cation performance [24]. For the sake of brevity, we report results
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of the best performing model in arousal and valence classi�cation, using partial vs. full-length
EEG signals. The model con�gurations are reported in Table 1 to Table 8. Classi�cation results and
con�gurations of all the other models are reported in the Supplementary Materials.

4.1 Summary of findings on the DEAP dataset
4.1.1 Arousal classification. When considering a single frequency band and partial EEG signals,
the best classi�cation result is 70%, achieved by SVM models using the Beta band,F = 10 seconds
for feature extraction, and ; = 30 seconds of EEG signal.
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Fig. 6. Balanced accuracy (top) and F1 score (bo�om) of arousal classification with SVMs on DEAP as a
function of the EEG signal length (horizontal axis, in seconds), using di�erent sliding window sizes for feature
extraction.

Regarding classi�cation accuracy, we observed statistically signi�cant di�erences between
classi�ers (j2 (3, # = 5632) = 12.29, ? < .01). Post-hoc pairwise tests of proportions revealed that
GTN performed worse than SVM (? < .01) and no di�erences were found between SVM, :-NN, and
FCNN classi�ers. Regarding frequency bands, no statistically signi�cant di�erences were found
between individual bands and the aggregated band set (j2 (4, # = 2816) = 6.07, ? > .05). Regarding
sampling window sizeF , no statistically signi�cant di�erences were found between {2, 4, 6, 10}
seconds (j2 (3, # = 5248) = 2.47, ? > .05). Finally, regarding signal length ; , no statistically
signi�cant di�erences were found between {10, 20, . . . , 60} seconds (j2 (5, # = 2688) = 6.59, ? >
.05). All statistical tests are Bonferroni-Holm corrected, to guard against over-testing the data.

Table 1. Best performing SVM models for arousal classification in DEAP using partial EEG signals (; < 60).

SVM hyperparams

Freq. band l w kernel I $ Bal. Acc. F1 score

Theta 18 6 RBF 1000.000 0.049 0.646 0.635
Alpha 40 10 RBF 371.830 0.136 0.662 0.651
Beta 30 10 RBF 62.657 0.213 0.703 0.695
Gamma 12 4 RBF 1000.000 0.044 0.643 0.636

All bands 30 10 RBF 128.562 0.010 0.682 0.679
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Table 2. Best performing SVM models for arousal classification in DEAP using full-length EEG signals
(; = 60).

SVM hyperparams

Freq. band l w kernel I $ Bal. Acc. F1 score

Theta 60 10 RBF 109.299 0.235 0.639 0.617
Alpha 60 2 RBF 6.200 1.000 0.609 0.597
Beta 60 10 RBF 14.234 0.558 0.688 0.679
Gamma 60 10 RBF 1000.000 0.056 0.647 0.633

All bands 60 10 RBF 2.001 0.630 0.689 0.681

4.1.2 Valence classification. When considering a single frequency band and partial EEG signals,
the best classi�cation result is 65%, achieved by SVM models using the Beta band,F = 6 seconds
for feature extraction, and ; = 48 seconds of EEG signal.
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Fig. 7. Balanced accuracy (top) and F1 score (bo�om) of valence classification with SVMs on DEAP as a
function of the EEG signal length (horizontal axis, in seconds), using di�erent sliding window sizes for feature
extraction.

Regarding classi�cation accuracy, we observed statistically signi�cant di�erences between
classi�ers (j2 (3, # = 3968) = 11.41, ? < .01). Post-hoc pairwise tests of proportions revealed
that GTN performed worse than SVM (? < .001) and no di�erences were found between SVM,
:-NN, and FCNN classi�ers. Regarding frequency bands, the Beta band demonstrated comparable
performance to the combined band set (j2 (1, # = 2432) = 0.30, ? > .05), while the remaining bands
exhibited notably poorer performance (j2 (4, # = 5632) = 24.20, ? < .01). Regarding sampling
window size F , no statistically signi�cant di�erences were found between {2, 4, 6, 10} seconds
(j2 (3, # = 6656) = 2.91, ? > .05). Finally, regarding signal length ; , no statistically signi�cant
di�erences were found between {6, 12, . . . , 60} seconds (j2 (9, # = 7040) = 13.79, ? > .05). All
statistical tests are Bonferroni-Holm corrected, to guard against over-testing the data.

4.2 Summary of findings on the MAHNOB-HCI dataset
4.2.1 Arousal classification. When considering a single frequency band and partial EEG signals,
the best classi�cation result is 88%, achieved by :-NN models using the Beta band,F = 6 seconds
for feature extraction, and ; = 42 seconds of EEG signal.
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Table 3. Best performing SVM models for valence in DEAP using partial EEG signals (; < 60).

SVM hyperparams

Freq. band l w kernel I $ Bal. Acc. F1 score

Theta 16 4 RBF 5.264 1.000 0.600 0.591
Alpha 20 10 RBF 1000.000 0.072 0.586 0.584
Beta 48 6 RBF 5.749 1.000 0.656 0.651
Gamma 16 4 RBF 974.833 0.106 0.596 0.596

All bands 54 6 RBF 2.764 0.389 0.668 0.664

Table 4. Best performing SVM models for valence classification in DEAP using full-length EEG signals
(; = 60).

SVM hyperparams

Freq. band l w kernel I $ Bal. Acc. F1 score

Theta 60 4 RBF 464.061 0.203 0.566 0.558
Alpha 60 4 RBF 271.481 0.215 0.572 0.564
Beta 60 10 RBF 14.206 0.477 0.655 0.651
Gamma 60 4 RBF 1000.000 0.475 0.603 0.600

All bands 60 6 RBF 2.887 0.448 0.655 0.649
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Fig. 8. Balanced accuracy (top) and F1 score (bo�om) of arousal classification with :-NNs on MAHNOB-HCI
as a function of the EEG signal length (horizontal axis, in seconds), using di�erent sliding window sizes for
feature extraction.

Regarding classi�cation accuracy, we observed statistically signi�cant di�erences between
classi�ers (j2 (3, # = 2661) = 14.38, ? < .01). Post-hoc pairwise tests of proportions revealed
that GTN performed worse than :-NN (? < .01) and no di�erences were found between SVM,
:-NN, and FCNN classi�ers. Regarding frequency bands, the Beta band demonstrated comparable
performance to the combined band set (j2 (1, # = 585) = 2.08, ? > .05), while the remaining
bands exhibited notably poorer performance (j2 (4, # = 1485) = 32.49, ? < .01). Regarding
sampling window size F , no statistically signi�cant di�erences were found between {4, 6, 10}
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seconds (j2 (2, # = 1169) = 3.67, ? > .05) and all other comparisons yielded statistically signi�cant
results. Finally, regarding signal length ; , durations of 40 seconds or longer achieved superior
performance than shorter lengths (j2 (5, # = 945) = 63.63, ? < .01). All statistical tests are
Bonferroni-Holm corrected, to guard against over-testing the data.

Table 5. Best performing :-NN models for arousal classification in MAHNOB-HCI using partial EEG signals
(; < 60).

k-NN hyperparams

Freq. band l w k p E Bal. Acc. F1 score

Theta 20 10 1.0 1.0 distance 0.711 0.711
Alpha 50 10 4.0 1.0 distance 0.764 0.764
Beta 42 6 1.0 1.0 distance 0.883 0.883
Gamma 48 6 2.0 1.0 distance 0.836 0.836

All bands 48 6 1.0 1.0 distance 0.908 0.908

Table 6. Best performing :-NN models for arousal classification in MAHNOB-HCI using full-length EEG
signals (; = 60).

:-NN hyperparams

Freq. band l w k p E Bal. Acc. F1 score

Theta 60 10 1.0 1.0 distance 0.763 0.763
Alpha 60 10 6.0 1.0 distance 0.796 0.796
Beta 60 6 1.0 1.0 distance 0.860 0.860
Gamma 60 6 1.0 1.0 uniform 0.817 0.817

All bands 60 10 1.0 1.0 uniform 0.919 0.919

4.2.2 Valence classification. When considering a single frequency band and partial EEG signals,
the best classi�cation result is 85%, achieved by :-NN models using the Beta band,F = 6 seconds
for feature extraction, and ; = 54 seconds of EEG signal.
Regarding classi�cation accuracy, we observed statistically signi�cant di�erences between

classi�ers (j2 (3, # = 2570) = 24.68, ? < .01). Post-hoc pairwise tests of proportions revealed
that GTN performed worse than :-NN (? < .001) and no di�erences were found between SVM,
:-NN, and FCNN classi�ers. Regarding frequency bands, the Beta band demonstrated comparable
performance to the combined band set (j2 (1, # = 719) = 4.60, ? > .05), while the remaining bands
exhibited notably poorer performance (j2 (4, # = 1664) = 42.62, ? < .01). Regarding sampling
window size F , no statistically signi�cant di�erences were found between 6 and 10 seconds
(j2 (1, # = 719) = 0.62, ? > .05) and all other comparisons yielded statistically signi�cant results.
Finally, regarding signal length ; , durations of 40 seconds or longer achieved superior performance
than shorter lengths (j2 (5, # = 945) = 95.32, ? < .01). All statistical tests are Bonferroni-Holm
corrected, to guard against over-testing the data.

5 DISCUSSION
Overall, the analysis of biomedical data, in particular those generated by the human brain, is a
challenging endeavor. In this paper, we have determined the most e�ective design parameters for
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Fig. 9. Balanced accuracy (top) and F1 score (bo�om) of valence classification with :-NNs on MAHNOB-HCI
as a function of the EEG signal length (horizontal axis, in seconds), using di�erent sliding window sizes for
feature extraction.

Table 7. Best performing :-NN models for valence classification in MAHNOB-HCI using partial EEG signals
(; < 60).

:-NN hyperparams

Freq. band l w k p E Bal. Acc. F1 score

Theta 24 6 1.0 1.0 uniform 0.711 0.711
Alpha 50 10 1.0 1.0 distance 0.756 0.755
Beta 54 6 4.0 1.0 distance 0.854 0.854
Gamma 54 6 2.0 1.0 distance 0.817 0.818

All bands 54 6 2.0 1.0 distance 0.894 0.894

Table 8. Best performing :-NN models for valence classification in MAHNOB-HCI using full-length EEG
signals (; = 60).

:-NN hyperparams

Freq. band l w k p E Bal. Acc. F1 score

Theta 60 10 1.0 1.0 distance 0.770 0.769
Alpha 60 10 1.0 1.0 distance 0.767 0.766
Beta 60 6 4.0 1.0 distance 0.880 0.880
Gamma 60 6 1.0 1.0 distance 0.815 0.815

All bands 60 10 1.0 1.0 distance 0.930 0.930

a�ect decoding from videos using EEG brain signals. Our analysis shows that sampling windows
of 6 or 10 seconds outperform shorter windows, the latter being only bene�cial for FCNN and GTN
models. This observation has practical implications, as it can help researchers and practitioners
to adopt larger window sizes in order to achieve better model performance with classic Machine
Learning models. In terms of signal length, our analysis has challenged the notion for the necessity
of a complete signal analysis. Concretely, we observed that a short signal length (in our case,
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around 30 seconds) is su�cient to achieve peak performance. This is consistent with all the models
considered. In terms of frequency band analysis, we observed that best results are achieved from
either the Beta band alone or all bands combined. As discussed previously in Section 1, this �nding
has important implications for a�ect decoding, since decoding can not only be simpler to achieve
but also be computationally more e�cient.
In our experiments, Balanced Accuracy and F-measure achieved similar values, which means

that recognition performance is not biased towards one of the two classes. In practical terms, the
Precision and Recall metrics, from which the F-measure is computed, are meaningful metrics if
the cost of false positives and false negatives are di�erent in some particular application. Having
an F-measure similar to the Balanced Accuracy suggests that these costs would not be a cause for
concern in our a�ect decoding tasks.

Taken together, our �ndings suggest that a�ect decoding from EEG is possible within dynamic
real-world scenarios without having to process the full-length EEG signal associated with the
recorded stimulus and, in turn, without the user being exposed to the whole duration of such
stimulus. Therefore, our �ndings suggest that practical a�ect decoding models can rely on more
limited signal features and thus be more computationally e�cient, faster to train, and less prone to
signal variation. Based on our research �ndings, in the following we answer our research questions,
regarding a�ect decoding during dynamic content perception.

RQ1:What is the optimal EEG signal length for a�ect decoding during dynamic content perception?
Our results indicate that an EEG signal sequence lasting around 30 seconds, at most 42 seconds, is
su�cient to attain a classi�cation performance comparable to employing the full EEG signal. This
not only can save processing time to make some automated decision, but also participants’ e�ort
(at a training stage) or user e�ort (during model deployment in potential applications). Figure 10
illustrates expected bene�ts through two envisioned usage scenarios.

RQ2:What is the optimal temporal window for a�ect decoding during dynamic content perception?
Our results indicate that temporal windows of 6 and 10 seconds provide the best classi�cation
performance for classic Machine Learning models. On the contrary, modern Deep Learning models
will bene�t from using much shorter window sizes, around 2 seconds, since the resulting number of
training instanceswill bemuch larger. Therefore, in practical settings, these can be the recommended
window sizes for decoding a�ective states using di�erent models.

RQ3: Which frequency bands (or their combinations) are associated with a�ective states during
dynamic content perception? Our results indicate that a model trained on the Beta band alone
achieves similar performance than a model trained on all frequency bands. Previous work also
noted the e�ectiveness of using high-frequency bands for a�ect decoding in the context of dynamic
contents [117], but most authors argue for using all bands combined (see e.g. Zhong et al. [119]).
Our results also show that speci�c bands carry di�erent amounts of information about a�ective
states, and the Beta band alone shows comparable e�ectiveness w.r.t models using all bands. As a
result, computational e�ort can be saved by considering processing of a single or smaller set of
frequency bands, since using all bands may not always be required and processing power can be
limited in certain application and usage scenarios.
In summary, our study o�ers valuable recommendations for e�cient a�ect decoding from

EEG signals when users are exposed to dynamic contents. By selecting the most adequate design
parameters (sampling window size, signal length, and frequency band) researchers and practitioners
can �nally build computational models that are data e�cient, faster to train, and less prone to
signal noise.
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5.1 Limitations and future work
The extent to which our �ndings can extrapolate to other scenarios has some limitations. First,
DEAP and MAHNOB-HCI datasets are curated, so the selected clips are likely to elicit concrete
feelings. This can partially explain why predicting using the initial duration of the EEG signals can
already elicit the expected target a�ect (e.g. high valence) and, in turn, using a small part of the
EEG signal from its onset turns out to be remarkably discriminative.

In this work we have treated signal segments as independent instances for classi�cation, without
any constraint regarding which participant and which video they correspond to. While this is
standard practice [56, 71, 112], distinguishing those segments cross-participant or cross-video
deserves to be explored, since this may signi�cantly a�ect decoding performance [72].

We have experimented with several models that have been previously shown to perform well in
similar classi�cation scenarios, including modern representation learning techniques that learn
optimized feature representations. However, we have observed that the learned representations do
not lead to better classi�cation performance, possibly because of a data scarcity issue, which is
rather common in the research literature [1, 58].

Future work may consider crowdsourcing for obtaining further curated brain data. However, our
knowledge of how to fuse participants’ data for more reliable decoding of a�ective responses, is still
limited. Speci�cally, the potential and intriguing relationship between the number of participants
and the length of the signal required for robust decoding deserves further investigation.

Finally, additional signal modalities could also be explored, including for example peripheral sen-
sors such as heart-rate variability or electrodermal activity. Fusing these with brain-responses might
o�er a more complete picture of the physiological activity associated with a�ective experiences.

5.2 Benefits and applications
Our results can bene�t many research and application scenarios beyond standard o�ine decoding
tasks. The allowance for shorter EEG signal lengths and optimized recognition windows means
that researchers can conduct experiments faster and more e�cient than before. As a�ect decoding
performance tends to increase with longer exposure to video contents, the recorded and processed
signals might also be decided and optimized according to the speci�c contents. For example, some
contents might be more ambiguous in their a�ective signature and therefore they might require
longer EEG signals. Alternatively, a sample of the signals from a crowd of users could be used for
ensuring better consistency in the collected data.

More practically, our �ndings can help to summarize a�ective responses and therefore segment
and annotate audiovisual content according to the experiences of users. In this regard, the models
we have studied could be part of a�ect-aware adaptive systems that could operate under real-time
constraints. A practical realization of annotation and adaptation applications could be the design
of recommender systems, which could monitor users’ a�ective responses during regular content
consumption. Here, only the �rst chunks of the EEG recordings might need to be recorded or
processed, thus saving valuable storage space and processing time, and allowing Machine Learning
models to be built or updated more quickly. At recommendation time, the preferences of users
might be derived from the estimation of how they consume contents during interaction, or even
combined with other explicit requests; for example in response to a text query such as “melancholic
music”. Such practical systems could bene�t from our �ndings, as a�ective responses could be
recognized from users as a part of their everyday content consumption, without strong assumptions
on signal recording, stimuli length, or extreme control of signal noise, with a potential for novel
and better user experiences. Figure 10 illustrates two potential use cases in this regard.
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Scenario 1: Tom is quietly browsing the web at
home, while wearing an unobtrusive, plug-and-
play, user-friendly EEG headset. He is interested
in finding somemusic which fits his currentmood.
Instead of typing explicit text queries, he lets the
music recommender decode his EEG signal. In-
stead of waiting the system to record one-minute
long brain signal, the system can make online pre-
dictions in about 20 seconds, thus speeding up
the process and consequently enhancing Tom’s
leisure experience.

Scenario 2: Helen is a busy PhD student who is
recording brain signals from thirty participants in
order to test a hypothesis of how an experimental
condition influences human a�ect. She initially
planned to record 2 minutes of brain signals per
participant, but she learned that a�ect can be ef-
ficiently decoded with comparable accuracy with
shorter segments, so she decides to shorten the
recording time to 40 seconds, thus saving a signif-
icant amount of time that she will use to analyze
the data for her thesis report. The participants are
also happy since they will be wearing the EEG cap
for shorter time and will finish the task earlier.

Fig. 10. A couple of envisioned use cases, highlighting the practical benefits derived from our findings.

6 CONCLUSION
A�ect decoding is becoming a central research area in HCI, which has been conducted from various
data sources, including behavioral, physiological, and brain activity. However, our understanding
of how a�ect can be e�ciently inferred using limited data captured in response to experiencing
dynamic visual contents has remained elusive. Our results reveal that a�ective responses may be
recognizable from limited time windows and limited EEG feature representations, as they occur in
response to an exposure to dynamic stimuli. This may have impactful implications for the practical
use of our �ndings in real-world HCI applications. For example, a�ect classi�ers can be trained
more e�ciently by accounting only for a limited but signi�cant part of brain signal associated
to video-related data which contains the information that is most relevant for a�ect decoding.
This opens up avenues for real-time systems that could bene�t research practice, but also help to
understand the users’ cognitive and a�ective states when they consume information as a part of
their everyday interactions with computers.

ACKNOWLEDGMENTS
Research supported by the Horizon 2020 FET program of the European Union (BANANA, grant
CHIST-ERA-20-BCI-001), the European Innovation Council Path�nder program (SYMBIOTIK, grant
101071147), the Academy of Finland (grants 313610, 322653, 328875), and the National Science
Centre, Poland, under Grant Agreement no. 2021/03/Y/ST7/00008. This research is part of the
project PCI2021-122036-2A, funded by MCIN/AEI/10.13039/501100011033 and by the European
Union NextGenerationEU/PRTR.

REFERENCES
[1] A. Al-Nafjan, M. Hosny, Y. Al-Ohali, and A. Al-Wabil. 2017. Review and classi�cation of emotion recognition based

on EEG brain-computer interface system research: a systematic review. Appl. Sci. 7, 12 (2017), 1239.
[2] T. B. Alakus, M. Gonen, and I. Turkoglu. 2020. Database for an emotion recognition system based on EEG signals and

various computer games – GAMEEMO. Biomed. Signal Process. Control 60 (2020), 101951.
[3] S. M. Alarcao and M. J. Fonseca. 2017. Emotions recognition using EEG signals: A survey. IEEE Trans. A�ect. Comput.

10, 3 (2017), 374–393.
[4] A. Appriou, A. Cichocki, and F. Lotte. 2020. Modern machine-learning algorithms: for classifying cognitive and

a�ective states from electroencephalography signals. IIEEE Trans. Syst. Man Cybern. Syst. 6, 3 (2020), 29–38.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



1:20 K. Latifzadeh et al.

[5] R. V. Aranha, C. G. Corrêa, and F. L. Nunes. 2019. Adapting software with a�ective computing: a systematic review.
IEEE Trans. A�ect. Comput. 12, 4 (2019), 883–899.

[6] J. Atkinson and D. Campos. 2016. Improving BCI-based emotion recognition by combining EEG feature selection and
kernel classi�ers. Expert Syst. Appl. 47 (2016), 35–41.

[7] S. Bagherzadeh, K. Maghooli, A. Shalbaf, and A. Maghsoudi. 2022. Emotion recognition using e�ective connectivity
and pre-trained convolutional neural networks in EEG signals. Cogn. Neurodynamics 16, 5 (2022), 1087–1106.

[8] L. Bai, J. Guo, T. Xu, and M. Yang. 2020. Emotional Monitoring of Learners Based on EEG Signal Recognition. Procedia
Comput. Sci. 174 (2020), 364–368.

[9] O. Bertrand, F. Perrin, and J. Pernier. 1985. A theoretical justi�cation of the average reference in topographic evoked
potential studies. Electroencephalogr. Clin. Neurophysiol. 62, 6 (1985), 462–464.

[10] P. E. G. Bestelmeyer, S. A. Kotz, and P. Belin. 2017. E�ects of emotional valence and arousal on the voice perception
network. Soc. Cogn. A�ect. Neurosci. 12, 8 (2017), 1351–1358.

[11] A. M. Bhatti, M. Majid, S. M. Anwar, and B. Khan. 2016. Human emotion recognition and analysis in response to
audio music using brain signals. Comput. Hum. Behav. 65 (2016), 267–275.

[12] D. Blanco-Mora., A. Aldridge., C. Jorge., A. Vourvopoulos., P. Figueiredo., and S. Bermúdez i Badia. 2021. Finding the
Optimal Time Window for Increased Classi�cation Accuracy during Motor Imagery. In Proc. BIODEVICES. 144–151.

[13] S. Brave and C. Nass. 2007. Emotion in human-computer interaction. In The human-computer interaction handbook.
103–118.

[14] E. Brochu, V. M. Cora, and N. De Freitas. 2010. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

[15] E. A. Butler. 2017. Emotions are temporal interpersonal systems. Curr. Opin. Psychol. 17 (2017), 129–134.
[16] S. Chang andH. Jun. 2019. Hybrid deep-learningmodel to recognise emotional responses of users towards architectural

design alternatives. J. Asian Archit. Build. Eng. 18, 5 (2019), 381–391.
[17] J. Chen, P. Zhang, Z. Mao, Y. Huang, D. Jiang, and Y. Zhang. 2019. Accurate EEG-based emotion recognition on

combined features using deep convolutional neural networks. IEEE Access 7 (2019), 44317–44328.
[18] L. S. Chen and T. S. Huang. 2000. Emotional expressions in audiovisual human computer interaction. In Proc. ICME.

423–426.
[19] Y. Cimtay and E. Ekmekcioglu. 2020. Investigating the use of pretrained convolutional neural network on cross-subject

and cross-dataset EEG emotion recognition. Sensors 20, 7 (2020), 2034.
[20] K. M. Davis, L. Kangassalo, M. M. A. Spapé, and T. Ruotsalo. 2020. Brainsourcing: Crowdsourcing Recognition Tasks

via Collaborative Brain-Computer Interfacing. In Proc. CHI, Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij,
Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao,
Briane Paul Samson, and Rafal Kocielnik (Eds.). 1–14.

[21] D. Devi, S. Sophia, and S. Boselin Prabhu. 2021. Chapter 4 - Deep learning-based cognitive state prediction analysis
using brain wave signal. In Cognitive Computing for Human-Robot Interaction, Mamta Mittal, Rajiv Ratn Shah, and
Sudipta Roy (Eds.). 69–84.

[22] G. Du, W. Zhou, C. Li, D. Li, and P. X. Liu. 2023. An Emotion Recognition Method for Game Evaluation Based on
Electroencephalogram. IEEE Trans. A�ect. Comput. 14, 1 (2023), 591–602.

[23] R.-N. Duan, J.-Y. Zhu, and B.-L. Lu. 2013. Di�erential entropy feature for EEG-based emotion classi�cation. In Proc.
NER. 81–84.

[24] R. O. Duda, P. E. Hart, and D. G. Stork. 2001. Pattern Classi�cation (second ed. ed.). John Wiley & Sons.
[25] E. Du�y. 1934. Emotion: an example of the need for reorientation in psychology. Psychol. Rev. 41, 2 (1934), 184.
[26] M. Egger, M. Ley, and S. Hanke. 2019. Emotion recognition from physiological signal analysis: A review. Electron.

Notes Theor. Comput. 343 (2019), 35–55.
[27] P. C. Ellsworth and K. R. Scherer. 2003. Appraisal processes in emotion. Oxford University Press.
[28] O. Fasil and R. Rajesh. 2019. Time-domain exponential energy for epileptic EEG signal classi�cation. Neurosci. Lett.

694 (2019), 1–8.
[29] F. Feradov, I. Mporas, and T. Ganchev. 2020. Evaluation of features in detection of dislike responses to audio–visual

stimuli from EEG signals. Computers 9, 2 (2020), 33.
[30] F. Galvão, S. M. Alarcão, and M. J. Fonseca. 2021. Predicting exact valence and arousal values from EEG. Sensors 21,

10 (2021), 3414.
[31] S. S. Gilakjani and H. Al Osman. 2024. A Graph Neural Network for EEG-Based Emotion Recognition with Contrastive

Learning and Generative Adversarial Neural Network Data Augmentation. IEEE Access 12 (2024), 113–130.
[32] W. M. B. Henia and Z. Lachiri. 2017. Emotion classi�cation in arousal-valence dimension using discrete a�ective

keywords tagging. In Proc. ICEMIS. 1–6.
[33] R. N. Henson. 2003. Neuroimaging studies of priming. Prog. Neurobiol. 70, 1 (2003), 53–81.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



E�icient Decoding of A�ective States from Video-elicited EEG Signals: An Empirical Investigation 1:21

[34] B. Hjorth. 1970. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29, 3 (1970),
306–310.

[35] G. E. Holder, G. G. Celesia, Y. Miyake, S. Tobimatsu, R. G. Weleber, et al. 2010. International Federation of Clinical
Neurophysiology: recommendations for visual system testing. Clin. Neurophysiol. 121, 9 (2010), 1393–1409.

[36] W. Hu, G. Huang, L. Li, L. Zhang, Z. Zhang, and Z. Liang. 2020. Video-triggered EEG-emotion public databases and
current methods: a survey. Brain Sci. Adv. 6, 3 (2020), 255–287.

[37] M. Imani and G. A. Montazer. 2019. A survey of emotion recognition methods with emphasis on E-Learning
environments. J. Netw. Comput. Appl. 147 (2019), 102423.

[38] M. P. Kalashami, M. M. Pedram, and H. Sadr. 2022. EEG Feature Extraction and Data Augmentation in Emotion
Recognition. Comput. Intell. Neurosci. 2022 (2022).

[39] N. Kamel and A. S. Malik. 2015. EEG/ERP Analysis: Methods and Applications. CRC Press, Taylor & Francis.
[40] S. Katsigiannis and N. Ramzan. 2017. DREAMER: A database for emotion recognition through EEG and ECG signals

from wireless low-cost o�-the-shelf devices. IEEE J. Biomed. Health Inform. 22, 1 (2017), 98–107.
[41] A. Kawala-Sterniuk, N. Browarska, A. Al-Bakri, M. Pelc, J. Zygarlicki, M. Sidikova, R. Martinek, and E. J. Gorzelanczyk.

2021. Summary of over �fty years with brain-computer interfaces—a review. Brain Sci. 11, 1 (2021), 43.
[42] S.-H. Kim, H.-J. Yang, N. A. T. Nguyen, S. K. Prabhakar, and S.-W. Lee. 2021. WeDea: A new EEG-based framework for

emotion recognition. IEEE J. Biomed. Health Inform. 26, 1 (2021), 264–275.
[43] D.-H. Ko, D.-H. Shin, and T.-E. Kam. 2021. Attention-based spatio-temporal-spectral feature learning for subject-

speci�c EEG classi�cation. In Proc. BCI.
[44] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras. 2011. DEAP: A

database for emotion analysis; using physiological signals. IEEE Trans. A�ect. Comput. 3, 1 (2011), 18–31.
[45] J. Kosiński, K. Szklanny, A. Wieczorkowska, and M. Wichrowski. 2018. An Analysis of Game-Related Emotions Using

EMOTIV EPOC. In Proc. FedCSIS. 913–917.
[46] N. Kos’myna and F. Tarpin-Bernard. 2013. Evaluation and Comparison of a Multimodal Combination of BCI Paradigms

and Eye Tracking With A�ordable Consumer-Grade Hardware in a Gaming Context. IEEE Trans. Comput. Intell. AI
Games 5, 2 (2013), 150–154.

[47] M. Kostyunina and M. Kulikov. 1996. Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav.
Physiol. 26, 4 (1996), 340–343.

[48] A. Kumar and A. Kumar. 2021. DEEPHER: Human Emotion Recognition Using an EEG-Based DEEP Learning Network
Model. Eng. Proc. 10, 1 (2021).

[49] N. Kumar, K. Khaund, and S. M. Hazarika. 2016. Bispectral analysis of EEG for emotion recognition. Procedia Comput.
Sci. 84 (2016), 31–35.

[50] P. J. Lang. 1995. The emotion probe. Studies of motivation and attention. Am. Psychol. 50 (1995), 372–385.
[51] R. J. Larsen and E. Diener. 1992. Promises and problems with the circumplex model of emotion. In Review of personality

and social psychology, M. Clark (Ed.). Vol. 13. 25–59.
[52] E. Lashgari, D. Liang, and U. Maoz. 2020. Data augmentation for deep-learning-based electroencephalography. J.

Neurosci. Methods 346 (2020), 108885.
[53] K. Latifzadeh and L. A. Leiva. 2022. Gustav: Cross-device Cross-computer Synchronization of Sensory Signals. In Adj.

Proc. UIST.
[54] R. W. Levenson. 2003. Blood, sweat, and fears: The autonomic architecture of emotion. Ann. N. Y. Acad. Sci. 1000, 1

(2003), 348–366.
[55] C. Li, Z. Zhang, R. Song, J. Cheng, Y. Liu, and X. Chen. 2021. EEG-based emotion recognition via neural architecture

search. IEEE Trans. A�ect. Comput. 14, 2 (2021), 957–968.
[56] M. Li, H. Xu, X. Liu, and S. Lu. 2018. Emotion recognition from multichannel EEG signals using K-nearest neighbor

classi�cation. Technol. Health Care 26, S1 (2018), 509–519.
[57] X. Li, D. Song, P. Zhang, Y. Zhang, Y. Hou, and B. Hu. 2018. Exploring EEG features in cross-subject emotion

recognition. Front. Neurosci. 12 (2018), 162.
[58] X. Li, Y. Zhang, P. Tiwari, D. Song, B. Hu, M. Yang, Z. Zhao, N. Kumar, and P. Marttinen. 2022. EEG based Emotion

Recognition: A Tutorial and Review. ACM Comput. Surv. 55, 4 (2022).
[59] Y. Li, J. Chen, F. Li, B. Fu, H. Wu, Y. Ji, Y. Zhou, Y. Niu, G. Shi, and W. Zheng. 2022. GMSS: Graph-Based Multi-Task

Self-Supervised Learning for EEG Emotion Recognition. IEEE Trans. A�ect. Comput. 14, 3 (2022), 2512–2525.
[60] C. L. Lisetti and F. Nasoz. 2002. MAUI: a multimodal a�ective user interface. In Proc. ACM MM. 161–170.
[61] M. Liu, S. Ren, S. Ma, J. Jiao, Y. Chen, Z. Wang, and W. Song. 2021. Gated transformer networks for multivariate time

series classi�cation. arXiv preprint arXiv:2103.14438 (2021).
[62] Y. Liu and O. Sourina. 2014. EEG-based subject-dependent emotion recognition algorithm using fractal dimension. In

Proc. SMC. 3166–3171.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



1:22 K. Latifzadeh et al.

[63] I. Lopatovska and I. Arapakis. 2011. Theories, methods and current research on emotions in library and information
science, information retrieval and human–computer interaction. Inf. Process. Manag. 47, 4 (2011), 575–592.

[64] J.-M. López-Gil, J. Virgili-Gomá, R. Gil, T. Guilera, I. Batalla, J. Soler-González, and R. García. 2016. Method for
improving EEG based emotion recognition by combining it with synchronized biometric and eye tracking technologies
in a non-invasive and low cost way. Front. Comput. Neurosci. 10 (2016), 85.

[65] Y. Luo and B.-L. Lu. 2018. EEG data augmentation for emotion recognition using a conditional Wasserstein GAN. In
Proc. EMBC. 2535–2538.

[66] Y. Luo, L.-Z. Zhu, and B.-L. Lu. 2019. A GAN-based data augmentation method for multimodal emotion recognition.
In Proc. ISNN. 141–150.

[67] R. Mahini, Y. Li, W. Ding, R. Fu, T. Ristaniemi, A. K. Nandi, G. Chen, and F. Cong. 2020. Determination of the time
window of event-related potential using multiple-set consensus clustering. Front. Neurosci. 14 (2020), 521595.

[68] I. Mazumder. 2019. An analytical approach of EEG analysis for emotion recognition. In Proc. DevIC. 256–260.
[69] R. M. Mehmood, M. Bilal, S. Vimal, and S.-W. Lee. 2022. EEG-based a�ective state recognition from human brain

signals by using Hjorth-activity. Measurement 202 (2022), 111738.
[70] M. L. R. Menezes, A. Samara, L. Galway, A. Sant’Anna, A. Verikas, F. Alonso-Fernandez, H. Wang, and R. Bond. 2017.

Towards emotion recognition for virtual environments: an evaluation of EEG features on benchmark dataset. Pers.
Ubiquit. Comput. 21 (2017), 1003–1013.

[71] Z. Mohammadi, J. Frounchi, and M. Amiri. 2017. Wavelet-based emotion recognition system using EEG signal. Neural
Comput. Appl. 28, 8 (2017), 1985–1990.

[72] Y. Moreno-Alcayde, V. J. Traver, and L. Leiva. 2024. Sneaky Emotions: Impact of Data Partitions in A�ective Computing
Experiments with Brain-Computer Interfacing. Biomed. Eng. Lett. 14, 1 (2024), 103–113.

[73] T. Mullen, C. Kothe, Y.-M. Chi, A. Ojeda, T. Kerth, S. Makeig, G. Cauwenberghs, and T.-P. Jung. 2013. Real-time
modeling and 3D visualization of source dynamics and connectivity using wearable EEG. In Proc. EMBC. 2184–2187.

[74] D. A. Norman. 2004. Emotional design: Why we love (or hate) everyday things. Civitas Books.
[75] D. Ouyang, Y. Yuan, G. Li, and Z. Guo. 2022. The E�ect of Time Window Length on EEG-Based Emotion Recognition.

Sensors 22, 13 (2022), 4939.
[76] M. S. Özerdem and H. Polat. 2017. Emotion recognition based on EEG features in movie clips with channel selection.

Brain Inform. 4, 4 (2017), 241–252.
[77] E. S. Pane, A. D. Wibawa, and M. H. Pumomo. 2018. Channel selection of EEG emotion recognition using stepwise

discriminant analysis. In Proc. CENIM. 14–19.
[78] V. Peterson, C. Galván, H. Hernández, and R. Spies. 2020. A feasibility study of a complete low-cost consumer-grade

brain-computer interface system. Heliyon 6, 3 (2020), e03425.
[79] R. W. Picard. 2000. A�ective computing. MIT press.
[80] R. W. Picard and J. Klein. 2002. Computers that recognise and respond to user emotion: theoretical and practical

implications. Interact. Comput. 14, 2 (2002), 141–169.
[81] R. W. Picard, E. Vyzas, and J. Healey. 2001. Toward machine emotional intelligence: Analysis of a�ective physiological

state. IEEE Trans. Pattern Anal. Mach. Intell. 23, 10 (2001), 1175–1191.
[82] M. A. Rahman, M. F. Hossain, M. Hossain, and R. Ahmmed. 2020. Employing PCA and t-statistical approach for

feature extraction and classi�cation of emotion from multichannel EEG signal. Egypt. Inform. J. 21, 1 (2020), 23–35.
[83] S. Rayatdoost, D. Rudrauf, and M. Soleymani. 2020. Expression-guided EEG representation learning for emotion

recognition. In Proc. ICASSP. 3222–3226.
[84] J. A. Russell. 1980. A circumplex model of a�ect. J. Pers. Soc. Psychol. 39, 6 (1980), 1161.
[85] S. Saha and M. Baumert. 2019. Intra- and Inter-subject Variability in EEG-based Sensorimotor Brain Computer

Interface: A Review. Frontiers Comput. Neurosci. 13 (2019), 87.
[86] S. Saha, K. A. Mamun, K. Ahmed, R. Mostafa, G. R. Naik, S. Darvishi, A. H. Khandoker, and M. Baumert. 2021. Progress

in brain computer interface: challenges and opportunities. Front. Syst. Neurosci. 15, 578875 (2021).
[87] E. S. Salama, R. A. El-Khoribi, M. E. Shoman, and M. A. W. Shalaby. 2018. EEG-based emotion recognition using 3D

convolutional neural networks. Int. J. Adv. Comput. Sci. Appl. 9, 8 (2018).
[88] L. Shaw and A. Routray. 2016. Statistical features extraction for multivariate pattern analysis in meditation EEG using

PCA. In Proc. ISC. 1–4.
[89] X. Shen, X. Liu, X. Hu, D. Zhang, and S. Song. 2023. Contrastive Learning of Subject-Invariant EEG Representations

for Cross-Subject Emotion Recognition. IEEE Trans. A�ect. Comput. 14, 3 (2023), 2496–2511.
[90] L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu, and X. Yang. 2018. A review of emotion recognition using

physiological signals. Sensors 18, 7 (2018), 2074.
[91] N. Singh Malan and S. Sharma. 2021. Time window and frequency band optimization using regularized neighbourhood

component analysis for Multi-View Motor Imagery EEG classi�cation. Biomed. Signal Process. Control 67 (2021),
102550.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



E�icient Decoding of A�ective States from Video-elicited EEG Signals: An Empirical Investigation 1:23

[92] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic. 2011. A multimodal database for a�ect recognition and implicit
tagging. IEEE Trans. A�ect. Comput. 3, 1 (2011), 42–55.

[93] T. Song, W. Zheng, P. Song, and Z. Cui. 2020. EEG Emotion Recognition Using Dynamical Graph Convolutional
Neural Networks. IEEE Trans. A�ect. Comput. 11, 3 (2020), 532–541.

[94] H. A. Spelt, J. H. Westerink, L. Frank, J. Ham, and W. A. IJsselsteijn. 2022. Physiology-based personalization of
persuasive technology: a user modeling perspective. User Model. User-Adapt. Interact. 32, 1 (2022), 133–163.

[95] N. Thammasan, K.-i. Fukui, and M. Numao. 2016. Application of deep belief networks in EEG-based dynamic
music-emotion recognition. In Proc. IJCNN. 881–888.

[96] S. Thejaswini, K. M. R. Kumar, and A. N. J. L. 2019. Analysis of EEG based emotion detection of DEAP and SEED-IV
databases using SVM. In Proc. ICETSE.

[97] E. P. Torres, E. A. Torres, M. Hernández-Álvarez, and S. G. Yoo. 2021. Real-Time Emotion Recognition for EEG Signals
Recollected from Online Poker Game Participants. In Proc. Advances in Arti�cial Intelligence, Software and Systems
Engineering, Tareq Z. Ahram, Waldemar Karwowski, and Jay Kalra (Eds.). 236–241.

[98] E. P. Torres, E. A. Torres, M. Hernández-Álvarez, and S. G. Yoo. 2020. EEG-based BCI Emotion Recognition: A Survey.
Sensors 20, 18 (2020), 5083.

[99] V. J. Traver, J. Zorío, and L. A. Leiva. 2021. Glimpse: A Gaze-Based Measure of Temporal Salience. Sensors 21, 9 (2021).
[100] K. D. Tzimourta, N. Giannakeas, A. T. Tzallas, L. G. Astrakas, T. Afrantou, P. Ioannidis, N. Grigoriadis, P. Angelidis,

D. G. Tsalikakis, and M. G. Tsipouras. 2019. EEG Window Length Evaluation for the Detection of Alzheimer’s Disease
over Di�erent Brain Regions. Brain Sci. 9, 4 (2019).

[101] K. P. Wagh and K. Vasanth. 2019. Electroencephalograph (EEG) based emotion recognition system: A review. Innov.
Electron. Commun. Eng. 33 (2019), 37–59.

[102] K. P. Wagh and K. Vasanth. 2022. Performance evaluation of multi-channel electroencephalogram signal (EEG) based
time frequency analysis for human emotion recognition. Biomed. Signal Process. Control 78 (2022), 103966.

[103] J. Wagner, J. Kim, and E. André. 2005. From physiological signals to emotions: Implementing and comparing selected
methods for feature extraction and classi�cation. In Proc. ICME. 940–943.

[104] F. Wang, S.-h. Zhong, J. Peng, J. Jiang, and Y. Liu. 2018. Data augmentation for EEG-based emotion recognition with
deep convolutional neural networks. In Proc. MMM. 82–93.

[105] P. Wang, Z. Song, H. Chen, T. Fang, Y. Zhang, X. Zhang, S. Wang, H. Li, Y. Lin, J. Jia, L. Zhang, and X. Kang. 2021.
Application of Combined Brain Computer Interface and Eye Tracking. In Proc. BCI.

[106] Z.-M. Wang, S.-Y. Hu, and H. Song. 2019. Channel selection method for EEG emotion recognition using normalized
mutual information. IEEE Access 7 (2019), 143303–143311.

[107] M. B. H. Wiem and Z. Lachiri. 2017. Emotion classi�cation in arousal valence model using MAHNOB-HCI database.
Int. J. Adv. Comput. Sci. Appl. 8, 3 (2017).

[108] T. Xu, Y. Zhou, Z. Wang, and Y. Peng. 2018. Learning Emotions EEG-based Recognition and Brain Activity: A Survey
Study on BCI for Intelligent Tutoring System. Procedia Comput. Sci. 130 (2018), 376–382.

[109] X. Xu, F. Wei, Z. Zhu, J. Liu, and X. Wu. 2020. EEG feature selection using orthogonal regression: Application to
emotion recognition. In Proc. ICASSP. 1239–1243.

[110] J. Yan, S. Chen, and S. Deng. 2019. A EEG-based emotion recognition model with rhythm and time characteristics.
Brain Inform. 6, 1 (2019), 1–8.

[111] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang. 2007. A survey of a�ect recognition methods: audio, visual and
spontaneous expressions. In Proc. ICMI. 126–133.

[112] J. Zhang, M. Chen, S. Zhao, S. Hu, Z. Shi, and Y. Cao. 2016. ReliefF-based EEG sensor selection methods for emotion
recognition. Sensors 16, 10 (2016), 1558.

[113] Y. Zhang, J. Chen, J. H. Tan, Y. Chen, Y. Chen, D. Li, L. Yang, J. Su, X. Huang, and W. Che. 2020. An investigation of
deep learning models for EEG-based emotion recognition. Front. Neurosci. 14 (2020), 622759.

[114] Y. Zhang, G. Yan, W. Chang, W. Huang, and Y. Yuan. 2023. EEG-based multi-frequency band functional connectivity
analysis and the application of spatio-temporal features in emotion recognition. Biomed. Signal Process. Control 79
(2023), 104157.

[115] Z. Zhang, S.-h. Zhong, and Y. Liu. 2023. GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition. IEEE Trans. A�ect. Comput. 14, 3 (2023), 2048–2063.

[116] W.-L. Zheng, B.-N. Dong, and B.-L. Lu. 2014. Multimodal emotion recognition using EEG and eye tracking data. In
Proc. EMBC. 5040–5043.

[117] W.-L. Zheng and B.-L. Lu. 2015. Investigating Critical Frequency Bands and Channels for EEG-based Emotion
Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 7, 3 (2015), 162–175.

[118] W.-L. Zheng, J.-Y. Zhu, and B.-L. Lu. 2019. Identifying Stable Patterns over Time for Emotion Recognition from EEG.
IEEE Trans. A�ect. Comput. 10, 3 (2019), 417–429.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



1:24 K. Latifzadeh et al.

[119] P. Zhong, D. Wang, and C. Miao. 2022. EEG-based Emotion Recognition Using Regularized Graph Neural Networks.
IEEE Trans. A�ect. Comput. 13, 3 (2022), 1290–1301.

[120] Y. Zhou, T. Xu, S. Li, and R. Shi. 2019. Beyond Engagement: An EEG-Based Methodology for Assessing User’s
Confusion in an Educational Game. Univers. Access Inf. Soc. 18, 3 (2019), 551–563.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2024.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.


