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Attentive Sequence-to-Sequence Modeling of Stroke
Gestures Articulation Performance

Lokesh Kumar T. and Luis A. Leiva

Abstract—Production time of stroke gestures is a fundamental
measure of user performance with Graphical User Interfaces.
However, production time represents an overall quantification
of the user’s gesture articulation process and therefore pro-
vides an incomplete picture of such process. Moreover, previ-
ous approaches assumed stroke gestures as synchronous point
sequences, when most gesture-driven applications have to deal
with asynchronous point sequences. Furthermore, deep generative
models of human handwriting ignore the temporal information,
thereby missing a key component of the user’s gesture artic-
ulation process. To solve these issues, we introduce DITTO, a
sequence-to-sequence deep learning model that estimates the
velocity profile of any stroke gesture using spatial information
only, providing thus a fine-grained estimation of the moment-by-
moment behavior of the user’s articulation performance. We show
that this unique capability makes DITTO remarkably accurate
while handling gestures of any type: unistrokes, multistrokes,
and multitouch gestures. Our model, code, and associated web
application are available as open source software.

Index Terms—Stroke Gestures; Touch Gestures; Human Per-
formance; Time Estimation; Deep Learning

I. INTRODUCTION

STROKE gestures (also known as touch, pen, stylus, finger,
ink, or handwritten gestures) represent two-dimensional

trajectories as pathlines and curves that make up geometric
symbols which are mapped to specific actions and user in-
terface commands. Stroke gestures are increasingly becoming
a predominant input modality in today’s graphical user inter-
faces (GUIs). Compared to traditional input techniques based
on item selection from menus, stroke gestures are not only
faster, but they also reduce users’ cognitive load and visual
attention [1] and increase usability [2].

Research in Human-Computer Interaction (HCI) has
demonstrated the practical convenience and utility of employ-
ing stroke gestures as efficient shortcuts to access system
functions [3] or specific applications [4]. For example, drawing
an ‘S’ shape on a mobile phone screen can be used to search
in the address book [3] or speed-dial some contacts. More re-
cently, the massive online game ‘Harry Potter: Wizards Unite’
required players to draw stroke gestures to create spells and
defeat enemies [5]. Stroke gestures also represent an effective
input modality for users with low vision to interact with mobile
devices [6] by providing a practical alternative to selecting
touch targets that are challenging to see on small screens or
that cannot be selected by visually-impaired users [7].
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Yet another direction of previous research has demonstrated
the viability of stroke gesture input for user authentication [8]
and biometrics [9]. Fundamentally, research on stroke gesture
input has made possible new text entry techniques for mobile
devices, such as shape-writing [10], ubiquitous on today’s
smartphones.

Designing stroke gestures often involves user studies and
experiments in an iterative design process consisting of pro-
totyping, implementation, verification, and validation steps.
Gestures should be recognized robustly by a computer [11]
and, at the same time, they should represent a good fit to
the functions they effect [12], be easy to articulate [13] and
straightforward to recall by users [14]. Despite the practical
benefits of involving actual users in this process, conducting
user studies and experiments to collect gesture data and
inform design takes an important amount of time, effort, and
resources [15], which unnecessarily delays the launch date of
software applications.

Modeling stroke gestures, therefore, is an important and
challenging task. Instead of recruiting users for controlled
studies, the alternative option for GUI designers and prac-
titioners is to rely on computational models of human per-
formance with stroke gesture input [16]–[19]. Such models
and their associated prediction techniques can save precious
time and provide insightful information about suitable gesture
commands right from the very early stages of design. To begin
with, having such estimations would represent a valuable asset
for practitioners, enabling them to explore various gesture set
designs with minimum effort.

Our approach makes it possible to anticipate how gestures
are likely to be executed by end users, assuming no more
information than a sequence of (x, y) points. A practical use
case is illustrated in Figure 1. Imagine a GUI designer willing
to implement a gesture to trigger a delete command and they
are unsure whether to use either a ‘d’ or a ‘Z’ letter shape. By
having a moment-by-moment estimator of gesture articulation,
they can foresee the temporal evolution of the articulation
process and make an informed decision about the suitability
of such gesture candidates. For example, as shown in the
figure, the first stroke of the ‘d’ letter is executed very quickly
(200 ms) and with more determination than the remaining
stroke. This behavior is also observed in the second and third
sub-movements of the ‘Z’ letter, which is stereotypical of a
planned action, or aimed movement. Aimed movements are
goal-directed [20] and performed almost without thinking [21],
therefore they are preferred since they are easier to perform.
The designer concludes that the ‘Z’ shape should be used to
trigger the delete command.

Other similar examples can be easily imagined by the
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Fig. 1: Screenshots of our companion web application. DITTO
takes any stroke gesture, defined as a sequence of consecutive
(x, y) points, and computes the most probable moment-by-
moment articulation, thereby providing detailed information
about such articulation beyond its (overall) production time.
Users can upload their own gestures in JSON format.

reader, such as predicting the perceived user’s articulation
difficulty [13] or quantifying variation in gesture input [22].
Overall, predictive models of gesture production time can
help the design and evaluation of existing or future gesture
interfaces by quantitatively predicting their a-priori efficiency,
before running any user studies. In sum, predictive models of
stroke gesture articulation can save both precious time and
cost, by allowing HCI stakeholders (e.g. GUI designers, de-
velopers, researchers, and practitioners) to anticipate plausible
performance results with a particular set of gestures.

A. Contributions and Applications

Current state-of-the-art computational models of stroke ges-
tures production time have relied on the Kinematic Theory [23]
to produce overall estimations of production times [18], [22],
assuming synchronous sequences of 2D points with associated
timestamps. However, in most gesture-driven applications, in-
cluding web-based and smartphone-based, the point sequences
captured by the application are asynchronous, i.e. the sam-
pling rate is not constant.1 Moreover, in many stroke gesture
datasets the temporal information is missing [25] and even
corrupted [26], so previous models like KeyTime [18] and
GATO [22] cannot be used to estimate production times in
those cases, at least not directly.2

To address these issues, we have developed DITTO (Deep
tIme esTimaTOr), a sequence-to-sequence deep learning
model that estimates the velocity profile of any stroke gesture

1In web development, for example, browser events are placed in an event
queue and the browser dispatches these events at unpredictable times [24] by
invoking any established handlers.

2When timing information is missing or corrupted, previous techniques
can only assume a synchronous, fixed sampling rate. This is actually a
workaround, to help circumventing those cases in practice.

using spatial information as only input, providing thus a fine-
grained analysis of the moment-by-moment behavior of user’s
articulation performance. Our model can handle asynchronous
stroke gestures with remarkable accuracy, thereby providing
a comprehensible picture of stroke gesture articulation. Also
importantly, DITTO opens the door to using modern syn-
thetic data generation techniques such as GPSR [25] and
SketchRNN [27], which ignore the temporal information, to
produce a complete picture of human-like artificial samples.

We foresee several applications of DITTO, among which we
should emphasize the following ones:

1) Analysis tool: Understanding stroke gesture articulation
performance beyond overall production times.

2) Recovery method: Fixing datasets where the temporal
information is missing, corrupted, or ill-estimated.

3) Augmentation aid: Complementing the output of gener-
ative models with plausible temporal information.

In sum, DITTO substantially advances the state of the art
and represents the only general-purpose, comprehensive, and
detailed production time estimation model for stroke gesture
input. DITTO can be accessed as a web application and as
a web service (RESTful API), so it can be easily integrated
with third party apps; e.g. as a software plugin of a GUI design
program such as Sketch3 or Figma.4

II. RELATED WORK

Velocity profiles (Figure 1) are asymmetric bell-shaped
curves generally observed in human handwriting, including
gesturing and sketching, as well as in other rapid movements
such as head and eye movements [23], [28]. Velocity profiles
are thus a key component in human movement analysis to
understand the organization and production of such move-
ments, including those involved in the articulation of stroke
gestures. From a practical perspective, human handwriting
models based on velocity profiles not only provide a para-
metric description of movement signals, but they can also be
used to segment complex movements and to compress and
store data efficiently [29].

The Kinematic Theory [23], [30] is a very popular frame-
work to synthesize and analyze human handwriting with the
so-called Sigma-Lognormal (ΣΛ) model [28]. However, prac-
tical applications of the Kinematic Theory in HCI have been
primarily directed at generating gesture data [6], [25], [31] and
estimating gesture production times [18], [22]. These models
enforce a synchronous stream of 2D coordinates as input, for
which they resample the data to a constant sampling rate [31].
In contrast, DITTO operates over the original (unmodified)
stroke data.

A. Stroke Gestures

Simple forms of stroke-based input, such as pointing and
item selection from menus, have been studied using Fitts’
law [32] and its several variations. However, more complex
stroke input, such as handwriting, shape-writing, or free-form

3https://www.sketch.com/
4https://www.figma.com/

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



3

gesture paths, requires more sophisticated models to character-
ize human performance effectively. A comprehensive survey
in this area is provided by Müller et al. [33]. Interestingly,
in a cross-cultural study involving forty people from nine
countries, Mauney [34] noticed that the most common gesture
for the “Print” function was drawing a letter, though the
cultural background of the participants had a strong influence
on the choice of the gestures overall, e.g., Chinese participants
employed symbolic gestures more frequently than participants
from other countries. In a large-scale in-the-wild study with
388 participants, Poppinga et al. [35] observed that mobile
users preferred to use symbolic and letter-shaped gestures for
launching mobile apps.

There are many ways to produce a stroke gesture depending
on the number of strokes or the number of fingers and
hands touching the screen. For example, common touchscreen
technology found in commodity smartphones and tablets can
detect multiple discrete touch points at once, which enables
practitioners to access a rich design space of unistrokes,
multistrokes, multitouch, and bimanual gestures for their user
interfaces and applications. In addition, expert gesture designs
often involve the use of multiple fingers [36], various finger
parts [37], or even the entire hand for expressive input [38].
At the same time, users are known for exhibiting variations
in articulating multistroke and multitouch gestures in terms of
the number of strokes and fingers touching the screen [39]
especially when there are no constraints imposed. Therefore,
an ideal human performance estimation technique should be
able to handle all sorts of measurable variation in stroke
gesture input.

B. User Performance with Stroke Gesture Input

Early work by Isokoski [17] proposed a very simple model
based on line counting to estimate handwriting time. Unfor-
tunately, this model makes no specific time quantification for
a given gesture. Instead, the model is useful for computing
a relative ranking of a given set of gestures, provided that
they are distinct enough. For example, Isokoski’s model would
predict no difference between the letters ‘L’, ‘T’, ‘V’, and ‘X’,
as all of them have the same number of lines. However, ‘L’
and ‘V’ are drawn with a single stroke, whereas ‘T’ and ‘X’
are drawn with two strokes, so the latter letters usually take
more time and effort to draw that the formers.

Cao and Zhai’s CLC model [16] was specifically designed to
estimate the magnitudes of production time for unistroke ges-
tures. The CLC model operates by dividing the gesture shape
into curves, lines, and corners, for which production times
are estimated separately. The resulting time for a particular
gesture is computed as the sum of the individual production
times needed to articulate each of the gesture’s elementary
curves, lines, and corners. The CLC model works very well
as a first-order estimator, however it can only provide a single
estimation value, which is insufficient to characterize the
variation in gesture articulation within and between users [40]
(low flexibility). Also, CLC is known to overestimate the
actual magnitudes of production times [16] (low accuracy),
presumably because it doesn’t compensate for user articulation

skills. To address these issues, Leiva et al. [18] introduced
KeyTime, a technique that works for unistroke gestures and
accepts free-form drawing as input, and GATO [22], an
extension of KeyTime for multistroke and multitouch gestures.
However, as stated previously, these techniques provide an
overall estimation of a gesture’s production time and assume
synchronous spationtemporal sequences. And if the temporal
information is missing or corrupted, these techniques can only
resample the original data assuming a constant frequency.

Gesture features and measures have also been used to inform
the design of gesture sets. For example, Long et al. [41] were
interested in gesture shapes that would be easy for users to
learn and recall. Researchers have employed other gesture
measures to understand differences in performance between
users or between input conditions. For example, Vatavu et
al. [40] used relative accuracy measures to quantify deviations
from “ideal” gesture shapes or templates from a training set.
Such gesture measures have proven very useful to characterize
various aspects of stroke gesture input as well as to inform
gesture-based user interface design. However, another line
of work has focused on a more fundamental understanding
of human movements during stroke gesture production by
relating to key aspects from the motor control theory. We
discuss this work in the following section.

C. Human Movement Models

Viviani et al. [42] were among the first to investigate
the fundamental aspects of human handwriting and drawing
behavior. Since then, a fruitful line of research has been the
application of minimization principles to motor control, such
as Flash and Hogan’s Minimum-Jerk Theory [43]. Further
investigations showed that lognormal-based models, such as
those postulated by the Kinematic Theory [23], [44], are
arguably the most accurate descriptors of human movements
known today [45], compared to which “other models can be
considered as successive approximations” [46]. Actually, it
has been shown that the concepts postulated by the Minimum-
Jerk Theory and the Kinematic Theory are linked and describe,
with different arguments, a model of velocity profiles [47].

Finally, we should mention the gesture path stochastic
resampling (GPSR) technique [25], which is strongly focused
on rapid GUI prototyping, is computationally efficient, and
has minimal coding overhead. However, GPSR does not syn-
thesize timestamps, thereby precluding a fine-grained analysis
of handwriting behavior. Overall, current generative models
of human handwriting ignore the temporal component; c.f.
SketchRNN [27] or FG-SBIR [48] to name some recent ex-
amples. This is presumably so because there is a fundamental
issue from a modeling perspective: the same spatial trajectory
can be articulated in several ways. For example, even after
years of practice, the same handwritten trace executed twice
will probably be different due to the inherent variability of our
motor control system. Ultimately, so, time is a fundamental
component of human movement. Thus, ignoring the temporal
component provides an incomplete picture for researchers
trying to create accurate models of human movement behavior.
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III. SYSTEM OVERVIEW

Using the spatial information of a handwriting movement
(represented as a sequence of 2D points) as sole input data,
DITTO learns an internal representation that decodes the
latent temporal information, which is “hidden” in the input
sequence. At the technical level, DITTO estimates the most
probable time offset (in milliseconds) between two consecutive
spatial coordinates. As a result, DITTO generates the expected
velocity profile of such an input sequence. This task can be
formulated as a sequence-to-sequence learning problem and
thus can be effectively solved using modern deep learning
techniques.

DITTO follows an encoder-decoder architecture, as shown
in Figure 2. The core component of our computational model
is the Long Short Term Memory (LSTM) network, a specific
type of recurrent neural net (RNN) that can handle long-term
non-linear dependencies within the data. RNNs are networks
with loops, allowing information to persist, and have been
successfully used in a variety of problems, from speech
recognition to language modeling, machine translation, and
image captioning. However, a particularly annoying issue with
RNNs is that they can run quickly into vanishing gradient
problems.5 The LSTM network was designed to solve this
issue and so, since stroke gestures are of sequential nature by
definition, it seemed natural for us to use the LSTM network
to model the articulation of stroke gestures.

Output sequence y = (x, y, t)τ
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Fig. 2: System architecture of DITTO. The encoder transforms
the input sequence x into a sequence of hidden representations,
which the decoder extracts through an attention mechanism
and generates the output sequence y autoregressively for every
timestep τ . FC stands for ‘Fully Connected’ layer.

As observed in Figure 2, we stack several LSTM layers
in order to increase the learning capability of DITTO, by
feeding the last LSTM layer with the hidden states of the
previous LSTM layer. The final number of LSTM layers is
determined in a later experiment; see Section V. We use
L2 weight regularization (weight decay) with α = 10−3 to
prevent overfitting. Further, to stabilize training and improve

5In neural networks, information back-propagates during training in the
form of error/loss gradients (partial derivatives) to update the network weights
accordingly. When gradients are very small, information gain will eventually
become zero as they flow back to earlier layers, resulting in a lack of learning.

convergence, we use residual connections [49] and clipnorm
of 1.0, the latter value being widely used to avoid exploding
gradients. We also add a Dropout layer right before the decoder
output with drop rate of 0.5, which means that 50% of the
neurons are randomly dropped during training. This increases
the generalization capability of our model. Finally, we train
DITTO with the popular Adam optimizer, using learning rate
η = 0.001 and momentum terms β1 = 0.9, β2 = 0.999. We set
a maximum number of 100 epochs but use early stopping with
patience of 20 epochs while monitoring the validation loss, i.e.,
training ends as soon as no further gains in performance are
achieved in 20 consecutive epochs.

In order to speed up training on a single GPU card, we set a
maximum sequence length of 100 timesteps per stroke, which
is larger than the median gesture length in the datasets we
have tested (Section IV). Without this fixed length, we would
have to use very small batch sizes for training, in order to
account for outliers and exceedingly large gestures, thereby
unnecessarily slowing down the training process.

A. From Spatial Encoding to Temporal Decoding

At each timestep τ , DITTO processes a 5-dimensional vector
(∆x,∆y, p1, p2, p3), where the first two components represent
the spatial offset, or displacement, from the previous position
in the horizontal (x) and vertical (y) axes, respectively, and the
last three components represent a one-hot encoded vector of
3 possible pen tip states [27]. The first pen state, p1, indicates
that the pen is currently touching the paper and that a line will
be drawn connecting the next point with the current point. The
second pen state, p2, indicates that the pen will be lifted from
the paper after processing the current point and that no line
will be drawn afterwards. The final pen state, p3, indicates that
the drawing has ended and that subsequent points, including
the current point, will not be further considered. By using such
one-hot encoded pen states, the decoder can better anticipate
the end of a stroke, which is particularly helpful for modeling
multistroke gestures. The decoded output sequence follows a
similar formulation but predicts a temporal offset ∆t, therefore
the decoder produces a 4-dimensional vector (∆t, p1, p2, p3).

For the input layer of the encoder network, we used the
bidirectional LSTM variant (BLSTM) which takes as input
the concatenation of the input sequence in both forward and
backward direction (hence the bidirectional name), because
BLSTMs can learn representations from both past and future
timesteps. This contributes to a better understanding of the
sequence context and thus can eliminate potential ambiguities.
In our experiments, we have observed little difference between
stacking 3 BLSTM layers and using only one BLSTM layer
followed by 2 LSTM layers, therefore we decided not to use
more than one BLSTM and keep the model simple. The output
of the encoder network is a fixed latent vector which is then
passed to the decoder network, i.e., the cell states of the input
layer of the decoder network are initialized with the cell states
of the output layer of the encoder network; see Figure 2. The
decoder network is also a stacked deep LSTM network, with
the same specifications as the encoder network plus a self-
attention mechanism, which we describe in the next section.
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B. Attention Mechanism

The encoder-decoder architecture enables the use of re-
current neural networks to address challenging sequence-
to-sequence problems. One of the main limitations of this
architecture is that the decoder is initialized with a fixed-
length latent vector so it is easy to lose information and
perform worse while decoding longer sequences. Attention
is a popular extension to mitigate this issue. With attention,
DITTO can provide a richer encoding of the input sequence
from which to construct a context vector that can then be used
by the decoder network. This allows the model to learn what
parts of the input sequence to pay attention to (and to what
degree) during the prediction of the output sequence. Currently
there are several popular attention “flavors”, depending on the
task or problem at hand. For sequential data, we can mention
local [50] and global [51] attention. Overall, global attention
is a simplification of local attention and sometimes achieves
better results [51]. For this reason, we decided to use global
attention in DITTO. The main difference between them is how
to score the alignment between decoder input and encoder
outputs. Both local and global attention have proved very
successful in machine translation tasks. The computer vision
community differentiates between soft and hard attention,
which essentially are equivalent to global and local attention,
respectively [52]. A third category is that of self-attention [53],
which focuses on different positions of the input sequence to
compute a representation of the same sequence. It has been
shown to be very useful in machine reading and summarization
tasks.

As mentioned previously, DITTO implements global atten-
tion, where every encoder state and all decoder states prior
to the current state are taken into account to compute the
alignment weights. Let hτ represent the hidden state vector
of the encoder network at timestep τ . Given that our encoder
network begins with a BLSTM network, there are 2 hidden
state vectors at each timestep, corresponding to the forward
(
−→
hτ ) and backward (

←−
hτ ) directions. Therefore, the effective

hidden state of the encoder is the concatenation of both
hidden state vectors. Our decoder network has hidden state
sτ = f(sτ−1, yτ−1, cτ ) for the output sequence at timestep τ ,
where the final output of the encoder is kept as context vector
cτ :

cτ =

T∑

j=1

aτjhj (1)

where each weight aτj is the amount of attention paid to the
corresponding encoder output hj , which is computed using
(1) the last hidden state sτ−1 and hj , marginalizing over all
hidden states, and (2) a feedforward neural network that is
jointly learned with the rest of the model.

C. Loss Function

DITTO uses a dual-objective loss function for end-to-end
training of both the encoder and decoder networks:

L = ℓMSE + ℓstate (2)

where ℓMSE is the mean squared error loss between the true
time offset ∆t and the predicted time offset ∆̂t, and ℓstate is
the cross-entropy loss between the true pen state pi and the
predicted pen state probability qi, respectively:

ℓMSE =
1

|x|
T∑

τ=1

(∆t− ∆̂t)2τ (3)

ℓstate =
1

|x|
T∑

τ=1

(
−

3∑

i=1

pi log qi

)
(4)

where x denotes a stroke sequence with τ timesteps. This loss
function is jointly optimized so that at every timestep DITTO
predicts the most likely temporal offset between consecutive
coordinates, guided by the most probable pen state. We delib-
erately omit the τ sub-index in Equation 4 for the variables
pi and qi in order to make the equation more readable.

IV. EVALUATION

We evaluate the performance of DITTO on a variety of
datasets and a wide range of stroke gesture types, aimed at
covering the full spectrum of stroke gestures; i.e., unistrokes,
multistrokes, and multitouch gestures. Figure 3 and Table I
provide an overview of these.

A. Gesture Datasets

In the following we describe the public datasets we used for
evaluation. They include examples of both simple and complex
gestures, produced with different devices and under different
execution speeds. Taken together, these datasets constitute a
relevant testbed for conducting replicable research on stroke
gestures.

1) The GDS6 dataset comprises 4, 800 samples of 16 distinct
unistroke gestures (see Figure 3a) performed by 10
participants with a stylus on an iPAQ Pocket PC [54].
Because participants were asked to articulate gestures at
three different speeds (slow, medium, and fast), we split
the dataset according to each articulation speed in our
analysis:

a) GDS-fast: 1, 600 gestures performed by all participants
at fast speed, 10 executions per participant per gesture
type. Participants received the instruction “go as fast
as you can”; see Wobbrock et al. [54] (p.164).

b) GDS-medium: 1, 600 gestures performed at medium
speed by all participants, 10 executions per participant
per gesture type. Participants received the instruction
“balance speed and accuracy”.

c) GDS-slow: 1, 600 gestures performed at slow speed
by all participants, 10 executions per participant per
gesture type. Participants received the instruction “be
as accurate as possible”.

2) The NicIcon7 dataset comprises 13, 860 samples of 14
distinct multistroke gestures (see Figure 3b) performed
by 33 participants with a stylus on a Wacom Intuos2

6https://depts.washington.edu/acelab/proj/dollar/
7http://unipen.nici.ru.nl/NicIcon/
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(a) GDS dataset

Arrow Delete Star V

Pigtail Rectangle Caret Left Curl

Left Bracket Question Check Circle

Right Curl Triangle X Right Bracket

(b) NicIcon dataset

Accident Bomb Car Casualty

Electricity Fire Firebrigade Flood

Gas Injury Paramedics Person

Police Roadblock

(c) MatchUp dataset

A Asterisk Circle D 5pt Star

H Heart Horiz. line I Infinite

N Null P S Spiral

Square Step Down T Triangle V

X Zig Zag

Fig. 3: Gesture types (actual examples) from our evaluation datasets. Each gesture stroke is signified with a random color.

tablet [55]. Each participant provided 30 executions per
gesture type.

3) The MatchUp8 dataset comprises 5, 155 samples of 22
distinct multistroke-multitouch gestures (see Figure 3c)
performed by 16 participants with the finger on a 3M
C3266PW 32” multitouch display [56]. For each gesture
type, participants were asked to produce as many different
variations as possible, using either: one or two hands, one
or multiple fingers, one or multiple strokes. Each partici-
pant provided 5 executions per variation and gesture type.

Our datasets contain a good mixture of geometrical shapes
and symbols, including popular [54], challenging [55], and
unfamiliar [56] ones, with a wide range of execution com-
plexity [17], ranging from unistrokes to multistrokes and
multitouch gestures, the latter performed using one or both
hands [56]. Taken together, the three datasets contain a di-
verse type of stroke gestures articulated under various input
conditions regarding number of strokes, fingers, and hands.

Dataset Samples Classes Users Trials Timesteps

GDS-fast 1,600 16 10 10 54
GDS-medium 1,600 16 10 10 66
GDS-slow 1,600 16 10 10 79

NicIcon 13,860 14 33 30 88
MatchUp 5,155 22 16 5 82

TABLE I: Overview of the evaluation datasets. The
‘Timesteps’ column denotes the median number of timesteps,
which we use to inform the size of the input layer (number of
neurons) of our model.

B. Data Ingestion

Every gesture is presented to DITTO as a flat point sequence
(Section III-A) of variable length, but the input layer of the
network has a finite (fixed) capacity and thus is unable to
process sequences that exceed the network capacity. As ex-
plained in Section III, DITTO has a maximum sequence length

8https://sites.google.com/site/yosrarekikresearch/projects/

of 100 timesteps by design. In practice, longer sequences can
be truncated, though we eventually decided to ignore those in
our experiments (roughly 20% of the data) because processing
incomplete sequences could mislead the results. On the other
hand, sequences shorter than the capacity of the input layer
(100 timesteps) are padded with dummy values, as usual, since
the input layer of the network has a fixed capacity.

Regarding model training, we use 60:10:30
(train:validation:test) randomized splits; i.e., we train
DITTO on a training partition comprising 60% of the data
from each dataset and reserve the remaining 30% of the data
for testing the trained model. We also reserve 10% of the
original data for fine-tuning the model hyperparameters. This
way, the testing partition simulates unseen data and therefore
provides an estimation of the model performance in practice.

In addition, we should mention that DITTO uses batch
processing and so it can process several gesture samples at
the same time, both during training and testing time. In the
latter case it is possible to speed up data ingestion further, e.g.
by running different threads or child processes, since DITTO
uses reentrant code, thereby allowing for parallelizing data
processing.

C. Evaluation Measures

First, we report the following evaluation measures of overall
production times, to make this work comparable with previous
work such as KeyTime [18] or GATO [22]:

1) Mean Absolute Error (MAE), which averages the abso-
lute differences between predicted and actual production
times, in milliseconds.

2) Root Mean Squared Error (RMSE), which averages the
squared differences (and thus penalizes larger errors)
between predicted and actual production times, in mil-
liseconds.

3) Pearson’s r (correlation coefficient), which measures the
linear correlation between predicted and actual produc-
tion times, and can range between -1 and 1 (with 0
implying no correlation).

Next, we compare predictions delivered by DITTO and the
ground-truth data using macro-average point-wise articulation
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metrics, i.e., measured at every timestep along the articulation
path of each gesture and then aggregated in a single value.

1) Cumulative time offset: the distribution of the (cumulative
sum) of time differences between consecutive timesteps,
in milliseconds. The computed value at the end of this
curve is the overall production time.

2) Velocity profile alignment between predicted and actual
gesture execution. For this, we use the same error and
correlation measures as defined above but computed at
every timestep.

D. Baseline Model

We further compare DITTO’s performance against a naive
time estimator, which is used under the hood by the ΣΛ
model [23] and similar approaches. Remember that state-of-
the-art models of production time for stroke gestures [18],
[22] use the ΣΛ model to get an initial reconstruction of
the gesture and then bootstrap the time computation with
synthetic samples. As discussed in Section I, these state-of-
the-art models produce overall estimations of production times
assuming synchronous sequences of 2D points with associated
timestamps.

The naive time estimator model assumes that the input
device operates at a fixed frequency, or sampling rate, while
recording a stroke gesture G, so the overall production time T
can be computed by:

T = f
∑

x∈G

1

N

∑

p∈x

p// (5)

where f denotes the sampling frequency of the acquisition
device (in Hz), x denotes a stroke, p// denotes the stroke
points drawn in parallel, to account for multitouch gestures
(where several fingers are drawing on the screen at the same
time), and N = |p//|. Essentially, Equation 5 computes the
average number of points that happened at a particular timestep
and multiplies that number by the sampling rate f to get
an estimation of the overall time production. Notice that for
single-touch gestures N = 1 (only one finger is used) and for
unistroke gestures |G| = 1 (only one stroke is articulated). We
will test different sampling rates for the naive time estimator,
since each dataset may have a preferred indicative value, or
sweet spot. This estimator therefore qualifies as a reasonable
baseline model to compare against DITTO.

V. RESULTS

Note that most gesture datasets in the research literature
are available at one input speed only, typically a “medium”
speed definition, where participants have to balance speed and
accuracy and operate at their own tradeoff [54], [57]–[59].
Therefore, we begin by analyzing the GDS dataset, since it has
three different articulation speeds and therefore can be used
to better inform the design of DITTO’s model architecture.

A. Model Architecture

In our first experiment we analyze the impact of model
depth, as determined by the number of stacked recurrent

layers, and the incorporation of self-attention mechanisms for
the task of predicting overall production times. Table II reports
the results of this experiment. As discussed in Section III-A,
the first recurrent layer in any case is always a BLSTM layer,
and further recurrent layers are LSTM layers. We also report
in Table II the Pearson’s correlation coefficient (r) between
the model predictions and the ground-truth values. Since each
dataset comprises repeated measures, i.e. the same participant
performed the same gesture under different trials (Table I), we
aggregate the data by participant and gesture type.

Without attention With attention

Depth Speed type MAE RMSE r MAE RMSE r

1 Slow 88 114 0.908 145 178 0.752
1 Medium 104 124 0.926 120 152 0.823
1 Fast 108 113 0.988 165 173 0.975
1 Overall 100 117 0.969 144 168 0.911

2 Slow 92 12 0.890 89 107 0.947
2 Medium 84 101 0.932 155 166 0.952
2 Fast 91 98 0.987 169 175 0.987
2 Overall 89 108 0.964 138 152 0.974

3 Slow 108 130 0.915 130 178 0.859
3 Medium 151 164 0.940 72 86 0.876
3 Fast 136 142 0.992 39 49 0.989
3 Overall 132 146 0.970 80 118 0.953

TABLE II: Analysis of model depth (number of stacked
recurrent layers) and self-attention mechanism over the testing
partition of the GDS datasets. Errors are expressed in mil-
liseconds. All correlations are statistically significant at the
p < .001 level.

We can see that a non-attentive computational model can
benefit from stacking up to 2 recurrent layers; adding a third
layer degrades performance, possibly due to a shortage of
training data. But if we incorporate self-attention, then a
deeper model achieves the best results overall. While for slow
gestures the errors are slightly larger than the non-attentive
counterpart, the attentive model outperforms the estimations of
medium and fast gesture executions, often by a large margin;
e.g. for fast gestures MAE is near four times smaller (39 vs 136
ms) and RMSE is about three times smaller (49 vs 142 ms).
Moreover, the non-attentive model is systematically skewed
(see Figure 4) and so correlates a bit better than the attentive
model, though differences are not statistically significant. We
also tested the effect of adding self-attention to the first and last
recurrent layers only, but they proved to work less effectively
than adding attention to all recurrent layers.

We conclude that the attentive 3-layered deep model is
the best performer overall. The non-attentive 2-layered model
should be considered only when the estimation of slow ges-
tures is important for the task at hand. Nevertheless, this
experiment informs only about the overall production time,
so we need to look into velocity profile alignment measures
to get a better understanding about the articulation process of
stroke gestures input; i.e., the moment-by-moment estimations,
at every timestep. In a later experiment we precisely conduct
this investigation.
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B. Self-attention mechanism

Next, we study the effect of using self-attention mecha-
nisms on velocity profiles estimation, for different articulation
speeds, for which we look at the cumulative time distribution;
i.e. at each timestep we plot the accumulated time offset,
aggregated by participant and gesture class. Figure 4 and
Figure 5 show the results of this experiment. We can see that
the plots follow a non-linear steeper curve, signaling thus the
asynchronous nature of stroke gestures execution. Again, we
can observe that incorporating self-attention increases model
performance. Without attention, the model estimations tend to
degrade over time. This is caused by a drift effect, where small
errors accumulate over time (Figure 4) and thus the estimated
time is far off the ground-truth time at the end of the gesture
execution. This behavior is noticeably more accentuated in
faster executions. Indeed, if a handwriting movement is exe-
cuted at slow speed, the model can easily estimate the temporal
offsets because these are more predictable. For fast speeds,
however, the estimation becomes much more challenging, and
only the model with self-attention (Figure 5) is able to capture
best the articulation behavior exhibited by the ground-truth
movements.

Fig. 4: Cumulative time offset distribution in the GDS dataset
(test partition), using the non-attentive 2-layered model.

Fig. 5: Cumulative time offset distribution in the GDS dataset
(test partition), using the attentive 3-layered model.

C. Gesture Articulation

So far, our experiments have provided a practical justifica-
tion of the theoretical grounds underlying DITTO’s model ar-
chitecture and self-attention mechanism. The encoder-decoder
network that we use in further experiments is the network
with 3 stacked recurrent layers (BLSTM→LSTM→LSTM)
and self-attention on all recurrent layers. Figure 6 show some
examples of the velocity profile estimations produced by
DITTO on the GDS dataset. In order to remove noise from the
sensor of the acquisition device,9 we apply a Savitzky-Golay
filter of window size 21 and polynomial order 2. These filter
parameters were the best compromise solution for all datasets.
The critical parameter is the window size, as its role is to

9Computers periodically poll the input devices for new data [60], thereby
producing artificial velocity jitter.

attenuate the raw signal’s jitter without being too aggressive
as to flatten the signal.

Fig. 6: Velocity profile estimations in the GDS dataset (test
partition). Gestures examples picked at random.

Table III summarizes the prediction results for the remaining
datasets, including both production time and velocity pro-
file alignment measures. For completeness, and by way of
summary, we also report the results over the GDS dataset.
As can be observed in the table, DITTO is off by a very
small margin and correlates highly with ground-truth data.
The MatchUp dataset is particularly challenging, since each
gesture could be executed with different number of fingers,
hands, and strokes [56], thereby entailing greater variability
than in the other datasets.

The naive time estimator is unable to deliver competitive
results, although if we have a good estimation of the recording
frequency of the input device, then a naive estimator could
be used to achieve reasonable results. For example, the GDS
gesture samples seems to have been acquired at a sampling rate
close to 60 Hz, as suggested by the prediction errors achieved
by the naive estimator operating at that frequency. Further,
the NicIcon gestures were acquired with a Wacom Intuos2
tablet, which operates at a constant (synchronous) sampling
rate of 100 Hz,10 and we can see that, unsurprisingly, the
naive estimator operating at that frequency achieves the lowest
prediction errors. Still, DITTO achieved very small errors as
well, in the order of tens of milliseconds, and we have to
remark the fact that DITTO is device-agnostic and can handle
asynchronous stroke data by design, without being aware of
the operational device’s sampling rate.

Figure 7 reports the results on the NicIcon (multi-
stroke gestures) and MatchUp (multitouch-multistroke ges-
tures) datasets. For completeness, we also report the overall
production times from the GDS dataset. As can be observed
in these plots, DITTO achieves notable accuracy, considering
again that it is a device-agnostic data-driven approach. At
every timestep, the cumulated difference between predicted
and ground-truth time offsets is very small. We can conclude
that the estimations delivered by DITTO are on par with users’
actual performance with stroke gesture input.

10See https://www.neuroscript.net/tablets/
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Production time Velocity profile align.

Dataset MAE RMSE r MAE RMSE r

D
IT

T
O GDS 80 118 0.953 25 52 0.912

NicIcon 12 16 0.998 8 18 0.957
MatchUp 212 330 0.935 7 269 0.965

N
.3

0 GDS 1177 1193 0.924 287 370 0.492
NicIcon 2537 2630 0.999 232 241 0.827
MatchUp 6851 7186 0.990 539 616 0.810

N
.6

0 GDS 110 134 0.924 180 267 0.492
NicIcon 723 749 0.999 132 138 0.898
MatchUp 2563 2687 0.723 382 441 0.903

N
.1

00

GDS 432 479 0.924 141 172 0.492
NicIcon 4 3 0.999 0.36 0.37 0.910
MatchUp 847 889 0.990 239 269 0.942

TABLE III: Experimental results over our datasets (test par-
tition). Errors are expressed in milliseconds. All correlations
are statistically significant at the p < .001 level.

(a) GDS (b) NicIcon (c) MatchUp

Fig. 7: Cumulative time distributions in the evaluated datasets
(test partition).

Finally, some examples of velocity profiles estimations
are reported for the NicIcon dataset in Figure 8 and for
the MatchUp dataset in Figure 9. All velocity profiles were
randomly selected from their respective test partitions, so the
plots help to illustrate the capability of DITTO to estimate the
articulation of unseen gestures. As can be observed, DITTO’s
predicted velocity profiles are often inline with ground-truth
profiles, providing thus further evidence and highlighting the
accuracy of our model to estimate temporal information using
spatial information as sole input.

Fig. 8: Velocity profile estimations in the Nicicon dataset (test
partition). Gestures examples picked at random.

Fig. 9: Velocity profile estimations in the MatchUp dataset
(test partition). Gestures examples picked at random.

VI. LIMITATIONS AND FUTURE WORK

One limitation of computational models like DITTO is that
they do not provide a closed-form solution nor cannot reason
about the data they produce. As with any machine learning
model, DITTO learns from examples and so these should be
as diverse as possible, in order to generalize to new data.

Currently we have set a maximun model capacity to 100
timesteps, which has proved to be effective in handling the an-
alyzed datasets. Nevertheless, this number should be increased
to handle much longer stroke sequences, such as in signatures
or mid-air pointing traces. In the future we plan to explore
other handwriting movements like these just mentioned.

VII. CONCLUSION

DITTO is a comprehensive sequence-to-sequence deep
learning model that delivers a remarkably accurate estima-
tion of the velocity profile of any stroke gesture, including
unistrokes, multistrokes, and multitouch gestures. DITTO con-
tributes to advancing our capacity as a community to model,
analyze, and understand users’ stroke gesture articulation.
From this perspective, DITTO takes a major step by moving
away from overall estimations and instead delivering moment-
by-moment estimations of production times. DITTO is avail-
able to practitioners, developers, and researchers as a web ap-
plication and associated service at https://luis.leiva.name/ditto/.

This work contributes to our understanding on gesture input
articulation, as well as our ability to make accurate estimations
of user performance. We would like to restate that efforts like
DITTO are essential to help the community shape, consolidate,
and advance its knowledge.
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