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Abstract. Alzheimer’s disease (AD) is the leading cause of dementia.
Although there is currently no cure for AD, early detection of cogni-
tive decline can help clinicians mitigate its impact. Recently, Machine
Learning (ML) approaches have been developed to automatically ana-
lyze handwriting and hand-drawing tasks to support the early diagno-
sis of AD. In this paper, we study pentagon and clock drawing tests
using both off-line (scanned image pixels) and on-line (discrete point
sequences) data as input to several ML models (i.e., DensNet, ResNet,
EfficientNet, RNN, LSTM, and GRU). Our study is the first to determine
the most effective modality (on-line vs. off-line) and drawing tasks to dis-
tinguish healthy controls from AD patients (binary classification) as well
as two stages of AD severity (multi-class classification). Our results sug-
gest that, contrary to other domains, the off-line modality outperforms
the on-line one, sometimes by a large margin: 90% vs. 60% accuracy
in binary classification and 53% vs. 82% accuracy in multi-class classi-
fication. This suggests that, for drawing tasks and small-scale datasets,
image-based representations may be more effective in predicting AD than
those relying on more complex data representations.

Keywords: Alzheimer disease · Off-line handwriting · On-line hand-
writing · Deep learning · Data augmentation · Classification

1 Introduction

Neurodegenerative disorders are among the primary causes of disability world-
wide, marked by an irreversible loss of neurons that culminates in progressive
neurological decline, manifesting as motor and cognitive impairments. Alzheimer’s
disease (AD) and Parkinson’s disease (PD) are particularly notable for their
widespread prevalence, which affects approximately 50 million and 10 million in-
dividuals, respectively. AD, in particular, is closely linked with cognitive deficits,
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affecting memory, attention, language comprehension, and spatial awareness [32].
The global demographic trend toward an older population underscores the crit-
ical need for early AD detection and intervention as the most prevalent form of
dementia. However, the present diagnostic landscape reveals a concerning trend,
with an estimated 75% of dementia cases worldwide going undiagnosed and
rates of early-stage detection being considerably lower [10]. Enhancing screening
methodologies in accessible settings, particularly in primary healthcare, emerges
as a strategic response to improve diagnostic rates [8]. Research indicates that
primary healthcare practitioners face substantial challenges in the early detec-
tion of dementia and in the timely referral of patients to specialized care [10].
Thus, the development and implementation of accessible and efficient screening
tools for use in primary healthcare or by individuals at home are crucial steps to-
ward closing the diagnostic gap, potentially leading to improved detection rates
of AD.

Handwriting and hand-drawing tasks5 entail the coordination of fine motor
movements and cognitive processes, making them popular as a psychometric tool
to evaluate and diagnose AD [35], leveraging the correlation between declining
drawing abilities and the onset of AD. Deterioration in handwriting skills, char-
acterized by inconsistencies in size, spacing, and letter formation, indicates a
progression of the disease [7]. Recent studies (e.g., [17, 23]) have shown the po-
tential of handwriting-related tasks to reveal specific cognitive deficits indicative
of AD. Researchers have explored various automated methods, including draw-
ing tasks [17], neuroimaging [31], and gait assessments [11], to capture cognitive
impairments across multiple domains. However, the current need for healthcare
professionals’ reliance on manual analysis highlights a significant bottleneck.
This puts forward the importance of developing automated tools to make the
AD screening process easier, quicker, and more affordable, particularly in non-
specialist settings.

Our contributions are straightforward yet significant. Firstly, we gathered
handwriting data from both AD patients and healthy individuals. The data in-
cludes two types of drawings—pentagons and clocks—captured simultaneously
in two formats: off-line, as scanned images, and on-line, as sequences of dis-
crete points. This dual-method collection allows us to: (i) Compare how different
hand-drawing tasks perform in classification tests, (ii) Assess various machine
learning models to see which best classifies the data, and (iii) Examine the dif-
ferences in using static images versus dynamic, point-by-point data in model
performance.

Secondly, our experiments focus on distinguishing AD (mild AD and mod-
erate AD) patients from healthy controls using state-of-the-art neural network
models. We used pre-trained convolutional neural networks (CNNs) for analyzing
the off-line data and recurrent neural networks (RNNs) for the on-line data. Ad-
ditionally, we used data augmentation techniques to enhance the models’ ability
to generalize. Interestingly, our findings reveal that the off-line modality consis-

5 We consider ‘handwriting’ and ‘hand-drawing’ synonymous because both tasks in-
volve the same neurophysiological and peripheral processes involved in motor control.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



Blueprint of Tomorrow 3

tently outperformed the on-line one, achieving higher accuracy in both binary
(90% versus 60%) and multi-class (53% versus 82%) classification tasks. This
suggests that simpler, static image-based approaches may be more effective for
tasks like drawing analysis in AD research than those relying on more complex,
temporal data, at least when working with small-scale datasets.

2 Related Work

Technological advancements in ML and computer vision have significantly en-
hanced the efficiency and objectivity of remote patient monitoring systems by
providing real-time data for improved care beyond conventional healthcare set-
tings [6]. Handwriting analysis has been shown to be effective in detecting cog-
nitive decline and changes in motor skills in AD, thus serving as an effective
diagnostic tool [19]. However, despite these advances, there is no research aimed
at comparing model performance using both off-line and on-line data from iden-
tical patient/healthy cohorts [5, 30].

Recent studies have used CNNs (e.g., [18, 19, 3]) and RNNs (e.g., [18, 2, 6])
for early detection of AD, showing that Deep Learning (DL) models can signif-
icantly enhance the accuracy of diagnosing AD in its early stages. We can find
notable works that studied each modality separately (cf. off-line [17, 15, 3] and
on-line [6, 23, 21]), suggesting that on-line data are preferred over off-line data,
given that on-line handwriting provides a feature-rich representation, including,
e.g., temporal and spatial sequences of discrete points that are not available in
the off-line representation. Collectively, these studies highlight the potential of
ML technologies not only to revolutionize AD diagnosis but also to enable more
personalized and timely therapeutic interventions, ultimately improving patient
outcomes. Most of these studies have relied on some form of data augmentation,
given the limited number of samples in clinical datasets. In this regard, Dao et
al. [6] used Generative Adversarial Networks (GANs) as an alternative to data
augmentation, and trained AD classifiers with RNNs that achieved 89% accu-
racy. However, GANs require a significant amount of data to begin with, which
is often not available in most cases.

Finally, we should mention relevant studies that have compared different
drawing symbols for AD screening, such as clocks drawngs [1] using CNN mod-
els, which achieved an AUC score of 81%. By combining clock drawing with age
and education using logistic regression, their model improved to 91%. Pentagon
drawings [26] reached an accuracy of 93% using GoogLeNet for binary classi-
fication, distinguishing between correct and incorrect pentagon drawings from
patients only. Another study focused on letters [6], and obtained high accuracy
by using DL models for detecting and classifying early-stage of ADs patients
based on on-line handwriting loop patterns. In sum, it remains unclear which
is the most adequate input modality for AD screening and also what the most
adequate drawing symbols are to achieve competitive performance.

By systematically addressing this gap in the research literature, our study
paves the way for a more holistic understanding of AD classification models,
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opening promising directions to more accurate AD screening approaches in the
future. For example, [23] reported that combining multiple drawing tasks im-
proves detection accuracy by capturing different cognitive impairments, achiev-
ing a classification accuracy of 75.2%.

3 Materials and Methods

3.1 Participants

Thirty-three individuals were recruited from the Memory Unit of the Hospital
Clinico San Carlos (HCSC) in Madrid between January 2023 and January 2024.
The group consisted of 22 patients and 11 healthy controls (HCs), all aged be-
tween 70 and 89. Participants were asked to both clocks and pentagons, which
are well-established symbols in cognitive assessment tasks [9]. All participants
had normal vision and hearing. They underwent a neuropsychological assessment
of their drawing tasks in a clinical setting to minimize distractions and reduce
background noise. Each participant was individually assessed, beginning with an
informed consent form. Cognitive status was evaluated using the Mini-Mental
State Examination (MMSE) [39]. Patients with AD were classified into mild AD
and moderate AD, based on guidelines from the National Institute of Neuro-
logical and Communicative Disorders and Stroke (NINCDS), the Alzheimer’s
Disease and Related Disorders Association (ADRDA) workgroup [28], and the
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-
5) [13]. Statistical analysis (ANOVA test, after verification of normality and ho-
moscedasticity) confirmed that there were no significant age differences between
the healthy, mild AD, and moderate AD groups (F (2, 55) = 2.04, p > .139).

Table 1. Demographics and the Number of Drawing Tasks of this Study.

Drawing Task Num. of drawing HC Mild AD Moderate AD

Pentagon 33 11 8 14
Clock 33 11 8 14

Total 66 22 16 28

Gender (F & M) 8F, 3M 5F, 3M 12F, 4M
Age (Mean ± SD) 82.64±2.46 76.5±5.75 78.94±4.78
MMSE (Mean ± SD) 29.9±0.83 25.33±1.21 22.37±3.58

3.2 Drawing tasks and preprocessing

Participants were instructed to draw the pentagons and clocks using a Repaper
tablet (size: 10.9-inch) 6 with a blank sheet attached and a regular pen that had

6 https://www.iskn.co/eu
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an accelerometer connected to the Repaper app via Bluetooth for data capturing
(see Figure 1). This setup was designed to provide a familiar pen-and-paper
experience to participants while being able to capture on-line and off-line data
simultaneously. The participants were asked to draw each symbol from memory.
We collected 66 drawings in total.

The on-line data (discrete point sequences) were stored as SVG files (as per
the Repaper app) and then converted to JSON format, comprising sequences
of {x,y,t} points. The off-line data (image pixels) were stored as PDF files
(scanned with the HP Color LaserJet Pro scanner) and then converted to PNG
images and resized to square size (224×224 px) as this is standard for CNN
models. We applied the canny edge detector to enhance the quality of the scanned
images.

Fig. 1. Example of pentagon drawing on a tablet (left) and drawing samples in off-line
and on-line version (right), before and after applying data augmentation.

3.3 Data augmentation

We created synthetic samples to make the models more robust and general-
izable [12]. For off-line data, we applied the usual geometric transformations,
where suitable:7 For on-line data, jittering, scaling, and warping have been pro-
posed [22]; however, more recently, Maslych et al. [27] found that an “All Vari-
ability Chain” (AVC) of transformations (gaussian, frame-skip, spatial, perspec-
tive, rotate, scale) provided a significant boost in classification performance with

7 For example, pentagons can be flipped in horizontal or vertical axes, whereas clocks
cannot be flipped because it would destroy their semantics.
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RNNs, achieving state-of-the-art accuracy in gesture recognition. Therefore, we
adopt the AVC approach to augment our on-line data; see Figure 1. After data
augmentation, we concluded to a dataset consisting of 300 images (off-line data)
and 300 point sequences (on-line data), where all groups were balanced up to
100 observations; e.g., 92 variations of the 8 pentagons from the Mild AD group
were created; see Figure 2.

Fig. 2. Class distribution of Pentagon drawings before and after data augmentation.

To evaluate the quality of the augmented data, we used the Structural Sim-
ilarity Index Measure (SSIM) [41] for off-line data and Dynamic Time Warping
(DTW) [34] for on-line data. We use SSIM to compare augmented data against
original images to ensure that key structural details are preserved even as varia-
tions are introduced. This balance is critical since, while the augmented data are
inherently different, maintaining structural similarity ensures that the variations
remain realistic and relevant for training robust models. By using SSIM, we can
confirm that the augmentation process does not distort the data to the extent
that it loses its representative characteristics. In this sense, structural similar-
ity is beneficial, as it ensures that the augmented data faithfully represents the
original data. SSIM values range from 0.7 to 0.8 (M=0.75, SD=0.03), whereas
DTW values range between 123 and 5678 (M=2000, SD=850), indicating that
augmented images are not near-duplicates of the original data but rather new
images that eventually should help improving model performance.

3.4 Models

Convolutional Neural Nets We use three state-of-the-art pre-trained CNNs
for analyzing the off-line data: ResNet50 [14], DenseNet121 [20], and Efficien-
Net [37]. ResNet and DenseNet use residual connections, which are instrumental
to train very deep models. While ResNet performs an element-wise addition to
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pass the output to the next layer, DenseNet connects all layers directly to each
other through concatenation. However, EfficienNet uses a uniform compound
scaling technique that achieves the same performance as state-of-the-art CNNs
but with much better efficiency. These CNNs were trained on the large ImageNet
dataset, and we fine-tuned them to our AD dataset by transfer learning [42].

Recurrent Neural Nets Since transfer learning for on-line data is not cur-
rently possible, as there are no public pre-trained models available, we train
three RNNs from scratch: Vanilla RNN, LSTM [16], and GRU [4]. LSTM is
an improvement over vanilla RNNs by adding long-term memory, making them
ideal for complex sequences. GRU is a simplification of LSTM while retaining
the same performance, making them ideal for cases where computational effi-
ciency is crucial. These RNN models include a hidden layer of 100 units with
hyperbolic tangent activation and 0.1 dropout, followed by a softmax output
layer. We experimented with other combinations of layers and different hidden
units, but we did not observe improvements with regard to this configuration.

Training and evaluation All CNNs and RNNs are trained with the popular
Adam optimizer, with a learning rate of 0.001 and decay rates β1 = β2 = 0.99.
The loss function is categorical cross-entropy, consistent with our binary and
multi-class classification tasks. All models use a batch size of 32 (images or
sequences) and use up to 50 epochs for training with early stopping (patience
of 10 epochs) to prevent overfitting. We train each model on 80% of the data
and test on the remaining 20% of both on-line and off-line data. We then used
stratified 5-fold cross-validation on the training set only, ensuring that each
fold was representative of the whole by maintaining approximately the same
percentage of samples of each class as in the training subset. We computed the
classification accuracy (Acc) and Area Under the ROC curve (AUC) to assess
model performance.

4 Results and discussion

Figure 3 summarizes the results of our experiments, depicting the differences
between CNN classifiers (top row) for off-line data (ResNet, DenseNet, and Effi-
cienNet) and RNN classifiers (bottom row) for on-line data (vanilla RNN, LSTM,
and GRU). These results are instrumental for assessing the efficacy of binary (dis-
tinguishing AD patients from HC) and multi-class classification (distinguishing
HC, mild AD, and moderate AD) tasks in the context of AD screening using
hand-writing tasks (i.e., pentagon and clock).

In binary classification of pentagon drawings, the before-augmentation sce-
nario showed modest performance across models. After-augmentation, however,
there was an increase in classifier accuracy, particularly with EfficienNet, which
improved substantially, from 60% to 90%. A similar trend was observed in
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the classification of clock drawings, where the after-augmentation results un-
derscored the effective impact of our data augmentation strategies on model
performance.

For multi-class classification, the differential impact of data augmentation
was again significant. EfficientNet was the best performer, especially for pen-
tagon drawings, confirming the model’s ability to differentiate between various
stages of AD severity. The trend of improved after-augmentation accuracy was
consistent across other models, although the degree of improvement varied.

D
e
n

R
e
s

E
ff

10

30

50

70

90

O
ff
-
li
n
e

A
c
c
.
(
%

)

D
e
n

R
e
s

E
ff

D
e
n

R
e
s

E
ff

D
e
n

R
e
s

E
ff

R
N
N

L
S
T
M

G
R
U

10

30

50

70

90

O
n
-
li
n
e

A
c
c
.
(
%

)

R
N
N

L
S
T
M

G
R
U

R
N
N

L
S
T
M

G
R
U

R
N
N

L
S
T
M

G
R
U

Before and After DA Before and After DA

Binary Classification Multi-class classification
Pentagon Clock Pentagon Clock

Fig. 3. Experiment results. CNN classifiers for off-line data (Res: ResNet, Den:
DenseNet, Eff: EfficienNet) are depicted in the top row, whereas RNN classifiers for
on-line data (vanilla RNN, LSTM, GRU) are depicted in the bottom row. The dashed
lines represent the performance of a random classifier, illustrating the empirical lower
bound.

Our results indicate that off-line data, when enhanced through strategic data
augmentation, provides a more stable and consistent basis for AD classification
compared to on-line data. This stability can be attributed to the static nature
of off-line data, which, unlike on-line data, is less affected by the variabilities
introduced by the temporal and dynamic components of on-line drawing. In
non-clinical domains, researchers have shown that on-line data is preferred over
off-line data (e.g., [38, 24]), given the rich patterns and movement dynamics in-
volved [25]. In our experiments, however, we observed that pre-trained CNNs
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outperformed RNNs trained from scratch due to the size and variability in on-
line data that our RNNs were not able to capture as effectively as the CNNs.
This variability also seems to affect tasks differently; for example, more cogni-
tively demanding drawing tasks allowed for an easier distinction of AD patient
handwriting from HCs; see e.g., Figure 3.

Our study builds upon previous research that focused on one drawing type
for AD screening [19, 3]. However, our findings suggest that both pentagon and
clock drawings are suitable for AD screening, with EfficientNet achieving the
highest performance in binary classification (90% accuracy, 92% AUC) and in
multi-class classification settings (75% accuracy, 79% AUC) for using pentagons,
followed by clocks (Binary classification: 82% accuracy and 79% AUC, multi-
class classification: 70% accuracy and 75% AUC), highlighting the effectiveness
of these simple tasks.

Our results also indicate that the performance gap before and after data aug-
mentation differs across tasks, with larger differences in off-line data. Previous
results by Maslych et al. [27] reported improved performance of an RNN model
in several handwriting tasks using AVC for data augmentation, although all the
tasks were focused on gesture recognition and a specific dataset. In any case,
it seems clear that data augmentation is necessary for both off-line and on-line
drawing tasks.

Without data augmentation, most models behaved like a random classifier;
see the dashed lines in Figure 3. After data augmentation, however, we observed
a significant improvement in model performance across all tasks for both binary
and multi-class classification scenarios. These improvements were more appar-
ent for CNN models, which somehow disagrees with previous findings in AD
screening that reported similar performance for RNNs [2, 29].

Interestingly, Souillard-Mandar et al. [36] found that the digital Clock Draw-
ing Test had superior diagnostic performance compared to traditional paper-and-
pencil methods for differentiating healthy individuals from cognitive impairment
subjects (only binary classification), using traditional ML models without any
data augmentation. Previous studies have demonstrated the effectiveness of var-
ious augmentation strategies in similar contexts for off-line data [17, 33]. In our
work, we designed and optimized our augmentation strategy to ensure its suit-
ability for our specific datasets. This involved iterative testing and refinement of
different augmentation techniques, such as geometric transformations.

5 Limitations and future work

The main limitation of our study is the small sample size of the original dataset,
which had to be augmented with suitable variations in order to fine-tune the
CNN models and, more importantly, to train the RNN models from scratch.
However, we should remark that dealing with small sample sizes is a well-known
and pervasive issue among clinical studies [21, 40]. Recruiting participants with
AD is very challenging due to strict criteria and ethical concerns. Despite our best
efforts, it took us one year to recruit 33 suitable participants. On the other hand,
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future work should consider different data augmentation approaches for on-line
trajectories, since we have observed that the AVC method [27] is suboptimal for
AD screening. Additionally, an interesting direction for future research could be
assessing whether simpler, custom-built CNN models can achieve comparable or
superior results with reduced complexity.Ultimately, despite these shortcomings,
our findings show promise and could lead to practical clinical applications.

6 Conclusion

We have analyzed the impact of off-line vs. on-line handwriting data for AD
screening using pentagon and clock drawings with suitable data augmentation
techniques. We trained several CNNs and RNNs for binary and multi-class clas-
sification settings. Our results show that data augmentation is always beneficial
and that pentagons have better discriminative power than clocks. Our results
also show that CNNs outperform RNNs in all settings, contradicting what was
previously known in non-clinical work.

Our observed improvements in performance suggest that while our current
strategy enhances model robustness, further optimizations could indeed yield
even better results, a possibility that we aim to explore in future work. We ac-
knowledge that there are numerous opportunities for additional refinement, and
future work will continue to explore and optimize these techniques to maximize
their efficacy in enhancing model robustness and accuracy. Our code and models
are available upon reasonable request.
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31. Odusami, M., Maskeliūnas, R., Damaševičius, R.: An intelligent system for early
recognition of alzheimer’s disease using neuroimaging. Sensors 22 (2022)

32. Perry, R.J., Hodges, J.R.: Attention and executive deficits in Alzheimer’s disease:
A critical review. Brain 122(3) (1999)

33. Raksasat, R., Teerapittayanon, S., Itthipuripat, S., Praditpornsilpa, K., Petchlor-
lian, A., Chotibut, T., Chunharas, C., Chatnuntawech, I.: Attentive Pairwise In-
teraction Network for AI-Assisted Clock Drawing Test Assessment of Early Visu-
ospatial Deficits (2023)

34. Senin, P.: Dynamic time warping algorithm review. Inf. Comput. Sci. Dep. Univ.
Hawaii 855(1-23) (2008)

35. Smith, A.D.: On the use of drawing tasks in neuropsychological assessment. Neu-
ropsychology 23(2) (2009)

36. Souillard-Mandar, W., Davis, R., Rudin, C., Au, R., Libon, D., Swenson, R., Price,
C., Lamar, M., Penney, D.L.: Learning classification models of cognitive conditions
from subtle behaviors in the digital clock drawing test. Mach. Learn. 102 (2015)

37. Tan, M., Le, Q.: EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In: Proc. ICML (2019)

38. Tappert, C.C., Mosley, P.H.: Recent advances in pen computing. Tech. Rep. 166,
Pace University (2001)

39. Tombaugh, T., McIntyre, N.J.: The Mini-Mental State Examination: A Compre-
hensive Review. J. Am. Geriatr. Soc. 40(9) (1992)

40. Vessio, G.: Dynamic Handwriting Analysis for Neurodegenerative Disease Assess-
ment: A Literary Review. Appl. Sci. 9(21) (2019)

41. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. IEEE Trans. Image Process. 13(4)
(2004)

42. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big
Data 3(1) (2016)

This is a preprint for personal use only. The published paper may be subject to some form of copyright.


