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Abstract—Modeling information relevance aims to construct a
conceptual understanding of information significant for users’
goals. Today, a myriad of relevance estimation methods are
extensively used in various systems and services, mostly using
behavioral signals such as dwell-time and clickthrough data and
computational models of visual or textual correspondence to
these behavioral signals. Consequently, these signals have become
integral for personalizing social media, search engine results,
recommender systems, and even supporting critical decision-
making. However, behavioral signals can only be used to produce
rough estimations of the actual underlying affective states that
the users experience. Here, we provide an overview of recent al-
ternative approaches for measuring and modeling more nuanced
relevance based on physiological and neurophysiological sensing.
Physiological and neurophysiological signals have the advantage
of directly measuring users’ affective responses to information
and provide rich data that are not accessible via behavioral
measurements. With these data, it is possible to account for
users’ affective experience and attentional correlates toward
information.

Index Terms—affective computing; physiological sensing;
Brain-Computer Interfaces; wearables

What if we could infer affective experiences toward information
in addition to conventional relevance signals? Affective responses
are directly accessible from users’ physiology, e.g., via measure-
ments of gaze, body movements, facial expressions, and brain
activity. These signals could mitigate the reliance on behavioral
signals, such as click-through data or speech, which are not
always available.

I. INTRODUCTION

PREDICTING whether a piece of information is relevant
to users is a cornerstone of personalized services. These

range from optimizing the results of search engines, chatbot
responses, and social media feed content, ubiquitous access of
information in pervasive environments to media and product
recommendations. Typically, information relevance is indi-
rectly estimated from user behavior, such as how long a user
spends browsing some content, when or what a user clicks or
purchases, or how a user explicitly rates information. Despite
the success of these behavioral signals in research and practical
implementations, user behavior is only a proxy of the real
underlying experiences of the users, all of which emerge from
how users understand and emotionally react to the information
they perceive. This may be in contrast to how users’ digital
behavior is associated with information.

First of all, even implicit cues that are measured as a
side product of users’ everyday activity are tied to behavior
measured from explicit interaction with computing systems.
However, emotional experiences are not always predictable
based on behavior. For example, despite users spending more
time investigating some content, it does not always imply they
would find it relevant and prefer similar content in the future.
Moreover, despite dwelling on content, users may experience
the content as offending, frightening, or even outrageous and,
therefore, might prefer to avoid such content in the future.

Here, we present a complementary view of relevance:
affective relevance. It refers to the level of emotional sig-
nificance or state that information holds in relation to an
individual’s task, topic, or goal. Emotional experiences are
often quantified by the dimensional theory of emotions [10],
with a general consensus among theories on two fundamental
dimensions: arousal and valence. Arousal signifies the extent
of autonomic activation induced by an event, spanning from
a state of calmness (or low intensity) to one of excitement
(or high intensity). In contrast, valence signifies the degree of
pleasantness evoked by an event, spanning a spectrum from
negative to positive. Emotions can then be quantified on their
position on the valence-arousal coordinates.

Figure 1 illustrates an example of a user watching a bas-
ketball game. Consider a scenario where one team holds a
significant lead, making it impossible for the opposing team
to secure victory within the remaining duration. While users
may perceive the same content as highly relevant as they are
interested in the game (high arousal), their emotional responses
could diverge. For instance, a basketball enthusiast supporting
the leading team might interpret their team’s success positively
(positive valence) due to the imminent victory. Conversely,
another individual supporting the opposing team might ac-
knowledge the relevance of the content but have a negative
emotional experience (negative valence) due to the impending
defeat of their favored team. These affective states can be
reflected in the users’ facial expressions or brain recordings
in response to perceiving the content. This example illustrates
that relevance, or interest in information, may have a strong
affective component that can be highly indicative of the user’s
experience toward information.

The mismatch between individual users’ subjective affective
and emotional experiences and their behavior cues is often
called the ‘affective gap’ [20]. Bridging the affective gap
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Fig. 1: An affective dimension of relevance enables computing systems to interpret users’ emotional and affective responses,
in addition to conventional measures of relevance or interest. In the scenario depicted here, a user is watching a basketball
game. User signals, such as brain recordings or facial expressions, can be used to determine which affective reactions the
content evokes in the user. For example, depending on whether a user is a fan of a winning team (positive valence marked
with a white dot) or a fan of a losing team (negative valence marked with a dark dot), the same relevant and interesting (high
arousal) content can evoke different affective reactions.

requires fundamentally new methodological approaches that
can reveal and estimate fine-grained affective and cognitive
features from user signals beyond simple measurements of
user behavior.

Researchers have aimed to estimate affective features from
users’ physiological reactions, ranging from facial expressions
to brain measurements. While various signals and methods
have been studied, the affective gap has turned out to be
challenging to address. As a result, affect recognition has
primarily remained an isolated research task rather than a
practical tool for extending the present notion of information
relevance. However, recent developments in wearable sensor
technology and machine learning models that can decode
affective information in the presence of noise have brought us
closer to understanding the affective dimension of relevance
in realistic settings.

Nowadays, physiological sensors are making their way into
consumer electronics. For example, smartwatches can record
an electrocardiogram, and low-cost cameras can accurately
detect facial expressions. This opens the door to novel ways
of measuring user interest toward digital content. Pushing the
boundaries of wearable computing and physiological sensing,
we argue that computing systems are becoming able to detect
users’ affective and cognitive judgments toward information.
At best, such technology can completely change how we
interact with computers and computer-mediated services by
allowing objective measurements of “human affect”. Fur-
thermore, the affect and even opinions of larger crowds of
people that can be estimated implicitly may have broader
societal benefits by revealing implicit attitudes and biases, and

informing artificial intelligence systems that cope with these
critical challenges.

In this article, we contribute critical analysis of the potential
of affective information on user modeling, review the user sig-
nals and sensor technology for monitoring affective responses,
highlight example applications on combining affective data
with quantification of relevance, and discuss the ethics and
implications of the technology for service providers, individu-
als, and society at large. These analyses can be critical for
our understanding of how people interact with information
and how affective dimensions of user engagement can be
incorporated to reveal how our attention is allocated.

II. AFFECTIVE MONITORING FOR USER MODELING

In the last two decades, thanks to the pervasiveness of web
browsers and mobile applications, researchers have focused
on explicit behavioral signals, such as click-through logs, or
search queries, and implicit signals extracted from explicit
behavior, such as dwelling time on web pages or social media
posts. These signals have the potential to uncover latent factors
about the user, can be collected unobtrusively, at a large
scale, and without having to instrument the user’s working
environment.

However, behavioral signals are limited to those that can
be reliably collected, such as what users click, which contents
users spend time on, or what users type, all dependent on
eventual explicit interactions with computers. To this end,
the essential information on how users perceive information
and what affective responses the information they perceive
evokes in them remains largely uncharted. Simply put, we
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Glossary

Affect and emotions. The scientific community has no consensus on the definition of emotions or affect. Some researchers
have supported an understanding that emotions are discrete, measurable, and physiologically distinct (see discrete theories
below). In contrast, others have supported an idea that places each emotional response onto a more limited number of
affective dimensions, typically valence and arousal (see dimensional theories below).
Discrete theories of emotions. The discrete theory of emotion considers that people share a basic set of emotions, an example
being Ekman’s categories: anger, disgust, fear, happiness, sadness, and surprise. There is a debate on what constitutes a basic
emotion, and it is generally accepted that the context (such as the user’s cultural background) plays a significant role.
Dimensional theories of emotions. The dimensional models of emotions represent those based on a few continuous dimensions.
One popular 2D model includes valence (how positive, negative, or neutral an emotion is) and arousal (how strong or weak
the emotional response is). Other 2D, 3D, and higher-dimensional models have been proposed.
Affective decoding and affective annotation. Affective decoding is the problem of estimating the emotion of individuals from
their responses to some stimulus. Affective annotation is the problem of labeling contents using affective decoding.
Experimental data regimes. Predictive models for affective decoding and annotation are categorized into three main regimes.
In the participant-dependent regime, individual models are trained (and tested) separately for each participant. In the
participant-independent regime, a single model is learned with multiple participants, which may include subjects used in
testing. In the cross-participant regime, data from test participants are not used during training, which is the hardest problem
and aims at studying to what extent the models can generalize to new subjects. This represents an ideal future scenario for
calibration-free “plug-and-play” systems.
Relevance. Relevance refers to the level of significance that some information has to a particular context, task, or goal.
Affective relevance. Affective relevance refers to the level of emotional significance that some information holds in relation to
an individual’s task, topic, or goal.
Behavioral signals. Behavioral signals are intentional, observable interactions with computing systems. They can be explicit
interactions, but sometimes measured implicitly as side information of a primary activity. For example, a popular approach
has been to record click-through data to monitor which links users follow, dwelling time to measure how long users spend on
content, facial expressions and gestures that communicate emotional cues, or gaze patterns that indicate what users focus
their attention on.
Neurophysiological signals. Neurophysiological signals allow the measurement of brain activity. Popular non-invasive neu-
rophysiological signals are electroencephalogram (EEG) and functional near Infrared Spectroscopy (fNIRS). EEG measures
the activity of synchronously firing populations of neurons with electrodes placed on the scalp. fNIRS is an optical imaging
technique that uses near-infrared (NIR) light to detect changes in cerebral blood flow as a proxy for neural activation.
Peripheral physiology signals. Psychophysiological processes often directly relate to how the human body reacts to psycho-
logical states or external events. This is particularly noticeable with emotions. Popular approaches to measuring peripheral
signals include, among others, electrodermal activity (EDA), heart rate variability (HRV), pupil dilation, and extraocular muscle
movement (EMG).

can observe what content users interact with, but we cannot
observe how they react and feel when interacting with such
content. Thus, current technology to predict affective-level
responses is based on behavioral probes that may be unreliable
and thus may not provide accurate information about nuanced
affective experiences.

Measuring attention at the neural and peripheral processes
level would enable more accurate and new types of signals that
can reveal more fine-grained affective and cognitive features
of user attention. What if we could collect affective responses
from users and reliably measure their reactions to content?
What if we could reveal how people perceive the increasing
amount of information available, and what if we could au-
tomatically interpret and detect reliable, positive, threatening,
or fake content from the natural responses of people toward
digital media? While this may, at first, sound like science
fiction, we are not far away from deploying affective sensing
technology for ordinary use. In sum, computers should be able
to detect users’ cognitive and affective experiences toward

digital content instead of relying on sparse (and possibly
unreliable) behavioral signals.

There exists a variety of technologies for physiological
affect monitoring that can complement behavioral signals. In
addition to their underlying operating principles, they differ
in several important practical respects, such as reliability of
the estimates, usability and acceptability, and affordability.
Table I summarizes the present behavioral, peripheral, and
neurophysiological signals used for recognizing affect, which
are also discussed below.

A. Behavioral signals: face, gaze, and speech
Human behavior can be easily captured from natural human-

computer interaction, such as clicks or cursor movements, and
external sensors, such as eye-tracking equipment or video cam-
eras. While conventional human-computer interaction signals,
such as clicks, are less helpful in detecting affective infor-
mation, the computer vision field has experienced significant
progress in the last decade.
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TABLE I: Summary of advantages and limitations of different signal sources for estimating affective relevance.

Signal sources and types

Signal source Type Advantages Limitations
Click-through Behavioral

• Explicit signal that is straightforward to cap-
ture from regular interactions

• Only available for information that is explic-
itly interacted

• Does correlate with relevance, but not with
nuanced affective states

Speech Behavioral
• Explicit signal
• Very natural and straightforward to capture

• Limited to verbal communication contexts
• Limited recognition accuracy of affective

states

Gaze Behavioral
• Explicit signal for attention, but some affec-

tive information can be decoded
• Available via eye-tracking equipment, and to

some extent also via videocameras

• Only limited cues for affective information
present

• More accurate for attention and interest than
affective states

Body gestures Behavioral
• Explicit signal available via cameras
• Unobtrusive and straightforward to capture

• Only available from contexts where users
exhibit gestures

• Allows recognition of only a limited set of
affective states

Pupil diameter Peripheral phys-
iology • Implicit signal for affective states

• Available via eye-tracking equipment, and to
some extent also via videocameras

• Accurate measurement requires eye-tracking
equipment

• Relatively noisy signal

Facial
expressions

Peripheral phys-
iology • Implicit signal for affect, but it must be

explicitly expressed
• Availability via videocameras and ultrasound

• Not always available and reliably expressed
• Susceptible to voluntary or involuntary mod-

ification

EDA, EMG,
HRV

Peripheral phys-
iology • Implicit signal for measuring physiological

responses
• Availability via easy-to-wear sensors

• Prone to motion artifacts
• A delayed response requires a longer du-

ration to capture a meaningful sequence of
signals.

EEG Neurophysiology
• Implicit signal measuring electrical brain ac-

tivity; hard to be faked
• Available, but not accurate for all nuanced

affective states

• Requires relatively costly wearable devices
• Prone to motion and other artifacts

fNIRS Neurophysiology
• Implicit signal measuring blood-oxygenation

in the brain; hard to be faked
• Less prone to movement artifacts

• Requires costly wearable devices
• A delayed response requires a longer du-

ration to capture a meaningful sequence of
signals

• Unequal accuracy at different valence-
arousal combinations.

Among the various data types employed in automated emo-
tion recognition, visual data stands out as the most versatile
due to several compelling factors. Primarily, facial expressions
and body gestures, constituting powerful nonverbal channels
of communication, are important for human emotional expres-
sion.

Furthermore, in contrast to emerging data forms like physi-
ological signals, the process of gathering visual data is signif-
icantly less intrusive. This implies that subjects are far more
likely to engage in their routine tasks without disruption during
the data collection process. Moreover, recent research has

also employed ultrasound for sensing facial muscle movement
without the requirement of video camera data [17].

It has been criticized, however, that such systems cannot
directly detect emotions, but rather expressions that do not
necessarily reflect the underlying true sentiments [19]. For
example, detecting a frowning face is feasible with existing
technology, but associating frowning reliably with an affective
state or user sentiment may be more challenging. There is no
exact mapping between observable expressions and possible
emotions, and the expression can also be faked, intentionally
or unintentionally.
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In addition to analyzing face-based signals, gaze behavior
can offer valuable insights into human emotional states. One
essential aspect of eye-data analyses is the examination of
gaze patterns, which refer to the specific directions and points
of focus when observing. Gaze patterns analysis provides
valuable information about visually salient information, the
attention direction of individuals, or how the visual stimuli
are processed.

For example, a prolonged fixation on a specific object or
region may indicate interest or emotional involvement, while
rapid and frequent changes in gaze may suggest uninteresting
content, alertness, or cognitive processing.

Other relevant behavioral features, which can be extracted
from eye-related signals, are fixations and saccades. Fixations
refer to the brief periods during which the eyes remain
relatively stable and focused on a specific point of interest.
In contrast, saccades are rapid, involuntary eye movements
between fixations when the eyes shift their focus from one
point to another. Fixations can provide insights into cognitive
processing, information gathering, and decision-making pro-
cesses, while the saccades can reveal aspects such as visual
exploration, attentional shifts, and response to stimuli.

Other signals measurable from eye-gaze, such as pupillom-
etry or electrooculography, also hold significance as indicators
of emotional experiences. While these signals are usually not
considered to be behavioral, but rather peripheral physiology,
they allow the measurement of information valuable for the
detection of affective states. For example, users’ emotions can
be approximated by examining changes in their pupil size. An
increase in pupil diameter is an indicator of positive valence.
These signals are easy to capture and can aid in detecting
affective relevance in realistic human-computer interaction,
enabling the development of more effective emotion-aware
systems and interfaces [5].

Speech is a versatile and essential human communica-
tion mode for expressing thoughts, emotions, and intentions.
Speech perception involves decoding auditory signals to in-
terpret the intended expressions. To this end, speech is cru-
cial in conveying complex messages between computers and
machines, and speech-based human-computer interaction has
become widely accepted, especially in interacting with mobile
devices. Due to its distant and hands-free operation, systems
that process sounds can have generally high acceptance.

Although speech and voice recognition are already ma-
ture technologies, their application for emotion estimation
is significantly more challenging. The difficulties may arise
from the diversity of human cultures and languages, speaking
styles, and particular sentences being utteranced. Furthermore,
it is not uncommon for a single utterance to evoke multiple
emotions, and ascribing distinct emotions to each segment of
the utterance is typically challenging. Speech can also be of
limited utility for detecting affective relevance, as speech is
usually used only when sending direct messages with inten-
tional communication and it is not available for information
that users only perceive, but do not intentionally act upon.
For example, a user might see an interesting social media
posting, but they do not necessarily respond to and any speech
interaction may not be associated with observing the posting.

Moreover, as estimating emotions from speech can be difficult
even for human subjects [15], making speech a challenging
data source for emotion recognition. However, using speech in
some well-contextualized settings, such as detecting affective
relevance during conversations or social events, may facilitate
the task.

Finally, body gesture recognition techniques can identify a
reduced set of emotions and affective states via visual and
ultrasound sensing data. The current methods utilizing image
sequences and skeletal data often neglect to account for spatial
connections and graphical structures explicitly. As a result,
the ability to accurately interpret user expressions conveyed
through physical movements is somewhat constrained and has
allowed the classification of only a narrow set of emotional
states. This reduced scope implies that it affects the accuracy
of gesture signals for general affect decoding [4].

Research has also provided resources and evidence that
affective decoding can be performed using data collected in-
the-wild [7] and from realistic video recordings [12] without
reliance on artificially curated data or wearable sensors. This
marks a way for detecting affective relevance as it occurs as
a part of our everyday information interaction.

B. Neurophysiological signals
In contrast to external observations, such as facial expres-

sions or body language, neurophysiological signals offer a
more direct and objective access to the internal emotional state
of humans. These signals provide insights into the underlying
neural processes and physiological responses associated with
emotions. This advantage has sparked significant interest in
research and application of Brain-Computer Interfaces (BCIs).

However, the analysis of brain signals is an extremely diffi-
cult task. These signals are noisy as they are prone to various
(internal and external) artifacts, with much intra-subject and
inter-subject variability, which significantly complicates the
design of robust affective decoding systems.

Despite the above-mentioned difficulties, BCI-based tech-
nology can be one of the most reliable sources of true
affective states, since they are less susceptible to voluntary or
involuntary modification by the user. In the last few years,
numerous machine learning approaches have been applied
that hold the promise to yield high estimation performance.
Currently, recording these signals still represents a costly
and obtrusive procedure, although some more usable, cost-
effective, and wearable systems have been developed over
the years [13]. Two main technologies have been used:
Electroencephalography (EEG) and functional Near-Infrared
Spectroscopy (fNIRS).

The EEG technology is currently the most popular non-
invasive brain imaging technology; it is very well studied, and
relies on the electrical activity of the brain. This technique
is older than fNIRS, and the EEG signals recorded from the
surface of the scalp are noisier than the intracranial EEG
recordings. The fNIRS technology, in contrast, is based on
blood flow changes in the brain tissue. EEG and fNIRS differ
in their spatial and temporal recording resolution: EEG has
high temporal resolution but poor spatial resolution, and the
opposite happens with fNIRS.
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Other brain imaging methods, which exhibit either high spa-
tial or temporal resolution, are functional magnetic resonance
imaging (fMRI) and magnetoencephalography (MEG), but
they are prohibitively costly, and their usage requires specific
laboratory environments. This makes them less usable for
scenarios that aim for affective decoding in everyday human-
computer interaction.

In summary, neurophysiological signals applied in BCIs can
offer direct and objective access to the internal emotional
state of individuals. BCIs have wide-ranging applications,
from healthcare to gaming and affective computing, enabling
personalized and adaptive systems that can respond to users’
emotional needs. The recent advancements in BCIs highlight
the growing recognition of the significance of emotions in
human-computer interaction and the potential for the design
and development of innovative and impactful applications.

C. Peripheral physiology signals

A third important source for affective monitoring are pe-
ripheral physiological signals, which lie between the external
observation of human behavior and the analysis of the brain.

These signals include, for example, heart rate variability
(HRV), measured with electrical (electrocardiogram, ECG) or
optical (photoplethysmography, PPG) sensors and electroder-
mal activity (EDA), measured through galvanic skin response
(GSR) signals [6].

Heart rate is regulated by the two autonomous nervous
system divisions, namely the sympathetic and parasympa-
thetic components. An increased activity of the sympathetic
component is typically characterized by elevated heart rate
and decreased HRV, while increased parasympathetic activity
is characterized by decreased heart rate and increased HRV.
There is evidence that evaluating the momentary changes in
HRV can provide strong cues about fluctuations in cognitive
processes, but their application in affective computing scenar-
ios remains to be explored.

ECG measures the electrical activity that arises from heart
muscles during cardiac contractions and passes through the
soft tissues to the superficial skin. The basic ECG pattern
consists of a series of waves or deflections of electrical activity,
among which the R wave is the largest one. It reflects the
depolarization of the main mass of the ventricles. As such,
HRV is measured based on the R-to-R (RR) intervals across
the cardiac cycles. The heart rate can also be measured with
a PPG sensor placed on the finger that detects changes in
blood volume. PPG quantifies HRV based on the peak-to-peak
(PP) intervals of the acquired signal, also known as inter-beat-
intervals (IBI). Although PPG measures a hemodynamic signal
rather than electrical activity, it provides traces similar to the
ones obtained with ECG [14]. In addition, HRV is sometimes
monitored with wearable devices (e.g., smartwatches) that are
widely accepted by participants and are more suitable for
naturalistic experiments that involve body movements.

EDA has been one of the most popular psychophysiological
signals to acquire, not only because of the relative simplicity
and the low-cost equipment needed, but also due to the fact
that EDA can provide information about numerous mental

constructs involving changes in sympathetic activity. For ex-
ample, EDA is considered a pure arousal indicator [9] and has
been used also to model relevance experience in information
retrieval [1]. EDA refers to changes in skin conductivity
due to sympathetic nervous system activity. The activation of
the sympathetic branch of the nervous system stimulates the
production of sweat in the eccrine glands located in the palms
of the hands and soles of the feet, increasing skin conductivity
in these areas.

When using EDA to obtain information about affective
states, a fundamental aspect to consider is that, as mentioned
above, EDA is a proxy for sympathetic activation, which is
a component of multiple psychological processes. This makes
it a useful signal for the prediction of various physiological
states, but at the same time, it is particularly challenging to
map EDA changes to specific affective states. Thus, depending
on the state to be analyzed, the EDA signal may be especially
useful when combined with other neurophysiological mea-
sures, allowing disambiguation of the meaning of the observed
changes in these signals.

In fact, it is not uncommon to combine multiple biosignals
as hybrid and multimodal systems for higher effectiveness,
so that the biomedical data recorded from various sources
and sensors can be put together to provide more reliable
information. For example, speech and gaze can provide com-
plementary emotional cues when monitoring players in video
games.

III. APPLICATIONS OF AFFECTIVE RECOGNITION

Recognizing the emotional response to digital content
has numerous applications, which can be divided into two
broad categories depending on the potential main beneficiary,
whether it is the primary user (e.g., the monitored subject of
the affective technology) or a secondary user (i.e. those using
the processed data and information). Certainly, sometimes the
boundaries between both categories are blurred, so multiple
implied stakeholders may benefit from affective recognition
technologies.

A. Systems targeted at primary users

Art, digital games, and entertainment are domains where
the monitored subject is the one who can benefit the most
directly from affective computing technology. For example,
audiovisual content such as music can be generated from
users’ predicted affective state. In turn, generated contents
may induce new brain responses, so that stimuli and affective
states relate in a closed loop. Ultimately, these approaches
may enrich the affective experience by better encoding and
exploiting the affective relevance of multimedia content.

In the video game industry, affective relevance has great po-
tential not only to understand players’ experience during gam-
ing but also to modify the gameplay components according to
the monitored player’s affective state. Similarly, recommender
systems can leverage the predicted user’s affective state to
better guide the recommendations. In addition, Human-Robot
Interaction (HRI), and social robotics in particular, are exciting
and relatively new research areas where affective relevance
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may play an important role: not only social robots can benefit
from recognizing human emotions, but they can also act to
express some emotions to which people, in turn, may react.
One area of interest is the study of how the appearance
and behavior of the robot can elicit emotions. For instance,
recently, the robot’s gender and level of anthropomorphism
have been shown to play an important role [18]. Another
area of research is using emotion expression as a persuasive
tool, such as finding which type of robot-expressed emotion
may favor people to adopt positive behaviors or habits. By
building a good model of the user’s expectations, a robot
may be trained to produce actions that are more suitable
and affectively relevant. As a result, HRI represents a rich
ecosystem where affective relevance research can find novel
practical applications as well as inspiration for new theoretical
and methodological contributions. More generally, any user
interface can be modified dynamically to reflect or change the
user’s experience of relevance and affect.

B. Systems targeted at secondary users

Medicine, education, social networks, and biometrics are
only a few examples where representatives of various pro-
fessional sectors (e.g., medical doctors, teachers, industry,
or government employees) can obtain support from affective
technology by mining collected data (e.g., from patients,
trainees, customers, citizens). For example, automatic emotion
recognition can assist physicians in understanding patients
with difficulties in expressing emotions (e.g., due to motor
impairments). On the other hand, virtual reality systems can be
instrumental in helping with emotional diagnosis, assistance,
or induction. In academic contexts, detecting reactions such as
engagement or boredom can be useful to improve reading ma-
terials or lecture delivery methods. More generally, multimedia
content can be automatically and implicitly tagged based on
emotional responses from which its affective relevance can be
modeled and subsequently used for improved interaction.

IV. ETHICS AND PRIVACY

The rise of large-scale user monitoring, as evidenced by
monitoring millions of web users, has revealed the utility
of low-fidelity data for inferring detailed information about
individual users. On the other hand, it has already raised
concerns about the exposure of user behavior for purposes
not initially consented to by users [8]. When user monitoring
technology capable of recognizing affective attributes becomes
as common as behavioral tracking via personal computers
and smartphones, affective information may become available
to service providers. Consequently, ways in which facial
expression tracking, physiological tracking, and other wearable
hardware monitoring can be used unethically to reveal cogni-
tive and affective user attributes may emerge. Recent work has
shown that increasing awareness of the usage of data is making
users more hesitant to use technology that can reveal detailed
information about additional attributes of their physical and
cognitive states [11].

For example, subliminal probing is a technique where
a user is exposed to information, and their corresponding

affective reaction can be recorded without their knowledge or
consent [3]. This may reveal users’ opinions without them even
being aware of such monitoring – for example, by measuring
responses to advertisements shown very rapidly. Physiological
data recorded via wearables can also be used as a biometric
identifier to pinpoint an otherwise anonymous user despite the
recording of data not initially consented to for that purpose.

Moreover, affect and opinions of crowds of users toward
stimulus information can be estimated implicitly, sometimes
referred to as brainsourcing [2]. This may bring broader
societal benefits by allowing the detection of harmful attitudes
and biases. However, such inference may also be used in an
unethical way for identifying the development of crowd opin-
ions, and political stances, or even for designing interventions
influencing larger crowds of people.

There are already regulative actions circumventing unethical
use. For instance, the EU AI act1 prevents AI systems for the
purpose of identifying or inferring emotions or intentions of
natural persons on the basis of their biometric data in the
workplace and educational institutions. The AI Act’s prohibi-
tion seems to focus on preventing potential misuse of emotion
detection technology in sensitive areas, including workplaces,
education, and marketing. However, this prohibition does not
encompass all possible uses but targets specific scenarios
where the risk of privacy infringement is deemed high.

V. THE ROAD AHEAD

Affective computing is becoming increasingly accessible to
the general public on several fronts, from computer vision to
smartwatches and comfortable wearable sensors. Fueled by an
increasing and extensible real-time mobile connectivity, now
it is possible to measure expressions and biosignals from the
human body and brain. These signals carry rich information
about the cognitive and affective states of the user and can
be used to estimate affective relevance: whether users are
interested in certain information and what emotional responses
that information evokes. As such, the present technology
is showing the way for getting wearable and physiological
sensing technology out of the laboratory environments into
everyday life, with an ever-increasing affordability and signal
quality.

Detecting human affect may allow for improving many
applications ranging from biomedical monitoring, more ac-
curate search and recommendation systems [16], to detect-
ing harmful, incorrect, or dubious information online. While
physiological signals may be of a more ambiguous nature
than those relying on behavioral data, they allow inference of
more nuanced information about users’ experiences and can
augment or complement the current signals.

Previous work on affective computing has largely focused
on decoding affective states in laboratory conditions, but less
efforts have been devoted to combining affective sensing
with conventional relevance estimation methods for realistic
information-intensive tasks.

This realm poses significant challenges and opportunities
when implementing these technologies in practical settings, es-

1https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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pecially on a large scale. One opportunity lies in development
of the current sensor technology to be feasible for real-world
deployments. Peripheral sensors are gradually transcending
laboratory confines and finding applications in smartwatches,
virtual reality headsets, and other human-computer interaction
hardware. Nevertheless, high-precision brain-computer inter-
face sensors are not yet widely accessible for consumer-grade
headsets. On the other hand, cameras are widespread and,
although not always entirely reliable sources for affective
information, they offer a simple means to tap into users’
emotional experiences while enabling user-control for privacy.

Another opportunity pertains to the development of decod-
ing technology, capable of concurrently assessing emotional
states and modeling the stimuli or content that elicit these
emotional responses. Machine learning techniques that are
easily calibrated or can even learn with minimal guidance,
are pivotal for broader adoption of affective technology, com-
plementing thus existing signals of relevance and interest. As
valence (positivity or negativity) has been shown to be easier
to decode for high-arousal content (content that is already
recognized to be relevant or drawing user attention), models
can be developed to complement current relevance estimation
methods [16].

Therefore, achieving consistently high accuracy in detecting
discrete affective states is not always essential. Consider
the scenario of modeling users’ emotional responses, where
merely discerning the valence of information for highly arous-
ing (attention-captivating) content might suffice. Consequently,
the existing decoding technology could already meet the
requirements of numerous real-world situations, prioritizing
performance in downstream tasks over the need for precise
decoding accuracy. For example, robust affective annotation
can be accomplished by combining signals from many indi-
viduals even when individual models are less accurate [2] or
from an extensive period from an individual [1]. Moreover,
information retrieval or recommender systems can benefit from
affective information by complementing content-based models
for information access, and also preventing potentially harmful
content [16].
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