
ACE: An Adaptive CSS Engine
for Web Pages and Web-based Applications

Luis A. Leiva
ITI/DSIC – Universitat Politècnica de València

Camí de Vera, s/n - 46022 (Spain)
llt@acm.org

ABSTRACT

ACE is a system that tailors web interfaces to the users’
behavior without requiring end user intervention. By lever-
aging implicit interactions (e.g., tracking mouse or touch
events), the visual appearance of page elements is subtly
modified in an unsupervised and incremental manner. Such
page elements (accessed by means of CSS selectors) and their
alterable parts (defined as CSS properties) are both specified
by the webmaster via JSON notation. ACE remembers the
adapted styles for a given user, and consequently reapplies
them when the user returns to the website, being also able
to populate them to other non-browsed pages that share a
similar structure.

Categories and Subject Descriptors

H.5.2 [User Interfaces]: Input devices and strategies, In-
teraction styles, User-centered design; H.5.4 [Hypertext/
Hypermedia]: Navigation

General Terms

Experimentation, Design, Human Factors

Keywords

Adaptive Interfaces, Event Tracking, Implicit Interaction

1. INTRODUCTION
Approaches like ‘universal design’ or ‘design for all’ at-

tempt to create technologies that have properties suitable
to as many people as possible [4]. On the Web, however,
the one-size-fits-all design cannot accommodate the broad
range of abilities and skills of the potential visitors. More-
over, most web pages are visually-oriented and assume that
users do not have functional impairments or special require-
ments. These problems are more aggravating when moving
to the domain of tablets or mobile phones [7].

As such, proposals that actively involve end users (e.g.,
[3]) have been considered to adapt a particular web page

Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18–20, 2012, Lyon, France.

to their needs. However, user-driven customization can be
cumbersome, as it requires to perform additional activities
that are not directly related to their main purpose for visit-
ing the site [2]. Atterer et al. [1] observed that knowing the

user’s every move can provide meaningful statements about
how users interact with web pages. Therefore alternative
adaptation approaches without burdening the user can be
derived.
On the other hand, websites often use template-based de-

signs for keeping consistency across pages, using Cascading
Style Sheets (CSS) to control their visual appearance. While
the content can be frequently updated, this is not the case
for the HTML structure, which can remain stable for weeks
or even months [2]. Based on these notions, I developed an
Adaptive CSS Engine (ACE) that works on the Document
Object Model (DOM) of web pages (Figure 2).

ACE

elems evts

<html>

CSS

Webmaster User

XPath

Figure 2: Workflow diagram. ACE tracks the elements
indicated by the webmaster. When the user access a
page, triggered browser events translate interacted DOM
elements to XPath notation for later storing. On return-
ing to the page, the CSS properties of such stored ele-
ments are restyled.

1.1 Method Rationale
This work lies in the Attentive User Interfaces paradigm,

a recent interaction and visualization style that aims to fo-
cus (rather than distract) the user [10]. ACE leverages infor-
mation that users perform with little or no awareness (e.g.,
mouse movements, taps, clicks) to incrementally mutate the
appearance of interacted DOM elements. The idea is to in-
troduce ephemeral changes that can be easily incorporated
and do not alter the web design in a way that it might con-
fuse the user.
The importance of an interaction towards a specific DOM

element is measured as the proportion of UI-generated events
on that widget between consecutive sessions [8]. Motivated
by the fact that exertions are preceded by some intention-
ality, ACE measures these page-level interactions and use
them as a proxy of user attention.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



(a)

ACE.adapt({
➊ "div a": ["font-size", "color"],
➋ "p ul" : ["font-weight, "margin"]
});

➊

➊

DIV

STRONGLILI

H1 ULHR EM

P

INPUT INPUT

DIVIMG

A AAAA

PP LI LILI

UL

BODY

DIV DIV

DIV

(b) pattern: E F

ACE.adapt({
➌ "div + a": ["font-size", "color"],
➍ "p + ul" : ["font-weight, "margin"]
});

A AA

LI LILI

UL

BODY

DIV

➍DIV

A STRONGA LILI

H1 PP ULHR EM

P

DIV

DIV

INPUT INPUT

DIVIMG

(c) pattern: E + F

ACE.adapt({
➎ "div ∼ a": ["font-size", "color"],
➏ "p ∼ ul" : ["font-weight, "margin"]
});

➏

➏

INPUT

DIV

A STRONGA

H1 PP HR EM

P

INPUT

DIVIMG

A AALILI

UL LI LILI

UL

BODY

DIV DIV

DIV

(d) pattern: E ∼ F

Figure 1: Original page design (1a) with an overlaid mouse behavior that may cause different adaptation possibilities,
according to the following CSS combinator patterns: (1b) F elements that are descendants of E elements; (1c) F
elements immediately preceded by E elements; (1d) F elements preceded by E elements. Top row : Sample JSON
syntax. Middle: Corresponding page changes. Bottom row : DOM tree traversals, highlighting in bold the matched
paths. Note that any combination of CSS selectors is supported, e.g., "div + p.foo > span a:first-child".

This paper is based on the framework introduced in [7,
8], which has been specifically devoted to web pages in a
browser environment; c.f. Features and Figure 1.

The main difference with other state-of-the-art interface
adaptation techniques is that ACE relies on the webmaster’s
control to accommodate the appearance of the pages to the
users in a transparent way (see Related Work for a brief
discussion).

2. SYSTEM OVERVIEW
ACE is a totally self-contained JavaScript (JS) program

that restyles numerical CSS properties, i.e., related to:

• Dimensions (e.g., font-size, margin-top.) These
properties often do have a unit of measure1, e.g., 16px,
2.5em, or 20%, which is preserved once they are adapted.

• Colors (e.g., background-color, border-color.) These
properties have an hexadecimal representation2, which
is specified either by a keyword (e.g., "red") or by a nu-
merical RGB specification (e.g., #RRGGBB or rgb(R,G,B)).

2.1 Features
ACE’s main features are summarized in the following list:

• Does not require end user intervention.

• Supports desktop, touch, and mobile web clients.

• Any combination of CSS selectors can be used.

• Modifications are incrementally applied, ensuring that
they are not intrusive for the user.

• Adaptation can be performed once the DOM is parsed
or the page is fully loaded, so that third party or JS-
controlled modifications are also supported.

• Since the system has a user’s interaction history, it can
populate the adaptation to other pages on the site that
share a similar structure.

2.2 User Interaction Protocol
The webmaster indicates which elements and which CSS

properties can be modified via a <script> tag, by using a
straightforward JSON notation (see sample code snippets in
Figure 1). Then:

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



1. Users access a page and such elements are tracked.

(a) If users are new visitors, no modifications to CSS
of page elements (i.e., DOM objects) are performed.

(b) Otherwise, their previous interaction data are loaded,
if available, and DOM elements are restyled.

2. Users leave the page and their tracked interaction data
are stored on a local database (i.e., on the client side).

2.3 Implementation
ACE has been developed without relying in other JS li-

braries or frameworks, to ensure portability across different
platforms and/or devices. A very simple JS API can be ac-
cessed via the global ACE namespace to invoke the system.
The system exposes the public method adapt(), which takes
two arguments: a configuration object (see script snippets
in Figure 1) and a context (window.document by default).
Notice that such syntax is dramatically less verbose than the
notation envisioned in [7], and that it can support any com-
bination of CSS selectors. This allows ACE more flexibility
to adapt page elements, as shown in Figure 1.

Under the hood, the DOM elements that were specified
in the configuration object as CSS selectors are retrieved by
means of the querySelectorAll() method3. Then, if there
were previous interaction data available, the matched DOM
elements are restyled according to Equation 3. Also, in any
case, event listeners are attached to these elements, in order
to keep record of the (new) user interactions.

Interaction data are classified into different event lists,
e.g., hovered, typed, scrolled, or tapped elements; where
each list member is a DOM fragment (see bottom rows of
Figure 1) in XPath notation — to allow retrieving them later
on subsequent user visits. Such a list members are scored
according to the number of browser-generated events, or, in
other words, how many times the user has interacted with
those DOM elements. The Interaction Scoring Scheme is
described in the next section.

Finally, data are persistently stored on the client side by
means of the localStorage API4 or a document.cookie as
a fallback mechanism, so that the users’ privacy is com-
pletely under their control; e.g., they may opt to configure
their browsers to restrict access to the storage context, or
automatically delete stored data after some time.

2.4 Interaction Scoring Scheme
As commented above, each interacted element is assigned

a score s, which depends on the type of events. Let ni be
the number of times an event of type i was fired for a certain
DOM element, and let N be the number of all fired events
during browsing. The assigned score for that event is

si = ζ(ni/N) (1)

where ζ(·) is a symmetric sigmoid function. The idea is to
impose scores to follow a non-linear distribution, in order to
ensure that adaptation is smoothly applied.
Note that if an element receives different types of interac-

tions (e.g., an input text field can listen to click, focus, or
keydown events) then its scores need to be fused in order to
compute a single value. ACE uses the weighted mean as a
fusion scoring method:

s =
m
∑

i=1

wisi with
∑

wi = 1 (2)

where m is the number of computed scores for that element.
The value v of a CSS property is then modified this way:

v = v(1 + s) (3)

On subsequent user visits, the new scores s′i and how they
will affect the CSS properties are both updated as follows:

s′i = ζ(n′

i/N)− si

v′ = v(1 + s′) (4)

According to equations (3) and (4), when a user enters a
site for the first time, elements are rendered as they were
designed, as the system has no information about previous
interactions (si = 0 ∀i). Then, in successive visits to the
same page (or pages that share the same DOM structure)
the system will react accordingly, i.e., modifying the value
of those CSS properties specified by the webmaster based
on the amount of user’s interactions. Given that scores are
bounded to the interval (−1, 1), a score of, say, 0.05 for a
margin-top property will be interpreted as “increasing by a
5% the value of the top margin.” Conversely, a score of −0.1
for a color property will be interpreted as “decreasing by a
10% (the contrast or saturation of) the font color.”

3. EXPERIMENTAL EVALUATION
In terms of system performance, ACE takes a few mil-

liseconds to complete the adaptation process. A series of
JavaScript benchmarks were performed on the mock-up shown
in Figure 1 with different configuration objects and CSS
properties. The machine was an i686 @ 2 GHz with 1 GB
of RAM. The adaptation code was executed 100 times and
benchmark results were averaged. Concretely, for 10 items
(that were specified by different CSS level 3 selectors5) hav-
ing at most 5 properties each, in all tested browsers (Fire-
fox 7, Chrome 15, Opera 11, Internet Explorer 9, and Dol-
phin 2.2) the average times were below 20 ms, with standard
deviations below 0.1 in all cases. A demonstration example
is available at http://personales.upv.es/luileito/ace/, so it
can be easily inspected how the system can be configured.
Regarding human evaluation, the most suitable evaluation

method is still not clear. As a preliminary approximation, an
informal study involving 12 users was carried out, in which
participants where asked to browse a mock-up website [7].
At the end of the test, users answered three questions (see
Figure 3); Q1: Do you think page elements are well laid out?
Q2: Did you notice any change on the page, regarding the
first time you visited it? Q3: If so, did you find distracting
those changes?

No

Yes

Q1 Q2 Q3

11/12 9/12 12/12

Figure 3: Results of the user questionnaire.

Overall, users’ acceptability towards the method was per-
ceived as positive. As observed, nine of them did not no-
tice the automatic modifications, and none found distract-
ing those changes while browsing. The informal pilot study,
although being not conclusive, revealed that this adaptation
technique has an interesting potential in building client-side
adaptive user interfaces.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



4. RELATED WORK
Currently, with the exception of customizing font pref-

erences, browsers do not provide end users with substan-
tial control over how web pages are rendered. This way, re-
searchers have proposed different approaches to layout adap-
tation that mainly involve user’s manual work.

Ivory et al. [5] employed learned statistical profiles of award-
winning websites to suggest improvements to existing de-
signs; however, changes would be manually implemented.
Tsandilas and Schraefel [9] introduced an adaptive link an-
notation technique, although it required the user to per-
form direct manipulation of a middleware application. No-
table approaches in this direction include the work of Bila
et al. [2], where the user must actively modify the layout
contents. Kurniawan and co-workers [6] proposed to over-
ride the visual layer of a web page with custom CSS, but
unfortunately updates had to be performed by hand. Now
that web standards have minimized browser inconsistencies,
I foresee this approach as an alternative to automate the
adaptation of web page design without disrupting users’ nav-
igation habits.

5. DISCUSSION
When browsing, there is a lot of information that is not

provided on purpose by the user. As such, page-level inter-
actions can help to identify what characteristics of pages add
benefit (or not). The main advantage of leveraging implicit
input from the user is that every interaction on the website
can contribute to enhance its utility. Additionally, such an
input removes the cost of having to interrupt the user to
submit explicit feedback about the website.

A known limitation of ACE is that currently it can adapt
only properties that vary in a numerical range. However, in
a future it is expected to be able to map semantic properties;
e.g., to adapt the text-align property of a text paragraph
one could use:

v =











"left" if s ∈ (−1,−0.5],

"center" if s ∈ (−0.5, 0.5),

"right" if s ∈ [0.5, 1).

Also, due to ACE’s simplicity, more advanced adaptation
strategies such as re-arranging several page elements (be-
yond alignment) or inserting/removing page content would
require a technically more sophisticated approach.

All in all, this technology enables a straightforward means
to invisibly enhance the utility of web pages and web-based
applications; e.g., in terms of usability, accessibility, read-
ability, interactivity, or performance. Systems like ACE may
allow websites to be flexible enough to meet different user
needs, preferences, and situations.

6. CONCLUSION AND FUTURE WORK
Dynamic and continuously changing environments like the

Web demand new means of building UIs that are aligned to
the skills of the users. ACE is my contribution to help people
enhance the way they create websites.

In addition, it is possible to easily extend the ACE names-
pace with custom methods and/or properties, since it is as-
signed to the global window object of every web browser.
This way, for instance, developers could use ACE as a base
system for developing other applications; e.g., logging the
tracking data in an external database to generate aggregated

statistics, or present the users with detailed in-page analyt-
ics about how they interact on the site. Moreover, having
a user model based on page-level interactions would allow
webmasters to deploy customized design guidelines that im-
pact page presentation.
Finally, I believe that this work has barely scratched the

surface of a wealth of applications that can be developed
by tracking the user activity and dynamically changing the
browsing experience in response. For instance, the technol-
ogy described in this paper could be a good place to start
creating new types of self-adapting websites. Also, integrat-
ing ACE with an eye-tracker would provide a finer-grained
and potentially more focused analysis of user interactions.
Even more, other biometric inputs such as electrocardio-
gram signals would allow developers create “organic” pages
that are able to react to the emotions of the users.

Notes
1Most browsers internally normalize computed CSS properties

to equivalent px values.
2Also, in most browsers, hexadecimal colors are converted to

equivalent rgb(R,G,B) values.
3http://www.w3.org/TR/selectors-api/
4http://dev.w3.org/html5/webstorage/
5http://www.w3.org/TR/css3-selectors/

Acknowledgements
Work partially supported by the Spanish MEC/MICINN under
the MIPRCV“Consolider Ingenio 2010”(CSD2007-00018) project.

7. REFERENCES

[1] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s
every move — user activity tracking for website usability
evaluation and implicit interaction. In Proc. WWW, 2006.

[2] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and
E. de Lara. PageTailor: reusable end-user customization for
the mobile web. In Proc. MobySys, 16–29, 2007.

[3] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller.
Automation and customization of rendered web pages. In
Proc. UIST, 163–172, 2005.

[4] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld.
Automatically generating user interfaces adapted to users’
motor and vision capabilities. In Proc. UIST, 2007.

[5] M. Y. Ivory and M. A. Hearst. Statistical profiles of
highly-rated web sites. In Proc. CHI, 367–374, 2002.

[6] S. Kurniawan, A. King, D. Evans, and P. Blenkhorn.
Personalising web page presentation for older people.
Interacting with Computers, 18(3):457–477, 2006.

[7] L. A. Leiva. Restyling website design via touch-based
interactions. In Proc. mobileHCI, 91–94, 2011.

[8] L. A. Leiva. Interaction-based user interface redesign. In
Proc. IUI, 163–172, 2012.

[9] T. Tsandilas and M. C. Schraefel. User-controlled link
adaptation. In Proc. HT, 152–160, 2003.

[10] R. Vertegaal. Attentive user interfaces. Commun. ACM,
46(3):31–33, 2003. Editorial note.

APPENDIX
Video available at http://vimeo.com/luileito/ace-www.
Code and demo: http://personales.upv.es/luileito/ace/

This is a preprint for personal use only. The published paper may be subject to some form of copyright.


