
Restyling Website Design via
Touch-based Interactions

Luis A. Leiva

ITI – Institut Tecnològic d’Informàtica

Universitat Politècnica de València

Camí de Vera, s/n - 46022 (Spain)

llt@acm.org

Copyright is held by the author/owner(s).

MobileHCI 2011, Aug 30–Sept 2, 2011, Stockholm, Sweden.

ACM 978-1-4503-0541-9/11/08-09.

Abstract
This paper introduces an ongoing technique for
dynamically updating presentational attributes of UI
elements. Starting from an existing web layout, the
webmaster specifies what elements are candidates to
be modified. Then, touch-based events are used as
implicit inputs to an adaptive engine that
automatically modifies, rearranges, and restyles the
interacted items according to browsing usage. In this
way, the UI is capable of (incrementally) adapting
itself to the abilities of individual users at run-time.

Keywords
Adaptive interfaces, touch tracking, implicit
interaction

ACM Classification Keywords
H.5.2 [User Interfaces]: User-centered design; H.5.4
[Hypertext/Hypermedia]: Navigation

General Terms
Experimentation, Design, Human Factors, Algorithms

Introduction
Websites are supposed to satisfy heterogeneous
needs of many users. However, traditionally websites
have been unable to support that goal [4]. The
one-size-fits-all design is a suboptimal solution when
no clues about the target population are available, or
usage specifications are too general. It is clear that

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



manually designing interfaces for each user is
impractical and not scalable. Also, continuously
performing usability tests to assess new changes on
the UI is very time-consuming.

On the other hand, most web pages are
visually-oriented and assume that users do not have
functional impairments of special requirements.
These problems are more aggravating when moving
to the mobile domain, where the range of screen
sizes and the rendering possibilities are exceedingly
large. Although at present the boundaries between
the desktop and mobile devices are blurring, mobile
is still about poor connections, one-handed use,
glancing, interruptions, and (lately) touch
screens [11].

Browsers can personalize the presentation of web
pages (e.g., modifying font size or applying some
accessibility guidelines), but unfortunately the
changes they perform operate from a global
perspective. We believe that web pages can better
adapt themselves to a particular user’s needs. Our
proposal is to dynamically incorporate slight
modifications either to individual widgets (e.g., the
first item of a list) or to a specific typology of HTML
elements (e.g., all links), based on how users browse
websites. This technique is specifically suitable to
mobile devices, but it also generalizes to the desktop
and traditional browsing.

Background and Related Work
The idea of adapting websites according to user
interactions is not new (see, e.g. [13].) However,
practical examples have been too scarce so far.
Despite considerable debate, automatic adaptation of
UIs remains a contentious area [8]. Commonly cited
issues with adaptive interfaces include lack of control,
predictability, transparency, privacy, and trust [7].

Most approaches employ knowledge that exist prior
to interaction, such as physical abilities or familiarity
with web browsing. Sometimes such knowledge is
acquired by asking the users, e.g., through online
surveys. This is known as explicit feedback, and may
not be as reliable as is often presumed [6]. Other
approaches, however, rely on information that users
exchange unconsciously, either because of their way
of interacting (e.g., scrolling, bookmarking) or
because of the information embedded on their
browsers (e.g., preferred language, the user-agent
string). This is known as implicit feedback, and for
some tasks it has been proved to be useful — e.g.,
see [5]. Our approach is based on this kind of
feedback. On the one hand, it allows to gather much
usage data without burdening the user. On the other
hand, though, collected data is potentially noisy and
prone to more errors than explicit feedback. For that
reason, we let the webmaster to gain control over
what elements are going to be modified and how (see
Framework Formulation).

Designing Alternatives
Probably the major advances in the field of automatic
presentational adaptation of UIs are the ones carried
out by Gajos and co-authors [8], where adaptation is
treated as an optimization problem. However, their
experiments were implemented on form-based
layouts, by modeling widget constraints, and
choosing the best alternatives from a defined set of
UI elements (e.g., sliders, combo boxes, radio
buttons, etc.). Web layouts are nevertheless a
completely different matter. Their dynamic nature per
se makes the automatic adaptation a non-trivial
problem.

Approaches to Adaptive Design of Websites
Ivory et al. [9] employed learned statistical profiles of
good sites to suggest improvements to existing
designs; however, changes would be manually

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



implemented. Tsandilas and Schraefel [12]
introduced an adaptive link annotation technique,
although it required the user to perform direct
manipulation of a middleware application. Notable
mobile-oriented approaches in this direction include
the work of Baudisch et al. [2] and Bila et al. [3],
where the user must actively modify the layout
contents. Kurniawan and co-workers [10] proposed
to override the visual layer of a web page with
custom Cascading Style Sheets (CSS), but
unfortunately updates had to be performed by hand.
Now that web standards allow to cleanly decouple
presentation and content, we foresee this approach
as an alternative to automate the adaptation of web
page design.

Touch-based Interactions

−1 1

ϑ ∝ ∆t

w

hovering
clicking

Figure 1: Weighting touch
interaction. Hovering is
modeled as w = tanh(λϑ), while
clicking is modeled as
w = sinh(λϑ). The parameter λ
allows to tune the slope of both
curves. In this case, we used
λ = 5 for hovering and λ = 1 for
clicking.

We decided to focus on touch interaction for a
number of reasons. First, it is the most direct form of
interaction —not only on mobile devices— since the
finger and the information are only separated by a
physical display. Second, it is a user-friendly
medium, i.e., there is no need of any mastery to use
it. Third, touch-based interactions are more robust
than free-moving input devices such as the
mouse [1]. Nevertheless, our methodology can be
completely transposed to other pointing devices
(e.g., styli or touchpads). Finally, the scheme
presented here is also fully extensible to other
probability distributions and/or different input
signals. For instance, the amount of entered text and
typing speed could be used to modify elements that
have received text focus, such as form fields.

Contributions of this Work
We developed a straightforward method to
incorporate information from user interactions to the
presentational properties of HTML elements. The
novelty of this approach is two-fold: 1) to let the
webmaster decide what elements are going to be

adapted; and 2) to automatically apply slight
modifications to the CSS of UI elements based on
how the user has interacted with them. In this way,
we try to invisibly improve the user-perceived
performance towards a page.

Framework Formulation
An HTML element i is susceptible to adapt (the value
of) k of its visual properties based on the style
function

CSS(k) =

{

k (wik + 1) if w ≥ 0,

k wik if w < 0,
(1)

where wik : M 7→ R ∈ [−1, 1] is the weight for the CSS
property k belonging to HTML element i, which will be
automatically computed by the adaptive engine,
based on the contribution of the user interactions ϑ,
i.e.,

wk = f(ϑk). (2)

f(ϑk) considers the influence of touch hovering and
clicking over time increments in a non-linear
correlation (Figure 1). To sum up, in this framework:

• Elements are DOM entities (e.g., div).

• Properties are CSS features (e.g., font-size).

• Weights are values that modify the properties of
(interacted) elements. See also System
Workflow.

Implementation
The system assigns a unique identifier to the user
device, computed by time-stamping a random seed,
and stores that value in a cookie. Then the user
activity (movements, taps/clicks) is registered in
background via DOM events, as well as the interacted
HTML elements. The resulting assets are sequences
of coordinates, and two rankings of UI elements
(hovered and clicked items) ordered by percentage of

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



(a) Original page (b) Automatically adapted design

Figure 2: An example of website design modifications. Changed parts are marked with numbered balloons in Figure 2b. (1) headline text: font-size,
padding-top; (2) navigation menu: font-size; (3) welcome paragraphs: font-size; (4) ‘read more’ links: color; (5) ‘online booking’ heading: color; (6)
submit button: font-weight; and (7) ‘special menu’ div: margin-top.

browsing time. Each item in both ranked lists is
stored as a CSS selector string, computed by
recursively traversing the DOM tree from the
interacted element to its nearest parent node having
an ID or class attribute. In this way, a compact
representation is ensured while facilitating at the

same time a ready-to-use CSS reference (see
Figure 3). In the worst case, i.e., no node with ID or
class is found, the application stores its full DOM
position. When a unload event is detected, the
gathered data are asynchronously transmitted to the
adaptive engine, which was coded in PHP, and finally

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



stored into a MySQL database for better indexing and
later querying. Figure 4 shows the system
architecture.

HTML

HEAD BODY

DIV

H1#hi

A

. . .FORM. . .

FIELDSET

DIV.wrap . . .

Figure 3: DOM tree traversal
example. When the user clicks
in the anchor (A) element, the
event is propagated to the root
(HTML) node. Our system logs
this interaction as [H1#hi>A],
instead of storing the full path
[HTML>BODY>FORM>DIV.wrap>

FIELDSET>DIV>H1#hi>A]; since
the selector [H1#hi>A] is
enough for unequivocally
accessing that element via CSS.

Figure 4: Interaction data are
gathered on client side (1) and
inserted into a database (4) for
later processing by the adaptive
engine (5), which, after an
iterative process, will notify the
web server (3) to deliver the
new design via Internet (2).

System Workflow
When a new user accesses a web page, and therefore
no previous interaction data are available, UI
elements are rendered as they were originally
designed (or, similarly, weights virtually have a null
value). Then, while browsing, user interactions are
buffered until she leaves the page. At that point data
are transmitted back to the web server, and the
adaptive engine will assign new values to the weights
of the corresponding interacted elements that match
those specified by the webmaster. For example, a
weight of 0.2 for a background-color property will
increase the contrast of the affected element by a
20%. Inversely, a weight of −0.046 for a width
property will decrease the width of the corresponding
element by a 4.6%. Since weights are proportional to
the temporal variations of user interactions, it is not
possible to alter the CSS properties significantly,
ensuring thus that changes are incrementally applied.
Finally, non-matched elements allows the adaptive
engine to have a ‘user interaction history’, which is
useful when the webmaster decides to track new
elements (the cold start problem.)

Usage Scheme

We needed to name our system to allow web
developers accessing its API through the top-level
namespace of all browsers, i.e., the window object.
We found ACE (Adaptive CSS-oriented Engine) to be
a consistent, short, and descriptive title. To get the
system working, a web page must include it by
placing a single JavaScript file either in the HEAD or
BODY. Then, the webmaster should register those
elements that will be automatically adapted through
the function call ACE.track([obj1,. . .,objN]),
where the argument is an array of JavaScript objects,

each one having two properties: selector (a CSS
selector string) and property (an array of CSS
attributes). For instance, if we want the system to
alter the font size and font color of the links in a div
element with ID “chef”, and the dimensions of the
input elements with class “text”, we would write this
code:

var items = [{

selector: "#chef p a",

property: ["font-size", "color"]

},{

selector: "form input.text",

property: ["width", "height"]

}];

ACE.track(items);

Evaluation, Discussion, and Future Work
A preliminary informal study with 12 mobile users
revealed that the perceived acceptability regarding
the automatically restyled design was positive.
Participants were told to freely browse a mockup site
(Figure 2) with the ACE system on an HTC Desire.
Nine of them reported that they did not notice the
introduced changes, and none found distracting such
an automatic modifications. We concluded that this
framework can be a promising approach for adapting
the design of websites, specially when browsing with
mobile devices. However, we believe that much work
remains to be done.

First of all, we feel that evaluating this kind of
adaptation strategy is quite challenging, since no
objective metrics can be consistently computed; e.g.,
in the absence of labeled samples, we cannot use the
well-known precision and recall measures; and
having to interrupt the normal navigation flow of
mobile users to ask them to vote is certainly not an
option. We hypothesize, though, that touch
interactions inherently encode performance. Thus, if

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



an adapted design works better than a previous
iteration, it should be reflected somehow in the traces
of movements, gestures, etc. Nevertheless, one
needs to be cautious with this hypothesis, since
learnability and familiarity with the UI could be
introducing a serious bias. Therefore, our next move
will be carrying out a formal in-lab evaluation
methodology.

Second, since content is automatically generated, it
is likely to be of less quality than human-generated
content. Thus, we believe that it would be interesting
to assess the influence of such variations in layout
design, or use different evaluation viewpoints (e.g.,
measure the reduction of user effort, compare to
other adaptive systems, etc.)

Third, the prototype for the adaptive engine was
written in PHP, in order to delegate the computational
load to the web server. However, it could be coded
entirely in JavaScript, allowing thus to be released as
a browser plugin. The user could therefore take
control and specify what UI candidates could be
modified, or, on the other hand, let the system decide
alternatives in a semi-supervised way.

Fourth, it is clear that some CSS properties cannot be
adapted based on this framework (e.g., font-family
or text-align). Concretely, re-adaptation will take
effect on those properties that vary in a numerical
range, e.g., font-size, color, height, or margin).
We are studying the possibility of mapping semantic
properties to a real-valued scales, in order to cope
with this limitation.

Finally, redesign decisions are (by now) based on
modifications of shape, position, and/or color
attributes. We plan to develop more advanced
strategies such as inserting related content based on
the nature of similar users’ interactions.

Acknowledgements
Work partially supported by the Spanish MEC/MICINN
under the project MIPRCV (CSD2007-00018).

References
[1] Albinsson, P.-A. and Zhai, S. High precision touch

screen interaction. In Proc. CHI, pp. 105–112, 2003.

[2] Baudisch, P., Xie, X., Wang, C., and Ma, W.-Y.
Collapse-to-zoom: viewing web pages on small screen
devices by interactively removing irrelevant content.
In Proc. UIST, pp. 91–94, 2004.

[3] Bila, N., Ronda, T., Mohomed, I., Truong, K. N., and
de Lara, E. Pagetailor: reusable end-user
customization for the mobile web. In Proc. MobySys,
pp. 16–29, 2007.

[4] Brusilovsky, P. and Maybury, M. T. From adaptive
hypermedia to the adaptive web. Commun. ACM,
45(5):30–33, 2002.

[5] Buscher, G., Dengel, A., and van Elst, L. Eye
movements as implicit relevance feedback. In Proc. EA
CHI, pp. 2991–2996, 2009.

[6] Claypool, M., Le, P., Wased, M., and Brown, D. Implicit
interest indicators. In Proc. IUI, pp. 33–40, 2001.

[7] Findlater, L. and McGrenere, J. Impact of screen size
on performance, awareness, and user satisfaction with
adaptive graphical user interfaces. In Proc. CHI, pp.
1247–1256, 2008.

[8] Gajos, K. Z., Everitt, K., Tan, D. S., Czerwinski, M., and
Weld, D. S. Predictability and accuracy in adaptive
user interfaces. In Proc. CHI, pp. 1271–1274, 2008.

[9] Ivory, M. Y. and Hearst, M. A. Statistical profiles of
highly-rated web sites. In Proc. CHI, pp. 367–374,
2002.

[10] Kurniawan, S., King, A., Evans, D., and Blenkhorn, P.
Personalising web page presentation for older people.
Interacting with Computers, 18(3):457–477, 2006.

[11] Rieger, S. and Rieger, B. It’s about people, not devices.
Available at uxbooth.com. Retrieved March 1, 2011.

[12] Tsandilas, T. and Schraefel, M. C. User-controlled link
adaptation. In Proc. HT, pp. 152–160, 2003.

[13] Zhang, D. Web content adaptation for mobile
handheld devices. Commun. ACM, 50(2):75–79, 2007.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.


