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Preface

Welcome to the proceedings of BNAIC/BeneLearn’21, the 33rd edition of
the annual Benelux Conference on Artificial Intelligence, and the 30th
edition of the annual Belgian-Dutch Conference on Machine Learning.

In 2021, this joint conference has been organized by the University of
Luxembourg, under the auspices of the Faculty of Science, Technology,
and Medicine (FSTM) and the Interdisciplinary Lab for Intelligent and
Adaptive Systems (ILIAS), and the IT for Innovative Services (ITIS)
research department from the Luxembourg Institute of Science and
Technology (LIST).

Held yearly, the objective of BNAIC/BeneLearn is to promote and dis-
seminate recent research developments in Artificial Intelligence in the
Benelux. In 2021 we have come back to in-person attendance, under
CovidCheck regulations, as a three-day event: from Wednesday 10 to
Friday 12 November 2021.

BNAIC/BeneLearn 2021 has included invited keynote speakers, re-
search presentations, posters, and demonstrations. The conference
has provided ample opportunity for synergies and interaction between
academia and industry. This year, the chosen motto of the confer-
ence was “AI in ACTION”, to reflect the aforementioned synergies and
interactions between academia and industry.

For the scientific part, we have welcomed four types of contributions,
namely: A) regular papers, B) encore abstracts, of already published
work in 2021, C) poster and demonstrations, and D) thesis abstracts.
We received 105 submissions overall, out of which 98 were selected for
presentation at the conference: 39 regular papers, 28 encore abstracts,
10 poster and demonstrations, and 21 thesis abstracts. Then, 14
regular papers were selected for inclusion in a post-proceedings volume
of the Springer CCIS series, after a second round of reviewing by
members of the program committee. All regular papers, posters, and
demonstrations received three expert single-blind reviews on average,
whereas thesis and encore abstracts were reviewed by at least one
program committee member.

All scientific contributions were presented as 20-minute talks, for which
the conference program comprised 4 parallel tracks. In addition to
these sientific presentations, we had keynote presentations by Fosca
Giannotti (ISTI-CNR Pisa, Italy), Katie Atkinson (University of Liverpool,
UK), Carles Sierra (IIIA of CSIC, Spain), Manuela Naveau (Kunstuniver-
sität Linz, Austria), Julie Bernauer (NVIDIA Corporation, USA), and
Iris von der Tuin (Utrecht University). We also held a special FACt
(FACulty focusing on the FACts of AI) session with presentations by
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Benoit Macq (Polytechnic School of UCLouvain, Belgium), Gilles Louppe
(University of Liège, Belgium), and Christoph Schommer (University of
Luxembourg, Luxembourg).

To conclude, we want to express our gratitude to everyone who made
this conference possible. Without their efforts, this conference could
not have taken place. In addition to all invited speakers mentioned
above, many thanks to our sponsors: Luxembourg’s National Research
Fund (FNR), the Dutch Foundation for Neural Networks (SNN), the
Foundation for Knowledge-Based Systems (SKBS), and the Benelux
Association for AI (BNVKI). We also thank all the organizing and pro-
gram committee members for their hard work to guarantee the high
quality of this conference, both before and during the conference. We
also wish to thank all student volunteers, administrative, and secre-
tarial assistants, and of course all the academic as well as business
sponsors. Finally, we also thank all the authors who made important
contributions to the conference.

Luis A. Leiva,
Cédric Pruski,
Réka Markovich,
Amro Najjar,
Christoph Schommer
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Abstract. In recent years a lot of research was conducted within the
area of causal inference and causal learning. Many methods were devel-
oped to identify the cause-effect pairs. These methods also proved their
ability to successfully determine the direction of causal relationships from
observational real-world data. Yet in bivariate situations, causal discov-
ery problems remain challenging. A class of methods, that also allows
tackling the bivariate case, is based on Additive Noise Models (ANMs).
Unfortunately, one aspect of these methods has not received much at-
tention until now: what is the impact of different noise levels on the
ability of these methods to identify the direction of the causal relation-
ship? This work aims to bridge this gap with the help of an empirical
study. We consider a bivariate case and two specific methods Regression
with Subsequent Independence Test and Identification using Conditional
Variances. We perform a set of experiments with an exhaustive range
of ANMs where the additive noises’ levels gradually change from 1% to
10000% of the causes’ noise level (the latter remains fixed). Additionally,
we consider several different types of distributions as well as linear and
non-linear ANMs. The results of the experiments show that these causal
discovery methods can fail to capture the true causal direction for some
levels of noise.

Keywords: Causal Learning · Additive Noise Models · Noise Level.

1 Introduction

Thanks to the technological and computational advances during the last decades,
scientists were able to tackle successfully non-trivial problems from different re-
search areas, with causality being a prominent example. One of the fundamental
problems of causality theory is to determine the causal relationship between two
or more variables. This problem is known as causal discovery, causal identifica-
tion or structure learning [8, 27]. For example, given altitude and temperature,
we want to answer the question if the temperature has an effect on altitude, or if
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altitude has an effect on temperature. This is of particular interest since if such
a causal relationship is known then one can predict the effects on a system in
case of an intervention or a perturbation.

Controlled experimentation, or A/B tests, are considered to be a golden
standard for causal discovery [11, 34]. In such experiments, there are two identical
groups with only one variation. The only variable that is varied (intervened on)
is the potential cause. This procedure allows estimating the causal effect of this
variable in a given system. A/B tests are widely used in practical applications.
For example, testing the efficacy of medications is usually done with A/B tests,
see [32] for an example. In this case, the first group, also known as control
group, receives no medication or a placebo, and the second group, known as
intervention group, receives the real medication. The results show the true effect
(if any) of the medication on human health. However, such tests are often too
expensive, unethical, or even technically impossible to execute. For example, to
test the effect of smoking on health with this approach, one needs two non-
smoker groups. Next, the members of one group should be forced to smoke,
and the others not do so. Therefore, it is of great interest to determine causal
relationships from observational data only.

There exist many methods which are able to determine causal relationships
from observational data. One particular group of such methods is based on Ad-
ditive Noise Models (ANMs). These methods, as the name suggests, exploit the
additivity of the random hidden noise. ANMs received a lot of attention as they
are well established and yielded many good results [12]. Despite all the research
in the past years, one small but nonetheless important aspect of causal discovery
with ANMs has not received much attention: how do different noise levels of the
additive noise impact the correctness of these methods? In the real world, it can
occur that noise levels change drastically from cause to effect. It can happen,
for example, if the data collection process has a lot of interference like in outer
space.

In this work, we aim to bridge this research gap with an empirical study.
For our analysis, we selected two specific methods: Regression with Subsequent
Independence Test (Resit) [20] and Identification using Conditional Variances
(Uncertainty Scoring) [17]. We chose Resit, as it is known to produce reliable
results [15]. However, this method is not capable to identify the correct causal
direction in the case both the cause and the noise are Gaussian. In fact, this case
was only recently successfully tackled by the Uncertainty Scoring method. That
is why we chose the latter one as well. We perform a set of experiments with
an exhaustive range of ANMs where the additive noises’ levels gradually change
from 1% to 10000% of the causes’ noise level (the latter remains fixed). We also
consider several types of distributions as well as linear and non-linear data. The
results of the experiments show that these causal discovery methods can fail to
capture the true causal direction for some levels of noise.

This paper is organized as follows. In Section 2 we introduce related work.
Next, in Section 3 we describe the chosen causal discovery methods. In Section 4
and Section 5 we discuss the experimental setup and the experimental results
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respectively. Lastly, in Section 6 we draw conclusions and present possible future
work.

2 Related Work

Structure learning is the procedure of determining causal relationship directions
from observational data only and representing these as a (causal) graph. The
basic idea emerged from [33] as path analysis.

Judea Pearl presented in his work [8] a comprehensive theory of causality
and unified the probabilistic, manipulative, counterfactual, and structural ap-
proaches to causation. From this work we have the following key point. If there
is a statistical association, e.g. two variables X and Y are dependent, then one
of the following is true: 1) there is a causal relationship, either X has an effect
on Y or Y has an effect on X; 2) there is a common cause (confounder) that has
an effect on both X and Y ; 3) there is a possibly unobserved common effect of X
and Y that is conditioned upon data acquisition (selection bias); or 4) there can
be a combination of these. From there on, a lot of research has been conducted to
develop theoretical approaches and methods for structure learning. In the rest of
this section, we first introduce the common concept behind all these approaches,
and then we present some major works related to additive noise models.

In general, all methods for structure learning exploit the complexity of the
marginal and conditional probability distributions in some way, see [1–7, 9, 13,
14, 16, 18–25, 27–30, 35]. Under certain assumptions, these methods are then able
to solve the task of causal discovery. Let C denote the cause and E the effect.
Then their joint density can be expressed with pC,E(c, e). This joint density
can be factorized into either (1) pC(c) · PE|C(e|c) or (2) pE(e) · PC|E(c|e). The
idea is then that (1) gives models of lower total complexity than (2) and this
allows us to conclude the causal relationship direction. Intuitively, this makes
sense, because the effect contains information from the cause but not vice-versa
(of course, under the assumption that there are no cycles aka feedback loops).
Therefore, (2) has at least as much complexity as (1). However, the definition
of complexity is ambiguous. For example, one can say that “pC contains no
information about PE|C(e|c)” and then draw partial conclusions about the causal
direction in a given system. This complexity question is often colloquially referred
to as breaking the symmetry, that is pC(c) · PE|C(e|c) 6= pE(e) · PC|E(c|e).

As it was already mentioned, causal discovery based on ANMs was widely
studied in the research literature. Silva et al. introduced in [26] a method for
learning the structure of linear latent variable models. The main assumption in
their work is that each variable is a linear function of its parents plus an ad-
ditive error term of positive finite variance. Hoyer et al. generalized the linear
framework of additive noise models to the nonlinear case [4]. Earlier works of-
ten assumed linear models for continuous variables. The authors showed that if
data contains non-Gaussian variables, then this can help in distinguishing the
causal directions and identifying the causal graph. Mooij et al. introduced Resit1

1 Resit method is described in Section 3.2.
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method in [13]. This method is based on the idea of minimizing the statistical
dependence between the regressors and residuals2. The authors demonstrated
that if the residuals are no longer dependent on the input, then regression can
successfully model the causal dependence. This method does not need to assume
a particular distribution of the noise because any form of regression can be used
(e.g., Linear Regression), and it is well suited for the task of causal inference
in additive noise models. Next, Mooij et al. introduced a method to determine
the causal relationship in cyclic additive noise models and showed that such
models are generally identifiable in the bivariate, Gaussian-noise case [14]. Their
method works for continuous data and can be seen as a special case of nonlinear
independent component analysis. Later, Peters and Bühlmann proved in [19] full
identifiability3 of linear Gaussian structural equation models if all the noise vari-
ables have the same variance. In the next work, Peters et at. proposed a method
that can identify the directed acyclic graph from the distribution under mild
conditions [20]. In contrast, previous methods assumed faithfulness and could
only identify the Markov equivalence class of the graph4. Finally, the authors
of [1, 18] proved that linear Gaussian models with different error variance can
be also identifiable. In their method, referred to as Uncertainty Scoring5, this is
done by ordering variables according to the law of total variances and then per-
forming independence tests between them. Park extended this result to additive
noise models in [17].

As we can see, many researchers contributed to the development of ANMs-
based causal discovery methods and widened our understanding of their appli-
cation cases. However, no previous research work analyzed how the level of noise
variance relative to that of the cause variance can impact the accuracy of these
methods. This question forms the basis of the current study.

3 Causal Discovery Methods

In this section, we introduce notations and then describe to two analyzed causal
discovery methods: Regression with Subsequent Independence Test (Resit) [20],
see Section 3.2, and Identification using Conditional Variances (Uncertainty
Scoring) [17], see Section 3.3.

3.1 Notations

In the following text, we give a short definition of additive noise models for the
bivariate case. For more details and multivariate cases, please refer to [4, 20].

2 The residuals are defined as the difference between the actual output and the pre-
dicted output.

3 Full identifiability means that not only the skeleton of the causal graph is recoverable
but also the arrows are.

4 Markov equivalence class refers to the class of graphs in which all graphs have the
same skeleton.

5 Uncertainty Scoring method is described in Section 3.3.
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Let X,Y ∈ R be the cause and the effect respectively. Let there also be m
latent (hidden) causes U = (U1, . . . , Um) ∈ Rm. Then the causal relationship
can be modeled as follows.

{
Y = f(X,U1, · · · , Um)

X ⊥⊥ U , with X ∼ pX(x) and U ∼ pU (u1, · · · , um),

where f : R × Rm → R is a linear or nonlinear function, and pX(x) and
pU (u1, · · · , um) are the joint densities of the observed cause X and the latent
causes U . We assume that there is no confounding, no selection bias, and no
feedback loops between X and Y . In this case, X and U are independent, which
is denoted by X ⊥⊥ U . Since the latent causes U are unobserved, their influence
can be summarized with a single noise variable Ny ∈ R, and the model can be
rewritten as follows:

{
Y = f(X,Ny)

X ⊥⊥ Ny
, with X ∼ pX(x) and Ny ∼ pNy

(ny).

In our experiments, we are considering both linear and nonlinear additive
noise models:

Y = βX +Ny with β ∈ R, for the linear case

and
Y = βXα +Ny with β, α ∈ R, for the nonlinear case.

Also, X and Ny can be drawn from one of the following three distributions: the
normal distribution denoted by the calligraphic letter N , the uniform distribu-
tion denoted by the calligraphic letter U , or the Laplace distribution denoted by
the calligraphic letter L. For example, throughout this work “X is drawn from a
normal distribution” is denoted by X ∼ N or X ∼ N (µx, σx) with µx standing
for the mean and σx for the standard deviation.

3.2 Regression with Subsequent Independence Test (Resit)

We implement Resit following Algorithm 1 from [15]. This algorithm requires
the following inputs: X and Y , a regression method, and a score estimator Ĉ :
RN × RN → R; it outputs dir (casual relationship direction). The idea is to
regress Y on X, predict Ŷ , and then calculate residuals Yres = Ŷ − Y . Yres
and X are then used to calculate ĈX→Y , a score for the assumed case X → Y .
Similarly, to test the other causal direction (Y → X), we regress X on Y ,
calculate residuals Xres = X̂ −X and estimate ĈY→X . In our experiments, the
generated data always follows X → Y . This verifies the assumption that only
one direction in our data is correct (and not both). Under this assumption, we
can compare both scores directly to decide on the cause-effect direction, and we
do not need to determine the value of α for the independence tests, see Eq. (1).
Additionally, we can also use entropy estimators to estimate the score Ĉ.
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6 B. Kap et al.

Algorithm 1 General procedure to decide whether p(x, y) satisfies Additive
Noise Model X → Y or Y → X.

Input:
- I.i.d. sample data X and Y
- Regression method
- Score estimator Ĉ : RN × RN → R

Output:
- dir

1: reg1 ← Regress Y on X
2: reg2 ← Regress X on Y

3: Yres ← reg1.predict(X)− Y
4: Xres ← reg2.predict(Y )−X

5: ĈX→Y ← Ĉ(X,Yres)
6: ĈY→X ← Ĉ(Y,Xres)

return dir =





X → Y if ĈX→Y < ĈY→X ,

Y → X if ĈX→Y > ĈY→X ,

? if ĈX→Y = ĈY→X .

(1)

In Algorithm 1, it is possible to split the data into training and test parts. In
this case, the training data is used to fit the regression model and the test data
is used to calculate the value of Ĉ. This procedure is referred to as decoupled
estimation [12]. The advantage of splitting the data lies in the reduction of the
computational time for calculating independence estimates Ĉ. However, in this
work, we use coupled estimation. This means that the entire data-set is used for
both the regression and the independence estimation steps. The latter approach
tends to produce more accurate results for independence estimation.

In our work, we use Linear Regression as a regression algorithm. If an appro-
priate transformation of coordinates is applied, Linear regression can be used in
the non-linear cases as well. In our experiments, we used six different indepen-
dence tests and six different entropy measures for calculating Ĉ. In general, for
the independence tests we have:

Ĉ(XTest, Yres) = I(XTest, Yres),

with I(·, ·) being any independence test. In the case of entropy estimators we
have:

Ĉ(XTest, Yres) = H(XTest) +H(Yres),

with H(·) being any entropy measure. The entropy-based estimator score is
derived from Lemma 1 in [12].

The following estimators were used in this work. The implementation of esti-
mators with numbers 2 - 12 was taken from the information theoretical estimators
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toolbox [31]. Here we briefly introduce every estimator. Mathematical formulas
for each of them can be found in the Appendix.

1. HSIC : Hilbert-Schmidt Independence Criterion with RBF Kernel 6.
2. HSIC IC : Hilbert-Schmidt Independence Criterion using incomplete Cholesky

decomposition7.
3. HSIC IC2 : Same as HSIC IC but with lower precision.
4. DISTCOV : Distance covariance estimator using pairwise distances.
5. DISTCORR: Distance correlation estimator using pairwise distances. It is

simply the standardized version of the distance covariance.
6. HOEFFDING : Hoeffding’s Phi.
7. SH KNN : Shannon differential entropy estimator using kNNs (k-nearest

neighbors) where k = 3.
8. SH KNN 2 : Same as SH KNN but with different search method.
9. SH KNN 3 : Same as SH KNN but with k = 5.

10. SH MAXENT1 : Maximum entropy distribution-based Shannon entropy es-
timator.

11. SH MAXENT2 : Same as SH MAXENT1 with minor changes.
12. SH SPACING V : Shannon entropy estimator using Vasicek’s spacing method.

3.3 Identification using Conditional Variances (Uncertainty
Scoring)

The Uncertainty Scoring method is composed of Algorithm 2 and Algorithm 3
from [17]. It consists of two parts: 1) ordering and 2) conditional independence
testing.

For the first step, ordering, we used backward step-wise selection (Algo-
rithm 2), as it is more convenient for implementation. The algorithm starts with
a set S which contains all variables represented as nodes in a causal graph. Next,
we iterate over S, and for each node, we calculate its conditional variance given
all other remaining nodes. Then, we select the node with the highest conditional
variance, append it to the ordering π, and also remove it from the set S. With
the updated set S, we repeat this process until S is empty. Lastly, the reverse
of the ordering π is returned. The first node to be appended to the ordering is
the last one in the ordering, which is reflected in the name ”backward step-wise
selection”.

In the second step, we perform uncertainty scoring using Algorithm 3. This
algorithm iterates over the ordering π. For every node j, it performs conditional
independence tests conditioning on every other node l appearing before the node
j in the ordering π. If a node l is dependent on j, then it is added to the set of
parents of j, denoted as Pa(j). In this algorithm, the first node in the ordering
never has parents, so the procedure starts with the second node. Fisher’s z-
transform of the partial correlation, is used for the conditional independence
testing.

6 Source: https://github.com/amber0309/HSIC
7 Low rank decomposition of Gram matrices, which permits an accurate approximation

to HSIC as long as the kernel has a fast decaying spectrum.
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Algorithm 2 Backward step-wise selection

Input: All variables from an ANM: X = (x1, x2, . . . , xn)
Output: Estimated ordering π = (π1, π2, . . . , πn)

1: Set S = {1, 2, . . . , n}
2: List π = [ ]
3: for m = 1 . . . n do
4: for j ∈ S do
5: Estimate the conditional variance xj given {x1, . . . , xn}\xj , σ2

j|S\j
6: end
7: Append πm = argmaxjσ

2
j|S\j to π

8: Update S = S\πm

9: end
10: return Reversed list π

Algorithm 3 Uncertainty Scoring

Input: All variables from an ANM: X = (x1, x2, . . . , xn)
Output: Dictionary with estimated parents for all variables: G = {Pa(x1) :
[. . . ], Pa(x2) : [. . . ], . . . , Pa(xn) : [. . . ]}

1: Get ordering from backward step-wise selection: π = (π1, π2, . . . , πn)
2: G = {}
3: for m = 2 . . . n do
4: Pa(πm) = [ ]
5: for j = 1 . . .m− 1 do
6: Conditional independence test between πm and πj given {π1, . . . , πm−1}\πj

7: If dependent, include πj into Pa(πm)
8: end
9: Insert Pa(πm) into G

10: end
11: return G

4 Experimental setup

Generation of synthetic data. For all empirical tests, we assume X to be a
cause of Y , that is X → Y . In the sense of additive noise models, we use the
following equations: Y = X +Ny for the linear case, and Y = X3 +Ny for the
non-linear case, where

X ∼





N (0, 1) or

U(−1, 1) or

L(0, 1)

and Ny ∼





N (0, 1 · i) or

U(−1 · i, 1 · i) or

L(0, 1 · i)

with i being a scaling factor for the noise level in Ny. The goal is to analyze
how different standard deviations (boundaries for the uniform case) in the noise
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term Ny relative to the standard deviations (or boundaries for the uniform case)
in the X term impact the ANM methods.

To cover various dependencies between the distributions of X and Ny, we
generate 199 different i factors:

i ∈ {0.01, 0.02, . . . , 1.00} ∪ {1, 2, . . . , 100}.

For each i, every linear and non-linear combination with different distributions is
tested. Totally, we have 18 combinations corresponding to the general structures
Y = X + Ny and Y = X3 + Ny, where X and Ny are drawn from the three
different distributions, N , U or L.

Y = X ∼ N +Ny ∼ N ,

Y = X ∼ N +Ny ∼ U ,
Y = X ∼ N +Ny ∼ L,

...

Y = X ∼ L3 +Ny ∼ L.
Note that L3 here signifies the non-linear case Y = X3 +Ny.

Evaluation. For each of the 18 combinations, we perform 100 tests. In every
test, we generate 1000 new samples for X and Ny and attempt to identify the
direction of the causal relationship8 using one of the two algorithms presented in
Section 3. Lastly, we simply calculate the fraction of successful tests and define
this ratio as our accuracy measure.

5 Experimental Results

Since we used a large range for the values of i-factor, several different combina-
tions of distributions, linear and non-linear data, we have too many results to
show them all in detail in this paper. Therefore, we discuss several representative
cases and provide a summary of all results. The latter shows for which values
of i-factor the models are consistently identifiable. For the detailed analysis, we
refer to the document [10]. Alternatively, all the results and source codes can be
accessed from the relative repository9.

5.1 Resit

We start with the analysis of Resit method. In this set of experiments, we are
interested in which ranges of i-factor allow causal identifiability and how it is
related to the functional model and the chosen independence estimator. Fig. 1

8 The true direction of the causal relationship is known as we generate synthetic data.
9 https://gitlab.com/Shinkaiika/noise-level-causal-identification-additive-noise-models
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shows the detailed results for the following 4 linear combinations and their non-
linear counterparts: Y = N + U , Y = U +N , Y = U + L, and Y = L+ L. The
y-axis shows the accuracy of causal discovery (#successful tests

100 ), and the x-axis
corresponds to i-factor. Different colors encode 12 estimators used in this work.
The value of accuracy close to 0.5 means that Resit outputs the correct causal
direction in only 50% of the tests thus indicating unidentifiability. The values
close to 1 signify very good/consistent identifiability. In the following text, we
analyze the results for individual models.

Fig. 1a shows the linear model Y = N + U . We can see, that all estima-
tors reach an accuracy close to 100% inside the interval i ∈ [0.8; 5]. However,
for smaller or larger i-factors the accuracy of all estimators start to drop until
they reach unidentifiability ( ∼ 0.5). Not all estimators perform the same. For
example, HISC with Incomplete Cholesky decomposition performs worse for de-
creasing i-factors compared to all other estimators. SH SPACING V performs
the best among all estimators for this linear model. Fig. 1b shows the non-linear
model Y = N 3 + U . The non-linear version shows much better results. With
i ∈ [0.2; 100], we have accuracy close to 100% for all estimators. Only a few
estimators drop towards unidentifiability for i < 0.2.

Fig. 1c shows the linear model Y = U + N . For i ∈ [0.1; 1] this model is
identifiable. However, for larger values of i-factor, the accuracy of many esti-
mators drop quickly. In this range, SH SPACING V remains above 90%, most
other estimators drop between 60% and 80% but HSIC IC and HSIC IC2 drop
to 50% accuracy demonstrating complete unidentifiability. Fig. 1d shows the re-
sults for the non-linear version of this model. For i ≤ 1, all estimators remain
above 90% accuracy, with the exceptions now being HSIC IC and HSIC IC2.
For i-factors larger than 1, estimators behave differently. SH KNN, SH KNN 2,
SH KNN 3, DISTCOV, DISCORR and HOEFFDING remain above 90% accu-
racy up to i = 100. SH MAXENT1 remains between 80% and 90%, HSIC and
SH MAXENT2 between 60% and 80%, and HSIC IC and HSIC IC2 become
unidentifiable.

Fig. 1e shows the linear case Y = U + L and Fig. 1f shows the non-linear
case Y = U3 + L. The demonstrated results are quite similar to the two cases
discussed above. This indicates that models with the same type of distribution
for X behave similarly.

Fig. 1g shows the linear case Y = L + L. For i ∈ [0.1; 10] most estimators
are above 90%, except SH KNN, SH KNN 2 and SH KNN 3 which are above
90% for i ∈ [0.4; 2]. For larger values of i-factor, all estimators drop quickly to
unidentifiability. Finally, Fig. 1h shows the non-linear case Y = L3+L. Similarly
to the model Y = N 3+U presented in Fig. 1b, this model demonstrates that non-
linearity generally helps in identifying causal relationships. For i ∈ [0.15; 100] all
estimators are above 90% accuracy, often reaching 100%.

The experimental results for Resit with linear and non-linear models are
summarized in Tables 1 and 2 respectively. The rows correspond to different
estimators, and columns correspond to structural equation models. The values
in the cells show on what range of i a particular estimator can reach over 90%

Regular papers BNAIC/BeneLearn 2021

19



Effect of Noise Level on Causal Discovery 11

0 .2 .4 .6 .8 1 20 40 60 80100
0.2

0.4

0.6

0.8

1

(a) N + U
0 .2 .4 .6 .8 1 20 40 60 80100

0.2

0.4

0.6

0.8

1

(b) N 3 + U

0 .2 .4 .6 .8 1 20 40 60 80100
0.2

0.4

0.6

0.8

1

(c) U +N
0 .2 .4 .6 .8 1 20 40 60 80100

0.2

0.4

0.6

0.8

1

(d) U3 +N

0 .2 .4 .6 .8 1 20 40 60 80100
0.2

0.4

0.6

0.8

1

(e) U + L
0 .2 .4 .6 .8 1 20 40 60 80100

0.2

0.4

0.6

0.8

1

(f) U3 + L

0 .2 .4 .6 .8 1 20 40 60 80100
0.2

0.4

0.6

0.8

1

(g) L+ L
0 .2 .4 .6 .8 1 20 40 60 80100

0.2

0.4

0.6

0.8

1

(h) L3 + L

Fig. 1: Several selected detailed results for Resit. x-axis shows the values of i-
factor and y-axis shows the accuracy of causal identification.
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Table 1: Summary for Resit with linear models. The numbers reflect the ranges
of i-factor that allow identifiability with accuracy around or above 90%.

Equation N +N N + U N + L U +N U + U U + L L+N L+ U L+ L
HSIC 0.17 - 18 0.13 - 8 0.05 - 6 0.06 - 16 0.04 - 7 0.1 - 7 0.12 - 23 0.1 - 13

HSIC IC 0.65 - 26 0.31 - 7 0.04 - 3 0.06 - 15 0.04 - 5 0.1 - 4 0.14 - 26 0.1 - 8

HSIC IC2 0.7 - 26 0.33 - 7 0.1 - 3 0.14 - 15 0.11 - 5 0.1 - 4 0.14 - 26 0.12 - 8

DISTCOV 0.16 - 23 0.13 - 7 0.04 - 7 0.05 - 21 0.04 - 10 0.1 - 7 0.1 - 25 0.08 - 15

DISTCORR 0.16 - 23 0.13 - 7 0.04 - 7 0.05 - 21 0.04 - 10 0.1 - 7 0.1 - 25 0.08 - 15

HOEFFDING 0.16 - 25 0.13 - 8 0.04 - 7 0.05 - 21 0.04 - 8 0.1 - 7 0.1 - 25 0.1 - 10

SH KNN 0.32 - 12 0.76 - 1 0.08 - 4 0.07 - 12 0.09 - 4 0.61 - 1 0.27 - 12 0.37 - 3

SH KNN 2 0.32 - 12 0.76 - 1 0.08 - 4 0.07 - 12 0.09 - 4 0.61 - 1 0.27 - 12 0.37 - 3

SH KNN 3 0.24 - 12 0.51 - 1 0.05 - 5 0.07 - 14 0.05 - 5 0.37 - 3 0.21 - 15 0.32 - 4

SH MAXENT1 0.23 - 12 0.12 - 10 0.06 - 4 0.1 - 12 0.04 - 8 0.07 - 13 0.11 - 24 0.07 - 17

SH MAXENT2 0.15 - 22 0.13 - 7 0.03 - 7 0.05 - 17 0.04 - 8 0.1 - 7 0.11 - 23 0.1 - 13

SH SPACING V 0.13 - 33 0.17 - 5 0.01 - 100 0.03 - 40 0.01 - 100 0.14 - 6 0.11 - 33 0.09 - 13

Table 2: Summary for Resit with non-linear data. The numbers reflect the ranges
of i-factor that allow identifiability with accuracy around or above 90%.

Equation N 3 +N N 3 + U N 3 + L U3 +N U3 + U U3 + L L3 +N L3 + U L3 + L
HSIC 0.04 - 100 0.08 - 100 0.04 - 100 0.02 - 6 0.03 - 16 0.03 - 7 0.02 - 100 0.04 - 100 0.02 - 100

HSIC IC 0.04 - 83 0.06 - 100 0.04 - 70 0.1 - 0.92 0.14 - 13 0.1 - 4 0.03 - 100 0.05 - 100 0.03 - 100

HSIC IC2 0.08 - 83 0.08 - 100 0.09 - 70 0.12 - 0.91 0.17 - 13 0.17 - 4 0.7 - 100 0.07 - 100 0.09 - 100

DISTCOV 0.02 - 100 0.02 - 100 0.02 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

DISTCORR 0.02 - 100 0.02 - 100 0.02 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

HOEFFDING 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

SH KNN 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

SH KNN 2 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

SH KNN 3 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

SH MAXENT1 0.05 - 100 0.06 - 100 0.05 - 100 0.01 - 100 0.02 - 90 0.01 - 88 0.1 - 100 0.17 - 100 0.1 - 100

SH MAXENT2 0.11 - 98 0.16 - 100 0.1 - 100 0.03 - 4 0.04 - 12 0.04 - 5 0.14 - 100 0.15 - 100 0.15 - 100

SH SPACING V 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100 0.01 - 100

accuracy. Estimators have some variance in the results and thus on some intervals
they fall below 90% accuracy. The limits in the cells were chosen as follows: the
lower limit designates where an estimator reaches 90% or higher for the first
time, and the upper limit designates for which value of i it was observed for
the last time. In between, most of the time estimators remain above 90% or
rarely fall below, but never below 80% accuracy. An empty cell means that the
corresponding estimator never resulted in accuracy ≥ 90%.

As the results show, different noise levels do have an impact on the identi-
fiability performance of Resit. In general, the linear equation models are more
fragile than the non-linear ones. This is explained by the fact that the non-linear
relationships tend to break the symmetry between the variables easier, see [4].
The only structural equation which always remains unidentifiable is Y = N +N ,
see [24]. For all other cases, all estimators reach an accuracy of over 90% for some
values of i-factor. For example, all estimators perform perfectly when the noise
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Effect of Noise Level on Causal Discovery 13

level of the X term is comparable to the noise level of the corresponding noise
term (Ny), that is i = 1. For other values of i, there are differences between
linear and non-linear equations. Generally, the accuracy for linear cases drops if
i > 7. However, most non-linear cases retain accuracy over 90% for much larger
values of i-factor, even up to 100. Similar results are observed for the decreasing
i-factors.

We can also observe differences between estimators in terms of accuracy.
For example, HSIC is overall the best performing independence estimator while
HSIC IC and HSIC IC 2 perform the worst. SH SPACING V is the best per-
forming entropy estimator while SH MAXENT1 and SH MAXENT2 perform
the worst. Some estimators show better performance for particular structural
causal models, for example, SH SPACING V for Y = U + N ; others are par-
ticularly unsuitable for some structural equations, for example, HSIC IC and
HSIC IC2 for Y = N + U . For all non-linear equation models, SH SPACING V
and the three Shannon kNN estimators result in accuracy close to 100% for all
values of i. SH SPACING V also keeps its good performance in the case of linear
equation models. As for independence measures, HSIC, DISTCOV, DISTCORR,
and HOEFFDING perform quite similarly and are good overall. Note again, that
these results are based on the assumption that in our bivariate structure only
one direction of the causal relationship is present, namely X → Y . Without
this assumption, we cannot compare the estimates directly but rather need to
compare the estimate to a derived p-value given some significance level α.

5.2 Uncertainty Scoring

Fig. 2 shows the results for the Uncertainty Scoring algorithm. Recall that for
these experiments we use only one estimator, the Fisher’s conditional indepen-
dence test. Therefore, we use different colors and styles of lines to encode struc-
tural equation models. The colours of the lines correspond to the distribution
type of the noise variable Ny with the following coding: blue for Ny ∼ N , green
for Ny ∼ U , and red for Ny ∼ L. The type of the lines encodes the distribution
type of the cause X as follows: solid line for X ∼ N , dashed line for X ∼ U ,
and dotted line for X ∼ L. As in the previous experiment, the x-axis shows
the values of i-factor and the y-axis shows the accuracy of causal identification.
However, the results should be interpreted differently. The Uncertainty Scoring
method generates a set of parents for every variable. This set can be empty or
can contain cause variables. Therefore, only one structure of this result is correct
and thus the y-axis of the plots in Fig. 2 shows consistent identifiability at 1,
and consistent unidentifiability at 0.

We proceed to the analysis of the results. First, we can notice that the linear
Gaussian model Y = N +N is now identifiable, as it was demonstrated by the
authors of this method [17]. Interestingly, for this method, the linear cases per-
form better than the non-linear as opposed to Resit. Only the non-linear cases
where the cause X is drawn from the Uniform distribution U show the same
performance as the linear cases. This group of models demonstrates good iden-
tifiability for i < 1, however the accuracy drops fast for i > 1. The reason for
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accuracy degradation lies within step 2 of the method, the conditional indepen-
dence test. If noise levels are significantly different, then the independence test
fails to capture the correlation between the two nodes and therefore concludes
that the nodes are independent (Type II Error). However, for any given i, the
ordering step always performs correctly10.

We can also notice that models with similar structures have similar perfor-
mance. For example, in Fig. 2b we can clearly identify 3 groups: 1) the group
of dashed lines representing models with X ∼ U show the best performance for
i < 1 and the worst performance for i > 1; 2) the group of dotted lines corre-
sponding to models with X ∼ L demonstrate the worst accuracy for i < 1 and
the best accuracy for i > 1; finally 3) the group of solid lines that represent
the models with X ∼ N lie in the middle. A similar observation was done for
Resit as well, that is the type of the distribution of the cause variable affects the
accuracy of causal discovery. If we analyze the linear cases from Fig. 2a in the
same way, we can notice that here the type of the distribution of the noise vari-
able Ny probably has more impact. Indeed, the lines overlap, but they are now
grouped more by colors than by line type. Again, we can observe 3 groups: 1)
the group of green lines corresponding to the models with Ny ∼ U show worse
performance for i < 1 and better performance for i > 1; 2) the group of red
lines representing the models with Ny ∼ L have better performance for i < 1
and worse accuracy for i > 1; 3) and the group of blue lines corresponding to
Ny ∼ N lies in between.

The results obtained for the Uncertainty Scoring method are summarized in
Table 3. Here, each row corresponds to a combination of distribution types. The
second and the third columns show the results for linear or non-linear models
respectively. The values inside the table are encoded in the same way as it was
done for Table 1; that is they show the ranges where the method has an accuracy
around or above 90%.

6 Conclusions

The results from the experiments showed that two analyzed causal discovery
methods, Resit and Uncertainty Scoring, are affected by different noise scales.
For significantly small noise levels in the disturbance term Ny, or significantly
high noise levels, these causal discovery methods fail to capture the true causal
relationship of the given structural equation model. Recall that significantly
here depends on the model. For example, for some models, if the noise level was
already twice larger then the methods failed to determine the causal direction
consistently. Other models remained identifiable with 100 times higher noise
levels. The range of different noise levels analyzed in this work is quite exhaustive
and realistically speaking having noise levels 100 times higher than the potential
cause variable is very rare. Additionally, with very high noise levels the effect

10 A quick test in python shell, with i = 57, X ∼ L and Ny ∼ U and 100 repetitions
showed that in these runs the ordering was always correct but only in 35 runs (from
the 100 repetitions) the independence tests were correct.
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Fig. 2: Results of the Uncertainty Scoring algorithm. x-axis shows the values of
i-factor and y-axis shows the accuracy of causal identification.

Regular papers BNAIC/BeneLearn 2021

24



16 B. Kap et al.

Table 3: Summary for Uncertainty Scoring. The numbers reflect the ranges of
i-factor that allow identifiability with accuracy around or above 90%.

Equation Linear Non-Linear

N +N 0.08 - 10 0.33 - 37

N + U 0.16 - 10 0.52 - 67

N + L 0.05 - 6 0.23 - 25

U +N 0.04 - 5 0.04 - 4

U + U 0.1 - 8 0.05 - 6

U + L 0.03 - 3 0.03 - 3

L+N 0.14 - 13 4 - 100

L+ U 0.19 - 26 5 - 100

L+ L 0.1 - 10 2 - 100

of the cause variable is very likely negligible anyways. However, the discovered
relationships can be useful to guide researchers in practical applications. We
also observed different behavior for different distribution types (e.g., Gaussian
or Uniform).

For both methods, we observed that if the variance of the noise term is
smaller than that of the cause, then models remained identifiable. The opposite
relationship is observed when the variance of the noise term is larger. For exam-
ple, often when the standard deviation of the noise term was only half of that
of the cause, the model was still identifiable. However, in several cases, if the
standard deviation of the noise term was already twice larger than the standard
deviation of the cause, then the model became unidentifiable. We also tested
linear and non-linear models and our results show that non-linear models were
still identifiable in situations where the linear models are not. For example, some
non-linear models, where the noise term’s variance was 100 times higher than
that of the cause, were still perfectly identifiable while their linear counterparts
were not.

Lastly, for Resit we used several estimators: 6 independence estimators and 6
entropy estimators. Our results show differences in terms of performance depend-
ing on which estimator is used. We observed that Hilbert-Schmidt Independence
Criterion with RBF Kernel was the best independence estimator, and Shannon
entropy estimator using Vasicek’s spacing method was the best entropy estima-
tor.

In our experiments, we tested only two particular methods and three different
distribution types. However, similar results are expected for other methods of
causal discovery with additive noise models, as their common failing point lies
in the independence estimation.

Future work. In reality, observed data does not always strictly follow a
certain distribution type. As there are many different possible combinations, it
would be interesting to generalize the impact of different noise levels on any
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distribution by using the different properties an observed distribution exhibits.
Furthermore, this work does not formalize mathematically the effect of different
noise levels in ANM causal discovery methods. This could be done in future
work.
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Appendix

Detailed description of estimators

1. HSIC: Hilbert-Schmidt Independence Criterion with RBF Kernel 11

IHSIC(x, y) := ||Cxy||2HS
where Cxy is the cross-covariance operator and HS the squared Hilbert-
Schmidt norm.

2. HSIC IC: Hilbert-Schmidt Independence Criterion using incomplete Cholesky
decomposition (low rank decomposition of the Gram matrices, which permits
an accurate approximation to HSIC as long as the kernel has a fast decay-
ing spectrum) which has η = 1 ∗ 10−6 precision in the incomplete cholesky
decomposition.

3. HSIC IC2: Same as HSIC IC but with η = 1 ∗ 10−2.
4. DISTCOV: Distance covariance estimator using pairwise distances. This is

simply the L2
w norm of the characteristic functions ϕ12 and ϕ1ϕ2 of input

x, y:

ϕ12(u1,u2) = E[ei〈u
1,x〉+i〈u2,y〉],

ϕ1(u1) = E[ei〈u
1,x〉],

ϕ2(u2) = E[ei〈u
2,y〉].

With i =
√
−1, 〈·, ·〉 the standard Euclidean inner product and E the expec-

tation. Finally, we have:

IdCov(x, y) = ||ϕ12 − ϕ1ϕ2||L2
w

5. DISTCORR: Distance correlation estimator using pairwise distances. It is
simply the standardized version of the distance covariance:

IdCor(x, y) =

{ IdCov(x,y)√
IdV ar(x,x)IdV ar(y,y)

, if IdV ar(x, x)IdV ar(y, y) > 0

0, otherwise,

with

IdV ar(x, x) = ||ϕ11 − ϕ1ϕ1||L2
w
, IdV ar(y, y) = ||ϕ22 − ϕ2ϕ2||L2

w

(see characteristic functions under 4. DISTCOV)
6. HOEFFDING: Hoeffding’s Phi

IΦ(x, y) = IΦ(C) =

(
h2(d)

∫

[0,1]d
[C(u)−Π(u)]2du

) 1
2

with C standing for the copula of the input and Π standing for the product
copula.

11 Source: https://github.com/amber0309/HSIC
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7. SH KNN: Shannon differential entropy estimator using kNNs (k-nearest
neighbors)

H(Y 1:T ) = log(T − 1)− ψ(k) + log(Vd) +
d

T

T∑

t=1

log(ρk(t))

with T standing for the number of samples, ρk(t) - the Euclidean distance
of the kth nearest neighbour of yt in the sample Y 1:T \{yt} and V ⊆ Rd a
finite set.

8. SH KNN 2: Same as SH KNN but using kd-tree for quick nearest-neighbour
lookup

9. SH KNN 3: Same as SH KNN but with k = 5
10. SH MAXENT1: Maximum entropy distribution-based Shannon entropy

estimator

H(Y 1:T ) = H(n)−


k1

(
1

T

T∑

t=1

G1(y′t)

)2

+ k2

(
1

T

T∑

t=1

G2(y′t)−
√

2

π

)2

+log(σ̂),

with

σ̂ = σ̂(Y 1:T ) =

√√√√ 1

T − 1

T∑

t=1

(yt)2,

y′t =
yt
σ̂
, (t = 1, . . . , T )

G1(z) = ze
−z2

2 ,

G2(z) = |z|,

k1 =
36

8
√

3− 9
,

k2 =
1

2− 6
π

,

11. SH MAXENT2: Maximum entropy distribution-based Shannon entropy
estimator, same as SH MAXENT1 with the following changes:

G2(z) = e
−z2

2 ,

k2 =
24

16
√

3− 27
,

12. SH SPACING V: Shannon entropy estimator using Vasicek’s spacing method.

H(Y 1:T ) =
1

T

T∑

t=1

log

(
T

2m
[y(t+m) − y(t−m)]

)

with T number of samples, the convention that y(t) := y(1) if t < 1 and

y(t) := y(T ) if t > T and m = b
√
T c.
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Abstract. This paper is focused on understanding the development of
negative sentiment in online communities by studying their social struc-
ture and dynamics. A noticeable uprising of people has taken place
against government vaccination programs and other measures during the
recent COVID-19 crisis. Social networks play an important role in organ-
ising such activities. In this study, we formalize social roles in vaccination-
related communities to understand the development of these communi-
ties. We defined three specific social roles: influentials, broadcasters, and
commons. Using data from Twitter, we examined the possible effect of
these roles upon the level of sentiment and activity on this social net-
work. These effects were measured on a global scope, that is, on the
entire data set, and a community scope, thus the effect users have on
their community. It was concluded that the effect the influentials and
commons have on the level of sentiment and activity of communities is
similar. Only the broadcaster group differs from the other groups in some
situations. Our research nuances the level of influence by ”influentials”
and influence by ”common” people can be. Additionally, this work has
shed more light on the limitations of a textual homogeneous data set,
especially concerning topic modelling.

Keywords: Social roles · Community detection · Topic modelling · Sen-
timent analysis · Group development

1 Introduction

In our research, we study the sentiment and activity of online communities.
Previous research shows that social systems are best characterized as complex
adaptive systems (CAS), with internal and external relations, and interactions
with their environment. In this study, we use a combination of quantitative meth-
ods including text mining, content analysis, and social network analysis. These
methods enable us to empirically study social networks in a holistic manner. In
this study, we focus on dynamics that occurred during the COVID-19.

Like other disasters, the SARS-CoV-2 virus, also known as the Coronavirus
or COVID-19, has a tremendous global impact on people’s lives. The disease
and countermeasures against the spread of the disease cause distress in different
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aspects of society on an economic, environmental, psychological, and sociological
level [2]. More societal unrest emerges as more people become affected by these
negative effects, which leads to a variety of social events [29]. The rise of such
events is stimulated by the spread of disinformation [36, 20]. The likelihood that
people become part of such an event depends on structural, social, and political
context [25].

This unrest appears in different types of societal groups. Online networks
have proven to be an effective tool for the mobilization, and organization of
these groups [12, 33]. These groups are centred around a variety of topics, of
which anti-vaccination discussions are a prominent example [17]. Additionally,
empirical research identified that the vaccination hesitancy and intent to protest
correlates with the development of negative sentiments in online discussions on
these topics [9, 18].

The spread of vaccination-related disinformation is a problem and needs to
be tackled. Epidemiologists have demonstrated that unvaccinated people are
more susceptible to experience health issues, and obstruct the development of
herd immunity [8]. Some claim vaccination is the only path to control a pandemic
[28]. In order to better understand and battle this issue, one needs to understand
how this information is spread within groups and how it potentially affects other
groups, in particular in the context of online social media.

People can adopt different social roles within groups or communities [12, 11,
39]. Using data from Twitter, which is commonly used in this domain [5, 33],
an attempt was made to answer the following research question: What is the
effect of social roles on the development of online vaccination-related Twitter
communities?.

Understanding the development of communities means understanding group
dynamics over time. The dynamics, thus changes, that were studied are the
changes in group activity and sentiment. To measure these changes we focus on
the change in the number of messages and change of roles in communities. Addi-
tionally, we measure the sentiment level of the tweets. Analysing these dynamics
should give us more insight into the group dynamics of online anti-vaccination
related social media network groups during a pandemic. We, therefore, elicited
how these groups develop over time, how information is spread, and who are po-
tentially affected by this development, using a combination of network analysis
and natural language processing techniques.

2 Background

During a pandemic, people appear to be more susceptible to stress, alleviated
threat perception, and negative emotions such as fear and anxiety [2]. In turn,
someone’s judgement and choices are influenced by their emotional state during
their decision making process as a reaction to their emotions [21]. Negative feel-
ings, depending on a person’s amount of self-efficacy, may produce behavioural
changes or defensive responses. Additionally, it may guide people to information
that reflects their beliefs, emotions, and behaviour. This information in turn will
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affect their feelings, which influences their judgements and behaviour [2]. In ex-
treme cases, these reactions may cause people to deliberately ignore important
information. This phenomenon is referred to as an infodemic [30].

2.1 Vaccination groups

Network analysis has been applied to study the dynamics of vaccination-related
discourse in online social groups [17]. The authors of [17] claim that features of
nodes or clusters of nodes influence their network. They imply that the seemingly
influential nodes of a network are not in dominant control over the system of
the network. However, they state that their analysis of the relationships between
network dynamics and node attributes can be improved through the analysis of
other channels of interactions. Their formulae are approximations and the links
between group members could be defined differently.

Similarly, in [41], it is confirmed that users with anti-vaccination sentiment
tend to live in enclosed groups. This is a sign of the echo-chamber communica-
tion pattern. However, some pro-vaccination users take part in anti-vaccination
discussions and are often the ones that initiate them. Moreover, it is mentioned
that degree centrality is an insufficient measurement of actual influence. The
results of Yuan et al. show that influential users do not always have a high in-
degree and that the information of large organisations and accounts does not
perturb the discourse of the target audience.

In online Facebook groups centred around vaccination, a small portion of its
users is responsible for the largest portion of messages [6]. Moreover, in Twitter
groups, it is shown that not all behavioural patterns are stimulated by online
events, but also offline events [13].

2.2 Online communities

Before a community can be found, we have to formalise a definition for an online
community. A variety of definitions of online communities exist that mostly
differ depending on context [16]. Based on [16], the social roles will be seen as
sociological factors that define the nature of the relationships being built between
members of communities.

Community detection Community detection methodologies are designed to
identify various communities in online networks. In [32], two noteworthy steps of
the proposed methodology are feature selection and clustering. In this context,
the features can be time intervals between tweets, common topics between users,
and retweet activity. Features can also be the topics discussed in the interactions
between network nodes. These topics can be extracted using topic modelling
methods such as Latent Dirichlet Allocation (LDA) or Dirichlet Multinomial
Mixture (DMM) [32, 34], of which the latter is the most promising for short
texts [40]. After the feature selection step, the data can be clustered using models
like K-Means or Order Statistics Local Optimization Method (OLSOM). These
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clusters would form a type of community, depending on the selection of features.
Thereafter, the quality of the clustering can be evaluated using metrics like the
Silhouette Index, ARI, or NMI [1].

Nonetheless, there are algorithms specifically designed for community detec-
tion inside networks. Two well-known algorithms for community detection are
the Louvain algorithm [4] and the Leiden algorithm [37]. The Louvain algorithm
suffices in most situations. The Leiden algorithm solves the problems regarding
the analysis of badly connected communities.

2.3 Social roles

Definition of a role The meaning of a definition of a social role depends on its
context [10]. This means that the type of behaviour and actions associated with
a role depending on the social context in which the role is situated. There are
ways to conceptualize these definitions. In the context of Twitter, this behaviour
can be found in how users interact with each other through messages, retweets,
replies, and mentions, but also their language usage. Examples of node properties
are the number of followers, friends on an individual level, and centrality metrics
on a network level.

Role identification Social role identification has been studied in the field of
sociology. In [39], the roles of answer and discussion people have been identified.
These roles primarily respond to others or start threads of messages to which
others respond. They should have replied or received a reply at least once. In
a political context, the roles of political influentials and opinion leaders have
been identified [7]. They are classified with metrics like network centrality and
the clustering coefficient of a node. In [31], the roles of social elites are identi-
fied. These occupy a privileged position in their network. In other work, more
related to social unrest and protests, four types of users are identified: influen-
tials, hidden influentials, broadcasters, and common users [11]. Influentials are
central users in the network and receive the highest number of messages. Hid-
den influentials do not take a prominent position in the network, but receive
an above-average number of messages. Broadcasters have a central position in
the network and send significantly more messages than they receive. Common
users have relatively small audiences. These users are identified through gener-
ating two networks that capture who is following who and who is mentioned by
who, respectively. In the case of the latter, information cascades are formed by
tracking when a user broadcasts a message, and their direct neighbours respond
within a short period.

Role behaviour It is shown that the behaviour of highly connected clusters
in a network does not significantly affect the behaviour of the entire network.
Highly influential members of a cluster are often not the ones behind cascades
of influence. They strengthen the signal of others but do not take the initiative
[27].
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3 Method

3.1 Data

As mentioned in the introduction, the data that was used in this study was
collected from the social media network Twitter. Fortunately, a data set con-
taining tweets related to COVID-19 was already created and this data set is
actively maintained, encompassing more than a billion tweets [19]. This data set
contains a list of tweet ids.

Fig. 1. Flow of processing the data set of [19]

Initially, the data set proposed in [19] appeared to be the first viable source
of data. The data set was processed in order to collect the desired information
for this study. An overview of the process is displayed in figure 1. The original
data set contains identifiers of tweets. The original tweet data can be retrieved
using a process called hydration using a tool like twarc 4 or hydrator 5. Different
approaches were used to filter the tweets [3], on texts that contain vaccination-
related keywords [15, 22], or on hashtags that relate to vaccination [24]. All three
approaches led to a drastic decrease in the size of the data set. This gave the
impression that the data set proposed by [19] is not suitable for performing
vaccination-related analysis.

In consequence, a new data set was created using the Twitter Stream API.
With the use of an academic Twitter developer account a script, inspired by a
Twitter documentation page6, was developed to perform a full archive search.
The query included the same hashtags as proposed by [24]. The resulting data
set has the same structure as the data set mentioned above and held around 493k
tweets and were sent during the period of 2020-12-01 until 2021-04-01. The first
of December was chosen as starting point as around this time the first official
COVID-19 vaccinations were given.

In order to enable all computations with the data set, some data filtering
was applied. First, irrelevant properties were removed. Additionally, rows in the
data set with duplicate ids were removed. Finally, exploring the data clarified
that many tweets were not related to vaccination but to the United States (US)
elections, which were held in the same period. Therefore, the data set was filtered
again but using a different approach as proposed by [3].

4 https://github.com/DocNow/twarc
5 https://github.com/DocNow/hydrator
6 Source: https://github.com/twitterdev/Twitter-API-v2-sample-

code/blob/master/Full-Archive-Search/full-archive-search.py

Regular papers BNAIC/BeneLearn 2021

36



6 T. Atsma et al.

3.2 Content analysis

The data was preprocessed by removing punctuation, stop words, and special
characters. Then the tweets were lower-cased, tokenised, and stemmed [23, 26,
35]. The effectiveness of stemming to improve polarity classification is not agreed
upon by everyone. According to [23], its increase in performance is negligible,
but not according to [35] of which the authors claim the performance dropped
after removing the stemming operation. Therefore, this operation was kept in.
Hereafter, the sentiment was classified using the Valence Aware Dictionary for
sEntiment Reasoning (VADER) model [14]. VADER outperforms a Naive Bayes
Analyzer and, according to the authors, operating as human classifiers. Addi-
tionally, topic analysis was performed. The algorithm of choice was Gibbs Sam-
pling Dirichlet Mixture Model (GSDMM) [40]. It was preferred over the Latent
Dirichlet Allocation model due to its poor performance because of the short-text
nature of tweets. The performance of the GSDMM was evaluated by computing
its topic coherence using the UMass topic coherence model. Topic coherence
is used as a metric to qualitatively evaluate the semantics of learned topics. It
can also be done intrinsically by computing a model’s perplexity. The coherence
scores ranged from -4.1 to -6.4. The UMass algorithm outputs negative numbers.
The closer the value is to 0, the more coherent the topics are. As becomes clear,
the coherence is less than optimal. Therefore, it was decided to exclude topics
from the final results.

3.3 Community Detection

The Leiden model was selected due to its performance with regards to badly
connected communities [37]. The goal is to apply the model to a network of
interactions between twitter users. First, a set of nodes was made out of all unique
users of the data set. Second, a set of edges was made out of unique interactions
between users. Therefore, it was decided to add edges between nodes when the
users represented by those nodes retweeted one another. Finally, running the
Leiden model resulted in around 30k communities. Most of these communities
have few members and did not seem too valuable. Therefore, it was decided to
ignore all communities that hold less than 100 members. This left 84 distinct
communities.

3.4 Role groups

Based on [12, 11] three role groups were defined: influentials, broadcasters, and
commons. The role groups were identified using the following rules: the influen-
tials are the users of which their number of followers is more than 10 times the
average of their community. The broadcasters are the users of which their total
number of tweets is more than 10 times the average. The common users are the
top 20 users of which their number of followers is closest to the average. This
means that some users are left out of the equation.
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3.5 Sentiment effect

In order to systematically measure the effect a user role or role group has on the
behaviour of a network or community, like the change in sentiment or activity, an
equation is required to compute an effect score. For this purpose, the following
variables were set up:

s = sentiment value of a tweet (between -1 and 1)

G1 = mean sentiment of a day

G2 = mean sentiment of the following day

A = G2 - G1 is the difference between the mean average of the

first and second day. This represents a positive or

negative change.

B = s - G1 is the difference between the actual sentiment value

of a tweet and the mean sentiment value of the day the

tweet was sent.

This gives the following equation:

f(s) =
2− |A−B|

2
(1)

This equation returns a floating-point number between 0 and 1. This score
explains how similar the effect is to the difference in the sentiment of a single
tweet and the average sentiment of the day the tweet was sent, measured by
the change in the average sentiment between days. 2 is the maximum difference
between the two extreme sentiment values. Therefore, if A and B are the same,
thus achieving maximum similarity, the outcome is 1. If the two changes are
maximally spread apart, the outcome is 0.

The goal is to find out if there is a difference between the effect values of dif-
ferent role groups, but also if role groups show different effect values on different
scopes, that is, on the global and community scope. The global scope entails all
messages whereas the community scope only entails the messages of a particular
community. Per the scope, all variables as defined above were calculated and
added as new features to the data set.

3.6 Activity effect

In addition to measuring the effect role groups have on the level of sentiment, a
similar approach was used to measure the effect role groups have on the level of
tweet activity. The following variables we extracted to enable this analysis:

T1 = the total number of tweets per day

T2 = the total number of tweets of the following day

TD = T2− T1
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Next, the data set was grouped into role groups to measure the average value of
TD per role group. As with the sentiment effect, this process was done twice,
once on a global level and once on a community level. The variables were added
as new features to the data set. It is expected that on average the absolute value
of TD will be larger for influentials as they tend to increase the pace of a trend.
It is expected that the common users and broadcasters to not differ significantly
as they send their messages within an already existing trend or non-existent
trend. In short, the effect that is measured is if a certain role group has more or
less impact on the general activity of users or communities.

4 Difference between roles

We first examine the results of our analysis on the sentiment of online commu-
nities. The means of the results of the sentiment effect function per role group
were calculated. This was done on a global and community level. These results
can be found in table 1.

Table 1. Means of the sentiment effect values per role group per scope

Scope Influentials Broadcasters Commons

Global 0.8326 0.8308 0.8387
Community 0.8328 0.8205 0.8384

All values are close to 1, which means that the average level of the sentiment
of all role groups is close to the average change in sentiment. Additionally, the
difference between groups is low. Even the differences between the global and
community level are low, except for the influentials. The global and community
level difference of the influential role group appears to be more significant. In
order to assess the actual significance of the differences between the levels and
role groups, again, each community was iterated over. Per iteration, the mean
of the sentiment effect function results of each member of a role group was
computed and stored in an array. The mean was used instead of all the values
as this could cause the sample size per community and per role group to become
significantly unbalanced. Not all communities have the same number of members
per role group and not every user has tweeted an equal number of times. In some
cases, a community did not have any members of a specific role group. These
missing values were imputed with the mean of their respective role group of all
communities.

To test the significance of the difference between role groups, one has to
decide what test to use. A well-known test is the Student’s T-test. Though, this
test assumes the two independent groups to come from a normally distributed
population. In consequence, the final set of results were tested for normality of
which almost no group passed.
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A common alternative test is the Mann Whitney test, which is used to test
whether the values of continuous variables of two independent groups differ sig-
nificantly. It is an alternative to the unpaired t-test but does not assume the
underlying distribution of the independent groups to come from a normally dis-
tributed population.

Finally, a different test is required to test the difference of the effect values of
the same role group between different scopes. This is required because the two
groups are the same population. The Wilcoxon test was used to test whether
the distribution of the values of a role group differs significantly per scope. The
results of these tests are shown in tables 2 and 3, respectively.

Table 2. Mann Whitney test for testing the difference of the effect between different
role groups on the sentiment on different scopes with p < α = 0.05 (True is reject h0,
thus not the same distribution)

Scope Group Influentials Broadcasters Commons

Global Influentials - False False
Broadcasters False - False

Commons False False -

Community Influentials - True False
Broadcasters True - True

Commons False True -

Table 3. Wilcoxon test for testing the difference of the effect of the same role group
on the sentiment between different scopes with p < α = 0.05 (True is reject h0, thus
not the same distribution)

Influentials Broadcasters Commons

False True False

The means of the groups are similar. The variances are roughly similar, except
for the broadcasters which have a lower variance. This implies that broadcasters
show more consistent behaviour. However, this could be because the broadcasters
group is represented by a relatively high number of tweets as broadcasters are
relatively more active. None of the groups was normally distributed, except for
the broadcasters on the global scope. Additionally, on the global scope, none
of the groups differed significantly from each other. On the community scope,
the broadcasters differed significantly from the other groups. There is also a
significant difference in the behaviour of the broadcasters on the global and
community scope.

The same tests were run but with different data to test the effect of role
groups on the change in tweet activity, that is, the number of tweets. On the
global and community level, all communities were iterated over. Per iteration,
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community, and role group the difference in the number of sent tweets per day
was calculated of which the mean was taken and stored in an array. All missing
values were imputed with the average of all averages. The results can be found
in tables 4, 5, and 6.

Table 4. Means of the activity effect values per role group per scope

Scope Influentials Broadcasters Commons

Global -71.3298 15.4683 -210.7816
Community -55.6423 -3.8584 -108.4216

Table 5. Mann Whitney test for testing the difference of the effect between different
role groups on the activity on different scopes with p < α = 0.05 (True is reject h0,
thus not the same distribution)

Scope Group Influentials Broadcasters Commons

Global Influentials - True False
Broadcasters True - True

Commons False True -

Community Influentials - True False
Broadcasters True - True

Commons False True -

Table 6. Wilcoxon test for testing the difference of the effect of the same role group
on the activity between different scopes with p < α = 0.05 (True is reject h0, thus not
the same distribution)

Influentials Broadcasters Commons

True False False

These results show a larger difference between role groups. On average, the
broadcasters have the lowest negative effect on the change in tweet activity. Even
more so on the global level, where on average the tweet activity increases the day
after broadcasters have tweeted. On the community level, it drops slightly. The
largest negative effects can be seen for the commons role group. Again, all results
are not normally distributed. This means that the results of a role are most likely
skewed towards the left or right, which implies that in most communities that
role has a low or high impact on the activity, respectively. If this is not the case
there are more differences between communities than expected. Next, similar to
the results of the effect on the level of sentiment, only the broadcasters differ
significantly from the other role groups. However, now also on a global level.
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Interestingly, only the influentials differ significantly between the global and
community level.

5 Discussion

In this study, we measured the effect of group roles on the development of sen-
timent and activity in a community. The results show that the effect of the
common and influential groups is relatively similar and showed that all groups
are similar on a global scope. This implies that the influence ”common” users
have is not as negligible and the influence ”influential” users have is not as sig-
nificant as one might think. In [5] it is mentioned that the number of followers
does not necessarily correlate with influence. Similar to observations made by
[11], where common users sometimes still manage to trigger certain reactions,
due to their numbers. This idea is in line with the observations made in [27], in
which it is said that influentials are not the drivers behind cascades of influence,
but rather easily influenced users. Additionally, seemingly important vertices in
a network are not always important to the behaviour of the system. In [5], it is
shown that ”average” users can become influential, especially when these users
only concern themselves with a single topic. Likewise, this effect is seen in social
movements and described as a bottom-up social force [38], where regular Twit-
ter users promote their ideas through the social influence of celebrities with the
use of hashtags. This pattern could not be shown due to the static nature of
the interaction network. The properties of users are based on a static snapshot
of the most recent state of those users. However, it is possible to measure the
creation and removal of edges over time. This possibility should be explored fur-
ther to verify the phenomenon of users that become increasingly influential. It
would be interesting to find out how this phenomenon translates to a broader
domain in order to get a different perspective on the formation and develop-
ment of groups. Namely, that the difference in behaviour and influence of roles
or functions of a group is not as apparent as expected. This perspective can aid
organisations, advisory bodies, or governments in setting up campaigns. Instead
of using resources to target influentials to set up a pro-vaccination campaign, it
can be decided to spread messages among ”common” people to set up an echo
chamber effect. The same can be done to mitigate protests to control the level
of social unrest in an area. However, it is still an open question to what extent
these online patterns would translate to the real world.

The method chosen for classifying role groups prevents arbitrary overlap
between users that should not fall into a specific role group. It also does not
unnecessarily exclude users, resulting in a more accurate representation of a role
group. However, it could cause the distribution of users to be out of balance.
Additionally, it can lead to empty role groups. Furthermore, the commons role
group was selected based on the top 20 most average users. This means that the
below-average user role group was excluded.

The method also included an interaction network based on retweets alone.
This was done for simplicity’s sake and because retweets are the primary form of
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interaction. However, there are several other forms of interaction that should be
explored in future work. This work has also shed more light on the limitations
of working with a textual homogeneous data set. In this context, homogeneous
means the textual contents are biased towards a single topic and are based on
similar contextual characteristics, that is, hashtags. This is especially true with
regards to the poor performing topic models. Furthermore, it is expected that
this also caused the activity effect values on a community level to be relatively
negative. A possible explanation is that the used hashtags were viral and asso-
ciated with popular topics [38]. This implies that many of the data points are
recorded at the peak of interest and activity, after which the level of activity
can only decline. Finally, we propose that the properties of the interaction net-
work of users and communities should be further explored and explicated more
explicitly in order to confirm our findings.

6 Conclusion

For this study, we used a method to measure the effect of behavioural user roles
on the development of online vaccination Twitter communities. The analysis
process consisted of processing Twitter data, detecting communities, defining
and classifying user role groups, and measuring the effect these groups have on
the average level of sentiment and user activity over time. These effects were
measured on a global scope, that is, the entire data set, and on a community
scope, which entails the effect users have on their community.

The means of the different role groups are similar and are close to 1. This
means that, on average, the behaviour of each role group does not differ much.
It also shows that all groups are relatively close to the general trend of the level
of sentiment across the entire period that is recorded in the data set. Only the
broadcaster group has a slightly lower effect on communities compared to the
other roles and compared to its effect on the global scope. This difference is
tested to be significant. The variances show that the influential and common
groups are closely related. The broadcaster group has a much lower variance,
which implies their behaviour is more consistent.

Between role groups, the differences of effect on the level of activity are
larger than the differences between the effects on the level of sentiment. On
average, almost all roles negatively affect global and community activity. This
gives the impression that there are other factors at play. Only the broadcaster
group has a positive effect on the global activity and a low negative effect on
the community activity. This implies that when a broadcaster is active, the
global trend sees a positive change on the following active day. The opposite is
true for the influential and common groups. Again, the effects are not normally
distributed and the differences between the broadcaster group and the other
groups are significant. A noteworthy mention is that the effect of the influential
group on the global activity and the effect on the community activity differ
significantly. Both results imply that the broadcaster group shows the most
unique behaviour. It also implies that the broadcaster group seemingly has the
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most potential to stimulate the activity of others. In general, it can be concluded
that except for the broadcaster group, the influential and common role groups
appear to be similar in terms of their effect on the development of communities.
Except for the broadcaster group, the influential and common role groups appear
to be similar in terms of their effect on the development of communities.

In conclusion, our study contributes to our broader interest to understand the
mechanisms behind insurgent behaviour. While some insurgent behaviour may
be fueled by social media, physical social networks also consist of people adopting
certain social roles with different impacts on group behaviour. To what extent
the mechanisms found in online groups could be translated to such physical
groups is still an open question. Further research is needed to further explore the
translation of online patterns to the offline world, but also to explore the inclusion
of below-average users in order to find hidden influencers, to research the design
of a more comprehensive and inclusive role classification methodology [5, 11], to
explore if community size affects the results, and to explore the implications of
homogeneous textual data.
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11. González-Bailón, S., Borge-Holthoefer, J., Moreno, Y.: Broadcasters and hidden in-
fluentials in online protest diffusion. American Behavioral Scientist 57, 943–965 (7
2013), https://doi.org/10.1177/0002764213479371, publisher: SAGE Publications
Inc
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Abstract. The question considered in this paper is: can BERT effec-
tively distinguish the meaning of the following two sentences: ’BERT
is capable of understanding negations’ and ’BERT is not capable of un-
derstanding negations’? This work aims to fulfill the gap in the knowl-
edge about BERT’s capacity to handle negations. The specific task un-
der examination is sentiment analysis, where erroneous understanding of
negations directly affects the model’s performance by wrongly switching
polarity of the detected sentiments. In order to determine what BERT
’understands’ from negated text, a model was trained and tested by us-
ing adversarial conditions. With four distinct configurations, handling
negations was studied by interchanging negated sentences during train-
ing and testing. The results exposed that in three out of four cases, the
BERT’s propensity to deal with negations by memorizing information
in the large number of connections used by the model, instead of truly
understanding the linguistic mechanism of negations. In the remaining
case, the model’s performance suggested taking decisions based on ran-
dom features without exposing clear reasoning. Based on these insights,
best-practice methods for training BERT to deal better with negations
in sentiment analysis can be formulated.

1 Introduction

An area widely investigated in text mining, is sentiment analysis. Sentiment
analysis studies techniques to identify and examine human sentiments towards
different experiences and interests. In general, the sentiments expressed in a text
are positive, negative, or neutral [11].

In order to obtain the correct classification of a sentence, it is essential to
handle negations correctly. Not doing so, will impact the polarity of the sen-
timent, resulting in wrong classifications. An example is the following positive
sample: ”this is a good film”, if it is negated, this sentence expresses a negative
opinion: ”this is not a good film”. So, not dealing correctly with the negation,
will change the polarity in the exact opposite direction.
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One of the State-of-the-Art (SotA) models to detect and classify sentiments,
is BERT (Bidirectional Encoder Representations from Transformer) [14]. Despite
the high quality of classification, a detailed error analysis indicates that the
majority of misclassifications comes from erroneous handling of negations: a
percentage of 66% in comparison to the other error categories. Figure 1 shows
the distribution among the classes of errors indicated by [8].

Fig. 1: Distribution of BERT’s error analysis for the sentiment analysis task

So, although BERT holds the state-of-the-art result for several Natural Lan-
guage Processing (NLP) tasks, Figure 1 indicates that BERT is not really capable
of handling negations. Given the fact that 66% of errors in the sentiment-analysis
task originate from wrongly handling negations, the research in this paper fo-
cuses on better understanding BERT’s negation-handling mechanisms, in order
address these errors and increase the overall result of the sentiment-analysis task.

There are a number of reasons why we believe there is a deeper issue at
hand with BERT’s negation handling skills: (i) the mechanism behind Word
Embeddings assign similar encodings to words used frequently in the same con-
text. In other experiments conucted by [13], it has been observed that words of
completely different polarity get very similar encodings (e.g. good versus bad or
happy versus unhappy). This confuses the classification in tasks such as senti-
ment analysis, where the polarity is more important than in other tasks such as
machine translation. (ii) Due to the enormous amount of trainable connections,
BERT has tremendous memory skills. But memorizing is something very differ-
ent from inferencing the polarity of (double) negations. (iii) BERT’s attention
mechanism seems to be based on the presence of certain specific cue words it
memorizes, thereby missing words relevant for negations such as not.
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Our work extends prior studies, examining BERT’s behavior in an adversarial
condition during training and testing. By investigating BERT’s predictions based
on certain training data, it should be possible to better understand in certain
situations where BERT’s errors dealing with negations originate from, so they
can be better addressed in future sentiment analysis models.

2 Related Work

As stated before, notable advancements in various NLP tasks were produced af-
ter the introduction of BERT in 2018. Despite these impressive results, there has
also been interest what BERT is not capable of, especially by the computational-
linguistic community. For example, [2] analyzed linguistic errors, the problem
derived from the commonsense, pragmatic inference, and negation. These exper-
iments showed that BERT failed to adjust to negated statements: the predictions
persisted unaltered after the insertion of the negation. See Figure 2 for a num-
ber of examples of such wrong prediction. From these, it is completely clear that
BERT is completely ignoring the negation!

Fig. 2: Table from ”[What BERT is not: Lessons from a new suite of psycholin-
guistic diagnostics for language models.]”, by Ettinger, 2020, Transactions of the
Association for Computational Linguistic

This work was a direct extension of [3], which focused on analyzing BERT’s
syntactic abilities by supplying an entire sentence to BERT, while masking out
the single focus verb.

Another study proposed by [7] proved the deterioration of BERT performance
when denials were added in claims for argument comprehension tasks.

[5] investigated the effect of the negation on the question-answering task
by applying the masked language model. The research concluded that BERT’s
can learn predictions based on exact phrases shown during training, whereas it
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poorly generalizes over a test set that contains phrases it did not see during
training.

Also, [4] focused on understanding how a Pre-Trained Language model (here-
inafter PLM) like BERT learns factual knowledge from the training data. During
the symbolic reasoning analysis, e.g. the ability of a PLM to deduce information
not shown during the pre-training, a rule explicitly investigated was negation.
The work assumed that the general concept of denial was not understood while
co-occurrence is used to acquire antonym negation. Kassner’s study involved [9]’s
prior work, which connects BERT’s prediction to the knowledge-base and (lack
of actual) inferencing capabilities.

Other studies into the relation of BERT and negation handling can be found
in [6], which focused on employing BERT to detect the denial and delimiting
its scope, and [15], which analyzed a plausible relation between a negation cue
and its scope in the attention heads. Both confirmed lack of actual knowledge
of the negations by measuring significant inconsistencies in the average negation
detection.

Our approach is similar to the work of Ettinger and Goldberg, as we focus
more on BERT’s word prediction capability, specifically on the sentiment anal-
ysis task. Our work differs from Kassner’s, which focuses more on the detection
of negations while we examine the effect of negations on sentiment prediction.

3 Methodology

BERT’s strength comes from the simplicity of adjusting the original pre-trained
model configuration for a specific task by fine-tuning the model, thereby taking
advantage of transfer learning. Instead of having to learn language from scratch,
BERT has basic linguistic skills resulting from being exposed to many billions
of words in their linguistic context. But, for reasons not well understood, this
ability does not apply to negation handling, which obviously is very important
in sentiment analysis. The question we ask ourselves: is BERT just memorizing
training data using its large number of parameters, or does it actually ”under-
stands” negations?

From initial observations, our hypothesis is that BERT tends to memorize.
To verify the validity of this assumption, BERT’s ability to deal with negations
will be studied in adverse training and testing conditions. The examination will
follow a similar approach as Ettinger’s work (see figure 2 for examples), where
the knowledge of BERT is questioned by adding negations to testing sentences
that the model did not see before. So, if the model is indeed only memorizing,
the prediction will remain unchanged after these perturbations.

To begin with, two BERT classifiers are trained with labeled sentences from
the SemEval 2017 task 4a ([11]) and SST5 ([12]) data set. One binary positive
classifier and one binary negative classifier ([1]). Subsequently, classification is
tested on negated sentences for each class. From the examples in figure 3, it can
be observed that in both cases BERT predicts the original sentiment and not
the negated sentiment.
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Fig. 3: BERT’s misclassifications after the addition of negations.

In subsequent experiments, four different approaches were used to confirm
that BERT actually memorizes. First, in model M1 we will include only sen-
tences without negations in the training set. The test set then contains negated
versions of these sentences. In model M2 , we take the reverse approach, where
the training set only includes negated sentences and the test set then contains
non-negated versions of these sentences. Then, model M3 will include in the
training data set randomly one of the two versions of the sentence. The inverted
sentence of each will be considered in the testing. So, in M3 the system will be
exposed to both negated and non-negated sentences, but in the testing sentences,
the negations will be opposite from the training sentences. Finally, model M4.
includes for every sentence both the negated and the non-negated version. We
then test on a validation set, containing sentences not seen before by the model
during training.

The configurations selected for the training and testing are briefly explained
in table 1

Model Negated Not Negated

M1 none all samples

M2 all samples none

M3 either either

M4 all samples all samples

(a) The data set employed
during the training.

Model Negated Not Negated

M1 all samples none

M2 none all samples

M3 remaining remaining

M4 test samples test samples

(b) The data set em-
ployed for the testing of
the model.

Table 1: The tables represent the configuration examined to verify the perfor-
mance of BERT towards the negations.

If experiment M1 and M2 result in BERT predicting the original sentiment
from training instead of the negated sentences, and if BERT shows inconsistent

Regular papers BNAIC/BeneLearn 2021

51



6 Giorgia Nidia Carranza Tejada et al.

behavior for experiment M3, then it is clear that BERT is actually memorizing
on cue words instead of really understanding the linguistic operation of nega-
tion.
In order to demonstrate this more convincingly, the behavior of connotations
such as can not versus cannot versus can’t will be investigated. Because, if BERT
can deal with cannot and can’t but not with can not, then the case for memo-
rization of cue words is even stronger.
This, and the influence of specific negations words such as not is studied by us-
ing through the Local Interpretable Model-Agnostic Explanations (hereinafter
LIME) approach. LIME is a technique employed to explain a prediction of any
black-box machine learning model by presenting qualitative connections between
the instance’s components and the model’s prediction [10]. The methodology
proposed by LIME consisted on performed a local fidelity analysis by initially
altering the original data point before being fed into the model. Then, the impor-
tance of each feature is represented by the change in the predictions obtained.

The interpretation obtained is not the faithful representation of the entire
model but is reliable locally, which depends on the performance obtained in
the proximity of the sample examined. Additionally, LIME guarantees an in-
terpretable representation by applying bag-of-word when it is needed for text
classification.

In the example proposed by the paper, the technique helps to understand the
eventual cue words learned by the model to determine the class of the text. The
explanations evidenced an issue of the classifier related to the data set selected.
The same approach will be used during this examination to provide more insights
into the impact of negation words on the sentiment predictions.

4 Experiments

For the experiments, a sentiment classifier was built using the Transformers
library by HuggingFace supported by the PyTorch Machine Learning framework.
The number of epochs employed in our experiment is equal to 2, the number of
batches is set to 32, and the optimizer selected was AdamW. The model loaded
from the Transformers library, represented only the hidden layer of the input
tokens. The output is passed through linear transformation.

Since the main purpose of the baseline([1]) was to detect either positive or
negative sentiment in a neutral context, it was considered to employ a binary
classification using the one-vs-rest technique. The choice derived from the over-
representation of the neutral class influenced the multi-class model performance
to assign an incorrect neutral label in most cases. So, the sentiment analysis
system consists of two binary classifiers: the positive classifier trained as positive
against either negative or neutral and the negative classifier trained as negative
against either positive or neutral.

To sum up, each sentence to be evaluated is fed into both the classifiers as
input. Then, the outputs, which correspond to the outcomes of the binary clas-
sifiers, identify the sentiment in the text.
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Starting data sets for our analysis are the concatenation of SemEval-2017 and
SST5, as those used for the baseline model. The first was provided by task 4a of
the International Workshop on Semantic Evaluation (SemEval) 2017, Sentiment
Analysis in Twitter1. CrowdFlower or Mechanical Turk realized the annotations
for each tweet [11]. Besides, the labels complied with the three sentiment cate-
gories previously nominated, and they are distributed as follows: 34% positive,
16% negative, and 50% neutral.

Then, the data set SST5, published on [12], is a fine-grained sentiment data
set containing five different labels: 0 (very negative), 1 (negative), 2 (neutral), 3
(positive), 4 (very positive). Because our experiments consider only three labels
(negative, neutral, and positive), the labels very positive and very negative were
included in respectively positive and negative. The overall balance of the labels
in our combined data set is defined as follows: 42% positive, 39% negative, and
19% neutral.

Name Size Positive Negative Neutral
SemEval 2017 task 4a 20631 34% 16% 50%
SST5 8544 42% 39% 19%

Table 2: The size and labels’ distribution of the sentiment data sets.

The original data set presented an unbalance among the two categories:
negated cases were only 22% of the entire collection. To balance, the data set was
augmented through transformation functions as defined in table 3. This then re-
sulted in a more balanced distribution, with 49.4% negated sentences and 50.6%
not negated ones, and in different data sets for experiments M1, M2, M3. and
M4. For training 90% of the modified data is used. For testing the remaining
10%.

Transformation
function

Original sentence Modified sentence Created
samples

Addition of the nega-
tion

Paul Bettany is cool Paul Bettany is not cool 15792

Removal of the nega-
tion

he ’s not good with people he ’s good with people 1 8569

Table 3: The table defined the transformation functions used in the examination
to alter the original data.
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5 Results and Discussion

Table 4 collects the outcomes of the binary classifiers obtained from the test
on the original sentences, which are the samples following the configurations
established for the training data. So this table represents how well the classifier
works on similar sentences to the training data. While table 5 assembles the
performances on negated versions these sentences.

Positive Negative

Model Precision Recall F measure Precision Recall F measure

M1 0.75 0.79 0.77 0.73 0.76 0.74

M2 0.93 0.96 0.94 0.87 0.94 0.90

M3 0.90 0.92 0.91 0.82 0.84 0.83

M4 0.88 0.90 0.89 0.84 0.89 0.86

Table 4: Original sentences

Positive Negative

Model Precision Recall F measure Precision Recall F measure

M1 0.89 0.28 0.42 0.75 0.20 0.32

M2 0.51 0.93 0.66 0.66 0.63 0.65

M3 0.83 0.86 0.85 0.79 0.79 0.79

M4 0.88 0.89 0.89 0.84 0.89 0.86

Table 5: Negated sentences

(a) Original sentences (b) Negated sentences

Fig. 4: Distribution of the correct and wrong predictions for the negative clas-
sifier (model M1 to M4)
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(a) Original sentences (b) Negated sentences

Fig. 5: Distribution of the correct and wrong predictions for the positive classi-
fier (model M1 to M4)

5.1 Model M1, trained with non-negated sentences and tested on
negated versions of these sentences.

Model M1 was trained by not showing negations during training. Then, to ques-
tion BERT’s capabilities to deal with negations, training sentences were negated
and used as test.

As expected, BERT is not able to handle the negations in the test sentences.
Indeed, the performance drops significantly on the negated sentences compared
to the non-negated ones, as can be observed from the high error in the left
columns of figure 4b and 5b.
Furthermore, LIME was used to examine the wrongly predicted sentence: ’about
to go shopping again tomorrow bc the dress I got for jason aldean is not cute.’
in more detail.

The respectively original sentence was: ’about to go shopping again tomorrow
bc the dress I got for jason aldean is cute’, and holds a positive sentiment. When
negated, the prediction should be reversed and classified as negative, but the
negative classifier failed to identify the sentiment. Figure 6 provides more insight
how the prediction was made by using LIME. The LIME’s process to represent
the feature’s impact in the prediction evidenced that the negation cue and its
scope had been recognized by BERT and correctly attributed to the negative
class. However, the significance of these words was not enough to invert the
overall label since the distance of the class none was still considerable compared
to the negative class, which was the correct prediction.

5.2 Model M2, trained with negated sentences and tested on
non-negated versions of these sentences.

Model M1 is the reverse of model M2: training included only negated sentences,
where testing was done with non-negated versions of the training sentences.

In this case, the performance in the non-negated sentences did not decrease as
drastically as in model M1. Additionally, it was observed that the most common
error originated from issues dealing with subjectivity/objectivity and figurative
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Fig. 6: The result of LIME in the sentence ’about to go shopping again tomorrow
bc the dress I got for jason aldean is not cute.’ for the negative classifier.

language. Therefore, the result seems to indicate that BERT was actually learn-
ing something about dealing with negations.
However, further analyzing the model in more details with respect to conno-
tations such as cannot or can’t versus can not, it becomes clear that BERT’s
decisions are actually still based on memorization. Considering that the training
data included one version of a negated verb, either extended (is not) or con-
tracted (isn’t), then the prediction should not be influenced if the negated verb
is replaced by the contracted connotation in the test data. For example, table 6
represents the situation including the same sentence: firstly with the verb negated
by using a separate is not and then by using the contracted connotation: isn’t.
The prediction of the system should be equal, but in our case, it changed for the
contracted connotation. So, evidently, BERT did not ”understand” negations
but based it’s decision on memorization.

text label prediction
solondz is so intent on hammering home his message that
he does forget to make it entertaining

negative -

solondz is not so intent on hammering home his message
that he does not forget to make it entertaining

positive negative

solondz isn’t so intent on hammering home his message
that he doesn’t forget to make it entertaining

positive positive

Table 6: An example of the classification of the same sentence but changing the
type of negated verb: firstly the extended, then the connotation.

5.3 Model M3, Trained on either negated or non-negated sentences
and tested on the inverse for each sentence.

The third model examined was M3, which was trained on the data set composed
of a random selection of one version of a sentence: either the negated or the non-
negated version. Then, testing was done on the inverse of the train sentences.
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So, for the negated sentences, a non-negated one was used and visa-versa. In this
case, there were more correctly predicted sentences than in model M1 and M2.

Even though, by examining in-depth the correctly or wrongly classified sen-
tences, it was not possible to deduct any particular pattern why some sentences
were classified correctly or wrongly. Consequently, the model seemed to take de-
cisions based on random features, which were not clearly understandable from
either the predictions or through the deployment of LIME.

In particular, the examination aimed to identify a common pattern, similar
to the previous case, where the negation’s impact was repeatedly neglected for
the prediction, or the use of connotations underlined an inaccurate behavior of
the model. In this state, no anomalies were detected from the employment of
connotations, and as well, the negations were sometimes correctly classified and
sometimes not, without establishing a frequent behavior. For instance, the latter
case was represented in the results obtained by LIME in two sentences. First,
an exact classification correctly identified and handled the negation. Then, an
erroneous prediction was determined from a sentence with a double negation.
The initial negation did not alter the sentence, but the second did by reversing
it. Although the second negation cue was identified and attributed to a negative
class, the impact on the total prediction was not decisive.

(a) Wrongly predicted sentence.

(b) Correct predicted sentence.

Fig. 7: LIME results on one correct and one wrong prediction of model M3.
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5.4 Model M4, Train with both negated and non-negated versions
of each sentence, and test on an external validations set

Finally, the last model, M4, obtained the highest result in the testing on negated
sentences. Additionally, it achieved the smaller variation in the precision, recall,
and f-measure between the original and negated results. This performance was
strictly connected to the configuration adopted by the model since the testing
was on a direct subset of the training data. Therefore, from this last experiment,
one could derive that BERT capabilities to deal with negations are based on
memorization.

6 Conclusion

The goal of this research was to contribute to a better understanding of the un-
derlying mechanisms of BERT’s negation handling. Therefore BERT’s behavior
was investigated by testing adversarial sentences in sentiment analysis, where
the effects of wrong negation handling has much more impact than in other
linguistic tasks.

This research indicates that BERT’s handling of negations is more based on
it’s tremendous ability to memorize rather than ”understanding” the negation.

Notably, BERT was unable to learn how to properly deal with denial when
trained only on denied or non-denied sentences. Indeed, in the first case, the
model’s predictions turned out to be random, as evidenced by the connotation
example, while in the second case, the model ignored the negation. The optimum
results were achieved by the last model, where each sample included both the
negated and non-negated version of all sentences. This configuration was able
to take full advantage of BERT’s memorization capabilities and resulted in the
highest f1 scores.

In conclusion, for future realization of sentiment analysis systems where nega-
tions will be properly addressed, it is recommended that the data sets contain
a proportioned distribution of negated and non-negated cases for each sentence.
Additionally, it is also suggested that future data sets for sentiment analysis
competitions (e.g. the ones used in SemEval and SST5), spend more attention
to dealing with negations, as this is a major source of errors in the real-world.
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Abstract. The deployment of Reinforcement Learning (RL) on physi-
cal robots still stumbles on several challenges, such as sample-efficiency,
safety, reproducibility, cost, and software platforms. In this paper, we in-
troduce MoveRL, an environment that exposes a standard OpenAI Gym
interface, and allows any off-the-shelf RL agent to control a robot built
on ROS, the Robot OS. ROS is the standard abstraction layer used by
roboticists, and allows to observe and control both simulated and physi-
cal robots. By providing a bridge between the Gym and ROS, our envi-
ronment allows an easy evaluation of RL algorithms in highly-accurate
simulators, or real-world robots, without any change of software. In ad-
dition to a Gym-ROS bridge, our environment also leverages MoveIt,
a state-of-the-art collision-aware robot motion planner, to prevent the
RL agent from executing actions that would lead to a collision. Our ex-
perimental results show that a standard PPO agent is able to control a
simulated commercial robot arm in an environment with moving obsta-
cles, while almost perfectly avoiding collisions even in the early stages
of learning. We also show that the use of MoveIt slightly increases the
sample-efficiency of the RL agent. Combined, these results show that
RL on robots is possible in a safe way, and that it is possible to leverage
state-of-the-art robotic techniques to improve how an RL agent learns.
We hope that our environment will allow more (future) RL algorithms
to be evaluated on commercial robotic tasks.

Github repository: https://github.com/Gaoyuan-Liu/MoveRL

1 Introduction

Reinforcement Learning is a Machine Learning approach that allows an agent
to learn what action to execute in which situation, to maximize a scalar reward
[14]. On robots, Reinforcement Learning has the potential of allowing to learn
near-optimal controllers on challenging tasks, on which classical methods such
as planning are not applicable, for instance due to the unavailability of a good
model, or high stochasticity or unexpected events around the robot. However,
in practice, Reinforcement Learning is not often used on robots.

Several challenges currently prevent the use of Reinforcement Learning on
robots, such as safety, sample-efficiency, the ease of implementation of RL on
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robots from a software perspective, and the trust designers must have in RL to
use it. In this paper, we propose a new OpenAI Gym [3] environment that allows
real-world robotic experiments to be performed, addressing these two challenges:

Software compatibility with robots. Existing Reinforcement Learning envi-
ronments that have robots in mind, such as the Gym Mujoco environments
[3], the DeepMind control suite [26], or PyBullet environments [29], imple-
ment environment-specific robotic arms or bodies (not industry-standard
robots), using embedded simulators (not a connection to an industry-standard
simulator). As such, these environments can be used to show that RL works
on robots in theory, but do not help implementing RL on a real-world robot.
Our main contribution, MoveRL, interfaces an RL agent with the Gym
API to ROS, the Robot OS, used by industry-standard simulators (such as
Gazebo) and robots. This allows direct learning on the robot, or easy trans-
fer of an agent learned in simulation to a physical robot (without having to
re-implement anything).

Safety The Robot OS comes with many packages that allow to build complete
robotic systems, with planning, collision avoidance, simultaneous localization
and mapping, ... . In this paper, we use MoveIt [4] to transform an action
selected by an RL agent into a motion plan for a robot, while avoiding
collisions with obstacles. MoveIt gets its knowledge about obstacles from the
ROS network, which means that it is inherently compatible with simulators
(that know where obstacles are) and depth cameras, that produce the same
information on real robots [11].

Our empirical results in the Gazebo simulator, using a simulated real-world
robot (the Franka Emika Panda manipulator), show that combining an un-
modified implementation of PPO [24] from the stable-baselines3 [22] with a ROS
environment is possible, and that leveraging MoveIt for action execution allows
to prevent almost every collision, even in the early stages of learning.

2 Notations

The Reinforcement Learning literature considers an agent that executes actions
in a Markov Decision Process, defined by a tuple 〈S,A,R, T, µ0, γ〉. S is the
state space, that can be either discrete or continuous. In this paper, we consider
continuous state-spaces, in which each state is a vector of several real values.
A is the action space. In this paper, we consider a continuous action space, in
which each action is a vector of real values. R(s, a, s′) is the reward function,
that produces a single real value after a transition from state s to s′, caused by
the execution of action a. T (s, a) is the transition function, that maps a state
and an action to a new state. µ0 is the initial state distribution, that defines
in which state the agent may start an episode, and γ < 1 is a real value, the
discount factor.

Most Reinforcement Learning literature follows the notation described above.
However, roboticians use other notations, that appear in the literature related to
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ROS and MoveIt, and that we sometimes use in this paper when interfacing with
these components. We provide a brief summary of the differences of notation in
the table below:

RL Meaning Motion Planning
s State (observation) q (if joint angles)

p (if end-effector position)
a Action qi (target joint angles)
r Reward r or c (cost c = −r)

3 Related Work

Our main contribution allows a Reinforcement Learning agent to interface with
the Robot OS, for easy control of simulated or physical robots, with the use
of a motion planner to ensure safety. We now provide a related work review
of other approaches at robotic environments for Reinforcement Learning, tech-
niques that allow to make a Reinforcement Learning agent safer, and motion
planning libraries.

3.1 RL Robotic Environment

To tackle various challenges in robot RL [15], numerous robotic RL environments
are developed with different platforms. A brief survey of robotic RL environment
frameworks can be found in [13] and [9]. Each work emphasises specific merits
with regards to particular issues. In this paper, we only review frameworks which
are wildly accepted as benchmark, and particularly, we discuss how they consider
safety when learning.

Mujoco To improve the reproducibility in RL robotics research, SURREAL [8]
is built on the MuJoCo simulation environment and physics engine [27]. Mujoco
is widely used for RL environments, and frameworks with the same physics
engine can be found in [21, 31, 1]. Such projects usually focus on theoretical RL
research, and lack compatibility with robotic software such as the Robot OS.
Moreover, the use of Mujoco requires a license id (free for academic purposes,
paid otherwise).

PyBullet PyBullet is an open-source physics engine, used by [30] to implement
several Reinforcement Learning environments in simulated 3D spaces. These
environments allow the agent to control every joint of the robots, but do not
provide any safety mechanism or collision avoidance. An RL environment for a
quadcopter is developed with PyBullet by [19], but collision avoidance is not
considered, even though it appears crucial for a quadcopter.
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Gazebo Gazebo is an open-source simulator with a graphical interface, and
an interface to the Robot OS ROS [6]. A Gym environment for interacting with
Gazebo is proposed in [16], but collisions are allowed to happen in the simulator,
which makes replacing the simulator with a real-world robot impractical. How-
ever, because Gazebo and ROS have large communities that developed many
industry-proven tools, we base our main contribution on these two pieces of
software, and add MoveIt for collision avoidance.

3.2 Safe Reinforcement Learning

RL safety is normally defined as a mechanism which can ensure reasonable sys-
tem performance and/or respect safety constraints during the training or vali-
dation processes.

Definition and Survey RL safety approaches can be categorized in two classes:
tuning the optimization criterion of the algorithm to encourage safe behavior,
and directly intervening on the exploration of the agent to prevent unsafe actions
from being executed.

With the optimization approach, maximizing the long-term reward can gener-
ate statistically safer policy, but does not necessarily avoid the rare occurrences
of damage, neither ensures safety during training. The exploration approach
provides a shielding mechanism that modifies or prevents unsafe actions [10].
Several approaches to Safe RL, belonging to the two classes described above, are
reviewed in [28].

Safe exploration In this paper, we focus our attention onto Safe RL approaches
that consider physical issues, and in particular prevent physical damage. In a
danger-sensitive learning environment, such as robotics, the importance of dam-
age avoidance is higher than obtaining high rewards. Therefore, a shielding layer
maintaining zero-constraint-violations throughout whole learning process is nec-
essary.

[23] introduce safe exploration, more specifically Constrained Reinforcement
Learning, and address two challenges: 1) the difficulty of designing reward func-
tions that nicely balance punishing unsafe actions, and encouraging the agent to
learn the desired skill; 2) the fact that eventually learning the optimal safe policy
does not guarantee that no unsafe action has been performed while learning.

[5] consider that some states can be identified as unsafe, and propose a
method to avoid these states. In [20], a safety layer is applied in a real-robot
system, the safety layer modifies possibly risky actions to the closest valid al-
ternatives which satisfy safety constrains, but such constraints are difficult to
define especially when the environment is noisy or uncertain. Similar structured
safety guarantee is also utilized in [2].

When positioning this paper in relation to existing work, it is important to
note that existing work focuses on preventing the execution of specific unsafe
actions, and let the designer define what an unsafe action is. In this paper, we
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use MoveIt to automatically detect what would be unsafe actions, freeing the
designer from this task. Moreover, existing work considers that moving from a
safe state to a safe state is safe. This is not the case in practice, as we explain
in Section 4.7: the path between two safe states may go through a wall, and
therefore be unsafe. Our contribution detects these unsafe actions.

3.3 Path Planning

Path planning is one of the most fundamental problems in autonomous robotics,
particularly, in the scenarios where robots have to execute tasks in an environ-
ment with obstacles. Sampling-based methods offer a solution to overcome the
complexity of deterministic robot planning algorithms for a robots with many
degrees of freedom (many joints). A comprehensive survey can be found in [7].
An open-source library for sampling-based motion planning OMPL (Open Mo-
tion Planning Library) is proposed by [25], and is integrated in an open-source
framework, MoveIt!, that offers an state of the art path planning based on several
well-known libraries. MoveIt also integrates implementations of useful robotics
functions, such 3D perception, kinematics calculation and control 1.

4 Contribution

Our main contribution is a Gym environment, that allows to interface un-
modified Reinforcement Learning agents written in Python with a simulated or
physical robot exposed on ROS-Noetic, the Robot OS, a collection of libraries
and network protocols that allow components of robotic systems (hardware,
software, planners, ...) to communicate in an industry-standard way. We also
leverage MoveIt, a state-of-the-art motion planner, for efficient action execution
and collision avoidance.

The general architecture of our main contribution, MoveRL, is depicted in
Figure 1. Every time-step, the agent receives an observation and reward from
the environment, and selects a raw action, a desired position of the robot, not
yet guaranteed safe. The raw action passes through a collision monitor, based on
MoveIt, that observes the current position of obstacles and verifies the action.
Verifying the action relies on the possibility to simulate its outcome, which is
possible on physical robots by using co-simulation (a simulated version of the
robot runs in parallel with the physical robot, an approach very common in
industrial robotics and transparently supported by ROS). In this paper, we only
use pure simulation, and leave co-simulation with a physical robot to future
work.

If the raw action will cause a collision, it is discarded, leading to no movement
of the robot for this time-step, and a punishment given to the Reinforcement
Learning agent. If the raw action is safe, the planner computes a collision-free
path to guarantee the safety during execution. Our action shielding mechanism
ensures that no collision happens when the agent moves.

1 https://MoveIt.ros.org/
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 RL Environment

task reward

observation

safe action

Motion Planner

collision 
punishment

Collision Monitor

risky action

AgentScenario

 Safety Layer

obstacle states

Fig. 1. Our MoveRL framework. Our safety layer leveraging the MoveIt motion planner
contains 2 modules: 1) a collision monitor, that detects actions that lead to collisions,
and 2) a motion planner, that plans a collision-free path to reach the target locations
encoded in (previously-identified) safe actions.

We now detail all the software components of our proposed MoveRL. Our
implementation is available at https://github.com/Gaoyuan-Liu/MoveRL.

4.1 The Gym environment

To be compatible with standard RL algorithm implementations, such as in Stable
Baseline 3 [22], our contribution needs to be implemented as an OpenAI Gym [3]
environment. A Gym environment is a Python class that contains attributes that
describe its state and action spaces (both Box in our case), and methods that
allow actions to be executed in the environment. The reset method resets the
environment to an initial state, and returns the first observation of the episode.
The step method takes an action as input, passes to ROS and MoveIt for safe
execution, and produces a new state (observation) and reward. We describe all
these steps in more detail later. A done signal is also returned by step, and allows
the environment to choose when an episode should terminate.

4.2 Observation Space

Since we consider kinematics observation, we make an assumption that the po-
sition of obstacles can be detected by sensors, or is available in simulation. The
observation space contains two parts: the state of the robot, and the state of the
obstacles. For the robot state, we developed two environments with two different
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kinds of observation: joint angles q = [q1, q2, ..., qn] for an n degrees-of-freedom
robot, and end-effector position and orientation p = [peex , p

ee
y , p

ee
z , o

ee
x , o

ee
y , o

ee
z , o

ee
w ],

for tasks in which the robot has an end-effector such as a gripper. For obsta-
cle state, the agent can observe the position and orientation of the obstacles:
[pobsx , pobsy , pobsz , oobsx , oobsy , oobsz , oobsw ]. Our environment class can adjust the size of
state space according to the number of obstacles in the simulation.

Note that the agent observes the position and orientation of the obstacles
(cylinders, spheres, rods, cubes), but not their shape or dimensions. This is not
a problem, as an RL agent is perfectly able to learn what positions in relation to
the center and orientation of an obstacle will translate to negative rewards. So,
the agent sorts of learns the shape of the obstacles by feel, and does not need to
be provided that information.

4.3 Action Space

Our environment exposes a continuous action space, for which actions are vectors
of real values. More precisely, we consider that the action produced by the agent
is a target configuration of the robot, so a list of real values that define the angle
at which every joint of the robot must be set. Robotics libraries call this set
of angles qi, and the Reinforcement Learning literature calls this a. The action
space is constrained by the physical abilities of the robot, with joint position
limits qi,limit and joint velocity limits q̇i,limit.

The physical constraint on the speed of a joint requires careful engineering
of how the agent produces an action. Given a time-step duration ∆t, we must
ensure that the action qi,cmd produced by the agent, and sent to the environment,
differs (in absolute value) from the previous action by at most ∆t · q̇i,limit, for
every element of qi,cmd. We must also ensure that the action qi,cmd is part of the
allowed range of joint angles [qi,min, qi,max].

We implement these constraints as follows: the policy of the agent pro-
duces the change in joint positions ∆qi,cmd, instead of the absolute value of
the joint positions qi,cmd. Then, we clip ∆qi,cmd to [−∆tq̇i,limit, ∆tq̇i,limit], pro-
duce qi,cmd = qi,prev timestep+∆qi,cmd, and clip qi,cmd to the range [qi,min, qi,max].
This clipped value is sent to the environment, that uses MoveIt to detect and
avoid collisions.

4.4 Why do we need sequences of actions?

Most tasks on which we evaluate our framework consist of moving the end effector
of a robot to a specific target location. Given the action set described above, it
may seem logical that only one action is necessary for that: putting the robot in
the pose that puts the end effector at the target location. However, in practice,
a sequence of actions is needed for the following reasons:

– The time-step has a fixed duration and the robot cannot move infinitely
quickly, so the actions have to progressively bring the robot close to the
target location;
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– Even if state of the art, MoveIt has difficulties planning motions on long
distances, especially when there are concave obstacles in the scene. Rein-
forcement Learning is particularly useful in this case, as its optimization of
the discounted sum of rewards allows the agent to take actions that move
away from the goal in the short term, but allow to reach it in the long term.

4.5 Reward Function

The reward function is customized for each specific task, but always consists of
the sum of two terms: a task-specific reward and a task-agnostic safety term,
r = rtask + rsafety.

We describe rtask in the next sections. rsafety is 0 when an action would cause
no collision, and some negative constant when an action is detected as being un-
safe (and cancelled). The choice of the constant is described in our experiments,
and needs to be large enough that the agent learns to avoid states that can
potentially lead to collisions (especially when there are moving obstacles), but
not too much, so that the agent does not become too conservative (and learns a
policy that remains immobile, for instance).

4.6 Initial States and Termination

Every episode, we initialize the simulated robot to a random pose, to ensure
good exploration. The episode terminates when the end effector of the robot
reaches a pre-defined goal position, or after 100 time-steps.

4.7 Safety Guarantee

After having described the different components of our environment (state space,
action space, ...), we now discuss the different types of collisions that can be
detected by MoveIt, and provide details on how we query MoveIt from a Gym
environment. A full description with code would go beyond the page limit of this
paper, but the complete source code that we use in our experiments is available
on Github (link in the abstract).

Collision Types To comprehensively consider the potential risk during train-
ing, we categorize collisions into three types:

(a) self collision: two parts of robot itself collide with each other; (b) pose
collision: the commanded configuration qi,cmd collides with objects in the envi-
ronment; (c) path collision: the direct path between two configurations contains
collisions with objects in the environment. Figure 2 shows examples of these
three types of collisions.

Avoiding self-collision and pose collision during learning can be achieved
by constrained inverse kinematics and state-validation checking at each time-
step. However, the avoiding path collisions is more challenging, and tends to
be neglected in the Safe RL literature since it is difficult to do state validation
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(a) (b) (c)

Fig. 2. (a) Self collision (b) Pose collision (c) Path collision

checking continuously. Therefore, even when the state for two adjacent steps are
safe, the direct path (without planning) can still collide with obstacles. We give
an unified solution to avoid the aforementioned three types of collision, which is
integrating MoveIt as an safety layer in the RL environment.

Collision Detection The MoveIt provide package Planning Scene allows to
manage an abstract representation of the environment surrounding a simulated
or physical robot. This environment can contain obstacles of two possible types:
scene object and octomap [12].

Scene objects have an explicit shape, such as a 3D mesh or a primitive shape
(cylinder, box, sphere). It is used when a coarse obstacle is enough, for instance
a big cylinder around a human, to encoder a general area that has to be avoided.
An Octomap is built from a depth camera (or produced by a simulator), and
allows to precisely measure the presence of an obstacle around the robot, without
having to model it. The trade-off between precision and efficiency can be adjusted
with the resolution parameter of the octomap.

Once the Planning Scene has been defined (and kept updated by the simu-
lator or sensors, using ROS network messages that the Gym environment does
not even need to bother with), MoveIt is able to detect collisions using libraries
such as the FCL (Flexible Collision Library) [18].

We stress that the use of ROS allows to transparently interface our Gym
environment with many well-regarded robotic packages, Planning Scene being
only one. Other packages allow to stream updates to the position of the obsta-
cles from a variety of sensors (and are usually shipped with the sensors), or to
visualize various aspects of the scene (for instance, visualizing how a physical
robot senses its surrounding). Figure 3 shows that it is possible to visualize a
textured 3D render of a scene, along with information about the obstacles in it,
and what motion planning has to be performed.

Path Planner It’s worth noting that the direct path between two valid poses
can still contain collisions, which we term as path collision. To avoid path col-
lisions, a local planner is necessary, and will run every time-step, to produce a
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(a) (b) (c)

Fig. 3. The collision detection methods in MoveIt. (a) Gazebo simulation (b) Collision
detection with scene object (c) Collision detection with octomap. The white arm in-
dicates current pose, the orange arm indicate the commanded pose, and the red parts
indicate the collision links.

full motion from the pose of the robot on one time-step, to its pose at the next
time-step.

For each time-step, given a valid action command, a planner plans a collision-
free local path based on the present knowledge of the position of obstacles. In
order to reduce the time consumption of training and minimize the planning
delay, our primary consideration for choosing the most appropriate planner is
efficiency and completeness. Therefore, we evaluated planners available in MoveIt
by their solving time and path length, which can reflect the planners’ efficiency
in either planning and execution phases [17].

The planners’ time consumption and planned path length on a benchmark
task (putting a robotic arm into a desired pose) are shown in Figure 4. We note
that our objective is not to identify the absolute best planner, but to provide an
informed choice of planner for our Reinforcement Learning experiments. RRT
and its derivative show merits in both planning time and path length. Therefore,
we choose the RRT planner in our experiments.
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Fig. 4. Left: Planner planning-time comparison, right: Planner final path length com-
parison.
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Goal-Reaching Task We now define a goal-reaching task, and detail how
it is implemented with MoveIt. To achieve the goal-reaching task, we define a
dense reward (non-zero whenever there is movement during a time-step), that is
proportional to the change in distance between the end-effector’s current position
and the goal position. The task reward can be formalized as:

rtask(s) =

{
κ∆d(s) + rgoal if s is close to sgoal
κ∆d(s) otherwise

where rtask(s) is the task reward given to the agent when reaching state s,
∆d(s) is the distance between the end-effector in state s and the target end-
effector location, rgoal is a fixed positive reward given when the target location
is reached, and κ is a weighting constant, allowing to balance rtask and rsafety.
The actual values of rgoal and κ are given in the next section.

5 Experiment

While our main contribution is a Gym environment that allows to learn tasks
in ROS-based robotic environments with standard Reinforcement Learning al-
gorithms, we also provide experimental results, that show that:

– Our framework, that we call MoveRL, works and actually allows an un-
modified PPO agent to learn a task;

– Collisions can indeed be avoided, thanks to MoveIt, which allows simulated
robots to be replaced with physical robots if need be.

5.1 Learning Scenarios

In our experiments, the robot learns to fetch the goal point with its end-effector
by adjusting 7 joint angles. We consider 3 scenarios around this task, that differ
in what kinds of obstacles are around the robot:

1. Table: The table holding the robot is the only exterior obstacle, thus self-
collisions are considered as the major risks in this scenario.

2. Human: The robot and a human worker share a single workspace. The goal
point is located between the human and the robot. Self-collisions and pose
collisions would be the major risks. The human is modelled with basic shapes
such as cylinders.

3. Case: The robot has to reach a goal location inside a box/case (walls with
an opening on top). Finding how to enter the case is challenging in this task
and benefits from the use of Reinforcement Learning. The thin walls of the
case lead to possible path collisions (in addition to self-collisions and pose
collisions).

The 3 training scenarios are illustrated in figure 5. Our Github repository
contains Gazebo world files for all 3 scenarios.
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Fig. 5. From left to right: table world, human world and case world, and the first
row shows the simulation environment in gazebo while the second row is the state
presentation (robot and obstacles) in rviz.
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Fig. 6. Number of collisions occurring per episode, with and without collision avoidance
with MoveIt. The blue line indicates that our safety layer, based on MoveIt, successfully
prevents collisions throughout the learning process.

5.2 Learning Algorithm

We use a Reinforcement Learning agent from the Stable-Baselines 3 [22], that
contains a set of reliable RL algorithms including A2C, DDPG, PPO, SAC
and TD3. We choose PPO, as it is highly popular, compatible with continuous
actions, and has many implementations. In this paper, we focus on showing
that RL with ROS is possible, we do not aim at evaluating which RL algorithm
performs the best. The hyper-parameters that we use for PPO in our experiments
are the default values used Stable-Baselines 3, as of August 23rd, 2021, with the
following changes: the policy network is MlpPolicy, the learning rate is 0.0005,
the batch size is 200, and the number of steps between policy updates is 100.

5.3 Results

To evaluate our safety layer, we compare how a PPO agent learns with and with-
out our collision avoidance method. We observe that our safety layer successfully
prevents collisions, and has no negative impact on sample-efficiency:

Figure 6 shows that enabling our safety layer successfully prevents collisions,
and that disabling our safety layer leads to a large amount of collisions.
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Fig. 7. Learning curves in each learning scenario. We confirm that our safety layer,
that successfully prevents collisions, has no negative impact on sample-efficiency (the
red and blue curves have the same shape). This shows that safety does not come at
the expense of sample-efficiency with our MoveRL framework.

Figure 7 presents the learning curves in our three scenarios, with and without
our collision avoidance method. Avoiding collisions does not appear to have any
negative impact on the agent, as the learning curves are comparable. If it has
any effect, it would be a slight increase in sample-efficiency, as seen in the Case
scenario. We are happy with this result, as it shows that safety in Reinforcement
Learning does not come (in our case) at the cost of sample-efficiency and final
policy quality.

6 Conclusion

In this paper, we presented MoveRL, a Reinforcement Learning Gym environ-
ment for robotic manipulators, that builds the widely-used ROS platform for
simulated and physical robots. Thanks to the dynamism of the ROS community,
advanced algorithms for planning, obstacle detection and collision avoidance
are available. We leverage them in our environment to produce a method for
safe Reinforcement Learning on robots. Our experiments show that our safety
mechanism indeed prevents collisions while an un-modified PPO agent learns a
simulated robotic task, and that our method has no negative impact on sample-
efficiency.

While the deployment of our method on a physical robot remains as future
work, we hope that our new software and method will allow Reinforcement
Learning researchers to more easily evaluate their methods on simulated real-
world robots (as opposed to unrealistic robots as available in the Gym Mujoco
tasks, for instance), and will allow robotic engineers to evaluate Reinforcement
Learning for the tasks in which classical planning methods show limitations.
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Abstract. Recommitments are essential for limited partner investors to
maintain a target exposure to private equity. However, recommitting to
new funds is irrevocable and expose investors to cashflow uncertainty
and illiquidity. Maintaining a specific target allocation is therefore a te-
dious and critical task. Unfortunately, recommitment strategies are still
manually designed and few works in the literature have endeavored to
develop a recommitment system balancing opportunity cost and risk of
default. Due to its strong similarities to a control system, we propose to
“learn how to recommit” with Reinforcement Learning (RL) and, more
specifically, using Proximal Policy Optimisation (PPO). To the best of
our knowledge, this is the first attempt a RL algorithm is applied to pri-
vate equity with the aim to solve the recommitment problematic. After
training the RL model on simulated portfolios, the resulting recommit-
ment policy is compared to state-of-the-art strategies. Numerical results
suggest that the trained policy can achieve high target allocation while
bounding the risk of being overinvested.

Keywords: Reinforcement learning · Private Equity · Control system.

1 Introduction

Private equity is an alternative asset class which refers to direct investments
in non-listed companies made at different stages of their development to create
added value. These companies are then sold few years later with the expecta-
tion to obtain a significant capital gain. Early investments in strong performing
companies help them to develop their business and make them more profitable.
Contrary to the public equity market, private equity investments are not eas-
ily accessed as stocks and bonds. Recently, private equity has been included in
the portfolios of institutional investors such as pension funds, sovereign wealth
funds, etc. These institutional investors have been building sizable allocation by
investing “indirectly” to private companies through private equity funds. Indeed,

Regular papers BNAIC/BeneLearn 2021

75



2 E. Kieffer et al.

managing such a less traditional asset class requires a high level of expertise to
properly enter and exit direct investments. This explains their preferred modus
operandi to invest indirectly as so-called limited partners (LP) through limited
partnership funds in which they commit a certain amount of capital for a given
period of time. Commitments are irrevocable and called at the discretion of the
fund’s management, i.e., the general partner (GP), to decide how investments
should be realised. The committed capital is gradually draw down during the so-
called investment period which last several years. To complicate matters, stakes
in these funds are illiquid [7] which enforce LP investors to be extremely cautious
when it comes to recommit into new funds to limit the risk of default. Generally,
the committed capital is an upper-bound of the total capital finally called by a
fund. A significant part (≈ 10%) of the initial capital is generally never invested
as described in [18]. Furthermore, committed capital waiting to be called is gen-
erally pictured as dry powder. Prequin 4 reported in November 2020 that North
American private equity firms are sitting on almost $980bn in reserves. This
uncalled capital dramatically impacts investors’ exposure (see [12]). In practice,
LP investors therefore run so-called overcommitment strategies, i.e., committing
more capital in aggregate than actually available as dedicated resources, with
the gap expected to be filled by future distributions from investments made in
other existing funds. These strategies thus increase the liquidity risk when the
fund is only few years old when the likelihood to be called is the highest. LP
investors need to setup a commitment-pacing strategy, i.e., on how to size and
time their commitments, in order to achieve and maintain a target allocation
while complying with the liquidity constraints imposed by the uncalled capital.
As reported in [3] and [9], few investigations have been engaged to evaluate the
cost of maintaining uncalled capital. This is the reason why the current existing
models still remain rudimentary and depend on spreadsheet-based and “trial-
and-error” approaches. These manually-designed strategies are often error-prone
and naive although the opportunity cost, i.e., the cost of being underinvested,
and the risk of default in case of overinvestment can be very damaging for LP
investors.

In this work, we propose to investigate an approach relying on Reinforcement
Learning to learn how to size and time dynamic recommitments. The latter can
be formulated as a RL problem to discover reliable recommitment policies using
a Proximal Policy Optimisation algorithm. Recommitment policies can be assim-
ilated as control policies which should maintain a target allocation minimizing
the opportunity cost while preserving investors from the risk of default.

The remainder of this paper is organized as follows. The next section provides
a state of the art on existing recommitment strategies. Section 3 introduces for-
mally the Private Equity Recommitment Problem (PERP). Section 4 described
the Proximal Policy Optimisation algorithm applied on the RL version of the
PERP introduced in Section 5. Experiment setups and results are discussed in

4 https://www.preqin.com/insights/research/blogs/what-private-equitys-record-dry-
powder-haul-means-for-the-industry
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Section 6 and 7. Finally, the last section provides our conclusions and proposes
some possible perspectives.

2 Related works

Recommitment strategies are essential to keep investors constantly invested at
some target allocation. To the best of our knowledge, few studies have tried
to model this as an optimisation problem. They generally rely on some rules
of thumb lacking robustness and flexibility. In [4], authors considered that the
entire private equity allocation should be recommitted to new funds every year
without taking into account past portfolios evolution. Nevin et al. in [11] based
their recommitment strategy on average rates of distributions and commitments.
New commitments should be made if the committed capital does not reach a
target threshold to compensate the difference. This strategy assumes constants
rates which seems very illusory over time. In [18], de Zwart et al. proposed
recommitment strategies for funds aiming to maintain stable the exposure to
PE. The strategy’s key feature is the level of new commitments in a given pe-
riod which depends on the current portfolio’s characteristics. Importantly, de
Zwart’s strategies does not require to forecast funds’cashflows. Although they
consider 100% PE portfolios, their last suggested strategy is a first attempt
to design dynamic recommitment strategies relying on past portfolio develop-
ment. Finally, Oberli et al. in [12] extended de Zwart’s work to multi-asset class
portfolios including stocks and bonds. These two last contributions solely rely
on handcrafted recommitment strategies to control the investment degree (ID),
i.e., PE exposure. While they are innovative and improving attempts without
the need to forecast future cashflows, they have been built on specific and lim-
ited datasets with given market conditions. Building recommitment strategies
in various market conditions is a challenging task. In this work, we investigate
Reinforcement Learning to discover promising recommitment policies using the
policy-based PPO algorithm. Policy-based algorithms [13, 15] have been moti-
vated by the fact that solving a RL problem is all about finding a sequences of
actions even for value-based algorithms [10, 6]. Discovering and predicting the
best actions avoid the computational burden to compute all state values. Besides,
when the action space is continuous or very large, policy-based approaches are
more attractive than values as we do not need to solve an optimisation problem
to select the best action.

3 Problem description

This section describes the Private Equity Recommitment (PERP) by considering
a single LP investor owning a 100% private equity portfolio. To minimize the
opportunity cost, the investor’s primary target is to remain fully invested while
avoiding cash shortage. Let us define P(t) = {f}Mi=1 the set of active funds in
the portfolio at time t. In order to measure its degree of investment, the fraction
of total allocated capital that is actually invested can be computed as follows:
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ID(P, t) =

∑
f∈P(t)

NAV (f, t)

∑
f∈P(t)

NAV (f, t) + Cash(P, t) (1)

where
∑

f∈P(t)
NAV (f, t) represents the sum of all Net Asset Value (NAV ) for the

underlying funds in the portfolio at period t. Cash(P, t) accounts for the global
uninvested cash in the portfolio, i.e., uncalled capital and possible distributions.
Ideally, the investment degree ID should be as close as possible to 1. A trivial
but not viable solution would be to bring Cash(P, t) to 0 but this is without
counting on future and inopportune capital calls exceeding the investor resources
capacities. Becoming a defaulting investor once capital has been committed is
subject to strong financial and reputational penalties. The PERP is therefore a
challenging problematic for LP investors as they constantly need to stay close to
the boundary without over-crossing it. In [18], authors modelled the problem as a
sequence of single-period portfolio optimisation problems maximizing subsequent
investment degrees using the following formulation:

min
C(P,t)

Et
[
(1− ID(P, t+ 1))2

]
(2)

where the C(P, t) represents the optimal amount of capital to be recommitted
at t. Note that this model only determines the optimal recommitment level with
regards to the next period. This is debatable as the committed capital is called
progressively over the investment period, i.e., roughly during the first 6 years.
With respect to formulation (2), the optimal level of commitment at period t is
therefore:

C(P, t) = Et

(
Cash(P, t) +D(P, t+ 1)−∑τ

i=1 γt+1,i+1C(P, t− i)
γt+1,1

)
(3)

with Et the conditional expectation, Cash(P, t) the uninvested cash in the port-
folio,D(P, t) representing distributions for the next period, C(P, t−i) the capital
committed i period ago and γt+1,i+1 is the fraction of the capital committed i
periods ago. γt+1,i+1 enables to compute the total capital called at the end of
quarter t+ 1, i.e.,

CC(P, t − i) =
τ∑
i=0

γt+1,i+1C(P, t − i) with τ representing the maximum fund

age at which capital can still be called. Interested readers can refer to [18] for
more details about the proof.

One can observe that the analytical solution requires to forecast distributions
(see [16, 8]) at t+1 and the fraction of the capital committed in the past that will
be called. Although prediction models can be developed to approximate future
distributions, it is very unlikely to guess future capital calls as direct investments
in private companies are made at the discretion of the fund’s management.
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Some works [18, 12] in the literature have tried to cope with this issue by en-
gineering strategies using only available and past quantities. These strategies can
be likened “heuristics” to approximate the optimal amount to be recommitted
at each period and are defined as follows:

– DZ1(P, t) = D(P, t);
– DZ2(P, t) = D(P, t) + UC(P, t− 24);
– DZ3(P, t) = 1

ID(P,t) × (D(P, t) + UC(P, t− 24))

Strategy DZ1(P, t) recommits only current distributions at t while the strat-
egy DZ2(P, t) incorporates the uncalled capital made 24 quarters ago, i.e.,
UC(P, t − 24). The inclusion of this quantity is based on the observation that
unallocated but committed capital for older funds that already passed their
maximal NAV’s peak is unlikely to be called. These funds are typically in the
divestment period. The last strategy DZ3(P, t) scales recommitments obtained
from DZ2(P, t) with the inverse of the current investment degree. If the invest-
ment degree is high, the recommitted capital will be decreased. Conversely, a low
investment degree will amplify the recommitted capital. This allows to perform
some kind of active control to adjust the level of recommitment to reach and
remain stable at a target allocation .

In this paper, we propose to learn an active control system to recommit at
each period. Instead of relying on cashflow predictions and strategies’ engineering
which require strong expert knowledge, we posit that recommitment policies
could be learnt using a policy-based algorithm introduced in the next section.

4 Proximal Policy Optimisation

As aforementioned in section 2, the number of approaches relying on policy
learning has flourished since recent years. They all try to find a trade-off be-
tween fast training and stability. Making large steps in the policy update can be
disastrous, especially for on-policy algorithms which could never recover from
subsequent updates. Among all existing alternatives in the literature, we consid-
ered the Proximal Policy Optimisation (PPO) algorithm [15] due to its simplicity.
Although the PPO algorithm was released long after the Trust Region Policy
Optimisation (TRPO) [13] which was the first of its kind, the PPO policy update
is simpler but empirically seems to perform at least as well as TRPO relying on
a second-order approach. But before diving into the stability improvement pro-
posed in the PPO algorithm, let us recall the foundations, i.e., the vanilla policy
gradient. Let πθ represents a policy as a function of the parameter θ, the current
state st, the taken action at and the received reward rt at time t. A trajectory τ
is a sequence of states and actions representing the path taken by an agent. In
Reinforcement Learning, the goal is to discover the trajectory maximizing the
expected return J(θ) = Eπθ [R(τ)] by updating sequentially the weights θ as
follows: θk+1 = θk + α ∗ ∇θJ(θk) where ∇θJ(θk) represents the policy gradient
and is expressed as ∇θJ(θ) = E [R(τ)∇θ log πθ(at|st)]. R(τ) can take different
forms as suggested in [14]:

Regular papers BNAIC/BeneLearn 2021

79



6 E. Kieffer et al.

– the total reward trajectory:
∑
t=0

rt

– the future reward from action at or rewards-to-go:
∑
t=t′

r′t

– Future reward with baseline:
∑
t=t′

r′t − b(st)
– State-action value function: Qπθ (st, at)
– Advantage function: Aπθ (st, at) = Qπθ (st, at)− V π(st)

All the previous choices lead to the same expected value but have different
variance. The formulation using the advantage function is extremely common
as it uses the state-action value function and the estimation value of the state
as baseline to reduce the variance of the gradient. The PPO algorithm relies on
an estimation of the advantage function and tries to avoid parameter updates
that change the policy too much at one step. In the same way as TRPO, the
loss function is built to measure of how policy πθ performs relatively to an old
policy πθold :

L(θ, θold) = E

[
Aπθ (st, at)

πθ(at|st)
πθold(at|st)

]
(4)

While the TRPO algorithm uses the hard constraint DKL(θ||θold) < λ to
limit the KL-divergence between both policies, the PPO algorithm relaxes the
hard constraints and:

– either penalizes the KL-divergence directly in the loss function. This is the
PPO-penalty version which we did not consider in this work.

– or clips the ratio πθ(at|st)
πθold (at|st)

in the loss function to remove incentives for the

new policy to get far from the old policy. Note that the KL-divergence is not
used anymore as constraints nor as a penalty.

The PPO-clip algorithm considered in this work is depicted in Algorithm
1. Contrary to the penalty version in which penalty coefficients are adjusted
automatically during training, PPO-clip requires a static hyper-parameter ε use
to clip the ratio between the policies. Due to space restriction, we will not go
further into details but more explanations can be obtained from the original
paper [15].

5 Private Equity Recommitment as RL problem

As described in Section 3, the PERP can be solved using two main methodolo-
gies. While the first one relies on cashflow forecasting, the second one engineers
recommitment functions only using past and current quantities from portfolios.
Instead of building explicitly these functions, one could consider a Markov De-
cision Processes (MDP) to model a recommitment system and searches for the
best policy in order to maintain a target investment degree while minimizing the
risk of default.
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Algorithm 1 PPO-clip version
1: Initialize policy parameters θ1 and value function parameters φ1

2: for k ∈ {1, ...,M} do

3: Sample a set of trajectories {τi}Mi=1 using the policy πθk
4: Create a batch B of transitions (sit, a

i
t, r

i
t) ∀t ∈ {1, ..., |τi|} ∀i ∈ {1, ...,M}

5: Compute rewards-to-go R̂it, i.e. rewards from action ait, ∀t ∈ {1, ..., |τi|} ∀i ∈ {1, ...,M}
6: Estimate the advantages A

πθk (sit, a
i
t) using the value function Vφk

7: Perform policy update:

θk+1 = argmax
θ

1
M

M∑
i=1

1
|τi|

Ti∑
t=1

[
min

(
Aπθ (sit, a

i
t)

πθ(a
i
t|s
i
t)

πθold
(ait|s

i
t)
, g
(
ε, Aπθ (sit, a

i
t)
))]

with g
(
ε, Aπθ (sit, a

i
t)
)
= clip

(
πθ(a

i
t|s
i
t)

πθold
(ait|s

i
t)
, 1− ε, 1 + ε

)

8: Perform value function update by minimizing mean-squared error:

φk+1 = argmin
φ

1
M

M∑
i=1

1
|τi|

Ti∑
t=1

[
Vφ(s

i
t)− R̂it

]2

9: end for

5.1 Modelling

Fig. 1 illustrates how the PERP can be turned into a Reinforcement Learning
problem. Each state st represents the portfolio position at time t and contains
the following information:

– ID(P, t): Investment degree at time t
– D(P, t): Distributions obtained from divestments at time t
– CC(P, t): Capital called at time t
– UC(P, t− 24): Uncalled capital from commitment made 24 quarters ago
– Cash(P, t): Portfolio cash at time t
– NAV (P, t): Net Asset Value at time t

The state st gives us the opportunity to control the amount of recommitted
capital at time t, i.e., the continuous action at depicted in Fig. 1. So far, the RL
model is trivial to obtain. However, we need to be extremely cautious regard-
ing the reward provided to the agent. Although we could define the reward by
minimizing the deviation to the ideal investment degree as done in Equation 2,
there is no control on the risk of default. Two alternatives open to us: (1) either
we train on multiple portfolios per episode and adjust the objective using the
standard deviation or (2) we constrain the agent to remain below the fateful
boundary, i.e., ID(P, t) = 1.0. Needless to say, alternative (2) is more challeng-
ing for the agent but we argue that it will be more generalizable than alternative
(1). For this purpose, we define a local reward rvalidt and a global reward rIDτ .
While the former is applied after each action(recommitment), the second one
only occurs at the end of a valid episode. We recall that a valid episode ends
when the maximum number of steps has been reached. The agent is rewarded
after each action depending on whether the future state of the portfolio is valid:

rvalidt =

{
0 if ID(P, t+ 1) > 1
1 if else

Regular papers BNAIC/BeneLearn 2021

81



8 E. Kieffer et al.

Fig. 1: Reinforcement Learning of private equity policies

If a situation of default happens, the episode is stopped and does not reach
the maximum number of steps allowed. The accumulated reward obtained dur-
ing the episode would finally correspond to the number of periods in which the
portfolio remained valid. This reward function strictly increases monotonically
to drive the agent to simply learn to provide valid episodes. Once the agent has
learnt to recommit, i.e., it reaches the maximum number of steps per episode, it

receives an additional and final global reward rIDτ =
T∑
t=1

ID(P, t) where T is the

maximal number of steps per episode. Note that the sum could be replaced by
the min to maximize the worst investment degree obtained during an episode.
Finally, the total reward of a valid episode is the accumulated local reward added
to the shifted global reward:

rτ = rIDτ × 10(digits(T )+1) +
T∑

t=1

rvalidt (5)

where digits(T ) is the number of digit of T . For an episode lasting 100 steps,
#digit(100) = 2. This shifting mechanism is a constraint handling approach to
make sure that non-valid episodes are guaranteed to receive a total reward lower
than valid ones.

5.2 Synthetic cashflows

Private equity data is a sensitive topic. Private equity players generally protect
their rich cashflow histories. Although some financial data providers propose
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commercial libraries for very specific periods and economies, their data are gen-
erally incomplete. Historical cashflows’s data capture the fund’s dynamics which
is an essential information for training. Multiple works including [18] and [12] re-
lied on commercial libraries to draw conclusions or train their own model. In this
work, we adopt another strategy to simulate portfolio evolution over time. Since
1973, the Yale University’s endowment has been investing in private equity using
a methodology for modelling illiquid assets proposed by Takahashi and Alexan-
der (see [16]). Referred to as the mother of all cashflows’s models, this Yale-model
can be applied to private equity and real asset funds (e.g. natural resources and
infrastructures). Although, according to Takahasi and Alexander, the generated
projections fit historical data, the cashflows are modelled as deterministic which
limit their applicability.

Instead of depending on a commercial solution to acquire historical cashflows
which are often expensive and incomplete, synthetic fund cashflows have been
preferred in this work as they represent a more practical solution. This is the
reason why we decide to rely on an alteration of the Yale-model to make it
probabilistic. These synthetic cashflows are created by funnelling data generated
by the robust and tried-and-tested, albeit over-simplistic, Yale-model through a
noise-adding algorithm to construct a new dataset. The resulting dataset shows
the statistical features and the useful patterns needed for capturing the liquidity
risks associated with portfolio of funds. The synthetic cashflows considered in
this work have been provided by T.Meyer, an expert in private equity and co-
author of this paper.

6 Experimental setups

In order to fairly evaluate the resulting recommitment policies with the state of
the art, simulations have been performed according to the parameters described
in [18]. Due to the lack of secondary market, a portfolio cannot be bought in-
stantaneously. We empirically created initial but mature portfolios over a year
by committing equal capital to 16 randomly selected private equity funds. We
also apply 30 % initial overcommitment in setting up all portfolios to be in line
with the experiments performed in [18].

A portfolio simulation consists in recommitting some capital to new selected
fund every quarter. The amount of capital is determined by the current policy
sampled from the critic network (see Algorithm 1). Table 1a details the simu-
lation parameters while Table 1b described the PPO-clip parameters. A single
portfolio simulation last 104 quarters, i.e., 26 years. Capital is recommitted uni-
formly into 4 randomly selected funds. The number of portfolio simulations is
therefore equal to the number of episodes:

#episodes =
steps per epoch× epochs

104
= 125000

Strategies DZi(P, t) for i ∈ {1, 2, 3} proposed in [18] have been evaluated
with the same parameters and over the same period. All experiments presented
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in this paper were carried out using the HPC facility of the University of Lux-
embourg [17]. The python library SpinningUp [1] has been considered for the
PPO-clip implementation. A distributed implementation using OpenMPI [5] has
been considered to work with multiple environment in parallel. The discount pa-
rameter γ has been set to 1.0 since an episode’s length is finite and last 26 years.
The clip ratio ε has been set to 0.2 and represents how far can the new policy
go from the old policy while still improving the objective. PPO-clip ’s networks,
i.e., actor and critic have both two hidden layers of 64 nodes. The ReLU function
[2] has been chosen as activation function.

Table 1: Parameters
Parameters Training Validation

Cashflows frequency quarterly quarterly

Investment period 26 years 26 years

Funds per recommitment 4 4

Fund selection random random

Number of
simulated portfolios

#episodes 1000

(a) Simulation parameters

Parameters Value

steps per epoch 26000

gamma 1

epochs 500

# episodes 500

clip ratio ε 0.2

pi lr / vf lr 3e−4 / 1e−4

hidden layers [64, 64]

(b) PPO-clip parameters

7 Experimental results

With regards to the experimental setups described in the previous section, Fig. 2
illustrates the average rewards recorded during policy optimisation/training. One
can easily observe that the PPO-clip algorithm required few epochs to generate
valid policies. The average rewards curve then steadily increases to reach what
we can consider as a plateau in terms of improvements. Indeed, we can note
periodic falls indicating that the algorithm have strong difficulties to improve
more significantly the investment degree without breaking the cash constraint.
When arrived at the rupture point, a policy yielding non-valid episodes is more
likely to be generated leading to a steep fall in terms of overall rewards. When
a fall occurs, the algorithm tries to recover until the next rupture. This pattern
can be easily oberved in Fig. 2. Due to the shifting constraint handling approach
implemented in this work, non-valid and valid episodes do not have the same
reward scale which explains these deep reward falls every time the algorithm
encounters a non-valid episode.

The best policy obtained after training is depicted in Fig. 2. In order to vali-
date results, the obtained policy has been applied on a test set of 1000 portfolios.
After recording the investment degree evolution and the validity of each port-
folio, the average investment degree as well as the surrounding 95% confidence
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Fig. 2: Evolution of the average rewards per epoch

interval have been computed and are depicted in Fig. 3. We first observe that the
percentage of overinvested portfolios remains extremely low, i.e. ≈ 0.7%. The in-
vestment degree varies strongly during the first 6 years going from 0.4 to almost
1.0. After the first 6 years, the average investment degree slightly increases to
remain stable around 0.9.
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Fig. 3: Best policy obtained with the PPO-clip algorithm

We now compare the investment degree obtained with state-of-the-art strate-
gies engineered in [18], namely DZi for all i ∈ {1, 2, 3}. Each DZi have been
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applied on the same test set. Table 2 reports the average investment degree,
the standard deviation of the investment degree and the fraction of overinvested
portfolios obtained for each strategy including the best policy recommitment
PPO − clipbest. Although the active recommitment period only lasts 26 years,
we have still recorded the investment degree until portfolios were totally divested
(38 years) to observe if there is no delay effect when applying a specific strategy.
None of the 3 strategies have generated invalid portfolios. The investment degree
reached by DZ1 and DZ2 remains low, i.e., below 0.6. Nevertheless, DZ3 ob-
tained the best results among the 3 strategies as reported in [18]. The recommit-
ment policy PPO−clipbest outperforms the 3 strategies by reaching a maximum
investment degree above 0.8. Nonetheless, the DZ3 reports better results during
the first years as show in Fig. 4. The initial condition of the portfolio seems to
be a challenge for the recommitment policy. Nevertheless, it is well-known in the
literature that portfolio inception is a problem on its own. Therefore, we are not
surprised by this under-performance at the beginning of the portfolio lifetime.
In [18], authors discarded the first three years of the portfolio’s lifetime to avoid
the influence from the initial portfolio formation period.

Regarding the percentage of overinvested portfolios, it comes as no surprise
to encounter some invalid portfolios when getting closer to ID(P, t) = 1.0. This
is due to cashflow variability which is very difficult to predict. An alternative
would be to replace the strong cash constraint by a soft one taking the form
of an additional objective. Most of the LP investors generally own multi-class
asset portfolios. If liquidity is missing due to an unexpected capital calls, more
liquid assets could be sold. Of course, such a situation should be tempered and
the injected cash required to satisfy capital calls should be minimized. For this
purpose, one could consider a multi-objective reinforcement learning algorithm.

8 Conclusion

Recommitting into new PE funds is crucial for LP investors to maintain high
allocation to private equity. Current methodologies rely on cashflow forecast-
ing and over-simplistic approaches which are lacking of flexibility. Although this
problem is a key of major importance, few works have attempted to develop a ro-
bust and flexible recommitment system. Perhaps, this is due to the lack of data.
This is the reason why we adopted a different strategy consisting in learning
recommitment policies through Reinforcement Learning. Using synthetic cash-
flows build from the traditionnal but proven Yale-model, we applied Proximal
Policy Optimisation to the Private Equity Recommitment Problem to maximise
the investment degree while avoiding cash shortage situations by constraining
the agent. Results obtained after training confirm that the recommitment policy
outperform the strategies engineered in [18] while limiting the fractions of invalid
portfolios. This work was a first proof of concept and subsequent experiments
will be performed using different RL algorithms. Future works will investigate
a strategy to handle the cash constraint more efficiently. Another avenue for
research would be to model the cash constraint as a soft constraint, typically by
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PPO − clipbest DZ1 DZ2 DZ3

years mean std invalid (%) mean std invalid (%) mean std invalid (%) mean std invalid (%)

0 0.07 0.02 0.00 0.07 0.02 0.0 0.07 0.02 0.0 0.07 0.02 0.0
1 0.29 0.03 0.00 0.29 0.03 0.0 0.29 0.03 0.0 0.30 0.03 0.0
2 0.52 0.04 0.00 0.52 0.04 0.0 0.52 0.04 0.0 0.55 0.03 0.0
3 0.68 0.06 0.00 0.69 0.04 0.0 0.69 0.04 0.0 0.75 0.03 0.0
4 0.73 0.06 0.00 0.75 0.04 0.0 0.75 0.04 0.0 0.83 0.03 0.0
5 0.74 0.07 0.00 0.76 0.04 0.0 0.76 0.04 0.0 0.85 0.04 0.0
6 0.74 0.07 0.08 0.71 0.05 0.0 0.71 0.05 0.0 0.81 0.05 0.0
7 0.71 0.08 0.20 0.63 0.05 0.0 0.63 0.05 0.0 0.74 0.05 0.0
8 0.71 0.07 0.20 0.56 0.04 0.0 0.57 0.05 0.0 0.70 0.04 0.0
9 0.75 0.05 0.20 0.54 0.03 0.0 0.56 0.03 0.0 0.72 0.04 0.0
10 0.80 0.05 0.20 0.56 0.03 0.0 0.58 0.03 0.0 0.76 0.03 0.0
11 0.84 0.05 0.23 0.58 0.02 0.0 0.60 0.02 0.0 0.79 0.03 0.0
12 0.85 0.05 0.40 0.59 0.02 0.0 0.62 0.02 0.0 0.81 0.03 0.0
13 0.85 0.05 0.58 0.59 0.02 0.0 0.62 0.02 0.0 0.81 0.03 0.0
14 0.84 0.06 0.70 0.58 0.02 0.0 0.60 0.02 0.0 0.79 0.03 0.0
15 0.85 0.06 0.70 0.56 0.02 0.0 0.58 0.02 0.0 0.77 0.03 0.0
16 0.85 0.06 0.70 0.55 0.02 0.0 0.57 0.02 0.0 0.76 0.03 0.0
17 0.86 0.06 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.76 0.03 0.0
18 0.86 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.77 0.02 0.0
19 0.86 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0
20 0.85 0.07 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.79 0.02 0.0
21 0.85 0.08 0.70 0.55 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0
22 0.85 0.08 0.70 0.54 0.02 0.0 0.58 0.02 0.0 0.78 0.02 0.0
23 0.85 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0
24 0.86 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0
25 0.86 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.77 0.02 0.0
26 0.85 0.08 0.70 0.54 0.02 0.0 0.57 0.02 0.0 0.78 0.02 0.0
27 0.81 0.09 0.70 0.53 0.02 0.0 0.56 0.02 0.0 0.76 0.02 0.0
28 0.73 0.08 0.70 0.49 0.02 0.0 0.52 0.02 0.0 0.71 0.03 0.0
29 0.62 0.08 0.70 0.44 0.02 0.0 0.46 0.02 0.0 0.62 0.03 0.0
30 0.50 0.07 0.70 0.37 0.02 0.0 0.39 0.02 0.0 0.51 0.03 0.0
31 0.38 0.06 0.70 0.29 0.02 0.0 0.31 0.02 0.0 0.40 0.03 0.0
32 0.27 0.05 0.70 0.21 0.02 0.0 0.22 0.02 0.0 0.29 0.03 0.0
33 0.17 0.04 0.70 0.14 0.02 0.0 0.14 0.02 0.0 0.19 0.03 0.0
34 0.09 0.02 0.70 0.07 0.01 0.0 0.08 0.01 0.0 0.10 0.02 0.0
35 0.04 0.01 0.70 0.03 0.01 0.0 0.03 0.01 0.0 0.05 0.01 0.0
36 0.01 0.01 0.70 0.01 0.01 0.0 0.01 0.01 0.0 0.02 0.01 0.0
37 0.00 0.00 0.70 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0
38 0.00 0.00 0.70 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0

Table 2: Summary statistics of the investment degree in recommitment
strategies
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Fig. 4: Comparison between de Zwart’s strategies [18] and the policy obtained
with the PPO-clip algorithm

considering it as a second objective. Both opportunity cost and cash shortage
are two conflicting objectives. Finally, this work could be extended to take into
account multi-class asset portfolios.
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Abstract. Key to reinforcement learning in multi-agent systems is the
ability to exploit the fact that agents only directly influence only a small
subset of the other agents. Such loose couplings are often modelled us-
ing a graphical model: a coordination graph. Finding an (approximately)
optimal joint action for a given coordination graph is therefore a central
subroutine in cooperative multi-agent reinforcement learning (MARL).
Much research in MARL focuses on how to gradually update the pa-
rameters of the coordination graph, whilst leaving the solving of the
coordination graph up to a known typically exact and generic subrou-
tine. However, exact methods – e.g., Variable Elimination – do not scale
well, and generic methods do not exploit the MARL setting of grad-
ually updating a coordination graph and recomputing the joint action
to select. In this paper, we examine what happens if we use a heuristic
method, i.e., local search, to select joint actions in MARL, and whether
we can use outcome of this local search from a previous time-step to
speed up and improve local search. We show empirically that by using
local search, we can scale up to many agents and complex coordination
graphs, and that by reusing joint actions from the previous time-step
to initialise local search, we can both improve the quality of the joint
actions found and the speed with which these joint actions are found.

Keywords: Coordination Graphs · Local Search · Multi-agent Rein-
forcement Learning · Multi-agent Thompson Sampling

1 Introduction

Coordination is an important aspect of everyday life – whether playing foot-
ball, or participating in traffic. In artificial intelligence, coordination between
multiple artificial agents is therefore a popular topic, with applications ranging
from robotic rescue operations [Visser et al., 2014, Chalup et al., 2019] to main-
tenance scheduling on highways between multiple contractors [Scharpff et al.,
2016, Scharpff, 2020].

Regular papers BNAIC/BeneLearn 2021

90



2 R. Petri et al.

Key to keeping cooperative multi-agent coordination tractable is to exploit
so-called loose couplings, i.e., the property that individual agents typically only
directly affect a small subset of the other agents. For example, imagine a wind
farm, where each agent controls the yaw of a wind turbines [Verstraeten, 2021].
A turbine produces turbulence in its wake, which can affect the wind turbines
behind it. The turbines behind the first one may in turn affect other wind tur-
bines, ultimately still requiring coordination between the entire wind farm, but
the first turbine only directly affects the ones behind it. Such loose couplings can
be expressed using a graphical reward structure called a coordination graph [Ver-
straeten et al., 2021]. In coordination graphs, direct influence between agents is
modelled as a local reward function, that has the joint action space of the agents
affecting and being affected as its domain.

When the coordination graphs and all its local reward functions are known,
the optimal joint action can be found using non-serial dynamic programming
[Bertele and Brioschi, 1972], or as it is more commonly known in the agents
community, variable elimination (VE) [Guestrin et al., 2002]. Variable elimina-
tion is an exact algorithm [Rosenthal, 1977], but due to the inherent hardness
of solving coordination graphs, scales poorly in the connectivity of a graph, and
typically also in the number of agents.

When the ground truth local reward functions in a coordination graph are
unknown to the agents, we are in the multi-objective multi-armed bandit set-
ting [Verstraeten et al., 2020]. In this setting, the local reward functions must be
learned through interaction with the environment (e.g., the wind farm) [Bargiac-
chi et al., 2018]. A state-of-the-art algorithm for doing so is called multi-agent
Thompson sampling (MATS) [Verstraeten et al., 2020]. MATS uses VE as a
subroutine to find the optimal joint action for the graphs sampled before each
interaction with the environment. As such, MATS scales poorly in the connec-
tivity of the coordination graphs, and typically also the number of agents in the
graph.

In this paper, we study the effect of using local search (LS) [Russell and
Norvig, 2005] algorithms as a subroutine in multi-agent Thompson sampling.
These heuristic algorithms scale extremely well in the number of agents and
the connectivity of the coordination graphs, but they are of course not exact.
We can therefore expect to incur more regret [Verstraeten et al., 2020], i.e., a
larger cumulative difference between the optimal team rewards and the rewards
resulting from the joint actions that are performed, then when using VE. We
do however expect a large gain in runtime, especially for increasingly complex
coordination graph.

We observe that when we use LS as a subroutine inside of MATS, there
are some aspects that we can exploit. Firstly, as the newly obtained information
obtained at each timestep has a relatively smaller impact on the posterior beliefs
over the true mean rewards, the sampled coordination graphs at each timestep
are increasingly similar. Secondly, at each timestep, we produce a joint action to
execute using LS. Finally, local search algorithms can benefit from initialization
with a good initial solution, i.e., an educated guess for a joint action. We therefore
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propose to reuse the joint action found by LS at the previous timestep as the
starting point for LS in the next timestep. Using this together with an iterative
search scheme, this leads to our reusing iterative local search (RILS) algorithm.
We show experimentally that RILS is able to find good approximate solutions
for coordination graphs. When used in MATS, this leads to higher regret, but
at a fraction of the runtime of MATS with VE as a subroutine. Furthermore,
the difference in regret becomes smaller as the coordination graphs become more
complex, while the difference in runtime becomes larger. We therefore conclude
that RILS is a suitable algorithm to scale up to complex coordination graphs in
multi-agent multi-armed bandits.

2 Background

A coordination graph (CoG) models the (sparse) relationships between multiple
cooperative agents. In a coordination graph, each agent is represented by an
individual node. An edge between two nodes indicates that coordination between
their associated agents is required to achieve optimal behaviour. We note that
while edges in coordination graphs are often represented in a pairwise fashion,
we use a hyper-edge representation, where each edge can connects several agents
at once [Roijers et al., 2015b]. Each hyper-edge is associated to a local reward
function, which specifies the rewards for a subset of agents.

In planning, the local reward functions specify a deterministic (or expected)
local reward given a local joint action by the connected agents [Roijers, 2016].
In this paper, however, we are concerned with a reinforcement learning setting
in which the local reward functions are stochastic, and specified using a dis-
tribution over local rewards. This is called a multi-agent multi-armed bandit
(MAMAB) [Bargiacchi et al., 2018]. More formally, a multi-agent multi-armed
bandit (MAMAB), is a tuple 〈D,A, f〉 where:

– D is the set of all m agents.
– A = A1 × . . .×Am is the joint action space.
– f : A → R is the global reward function, i.e. a random function3 associ-

ating each full joint action to a sampled reward. In a MAMAB, f can be
decomposed into a set of ρ independent local reward functions, such that
f(a) =

∑ρ
e=1 f

e(ae). Note that each of these constituent components are
again random functions.

Intuitively, it should be possible to exploit the structure of f and the co-
ordination graph to quickly learn the local reward functions, without incurring
in an exponential regret from the large full joint-action space of a multi-agent
setting (the curse of dimensionality). Multi-agent Thompson Sampling (MATS)
[Verstraeten et al., 2020] is an algorithm that does precisely this: it maintains a

3 A random function is the function equivalent of a random variable, i.e., a function
which is defined in terms of an experiment of which the outcome varies according to
a given probability distribution. As such evaluating a random function for the same
input twice may yield a different output.

Regular papers BNAIC/BeneLearn 2021

92



4 R. Petri et al.

posterior distribution of the mean rewards for each possible local joint action,
which it samples when it needs to act in the MAMAB. Such a sample leads to
a coordination graph with non-stochastic rewards. The full joint action selected
is then the one that maximizes the reward across all sampled local arms. This
strategy provably [Verstraeten et al., 2020] results in a regret that is linear in
the number of agents, rather than exponential.

In order to select the best joint action, MATS must maximize across all
local arms in a computationally efficient manner. To do this, MATS relies on
an exact algorithm that was originally devised to marginalize discrete variables
in probabilistic graphical models. This is not surprising, as the concept of a
coordination graph is analogous to an undirected graphical model.

In particular, MATS uses a well-known algorithm called Variable Elimina-
tion (VE) [Bertele and Brioschi, 1972, Rosenthal, 1977, Guestrin et al., 2002].
Originally developed to perform exact inference, VE can be used to determine
the optimal action of multiple agents maximizing a factored reward function, in
our case f . VE is an iterative algorithm, which progressively removes each agent
from the coordination graph after computing its best response w.r.t. its neigh-
bors, i.e., for each local joint action of the neighbors it determines the action
that maximizes the total reward of the group. The advantage of VE over naive
brute force search is in its computational complexity, which is combinatorial on
the induced width of the graph, i.e., the largest local action space considered
during the elimination process.

The computational complexity of VE for sparse coordination graphs is much
lower than naive brute forcing, which is exponential in the number of agents.
However, VE still tends to perform poorly when dealing with large number of
agents, as the induced width typically increases with the number of agents, albeit
much slower than the number of agents itself.In turn, this prevents using the
MATS algorithm in large scale bandits, unless VE is replaced by an approximate
selection technique.

A popular approximate optimization algorithm that is called Iterative Local
Search (ILS). This technique is based on Local Search (LS) as described by [Rus-
sell and Norvig, 2005] and has an extension in the form of an iterative variant
(ILS) as described by [Lourenço et al., 2003]. Local search algorithms take an
optimisation problem – such as a coordination graph – and find approximate
solutions by starting with a random solution, and looking in the neighborhood
of the current solution, as defined by a set of allowed small mutations, for im-
provements. Iteratively applying such improvements until no improvements can
be found in the neighborhood leads to a so-called local optimum. ILS can escape
such local optima, by performing larger random mutations and re-applying local
search.

3 Algorithms

In this paper we investigate the potential of applying local search and iterative
local search schemes as an approximate subroutine in MATS [Verstraeten et al.,
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2020] to replace the exact VE subroutine. First, we define how local search can
be applied to coordination graphs. Secondly, we create an algorithm that per-
forms iterative local search while exploiting the reinforcement learning setting.
Specifically, at each timestep, the MATS algorithm learns more about the local
rewards functions, and updates its local posterior mean reward distributions, be-
fore re-sampling a coordination graph to select the next timestep’s joint action
(using the VE or local search subroutines). We make the following observations
about the learning process of MATS using (iterative) LS as a subroutine:

– The sampled coordination graphs at each timestep are increasingly similar.
This is because the new information gathered at each timestep has a dimin-
ishing impact on the posterior mean reward distributions with respect to
the information already gathered. Morevoer, over time, the posterior mean
reward distributions become increasingly certain about what the local mean
rewards ought to be, leading to narrower distributions and therefore more
similar samples.

– At each timestep, we produce a joint action to execute.
– Local search algorithms can benefit from initialization with a good initial

solution.

Combining these observations, we observe that it is likely beneficial to reuse the
joint action found and executed at the previous timestep as the initial starting
solution for (iterative) local search in the current timestep. We propose an al-
gorithm - the Reusing Iterative Local Search algorithm (RILS) - that does so.
We thus exploit the multi-agent reinforement learning setting to speed up our
heuristic search subroutine.

3.1 Local Search for Coordination Graphs

The Local Search (LS) algorithm for coordination graphs (Algorithm 1) works by
incrementally updating a joint action with local improvements, i.e., changes in
actions for a single agent that improve the global reward. Starting from a random
joint action (an array of individual actions for each agent), ar, the algorithm
goes through all the agents in the graph in random order and for each agent, v,
through all the actions, a available to that agent, to check whether replacing ar[v]
with a yields an improvement. We note that to do so, the algorithm only needs
to calculate the difference, ∆, in reward for the sum of local reward functions
that have agent v in scope. This therefore takes only a fraction of the time
of a full evaluation of ar over the entire graph. If that ∆ is bigger than zero,
i.e., a is an improvement upon the current action of agent v, ar[v] is changed
to a. The algorithm uses a flag changed to check whether the last pass over
the agents yielded an improvement; it is set to continue the while loop until
no higher rewards can be found. When no local improvements upon ar can be
found by updating the action of any of the agents in the coordination graph, LS
has converged to a local optimum and the total team reward is returned. The
total team reward is evaluated by a function named evalTeamReward that sums
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over all the local reward functions. This makes evalTeamReward an expensive
operation, and it is therefore key to the performance of LS as a subroutine within
MATS that this happens only once per call to LS.

Algorithm 1 Local Search

1: procedure Local Search(startAction)
2: ar ← startAction or a random joint action if startAction is null
3: changed← true
4: while changed do
5: changed← false
6: for v ∈ agents do . In a different random order each iteration.
7: for a ∈ actions[v] do
8: ∆← evaluateLocalActionChange(ar, v, a)
9: if ∆ > 0 then

10: ar[v]← a
11: changed← true

12: end if
13: end for
14: end for
15: end while
16: return (ar, evalTeamReward(ar))

LS can be used by itself as a subroutine within MATS. In this case, LS then starts
from a random joint action each time that it is called. While this is no doubt a
highly efficient heuristic, it lacks in two key aspects: the local optima achieved
do not converge to the optimal joint action over time, due to the random nature
of LS, and, in the multi-agent reinforcement learning setting, we start anew at
each timestep to select a joint action, disregarding the information about how
good the joint action that LS found on the previous timestep was.

3.2 Reusing Iterative Local Search (RILS)

Iterative Local Search (ILS) uses Local Search as a subroutine to escape local
optima, by making larger randomized changes, called perturbations, to the so-
lution after LS runs into a local optimum and then rerunning LS to see whether
this leads to further improvements. Note that as this can in principle continue
indefinitely, typically a maximum number of iterations is set to limit the number
of trials in which ILS can maximize its result.

The added randomization uses a so called perturbation probability (PP),
i.e., with a probability PP each part of the solution is set to a random value.
For coordination graphs we employ local-reward-function-based perturbations,
which means that we iterate over all local reward functions, and with probability
PP, the actions for all agents in scope of the reward function are changed to a
random action. We chose this over an agent-based perturbation strategy, because
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Algorithm 2 RILS

1: procedure Reusing Iterative Local Search(numOfTrials, PP, PRandom, pre-
viousAction)

2: if previousAction = Empty ∨ rn < PRandom then
3: ar ← randomAction()
4: else
5: ar ← previousAction

6: end if
7: val← evalTeamReward(ar)
8: for i← 0 to numOfTrials do
9: ac← ar

10: rn← randomnumber ∈ [0, 1]
11: if previousAction = Empty ∨ rn < PRandom then
12: ac← randomAction()
13: else
14: for Each local reward function fe do
15: rn← randomnumber ∈ [0, 1]
16: if rn < PP then
17: Change actions of all agents in scope of fe to a random action in ac.

18: end if
19: end for
20: ac′, val′ ← LS(ac) . Algorithm 1
21: if val′ > val then
22: ar ← ac′

23: val← val′

24: end if
25: end for
26: previousAction← ar
27: return ar, val

if the action of a single agent changes, without any actions of its neighbours
changing, LS will change this action straight back towards the previously found
local optimum.4

In order to exploit the multi-agent reinforcement learning setting in the
MATS algorithm, we propose Reusing Iterative Local Search (RILS) (Algorithm
2). The algorithm works by checking if a previousAction is available, from the
previous iteration of the MATS algorithm. If not (i.e., this is the first timestep of
MATS), the current joint action ar gets initialized with a random joint action.
If it is available, ar is initialized with the previousAction. Subsequently, ar is
evaluated to get its team reward, val. Note that it is necessary to re-evaluate
the previous joint action between timesteps, as MATS samples the local reward
functions each timestep, leading to slightly different local rewards.

4 In order to make sure, we did in fact try out the agent-based perturbation strategy
as well, but this indeed proved far less effective, so for the remainder of this paper
we only use the local-reward-function-based perturbation strategy.
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The main loop of RILS runs through a number of trials, numOfTrials, to
try and find better solutions than the previous joint action (or the randomly gen-
erated one). This is done by first perturbating ac using the previously described
local-reward-function-based perturbation strategy, after which it gets passed to
Algorithm 1: LS. If the new local optimum found by LS, ac′ with value val′

improves over the previous ar, this joint action ac′ replaces the current best, ar.

While iteratively improving upon the same joint action can be effective, and
can save a lot of runtime due to efficient initialisation, there is also a risk. Specif-
ically, RILS might get stuck in the same local optimum for a very long time,
especially if that local optimum turns out to be hard to escape by small random
perturbations. Therefore, RILS also has a very small probability, PRandom, to
start from a completely random solution at the beginning of its main loop.

When the number of trials are up, RILS stores the best found joint action,
ar in previousAction, and returns it along with its team reward, val.

4 Experiments

We now compare Local Search (LS, Algorithm 1) and Reusing Iterative Local
Search (RILS, Algorithm 2) against Variable Elimination (VE) [Guestrin et al.,
2002] as a subroutine within the Multi-Agent Thompson Sampling (MATS) al-
gorithm [Verstraeten et al., 2020], both in terms of regret and in terms of run-
time, for increasingly complex MOMABs. We use the implementations of VE
and MATS found in the AI-Toolbox [Bargiacchi et al., 2020]. Additionally, our
implementation of LS will be released in the same toolbox.

Our experiments are based on the Gem Mining problem from [Bargiacchi
et al., 2018, Verstraeten et al., 2020], which is adapted from the Mining Day
problem from [Roijers et al., 2015b], which is a multi-objective coordination
graph benchmark problem. Gem Mining is engineered in such a way that the
induced width – the primary indicator for the complexity of a coordination graph
– can be controlled without changing the number of agents.

In Gem Mining, a mining company mines gems from a set of mines (local
reward functions) located in the mountains (see Figure 1). The mine workers live
in villages at the foot of the mountains. The company has one van in each village
(agents) for transporting workers and must determine every morning to which
mine each van should go (actions), but vans can only travel to nearby mines
(graph connectivity). Workers are more efficient when there are more workers at
a mine: the probability of finding a gem in a mine is x · 1.03w−1, where x is the
base probability of finding a gem in a mine and w is the number of workers at
the mine. To generate an instance with v villages (agents), we randomly assign
1-5 workers to each village and connect it to a between y and z mines. Each
village is only connected to mines with a greater or equal index, i.e., if village i
is connected to m mines, it is connected to mines i to i+m− 1. The last village
is connected to z mines and thus the number of mines is v + z − 1.
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village
mine

Fig. 1. Gem Mining example. Each village represents an agent, while the mines repre-
sent the local reward functions.

4.1 Gem Mining Problem

The Gem Mining problem is so constructed that the induced width is limited.
This induced width, is the number of neighboring agents (villages) at the time
the agent (village) is eliminated by the variable elimination (VE) algorithm
[Guestrin et al., 2002].

The induced width can be used as a measure of the complexity of the graph.
Due to the chain-like shape of the Gem Mining problem, the elimination order
for VE can always be chosen to be from left to right (or the reverse) with min-
imal resulting induced width. Specifically, as the left-most mine in the graph
always has a maximal number of neighbours z, and eliminating that agent does
not increase the the number of neighbours of the subsequent villages, the in-
duced width of a Gem Mining problem is always z. The Gem Mining problem is
therefore well-suited to show how algorithms behave when the graph complexity
increases.

4.2 Results

We run MATS using LS, RILS and VE as a subroutine on the same randomly
generated Gem Mining instances of 20 agents (villages), with varying induced
width, i.e., between 3 and 6. For each induced width level, we perform 20 runs.
For RILS, we use numOfTrials = 15, PP = 0.001, and PRandom = 0.0001, for
each experiment. All experiments were performed on a TOXIC-15CL872-1060
customised BTO laptop, with 16.0 GB ram and a processor intel core I7-8750H
of 2.20 GHz and 6 cores

For 1-3 villaged per mine, and a resulting induced width of 3, we observe in
Figure 2(a) that the cumulative regret of MATS while using LS as a subroutine
is significantly higher than that of MATS with VE or RILS. However, MATS
with LS uses only a fraction of the runtime (Figure 2(b)) of MATS with VE or
RILS. VE uses the most runtime, with RILS using about half the runtime of VE.
While MATS with VE and MATS with RILS (with 15 trials) reach about the
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(a) Regret vs, timesteps (b) Run run time in milliseconds VE,
HULSA and IHULSA

Fig. 2. Results when running MATS with a graph size of 20 villages and 1-3 mines per
village

same regret, MATS using RILS has a slightly higher variance in its regret than
when using VE. This is expected as RILS is a randomised heuristic algorithm.

As the induced with increased we observe interesting patterns in regret (Fig-
ures 3(a)–5(a)). Firstly, the regret of using LS gets closer to that of using VE and
RILS. This is probably because, as the number of neighbouring agents per agent
increases, there are possibilities for gradual improvements for an hill-climbing
algorithm like LS, i.e., it takes longer to run into a local optimum. Secondly,
the regret of using RILS seems to dive under the regret of using VE. This can
probably be explained by its reuse – even though the graph sampling of MATS
might lead to a new joint action, the joint action of the previous timestep, as
reused by RILS, may very well still be a local optimal. Therefore, while VE is
guaranteed to follow the exploration mechanism of MATS, RILS is not. While
this may lead to better in practice performance, this lack of exploration does
break the regret guarantees of MATS [Verstraeten et al., 2020]. For the intent
of this paper however, we are mainly interested in scalability and performance.

In terms of runtime (Figures 3(b)–5(b)), we observe a different pattern.
Firstly, the runtimes of LS and RILS do increase with the complexity of the
graphs. This can be explained from the observation that in some complex graphs
it also takes longer to find a local optimum (even though the quality of that local
optimum is likely to be higher). However, ultimately, as can be seen in Figure
5(b), for ever more complex graphs, VE has a much larger increase in runtime
than LS and RILS.

Another key observation in terms of runtime is that for low induced width
(Figure 2(b), LS has a much lower runtime than RILS. RILS uses 15 trials to
find new local optima, and its efficiency gain due to reuse is clearly not able to
compensate for the multiple trials yet. However, as the induced width increases,
and finding a local optimum from a completely random solution takes more time,
the runtime of MATS with LS overtakes the runtime of MATS with RILS, even
if RILS is using 15 trials instead of the 1 for LS. This indicated that reuse is
being effective; the reused initial joint action (i.e., the best joint action found

Regular papers BNAIC/BeneLearn 2021

99



Heuristic Coordination in Cooperative Multi-Agent Reinforcement Learning 11

(a) Regret vs. timesteps (b) Runtime in milliseconds for
MATS in combination with VE, LS
and RILS

Fig. 3. Results when running MATS with a graph size of 20 villages and 2-4 mines per
village

(a) Regret vs. timesteps (b) Runtime in milliseconds for
MATS in combination with VE, LS
and RILS

Fig. 4. Results when running MATS with a graph size of 20 villages and a 3-5 mines
per village

(a) Regret vs, timesteps (b) Runtime in milliseconds for
MATS in combination with VE, LS
and RILS

Fig. 5. Results when running MATS with a graph size of 20 villages and 4-6 mines per
village
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for the previous timestep), is much closer to the ultimately selected joint action,
and therefore takes considerably less time to find.

We therefore conclude that even though MATS using RILS as a subroutine
does lose its theoretical regret bounds due to the heuristic nature of the RILS
algorithm, the in practice regret can be good, whilst scaling much better in the
complexity, i.e., induced width, of the graphs than VE, and even LS.

5 Related work

In this paper, we have proposed RILS – an approximate subroutine for optimising
the joint action in coordination graphs for multi-agent reinforcement learning in
a multi-agent multi-armed bandit (MOMAB) setting. For this setting we have
integrated RILS with MATS [Verstraeten et al., 2020], the state-of-the-art in
MOMABs. Other algorithms also apply to this setting however, and RILS can be
used in those algorithms as well. For example, sparse cooperative Q-learning [Kok
and Vlassis, 2004, Kok and Vlassis, 2006, Bargiacchi et al., 2018, Verstraeten
et al., 2020] can be used in this setting, and RILS can directly replace the
joint action selector subroutine there as well. Furthermore, RILS can also be
easily adapted for usage in multi-agent upper confidence exploration (MAUCE)
[Bargiacchi et al., 2018]. Specifically, as MAUCE keeps vector-valued rewards,
and uses an adapted variant of VE that scalarises these to determine which vector
is, RILS also should keep vector-valued rewards, and be aware of the value of the
whole joint action to determine whether the difference in vector-valued rewards
while running LS (Algorithm 1) are indeed improvements.

We note that other than local-search based algorithms. There are also other
classes of approximate algorithms that seem promising, such as, a.o., Max-plus
[Kok and Vlassis, 2005], AND/OR tree search methods [Marinescu and Dechter,
2005], variational methods [Liu and Ihler, 2013, Roijers et al., 2015a]. We note
though that these have not been adapted for the multi-agent RL in MOMABs,
and it would be interesting to investigate whether reuse schemes that exploit
information from the previous iteration work for those algorithms as well. There
may also be potential to use different initialisation schemes that leverage previous
observations from interaction with the environment as well. For example, one
may consider deep learning for coordination graphs [Böhmer et al., 2020], in
order to determine the initial solution before running local search.

Finally, we note that this work may be extended to use in factored or multi-
agent MDP settings [Boutilier, 1996]. In such settings, the coordination graph
would depend not only on the actions of the agents, but also on state variables,
that are provided by the environment. Therefore, multi-agent RL algorithms
for this setting (e.g., [Kok and Vlassis, 2004, Kok and Vlassis, 2006, Bargiacchi
et al., 2021]) are faced with different coordination graphs at every timestep, but
can still use subroutines like VE to find the joint actions. In this context, RILS
would have to be adapted, e.g., by finding the last joint action for the most similar
state previously observed. Initialisation using deep learning [Böhmer et al., 2020],
might be especially promising in this context.
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6 Conclusion

In this paper, we proposed the heuristic reusing iterative local search (RILS)
algorithm, as an alternative to exact joint action finders for multi-agent co-
operative reinforcement learning in MOMABs, and specifically in combination
with the multi-agent Thompson sampling (MATS) [Verstraeten et al., 2020]
algorithm. RILS reuses the joint action found at the previous timestep to ini-
tialise its search for a new joint action. This is effective as, as the information
accrued through interaction with the environment accumulates, the new infor-
mation gained at each timestep impacts the learned reward structure (i.e., co-
ordination graph) for the next timestep less and less. This makes the graphs for
subsequent timesteps increasingly similar, and therefore the joint action of the
previous timestep increasingly likely to be a good initialisation. We have shown
experimentally that using RILS is able to closely match the regret for an exact
subroutine, while using significantly less runtime. Moreover, its runtime scales
better in the complexity of the graphs. We therefore believe RILS can be key
to keep multi-agent reinforcement learning in MOMABs scalable for complex
graphs.

In future work, we aim to investigate the combination of RILS with different
algorithms such as sparse cooperative Q-learning [Kok and Vlassis, 2006] and
MAUCE [Bargiacchi et al., 2018]. Furthermore, we aim to investigate larger,
and real-world inspired problems, such as wind farms [Verstraeten et al., 2021].
Finally, we aim to investigate how a reusing iterative local search scheme can
be applied in reinforcement learning in multi-agent Markov decision processes
(MMDPs) [Boutilier, 1996], and multi-objective multi-agent reinforcement learn-
ing settings [Rădulescu et al., 2020].
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Abstract. Labeling data can be an expensive task as it is usually
performed manually by domain experts. This is cumbersome for deep
learning, as it is dependent on large labeled datasets. Active learning
(AL) is a paradigm that aims to reduce labeling effort by only using the
data which the used model deems most informative. Little research has
been done on AL in a text classification setting and next to none has
involved the more recent, state-of-the-art Natural Language Processing
(NLP) models. Here, we present an empirical study that compares
different uncertainty-based algorithms with BERTbase as the used
classifier. We evaluate the algorithms on two NLP classification datasets:
Stanford Sentiment Treebank and KvK-Frontpages. Additionally, we
explore heuristics that aim to solve presupposed problems of uncertainty-
based AL; namely, that it is unscalable and that it is prone to selecting
outliers. Furthermore, we explore the influence of the query-pool size
on the performance of AL. Whereas it was found that the proposed
heuristics for AL did not improve performance of AL; our results show
that using uncertainty-based AL with BERTbase outperforms random
sampling of data. This difference in performance can decrease as the
query-pool size gets larger.

Keywords: Active Learning · Text Classification · Deep Learning ·
BERT.

1 Introduction

Deep Learning (DL) is a field in machine learning in which neural networks
with a large number of layers are made to perform complicated human tasks.
These networks have to be trained on a large amount of data to be able to learn
the underlying distribution of the task they are trying to model. In supervised
learning, this data is required to be labeled with the desired output. This allows
the network to learn to map the input to the desired output. This study will focus
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on an instance of supervised learning, called text classification. Data labeling is
usually done manually and can grow to be an expensive and time-consuming
task for larger datasets, like those used in DL. This begs the question of whether
there is no way to reduce the labeling effort while preserving good performance
on the chosen task. Similarly to lossy compression [1], we want to retain a good
approximation of the original dataset while at the same time reducing its size as
much as possible. More specifically: given a training set, how can we optimally
choose a limited number of examples based on the amount of relevant information
they contain for the target task?

Conceptually, answering this question requires quantifying the amount of
information contained in each data point. This finds its roots, like lossy
compression, in information theory [30]. A model trained on limited data has an
entropy associated with its target variable predictions. Our goal is to greedily
select the data for labeling, while reducing entropy as much as possible, similar
to how it is done in research on decision trees [12]. In essence, we aim to
incrementally, optimally select a subset of data points; such that the distribution
encoded by the learned model maximizes the information gain or equivalently
minimizes the Kullback-Leibler divergence [20] with respect to the unknown
distribution of the full labeled data. However, there are two problems. First, the
labels of the data are not known until labeling, and additional held-out labeled
data to aid the selection is typically not available either. This contrasts with
the easier case of summarizing a known dataset by a subset of data, in which
the Kullback-Leibler divergence of a selected subset with the full set can be
measured and minimized. Second, because the parameters of a neural network
change during training, predictions and certainty of new data points also change.
Because of these two problems, examples can only be greedily selected based on
their expected utility for improving the current, incrementally improved model.
As the actual labels for examples are lacking before their selection, their real
utility cannot be known during selection. Therefore, only proxies for this utility
such as model uncertainty can be used, as discussed next.

A machine-learning technique called Active Learning (AL) [29] can be
used to combat these problems. In AL, a human labeler is queried for data
points that the network finds most informative given its current parameter
configuration. The human labeler assigns labels to these queried data points
and then the network is retrained on them. This process is repeated until the
model shows robust performance, which indicates that the data that was labeled
is a sufficient approximation of the complete dataset. There are multiple types
of informativeness by which to determine what data to query the oracle for.
For instance calculating what results in the largest model change [3] or through
treating the model as a multi-arm bandit [2]. However, the existing literature
predominantly utilizes different measures of model uncertainty [5,7,8,9,35], which
is also done in this research. Bayesian probability theory provides us with
the necessary mathematical tools to reason about uncertainty, but for DL has
its complications. The reason is that (typical) neural networks, as used for
classification and regression, are discriminative models. These produce a single
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output, a so called point estimate. Even in the case of softmax outputs this is
not a true probability density function [7,8]. Another view on this is that modern
neural networks often lack adequate confidence calibration, meaning they fail at
predicting probability estimates representative of the true correctness likelihood
[13].

This poses a problem to Bayesian probability theory as it prevents us from
being able to perform Bayesian inference. With Bayesian inference we can
determine the probability of a certain output y* given a certain input point
x*:

p(y ∗ |x∗, X, Y ) =

∫
p(y ∗ |x∗, ω)p(ω,X, Y )dω (1)

Unfortunately, for the discriminative neural network models there is no prob-
ability distribution: the output is always the same for a given input. What is
more, even if we suppose the network was generative (Eq. 1), the integral is not
analytically solvable due to the fact that we need to integrate over all possible
parameter settings ω. However, it can be approximated. Existing literature
has explored different methods of achieving this, with Monte Carlo Dropout
(MCDO) being the most popular one [5,8,36]. In MCDO, the network applies
dropout [33] to make the network generative. Multiple stochastic forward passes
are performed to produce multiple outputs for the same input. The outputs can
then be used to summarize the uncertainty of the model in a variety of ways.

This research uses the MCDO approximation to compare different uncertainty-
related AL query methods for text classification, noting there is still little
literature on the usability of AL for modern NLP models. We strive to answer
the following research question:

Research Question. How can uncertainty-based Active Learning be used to
reduce labeling effort for text classification tasks?

Where previous literature focused on comparing AL strategies on small
datasets and on the test accuracy of the final classifier, this paper will try and
explore the usability of AL on a real-world setting, in which factors like the effect
of transfer learning and considerations such as scalability have to be taken into
account. The goal is to reach a performance similar to the state-of-the-art text-
classification models that use a large randomly sampled set of labeled examples
as training set. This should show whether AL can be applied to reduce labeling
effort.

2 Related Work

Active Learning applied to Deep Learning for Image Classification
Multiple methods of incorporating AL into Deep Neural Networks (DNNs) have
been proposed in the past. Most of these focus on image classification tasks.

Houlsby et al. [15] proposed an information theoretic approach to AL:
Bayesian Active Learning by Disagreement (BALD). In hopes of achieving
state-of-the-art performance and making minimal approximations for achieving
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tractability, they used a Gaussian process classifier and compared the perfor-
mance of BALD to nine other AL algorithms. Their findings included that
BALD, which we use in this study, makes the smallest number of approximations
across all tested algorithms.

Gal et. al [9] used a Bayesian convolutional network together with MCD to be
able to approximate Bayesian inference and thereby proposed an AL framework
that makes working with high dimensional data possible. They compared results
of a variety of uncertainty-based query functions (including BALD and variation
ratio) to random sampling and found that their approach to scaling AL to be
able to use high dimensional data was a significant improvement to previous
research, with variation ratio achieving the best results.

Drost [5] provided a more extensive discussion of the different ways of
incorporating uncertainty into DNNs. He tried to learn which way of computing
the uncertainty for DNNs worked best. Using a convolutional neural network, he
compared the use of dropout, batch normalization, using an Ensemble of NNs
and a novel method named Error Output for approximating Bayesian inference.
His main conclusion was that using dropout, batch normalization and ensembles
were all useful ways of lowering uncertainty in model predictions. He found that
the Ensemble method provided the best uncertainty estimation and accuracy
but that it was very slow to train and required a large amount of memory. He
concluded MCDO, which is what we use in this study, to be a promising strategy
of uncertainty estimation, albeit that one has to take into account slow inference
times.

Gikunda and Jouandeau [10] explored an approach for preventing the
selection of outlier examples. They combined the uncertainty measure with a
correlation measure, measuring the correlation of each unlabeled example with
all other unlabeled examples. A higher correlation indicated that an example
was less likely to be an outlier. Their method is similar to using a local KNN-
based example density as discussed in [39], which is one of the methods we used
in this work. The main difference with the KNN-density approach is that their
correlation-based density does not consider local neighborhoods in the density
estimation. As uncertainty measure they used so-called sampling margin, which
is based on the difference in probability between the most likely and second most
likely class according to softmax outputs. This is somewhat similar to variation
ratio, but does not use stochastic forward passes. It uses plain softmax outputs
instead, making it quite distinct from the dropout-sampling based approach we
adopt in this work.

Active Learning applied to Deep Learning for Text Classification
A survey of deep learning work on using AL for text classification is given
in [28]. They present a taxonomy of different query functions, including those
focused on prediction and model uncertainty that we use. They also discuss the
incorporation of word embeddings into DNN-based AL, which is something that
we attempt in this study.
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BERT is used in combination with AL in [6]. They presented a large-scale
empirical study on AL techniques for BERT-based classification, covering a
diverse set of AL strategies and datasets; focusing on binary text classification
with small annotation budgets. They concluded that AL can be used to boost
BERT performance.

Active Learning for Regression
Whereas our work is on classification, dropout-based AL can be adapted for
regression as well, and this was done by [37]. They used the set of T sample
predictions from the forward passes to compute sample standard deviation for
the T predictions, using this as a measure of uncertainty. Evaluation was done
on standard open multivariate datasets of the UCI Machine Learning repository.

Confidence Calibration
Dropout sampling as used in this work aims to solve the problem that softmax
outputs are not reliable representations of the true class probabilities. This
problem is known as confidence calibration, and dropout sampling is not the
only solution to it.

Guo et. al [13] evaluated the performance of various post-processing tech-
niques that took the neural network outputs and transformed them into
values closer to representative probabilities. They found that in particular a
simplified form of Platt Scaling, known as temperature scaling, was effective
in calibrating predictions on many datasets. This method conceptually puts
a logistic regression model with just one learnable ’temperature’ parameter
behind the softmax outputs, and is trained by optimizing negative log likelihood
(NLL) loss over the validation set. It thus learns to spread out or peak the
probabilities further in a way that helps to decrease NLL loss, thereby as a side-
effect increasing calibration. Recently, using a new procedure inspired by Platt
Scaling, Kuleshov et. al [19] generalized an effective approach for confidence
calibration to be usable for regression problems as well.

3 Methods

This section will go on to describe the general AL loop, the model architecture,
the used query functions, the implemented heuristics, and finally the experimen-
tal setup.

3.1 Active Learning

An implementation of the general AL loop/round is shown in Appendix A.2
(Algorithm 1). It consists of four steps:

1. Train: The model is reset to its initial parameters. After this, the model is
trained on the labeled dataset L. The model is reset before training because
otherwise the model would overfit on data from previous rounds [16].
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2. Query: A predefined query function is used to determine what data is to
be labeled in this AL round. As discussed, this can be done in various ways,
but the guiding principle is that the data that the model finds most useful
for the chosen task gets queried.

3. Annotate: The queried data is parsed to a human expert, often referred to
as the oracle. The oracle then labels the queried examples.

4. Append: The newly-labeled examples are transferred from the unlabeled
dataset U to L. The model is now ready to be retrained to recompute the
informativeness of the examples in U now that the underlying distribution
of L has been altered.

Please note that the datasets used for the experiments (Section 3.5) were fully
labeled and the annotation step thus got skipped in this research. U existed
out of labeled data that was only trained on from the moment it got queried.
This was done to speed up the process and to enable scalable and replicable
experiments with varying experimental setups.

3.2 Model Architecture

BERT The model used to classify the texts was BERTbase [4], a state-of-the-art
language model which is a variant of the Transformer model [38]. Specifically, we
used the uncased version of BERTbase, as the information of capitalization and
accent markers was judged to be not helpful for the used tasks and datasets. Due
to computational constraints, only the first sentence of the used texts was put
into the tokenizer and the maximal length to which the tokenizer either padded
or cut down this sentence was set to 50. To better deal with unknown words and
shorter text, we used the option of the BERTbase tokenizer to make use of special
tokens for sentence separation, padding, masking and to generalize unknown
vocabulary. Finally, a softmax layer was added to the end of BERTbase, which is
essential as the implemented query functions (Section 3.3) compute uncertainty
based on sampled output probability distributions.

Monte Carlo Dropout Monte Carlo dropout (MCDO) is, as discussed in
Section 1, a technique that enables reasoning about uncertainty with neural
networks. Dropout [33] essentially ’turns off’ neurons during the forward pass
with a predefined probability. Dropout is normally used during training to
prevent overfitting and create a more generalized model. In MCDO though,
it is used to approximate Bayesian inference [8] through creating T predictions
for all data points, using T slightly different models induced by different dropout
samples. The result of these so-called stochastic forward passes (SFP’s) can then
be used by the query function to compute the uncertainty, as will be explained in
Section 3.3. The way MCDO is incorporated in the AL loop is shown in green in
the Appendix (Algorithm 2). BERTbase has two different types of dropout layers:
hidden dropout and attention dropout. Both were turned on when performing
a stochastic forward pass. Note that there are other ways of approximating
Bayesian inference with neural networks. Frequently used ones are:
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– Having an ensemble of neural networks vote on the label [18].
– Monte Carlo Batch Normalization (MCBN) [35].

MCDO was chosen over the ensemble method due to it being easier to implement
and quicker to train. MCBN was not chosen as it has been shown to be more
inconsistent than MCDO [5].

Sentence-BERT Textual data offers the advantage of having access to the use
of pre-trained word embeddings. These are learned representations of words into
a vector space in which semantically similar words are close together. Textual
embeddings can be computed in a variety of ways. BERT specific ones include
averaging the pooled BERT embeddings and looking at the BERT CLS token
output. Other more general ways are averaging over Glove word embeddings [25]
and averaging embeddings created by a Word2Vec model [22]. We have opted
to make use of Sentence-BERT [26], a Siamese BERT architecture trained to
produce embeddings that can be adequately compared using cosine-similarity.
For our purposes this provides better performance than the other embedding
computations. Sentence-BERT was used separately from the previously discussed
BERTbase model, and was used only for assigning embeddings to each sentence
in the dataset that were used by the heuristics described in Section 3.4.

3.3 Query Functions

The query functions determine data selection choices of the model in the AL loop.
This paper will focus on functions that reason about uncertainty, obtained from
approximated Bayesian distributions [8]. For every data point, the distribution is
derived from T stochastic forward passes and resulting T (in our case) softmax
probability distributions. The following subsections will go on to discuss the
implemented query functions. One is encouraged to look at [7] for an extensive
discussion that highlights the difference between these functions.

Variation Ratio The variation ratio is a measure of dispersion around the class
that the model predicts most often (the mode). The intuition here is that the
model is uncertain about a data point when it has predicted the mode class a
relatively small number of times. This indicates that it has predicted other classes
a relatively large number of times. Equation 2 shows how the variation ratio is
computed, where fx denotes the mode count and T the number of stochastic
forward passes.

v[x] = 1− fx
T

(2)

The function attains its maximum value when the model predicts all classes an
equal amount of times and its minimum value when the model only predicts
one class across all stochastic forward passes. Variation ratio only captures the
uncertainty contained in the predictions, not the model, as it only takes into
account the spread around the most predicted class. It is thus a form of predictive
uncertainty.
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Predictive Entropy Entropy H(x) in the context of information theory is
defined as:

H(x) = −
n∑

i=1

p(xi) log2 p(xi) (3)

This formula expresses the entropy in bits per symbol to be communicated,
in which p(xi) gives the probability of the i-th possible value for the symbol.
Entropy is used to quantify the information of data. In our case we want to
know the chance of the model classifying a data point as a certain class given
the input and model parameters (p(y = c|x,ω)). We can compute this chance
by averaging over the softmax probability distributions across the T stochastic
forward passes. This adjusted version of entropy is denoted in Equation 4, where
ω̂t denotes the stochastic forward pass t, and c the number associated to the
class-label.

H[y|x,Dtrain] = −
∑

c

(
1

T

∑

t

p(y = c|x, ω̂t)

)

log

(
1

T

∑

t

p(y = c|x, ω̂t)

) (4)

To exemplify: in binary classification, the predictive entropy is highest when
the model its softmax classifications consist of T times [0.5, 0.5]. In that case,
expected surprise when we would come to know the real class-label is at its
highest. The uncertainty is computed by averaging over all predictions and thus
falls under predictive uncertainty.

Bayesian Active Learning by Disagreement Predictive entropy (Section
3.3) is used to quantify the information in one variable. Mutual information or
joint entropy is very similar but is used to calculate the amount of information
one variable conveys about another. In our case, we’ll be looking at what
the average model prediction will convey about the model posterior, given the
training data. This is a form of conditional mutual information, the condition
or the third variable being the training data Dtrain. Houlsby et al. [15] used
this form of mutual information in an AL setting and dubbed it Bayesian active
learning by disagreement (BALD).

I[y, ω|x,Dtrain] = −
∑

c

(
1

T

∑

t

p(y = c|x, ω̂t)

)

log

(
1

T

∑

t

p(y = c|x, ω̂t)

)

− 1

T

∑

c,t

p(y = c|x, ω̂t)

log p(y = c|x, ω̂t)

(5)
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The difference between Equations 5 and 4 is that the conditional entropy
is subtracted from the predictive entropy. The conditional entropy is the
probability of the full output being generated from the training data and the
input. This is the reason we do not average the predictions for every single class.
We first sum over all classes, so that we do not average over the model parameters
for every single class and thus take into account the fact that we are looking at
the chance of the complete probability distribution being generated.

BALD is maximized when the T predictions are strongly disagreeing about
what label to assign to the example. So in the binary case, it would be highest
when the predictions would alter between [1,0] and [0,1] as these two predictions
are each others complete opposite. Unlike the variation ratio and predictive
entropy, BALD is a form of model uncertainty. When the softmax outputs would
be equal to T times [0.5,0.5], the minimal BALD value would be returned as
the predictions are the same and the model is thus very confident about its
prediction.

3.4 Heuristics

Redundancy Elimination In AL, a larger query-pool size (from now on
referred to as q) results in the model being retrained less and the uncertainties
of examples being re-evaluated less frequently. Consequently, the model gets to
make less informed decisions as it uses less up-to-date uncertainty estimates.
Larger q could therefore theoretically cause the model to collect many similar
examples for specific example types with high model uncertainty in an AL
round. Say for instance we were dealing with texts about different movie genres.
Suppose the data contained a lot of texts about the exact same movie. When
the model would be uncertain about this type of text, a large q would result in a
large amount of these texts getting queried. This could be wasteful, as querying
this type of text a small amount of times would likely result in the model no
longer being uncertain about that type of text. Note however, that low model
uncertainty by itself is no guarantee for robustly making accurate predictions for
a type of examples. Yet provided such robust performance is achieved, additional
examples of the same type would be a waste.

The above could form a problem as although a smaller q should theoretically
provide us with better results, it also requires more frequent uncertainties
re-computation. Every computation of the uncertainties requires T stochastic
forward passes on the unlabeled dataset U . This entails that, next to the
computation, the time required to label a dataset would increase as well, which
is not in line with our goal. In hopes of improving performance with larger q, we
propose two heuristics:

1. Redundancy Elimination by Training (RET)
2. Redundancy Elimination by Cosine Similarity (RECS)

For both of these heuristics, a new pool, which we will refer to as the
redundancy-pool RP, is introduced. The query-pool QP will be a subset of
RP of which we will try to select the most dissimilar examples.
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RET tries to eliminate redundant data out of RP by using it as a pool to
retrain on. The data point with the highest uncertainty is trained on for one
epoch and then the uncertainties of the examples in RP are recomputed. This
process gets repeated until QP is of the desired size. Note that although this
strategy seems similar to having a q of one, it is less computationally expensive
as only the uncertainties for the examples in RP have to be recomputed (which
also shrinks after each repetition). Algorithm 3 of Appendix A.2 shows how RET
is integrated in the AL loop.

The main purpose of RET is to enable the use of larger q. However, one needs
to be mindful of the fact that when q is increased, RP is to be increased in size
well. This being due to the fact that smaller differences between the sizes of RP
and QP result in less influence of the heuristic. In the RET algorithm, forward
passes over RP contribute to the total amount of forward passes. Furthermore,
this contribution increases linearly with the redundancy-pool size (|RP|) and
in practice coupled query-pool size q. Using |RP| = 1.5 × q, this contribution
starts to dominate the total amount of forward passes (approximately) once
q >

√
|data|. This is explained in more detail in Appendix A.1. This limits its

use for decreasing computation by increasing q. Because of this, RECS is aimed
at being computationally cheaper.

Instead of retraining the model and constantly taking into account recom-
puted uncertainties, RECS makes use of the sentence embeddings created by
Sentence-BERT (Section 3.2). The assumption made is that semantically similar
data conveys the same type of information to the model. The examples are
selected based on their cosine similarity to other examples.RP is looped through
and examples are only added to QP if their cosine similarity to all other points
that are already in QP is lower than the chosen threshold l. If not enough
examples are selected to get the desired q, the threshold gets decreased by 0.01.
Algorithm 4 of Appendix A.2 shows how this heuristic is added to the AL loop.

Sampling by Uncertainty and Density (SUD) Schomaker and Oosten
[24] showed that the distinction between separability and prototypicality is
important to account for. In their use case of the SVM, data points that had
a high margin to the decision boundary were not always representative of the
class prototype. Uncertainty sampling also tries to sample examples close to the
decision boundary, but has been shown to often select outliers [27,34]. Outliers
contain a lot of information that the model has not encountered yet, but this
information is not necessarily useful. As with the previously described RECS
heuristic, we hypothesize that semantically similar sentences provide the same
type of information. In that situation, outliers are very far from other examples
in embedding space.

Zhu et. al [39] proposed a K-Nearest-Neighbor-based density approach called
Sampling by Uncertainty and Density (SUD) to avoid outliers based on their
distance in embedding space. In this approach, the mean cosine similarity
between every data point and its K most similar neighbors is computed. A
low value indicates that a data point is not very similar to others. This value
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is then multiplied with the uncertainty and the dataset is sorted based on
this Uncertainty-Density measure. They showed that this measure improved
performance of the maximum entropy model classifier. We will explore whether
this approach also works for BERT combined with the embeddings computed by
Sentence-BERT. The adjusted pseudocode is shown in Appendix A.2 (Algorithm
5).

3.5 Experimental Setup3

Data Two datasets were used to validate and compare the performance of
the different AL implementations. Table 1 shows an overview of the amount
of examples and classes of each dataset. The first of the used datasets was the

Table 1. An overview of the two datasets used in the experiments

Dataset Examples Number of Classes
SST 11,850 5
KvK 2212 15

Stanford Sentiment Treebank [32] (SST). SST exists out of 215,154 phrases from
movies with fine-grained sentiment labels in the range of 0 to 1. These phrases
are contained in the parse trees of 11,855 sentences. Only these full sentences
were used in the experiments, and the sentiment labels were mapped to five
categories in the following way:

– 0 ≤ label < 0.2: very negative
– 0.2 ≤ label < 0.4: negative
– 0.4 ≤ label ≤ 0.6: neutral

– 0.6 < label ≤ 0.8: positive
– 0.8 < label ≤ 1: very positive

Use of the SST dataset was motivated by its size as well as by it being a
benchmark for language models. It allowed for the evaluation of AL for a larger
dataset and for comparison with results found in related work such as [23]. This
helped to check whether BERTbase was achieving desirable performance.

The second dataset that was used consists of the descriptions of companies
located in Utrecht. The companies are all registered at the Dutch Chamber
of Commerce, or Kamer van Koophandel (KvK) and were mapped to their
corresponding SBI-code. The SBI code denotes the sector a company operates in,
as defined by the KvK. The HTML of the companies websites was scraped and
the meta content that was tagged as the description was extracted. In nearly all
cases, this contained a short description about what the company was involved
in. Note that only English descriptions were used. The KvK dataset provided

3The code used for the experiments can be found at https://github.com/
Pieter-Jacobs/bachelor-thesis
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us with the opportunity to evaluate AL for a classification problem with a large
amount of classes as well as the ability to compare results between a dataset with
a limited number of examples and one with a relatively large amount of examples
(SST). Testing AL on a dataset with a limited number of examples was deemed
necessary due to the fact that most of the positive results found in related work
were achieved by making use of very small datasets. The dataset will not be
shared and is not available online due to the fact that it was constructed as part
of an internship at Dialogic.

Evaluation Metrics To evaluate and compare the performance of the different
AL strategies, two evaluation metrics were reported: the accuracy and an altered
version of the deficiency metric proposed in [39].

The variant of deficiency that was used is shown in Eq. 6, in which n
denotes the amount of accuracy scores, acc(R) denotes the accuracy of the
reference strategy and acc(C) the accuracy of the strategy to be compared to
this reference strategy. In our case, n is equal to |U|q + 1 (+1 comes from the
accuracy achieved after training on the seed), as we computed the test accuracy
after every AL round.4 Furthermore, instead of using the accuracy that was
achieved in the final AL round for acc(C) and acc(R) like [39], we use the overall
maximum accuracy. This accounts for the fact that the last achieved accuracy
in a classification task is not necessarily the best value, while still returning
a metric which provides a summary of the entire learning curve. This in turn
means that a decrease/increase in its value is analogical to a decrease/increase
in overall performance of the comparison strategy. However, the deficiency does
not convey whether there were points at which the accuracy of a strategy was
higher than usual and would serve as a good point to cut-down the dataset to
reduce labeling effort. A deficiency of <1 indicates a better performance than
the reference strategy whereas a value of >1 indicates a worse performance.

DEF (AL,R) =

∑n
t=1(max(acc(R))− acct(C)∑n
t=1(max(acc(R))− acct(R))

(6)

Experiments The goal of the experiments was to answer the question of
whether overall labeling effort could be reduced through making use of AL.
We split this into the following three sub-questions:

1. Does AL achieve better performance with less data when compared to plain
random sampling?

2. What is the relation between query-pool size q and the achieved perfor-
mance?

3. Do the proposed heuristics (SUD, RET, RECS) improve the performance of
AL?

4For our experiments, this resulted in our n ranging from 20 to 191 for the SST
dataset and from 17 to 152 for the KvK dataset (the used q can be found in Section
3.5).
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Table 2. The statistical setup used for both datasets. The percentages used are relative
to the full dataset size.

Dataset Seed U Dev Test
SST 594 (5%) 7951 (67%) 1101 (9%) 2210 (19%)
KvK 111 (5%) 1659 (75%) 221 (10%) 221 (10%)

The statistical setup used for the experiments can be found in Table 2. The
setup for SST was based on the proposed setup in [32]. To reiterate, the following
AL strategies were implemented:

1. Variation Ratio (Section 3.3)
2. Predictive Entropy (Section 3.3)
3. BALD (Section 3.3)

4. RET (Section 3.4)
5. RECS (Section 3.4)
6. SUD (Section 3.4)

To answer subquestion 1, these strategies were compared to the performance
of random sampling using a q of 1% of the dataset size. For subquestion 2, the
three query functions were be compared across three q: 0.5%, 1% and 5% of
the dataset size. Finally, to be able to answer subquestion 3, RET, RECT and
SUD were compared with a q of 1%. As RET, RECS and SUD were meant as
additions to general problems of uncertainty-based AL, they were only tested
for the variation ratio query function. This function was chosen, because it was
reported in [7] to give the best result. To make the results more generalizable,
all the experiments mentioned above were run three times.

Moreover, to test the assumption of the RECT strategy, we measured whether
there was a relation between how the model softmax predictions changed towards
the one-hot vector of the actual label and the cosine similarity to the data point
that was trained on. The relationship was quantified by means of Kendall’s τ
between the ranking of the examples based on which one had the largest change
in KL divergence after training on the top example and the ranking of the
examples based on cosine similarity to the example being trained on.

Hyperparameters Table 4 gives an overview of used hyperparameters. Model
weights were randomly initialized using the various PyTorch initialization
defaults for the respective model components. In addition to the randomness
of weight initialization, randomness determines dropout choices during training.
These two forms of randomness influence model performance. For each sys-
tem/setting, we averaged results over three repeated runs which were identical
except for these random elements. This helps to prevent false conclusions due to
performance differences caused by effects of these elements.

Both dropout rate and l (the cosine-similarity threshold used in RECS) were
chosen based on a grid search across both datasets. The amount of stochastic
forward passes T was based on [6] and was set to 10 across all experiments.5 Early

5Larger values up to 100 were tested, but induced much larger training times
without noteworthy performance gains.
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Table 3. The amount of epochs used for
early stopping for the different datasets.

Dataset # Epochs
SST 15
KvK 25

Table 4. Hyperparameters values

Parameter Value
Dropout rate 0.2
T 10
l 0
β1, β2 0.9, 0.999
ε 1 * 10−8

Learning rate 2 * 10−5

Batch size 128
RP size 1.5*q
Embedding dim. 768

stopping was applied on each training phase of the AL loop, Table 3 shows the
amount of epochs used for each dataset. The model yielding the lowest validation
loss across all epochs was used for evaluation and uncertainties computation.
Note that in a normal AL setting, validation sets are usually not available due
to the labelling effort required and this strategy would be less feasible.

The Adam algorithm [17] was used for optimization and its learning rate
was tuned based on the CLR method [31]. The best performing computationally
feasible batch size (128), out of the tried batch sizes (32, 64, 128, 256), was used
in all experiments. The betas and ε were set to their default values. The size of
RP was chosen arbitrarily, determining its optimal choice is left future research.

Finally, dimensionality reduction using PCA was tried to determine whether
this would result in better class-separability. For every data point in the full
dataset, the classes of the group of ten most similar data points (based on cosine
similarity) were determined. By maximizing the average of the number of within-
group same-class data points, the used dimensionality was determined.

4 Results

This section will go onto visualize and describe the achieved results for all three
experiments described in Section 3.5. Note that for all figures, the results were
averaged over three runs with the error bars showing one standard deviation.
Furthermore, all deficiencies were rounded to two decimal places. For deficiency
values <1 (improvements over the reference strategy), we show the smallest value
in the comparison in bold. For the sake of readability and to keep graph points
aligned, in the graphs for query-pool sizes of 0.5% and 1% the points shown are
respectively those at every 10th and 5th and interval.

4.1 Active Learning

Figure 1a shows how the query functions performed on the KvK dataset. All
query functions outperform random sampling when the labeled dataset is less
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than 200 examples large. After this, in particular BALD and variation ratio
continue to mostly outperform random sampling until near the maximum labeled
data size. Notably, many of the performance differences are larger than one
standard deviation.

Figure 1b shows how random sampling and the implemented query functions
performed on the SST dataset. On this dataset the results for the random
sampling baseline and the other systems is much smaller, and there does not
seem to be a clear winner.
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Fig. 1. The achieved test accuracy on the KvK dataset (a) and on the SST dataset (b)
by random sampling and the uncertainty-based query functions.

Finally, the deficiencies shown in Table 5 show a positive result (< 1) for all
query functions except for predictive entropy for the SST dataset. Matching the
graphs, the performance gains as measured by the deficiency scores are overall
more substantial on the KvK dataset. BALD has the lowest deficiency for both
datasets.

Table 5. The deficiencies (Eq. 6) of the uncertainty-based query functions. Random
sampling was the reference strategy.

Dataset VR PE BALD
SST 0.95 1.01 0.89
KvK 0.67 0.9 0.64

4.2 Query-pool Size

Figure 2a shows the performance of variation ratio across different q when used
on the KvK dataset. In the middle range of the graph, variation ratio with a q
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of 5% has a worse performance than the other q. The q of 0.5% and 1% achieve
similar performance with the accuracy scores always staying within one standard
deviation of each other.

Figure 2b shows the performance of the different q on the SST dataset. The
performance of variation ratio with a q of 0.5% fluctuates more when compared to
the other q. Moreover, it results in an overall worse performance when compared
to the other sizes. The q of 5% shows to have the best and most consistent
performance over the whole learning curve in terms accuracy. However, the q of
0.5% manages to outperform the other q at about 5000 labeled examples.
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Fig. 2. The achieved test accuracy on the KvK dataset (a) and the SST dataset (b)
by using the variation ratio query function with different q.

The deficiencies for the different q across both datasets are shown in Table 6.
For the SST dataset, the q of 5% had a lower deficiency across the learning curve
whereas the q of 0.5% shows a relatively high deficiency. For the KvK dataset
however, we see that the q of 5% has a relatively high deficiency when compared
to the similarly performing q of 0.5% and 1%.

Table 6. The achieved deficiencies (Eq. 6) by the different q for the different datasets.
A q of 1% was the reference strategy.

Dataset 0.5% 5%
SST 1.65 0.62
KvK 0.91 1.33

4.3 Heuristics

Figure 3a shows the performance of using variation ratio with heuristics together
with the performance of solely using variation ratio on the KvK dataset (also
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shown in Figure 1b). Both RET and RECT show no clear improvement over
solely using variation ratio. The same can be gathered from the results of the
SST dataset shown in Figure 3b as their accuracy scores stay within one standard
deviation for the entire learning curve. Moreover, Table 7 shows that the average
Kendall’s τ is around 0 with a relatively large standard deviation; indicating that
there is no relationship between the compared rankings.

Lastly, SUD shows an overall worse performance for both the SST and KvK
datasets. The deficiencies shown in Table 8 also show high values for SUD across
both datasets.
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Fig. 3. The achieved test accuracy on the KvK dataset (a) and on the SST dataset (b)
by the different heuristics.

Table 7. The mean and the 1 SD range
of Kendall’s τ from the described rank-
ing experiment across the two datasets
(rounded to two decimal places).

Dataset Mean σ

SST 0.14 0.33
KvK 0.02 0.47

Table 8. The achieved deficiencies by the
different heuristics. Variation ratio was
the reference strategy.

Dataset RET RECT SUD
SST 1.02 1.05 1.23
KvK 0.98 0.96 1.33

5 Discussion

This research investigated whether AL could be used to reduce labeling effort
while at the same time maintaining similar performance to a model trained on
a full dataset. To achieve this, the performance and scalability of different AL
query-strategies was tested for the state-of-the-art NLP model: BERT.
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Conclusions The results showed that uncertainty-based AL can provide
improved performance over random sampling for cut-down datasets. This
difference was not consistent throughout the whole training curve: at specific
points AL outperformed random sampling and at others at it achieved similar
performance. BALD was the query function with the overall best performance.
This could be the case due to the fact that it is the only query function used which
measures model uncertainty. The found results differs from what was found in
[7,9], where variation ratio achieved the best overall performance.

Unfortunately, the results found for the KvK dataset show that the found
improvement can diminish as query-pool sizes get larger, which corresponds to
what was theorized hypothesized in Section 3.4.

Moreover, the two proposed heuristics aimed at improving scalability did
not help in improving performance for either dataset and the heuristic aimed at
avoiding outliers even resulted in worse performance. This was surprising due
to the favorable results found in [39], albeit that they only tested it for training
sets of up to 150 examples.

An unexpected result was found in that the assumption that semantically
similar data conveyed the same type of information did not hold according to
the conducted ranking experiment. A possible explanation for this could be that
the texts were not mapped to embeddings in a way in which semantically similar
data was close enough to each other. Another curious finding was that for the
SST dataset, the smallest q resulted in the worse performance, especially at
the beginning of the learning curve. This is counter-intuitive due to the fact
that performance seems to suffer from more frequent uncertainty estimates.
A potential justification for this could be that updating too frequently at the
beginning of the learning curve results in the model not being able to train
enough on high frequency classes. This could result in the model focusing
too much on the long tail of the class distribution due to the fact that it
is more uncertain about texts with low frequency classes at the start of the
learning curve. Further research is needed to build a better understanding of
this. Conversely, given that AL was shown to have little influence on the achieved
accuracy and that most of the differences between the different q are within one
standard deviation, one could argue that that the size of q did have an influence
on the results whatsoever and that we thus cannot conclude anything from the
found results.

From the above, we conclude that uncertainty-based AL with BERTbase can
be used to decrease labeling effort. This supports what was concluded by [11].

When looking at the bigger picture, we showed that AL can still provide
an improvement in performance over random sampling for large datasets.
The improvement of performance of AL with BERT is however limited when
compared to what it achieved for older NLP models [39,34,27] and even more so
when compared to image classifiers [15,5,9]. Performance did show to increase
more when used on the KvK dataset. A possible explanation for this is its smaller
size. BERT is pretrained on a large amount of data and only needs fine-tuning for
achieving good performance on a specific task. Transfer learning models [14] like
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BERT have the ability to perform well on new tasks with just a limited amount
of data. The power of this few-shot learning also became apparent on a dataset
which we decided not to use. Here, BERT was able to get a low validation error
on the seed alone, while at the same time having a training accuracy of 100%.

An additional explanation can be found in the nature of the two tasks and
their examples. The SST dataset belongs to a sentiment analysis task, with
sentiment scores in the range 0–1. These were binned into spans of 0.2 to
get a five-class classification task. Furthermore, bag-of-words (BOW) models
such as Naive Bayes were shown to perform relatively really well on this task,
because specific individual words provide substantial information about the class.
As a consequence, each example is actually compound : it indirectly provides
information about not just that example but about the sentiment contributions
of all the words in that example as well. In contrast, the KvK dataset provides is a
real classification task as opposed to a regression task converted to classification
task, with 15 distinct classes. A subset of words in each example can be
expected to be informative for the class label, as opposed to words giving nearly
independent contributions as is the case in sentiment analysis.

A limitation of the research was that, due to computational constraints, only
the first sentence of texts was used. There were data points where the first
sentence did not contain any clear indication of its label. Take for example the
following description from the KvK dataset:

"Hi, I’m Barbara Goudsmit. Welcome to my woven world! I am a
passionate hand weaver from the Netherlands who loves creating patterns and

bringing them to live on my 8-shaft loom."

This type of data could have resulted in the network learning suboptimal
mappings, which could in turn have had an influence on the performance of AL.

Future Research This work focused on classification tasks. A future direction
could be to investigate the influence of AL on BERT’s performance in the
context of regression tasks and also to examine how the proposed heuristics
perform there. Moreover, more recent BERT variants, like for instance RoBERTa
[21], could be tested to see whether AL still outperforms the random sampling
benchmark. Furthermore, the used query functions were mostly developed for
and used in computer vision. Query functions aimed at text classification or at
the fact that BERT is a pretrained model could be further investigated. Lastly,
an important direction for future work remains making AL more scalable by
finding ways to preserve performance with larger query-pool sizes.
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Appendix

A.1 RET Algorithm Computational Cost Analysis

The number of forward passes required by the RET algorithm depends on two
factors:

1. Basic passes: The forward passes required by the “normal” computation of
uncertainty at the beginning of the computation for every query-pool.

2. RP passes: The forward passed required for intermediate updates, using the
redundancy pool RP .

In this analysis we will assume that the size of the redundancy pool |RP|
is chosen as a factor f > 1 of the size of the query-pool q. A reasonable
assumption, considering that making |RP| larger than needed incurs unnecessary
computational cost, whereas a too small value is expected to diminish the
effect of the RET algorithm. We furthermore notice that given this assumption,
and assuming a fixed total number of examples to label, there are two factors
influencing the required amount of RP passes:

– Linearly increasing the query-pool size and coupled redundancy pool size
causes a quadratic increase in the number of required forward passes per
query pool round.

– At the same time, a linearly increased query-pool size also induces a
corresponding linear decrease in the number of required query-pool rounds.

We will see that these two factors will cause a net linear contribution to the
number of RP passes starts causing a net increase of total passes once the query-
size comes above a certain value. Looking at (1) more precisely, the amount
of passes over RP that needs to be performed per query-pool round can be
computed as an arithmetic progression:

|RP|+ (|RP| − 1) + (|RP| − 2) + . . .+ (|RP − q) = (7)
1

2
× (q + 1)× (|RP|+ |RP| − q) = (8)

1

2
× (q + 1)× ((2f − 1)× q) = (9)

1

2
× (q + 1)× f ′ × q) = (10)

1

2
× f ′ × (q2 + q)) (11)

Let’s assume we use f = 1.5 (as also used in our experiments), and
consequently, f ′ = 2f − 1 = 2. The number of forward passes over RP then
becomes exactly q2 + q.

The complexity can then be expressed by the following formula:
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T × d#Samples
q

e × (|data|+ q2 + q) (12)

This can be approximately rewritten as:

T ×#Samples× (
|data|
q

+
q2 + q

query-pool
) = (13)

T ×#Samples× (
|data|
q

+ q + 1) (14)

Note that the second term query-pool-size + 1 only starts dominating the
number of forward passes in this formula as soon as:

q + 1 ≈ q > |data|
q

This is the case when

q >
√

(|data|)

Until then, the computational gains of less basic passes outweighs the cost of
more RP passes. In practice though, this may happen fairly quickly. For example,
assuming we have a data size of 10000 examples, and we use as mentioned
q = 1.5| × RP|, then as soon as q ≥ 100 the increased computation of the
RP passes starts dominating the gains made by less basic passes when further
increasing the query-pool size, and the net effect is that the total amount of
computation increases.

In summary, for the RET algorithm, RP passes contribute to the total
amount of forward passes. Furthermore, this contribution increases linearly with
redundancy-pool size and coupled query-pool size, and starts to dominate the
total amount of forward passes once redundancy-pool-size >

√
data-size. This

limits its use for decreasing computation by increasing the query-pool size.
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A.2 Algorithms

Algorithm 1 The general AL loop.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired length of L
2: q ← Query-pool size
3: Q(x)← Query Function
4: while L length < n do
5: Retrain f(x; θ) on L
6: Sort U based on Q(U)
7: Let Oracle assign labels to Uq

0

8: Insert Uq
0 into L

9: Remove Uq
0 from U

10: end while

Algorithm 2 The AL loop with MCD.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: q ← Query-pool size
3: Q(x)← Query Function
4: T ← Number of SFP’s
5: while L length < n do
6: Retrain f(x; θ) on L
7: P ← ∅
8: for t = 0, ..., T do
9: insert f(U ; θt) into P
10: end for
11: Sort U based on Q(P )
12: Let Oracle assign labels to Uq

0

13: Insert Uq
0 into L

14: Remove Uq
0 from U

15: end while
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Algorithm 3 The AL loop with Redundancy Elimination by Training (RET).
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: r ← Redundancy-pool size
3: q ← Query-pool size
4: T ← Number of SFP’s
5: Q(x)← Query Function
6: while L length < n do
7: Retrain f(x; θ) on L
8: P ← ∅
9: for t = 0, ..., T do
10: insert f(U ; θt) into P
11: end for
12: Sort U based on Q(P )
13: U ← ∅
14: queried← 0
15: while queried < q do
16: for t = 0, ..., T do
17: insert f(RP; θt) into U
18: end for
19: i← argmin(U)
20: Let Oracle assign label to Ui
21: Train f(x; θ) on Ui
22: Insert Ui into L
23: Remove Ui from U
24: queried← queried+ 1
25: end while
26: end while
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Algorithm 4 The AL loop with Redundancy Elimination by Cosine Similarity
(RECS).
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: u← Redundancy-pool size
3: q ← Query-pool size
4: l← Cosine similarity threshold
5: T ← Number of SFP’s
6: Q(x)← Query Function
7: Cos(x, y)← Cosine similarity between x and y
8: while L length < n do
9: Retrain f(x; θ) on L
10: P ← ∅
11: for t = 0, ..., T do
12: insert f(U ; θt) into P
13: end for
14: Sort U based on Q(P )
15: U ← ∅
16: while Ulength < q do
17: for i = 0, ..., u do
18: if Cos(Ui, UUlength

0 ) < l then
19: insert Ui into U
20: end if
21: end for
22: l← l − 0.01
23: end while
24: Reset l to initial value
25: Let Oracle assign labels to U
26: Insert U into L
27: Remove U from U
28: end while
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Algorithm 5 The AL loop with SUD.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: q ← Query-pool size
3: k ← Amount of similar examples to compute density with
4: T ← Number of SFP’s
5: Q(x)← Query Function
6: Cos(x, y)← Cosine similarity between x and y
7: while L length < n do
8: Retrain f(x; θ) on L
9: P ← ∅
10: E ← ∅
11: for t = 0, ..., T do
12: Insert f(U ; θt) into P
13: end for
14: for example in U do
15: similar ← Sort(Cos(example, U))

16: Insert sum(similark0 ))

k
into E

17: end for
18: Sort U based on Q(P∗E)
19: Let Oracle assign labels to Uq

0

20: Insert Uq
0 into L

21: Remove Uq
0 from U

22: end while
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Abstract. Singular Value Decomposition (SVD) and Principal Compo-
nent Analysis (PCA), are well-known linear matrix decomposition tech-
niques that are widely used in machine learning with applications such
as dimension reduction and clustering. However, SVD/PCA is sensitive
to noise in the input data. We show how different formulations of the
regularisation functional lead to qualitatively different solutions.
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1 Introduction and Related Work

Singular Value Decomposition (SVD) and its close relative, Principal Component
Analysis (PCA), are well-known linear matrix factorisation techniques that are
widely used in machine learning and artificial intelligence with applications as
varied as dimension reduction and clustering, matrix completion [1] (e.g. for
recommender systems), dictionary learning [2] and time series analysis [3].

In their abstract version, SVD and PCA amount to two different but related
types of matrix factorisation. More precisely, given a general (data) matrix A, the
aim is to approximate it as a product of lower-dimensional matrices. Specifically:

– PCA-type decomposition: A ≈ PQT where the columns of Q are orthonor-
mal, i.e. QTQ = I;

– SVD-type decomposition: A ≈ PBQT where B is diagonal, while PTP = I
and QTQ = I.

The approximation in the above equations is measured in terms of the Frobenius
(matrix) norm which for an arbitrary matrix X ∈ Rn×m is defined as:

||X||2 =

n∑

i=1

m∑

j=1

x2ij = Tr(XXT ) = Tr(XTX) = ||XT ||2. (1)

? The authors acknowledge partial support by Dutch NWO ESI-Bida project NEAT
(647.003.002).
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Although these factorisations are both conceptually simple and effective, it is
well-known that they are sensitive to noise and outliers in the input data. As a
consequence, some modifications of the original algorithms have been proposed
to alleviate the effect of such disturbances [5,6]. Candes et al. [7] introduce Ro-
bust PCA (RPCA) which aims to separate signal from outliers by decomposing
any given matrix into the sum of a low-rank approximation and a sparse ma-
trix of outliers. An extension of this work for inexact recovery of the data is
presented in [10]. Another example of sparse PCA using low rank approxima-
tion is proposed in [11]. Adding a regularisation term is another versatile way
to tackle the problem of noisy input. For instance, Dumitrescu et al. [12] show
how a regularized version of K-SVD algorithm can be adapted to the Dictionary
Learning (DL) problem. However, the presence of noise in the input is not the
only reason to invoke regularisation. Recent research [13] shows that in many
real data sets, not only the observed data, but features also lie on a (non-)linear
low dimensional manifold. He et al. [8] consider a setup where the columns of
the matrix A are interpreted as data points, then the rows are features. The
neighbourhood structure of both the data points and the features give rise to
distinct graphs (so-called data and feature graphs) and to their corresponding
graph Laplacians (Ld and Lf respectively). The resulting regularised PCA is
referred to as the graph-dual Laplacian PCA (gDLPCA) and for a given data
matrix A, is obtained by minimising the below functional:

J(V, Y ) = ||A− V Y ||2 + αTr(V TLdV ) + β Tr(Y LfY
T ) s.t. V TV = I (2)

The ability of the graph dual regularization technique to incorporate both data
and feature structure has deservedly attracted considerable attention in dimen-
sionality reduction applications [4,8,14]. In the present paper, we take the func-
tional (2) as a starting point and investigate the two factorisation approaches
mentioned above (invoking eq. (1) to recast the trace as a norm):

– PCA-type decomposition (A ≈ PQT ) by minimising the regularisation func-
tional:

||A− PQT ||2 + λ ||DP ||2 + µ ||GQ||2 (3)

– SVD-type decomposition (A ≈ PBQT ) by minimising the regularisation
functional:

||A− PBQT ||2 + λ ||DP ||2 + µ ||GQ||2 (4)

The minimisation of the functional (3) is discussed in [8], but the proposed
solution contains an error which we correct in this paper. In addition, we also
provide an algorithm to solve functional (4), which somewhat surprisingly is
quite different from the one for (3).

The rest of this paper is organised as follows: We finalise this section by
recapitulating some important facts about SVD. In Sect. 2 and 3 we derive
an algorithm for minimisation of the regularised version of PCA- and SVD-
type factorisation, respectively. In Sect. 4 we show how gradient descent can
be implemented by drawing on some elementary facts from Lie-group theory.
Finally, we conclude this paper by giving some pointers to potential extensions.

Regular papers BNAIC/BeneLearn 2021

134



Matrix Completion using Regularised Matrix Factorisation 3

For the sake of completeness, we first recall the well-known SVD result; for
more details we refer to standard textbooks such as [15].

Theorem 1 (Singular Value Decomposition, SVD). Any real-valued n×m
matrix A can be factorized into the product of three matrices:

A = USV T (5)

where U ∈ O(n) and V ∈ O(m) are orthonormal and S is an n × m
diagonal matrix where the elements on the main “diagonal” (so-called singular
values) are non-negative (i.e. σi := Sii ≥ 0 for 1 ≤ i ≤ min(n,m)). Assuming
that the rank rk(A) = r ≤ min(n,m), we can sort the singular values such that
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σmin(n,m) and recast eq. (5) as

A =
r∑

i=1

σiUiV
T
i (6)

where Ui, Vi are the i-th columns of U and V , respectively. For the singular
vectors, we introduce the short-hand notation U(1:k) := [U1, U2, . . . , Uk] and
V(1:k) := [V1, V2, . . . , Vk] to denote the matrix comprising the first k columns
of U and V , respectively. In this notation, eq. (6) can be expressed concisely as:

A = U(1:r) diag(σ1, . . . , σr) V
T
(1:r) (7)

To appreciate the significance of Theorem 1, it is helpful to highlight its
geometric interpretation. Recall that any n×m matrix A gives rise to a corre-
sponding linear transformation A : Rm → Rn that maps the standard basis in
Rm into the columns of A, i.e., Aek = Ak where ek = (0, 0, . . . , 0, 1, 0, . . . , 0)T

is a column vector. Roughly speaking, the SVD theorem therefore tells us that
it is always possible to select an orthonormal basis in Rm (columns of V ) that is
mapped (up to non-negative scaling factors, i.e. the singular values) into an or-
thonormal basis in Rn (columns of U). This is immediately obvious from eq. (6):

AV` =

r∑

k=1

σkUkV
T
k V` =

r∑

k=1

σkUkδk` = σ`U`

where δk` is a Kronecker delta function. It is worth noting that insisting on the
orthogonality of V (V TV = I) is not restrictive. Indeed, a linear transformation
is completely and uniquely determined by specifying its effect on any basis, and
there is no loss of generality by insisting on the orthonormality of this basis.
However, the non-trivial message of this theorem is that this orthonormal basis
(V ) can be chosen in such a way that its image U under A is also orthonormal
(again, up to non-negative scalings). Furthermore, in a generic case (where all
singular values are different) the singular value decomposition is unique, up
to an arbitrary relabeling of the basis-vectors and a simultaneous sign-flip of
corresponding columns in U and V , i.e. (U`, V`) → (−U`,−V`) for any number
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of columns. The importance of the SVD result, and the starting point for this
paper, is the following well-known minimisation result (more details can be found
in [16]).

Theorem 2 (Eckart-Young-Mirsky Theorem: Optimal low rank ap-
proximation). Let us consider an n × m matrix A with rank rk(A) = r ≤
min(n,m). For k < r, finding the rank-k matrix Ak that is closest to A in
(Frobenius) norm gives rise to the following constrained minimisation problem:

min
Ak

||A−Ak||2 s.t. rk(Ak) ≤ k.

The solution to this problem is obtained by truncating the SVD expansion eq. (6)
after the k-th largest singular value:

Ak =

k∑

i=1

σiUiV
T
i = U(1:k) diag(σ1, . . . , σk) V T(1:k). (8)

Recall that a rank-k matrix of size n×m can always be written as a product
Ak = PQT where P ∈ Rn×k and Q ∈ Rm×k are matrices of full rank k. Again,
in this factorisation, there is no loss of generality in requiring QTQ = Ik. In fact,
it is necessary to remove indeterminacy due to arbitrary but trivial rescalings
such as P 7−→ rP while Q 7−→ (1/r)Q (with r 6= 0), and the like. Hence, one
can reformulate Theorem 2 as the factorisation result in Theorem 3.

Theorem 3 (PCA-type factorisation). Assume that the n×m matrix A has
rank rk(A) = r ≤ min(n,m). We now define the functional G(P,Q) as follow:

G(P,Q) = ||A− PQT ||2 (9)

and the corresponding constrained optimisation problem:

min
P,Q

G(P,Q) s.t. QTQ = Ik, and k < r

A solution to the above constrained minimisation problem (in P ∈ Rn×k and
Q ∈ Rm×k) is given by (using the SVD notation given above):

Q = V(1:k) and P = U(1:k) diag(σ1, . . . , σk) (10)

hence:

PQT =

k∑

i=1

σiUiV
T
i . (11)

From (10) it also follows that PTP is diagonal, but not necessarily equal to
the identity. Note that if we drop the insistence on the diagonal form for PTP (i.e.
P need no longer be an orthogonal frame), then the solution is no longer unique.
Indeed, for any k×k orthogonal matrix R with RTR = Ik = RRT , it is clear that
P ′ = PR and Q′ = QR are also solutions. In this case: Q′TQ′ = RTQTQR = Ik
but P ′TP ′ = RTPTPR = RT (SST )R is in general a positive definite symmetric
matrix.
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2 Regularisation for PCA-type factorisation

The following theorem outlines an obvious generalisation to regularised version
of the minimisation problem.

Theorem 4 (Regularised PCA). Let A be an n × m matrix of rank r ≤
min(n,m). For k ≤ r, let P ∈ Rn×k and Q ∈ Rm×k full rank matrices (i.e.
of rank k). Furthermore, for arbitrary (non-zero) integers d and g we introduce
regularisation matrices D ∈ Rd×n and G ∈ Rg×m, as well as weights λ, µ ≥ 0.
We now define the following functional F in the variables P and Q:

F (P,Q) = ||A− PQT ||2 + λ ||DP ||2 + µ ||GQ||2 (12)

and pose the corresponding constrained optimisation problem:

min
P,Q

F (P,Q) s.t. QTQ = Ik. (13)

Introducing short-hand notation L := DTD ∈ Rn×n and M := GTG ∈ Rm×m
(both symmetric and positive semi-definite), the solution to the constrained op-
timisation problem (13) is constructed as follows:

– The k columns of the m × k matrix Q are the eigenvectors of the m × m
matrix:

K := AT (In + λL)−1A− µM
corresponding to the k largest eigenvalues;

– Furthermore: P = (In + λL)−1AQ

For the sake of completeness, we reiterate that the condition QTQ = Ik is not
restrictive but necessary to eliminate arbitrary rescalings. In passing, we point
out that result above corrects an error in [8] where it is incorrectly stated that
P = AQ.

Proof. Since the variable P in the functional (12) in unconstrained, we can
identify the optimum in P (for fixed Q) by computing the gradient:

1

2
∇PF = (PQT −A)Q+ λDTDP (14)

and solving for P :

∇PF = 0 ⇒ P QTQ︸ ︷︷ ︸
Ik

−AQ+ λLP = 0 ⇒ (Ik + λL)P = AQ. (15)

This condition needs to hold at the solution point. By first re-writing F (P,Q)
formula as the trace of matrices and then plugging in (15), we have:

F (P,Q) = Tr
[
(A− PQT )(AT −QPT )

]
+ λ Tr(PTLP ) + µTr(QTMQ)

= Tr
[
AAT −AQPT − PQTAT + PQTQPT

]
+ λ Tr(PTLP ) + µTr(QTMQ)
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Considering the fact that the trace operator is invariant under transposition as
well as cyclic permutation, and plugging in eq. (15) we arrive at:

F (P,Q) = Tr
[
AAT − 2(In + λL)PPT + PPT

]
+ λ Tr(PTLP ) + µTr(QTMQ)

= Tr
(
AAT − PPT − 2λLPPT

)
+ λ Tr(PTLP ) + µTr(QTMQ)

= Tr(AAT )− Tr(PPT )− 2λ Tr(LPPT ) + λ Tr(PTLP ) + µTr(QTMQ)

= Tr(AAT )− Tr(PTP )− λ Tr(PTLP ) + µTr(QTMQ)

= Tr(AAT )− Tr
[
PT (In + λL)P

]
+ µTr(QTMQ). (16)

Extracting P and its transpose from eq. (15):

P = (In + λL)−1AQ ⇒ PT = QTAT (In + λL)−1 (17)

we arrive at:

F (P,Q) = Tr(AAT )− Tr
[
QT

(
AT (In + λL)−1A− µM

)
Q
]
. (18)

Therefore, in order to minimize F , one must maximize the right-most term as
Tr(AAT ) is a constant. This is achieved by selecting for Q, eigenvectors corre-
sponding to the k largest eigenvalues of (AT (In + λL)−1A − µM). Once Q is
determined, P is obtained via eq. (17).

As a concluding remark, we point out that the matrix In + λL is always
invertible. Indeed, since L = DTD is positive semi-definite and symmetric, it
has a complete set of eigenvectors with corresponding non-negative eigenvalues,
i.e., L = WΛWT , where W is orthogonal (i.e. WTW = WWT = In) and Λ ≥ 0.
Hence, the matrix (In+λL) has strictly positive diagonal elements, and is indeed
invertible. Some illustrative numerical experiments can be found in [17].

Some special cases:

– λ = 0 and µ = 0 : In that case, Q comprises the first k eigenvectors of

K = ATA and P = AQ, which means that we end up with standard SVD,
as expected. Some numerical experiments can be found in [17].

– D = In and µ = 0 : The following section provides an overview of the re-

sults in [12] where a regularized K-SVD problem is addressed. In the afore-
mentioned paper, the authors consider a special case, where µ = 0 and
D = In. Since this implies that L = DTD = In and µM = 0, the matrix K
simplifies to K = 1

1+λ A
TA. The eigenvectors of K are therefore the right

singular vectors of A (i.e. the eigenvectors of ATA). Hence Q = V(1:k), and

as a result: P = 1
1+λAQ and AQ = U(1:k) diag(σ1, . . . , σk). In particular,

for k = 1 (the rank-1 reconstruction), we obtain: Q = v1 and P = σ1

1+λ u1

which is the result that can be found in [12]. The experiments are available
in [17].
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3 Regularisation for SVD-type factorisation

We now turn our attention to the SVD-type factorisation which looks for an
approximation of the form:

A ≈ PBQT s.t. QTQ = Ik, ∀i ∈ {1, 2, . . . , k} : ||Pi|| = 1, and B diagonal.

Since the columns of P and Q are of unit length, they only pin down the struc-
ture of A, whereas the diagonal matrix B = diag(β1, β2, . . . , βk) captures the
amplitude of the corresponding structures. Similar to before, the columns of Q
are orthonormal (i.e., QTQ = Ik). However, unlike before, the columns of P are
now only required to have unit length. In light of the aforementioned SVD-type
matrix factorisation technique, Theorems 5 and 6 provide an alternative solu-
tion to the lower dimensional matrix approximation problem. Theorem 5 first
addresses the simplified case for µ = 0, but we return to the general case in
Theorem 6.

Theorem 5 (Regularised SVD). Let A be an n × m matrix of rank r ≤
min(n,m). For k ≤ r, let P ∈ Rn×k and Q ∈ Rm×k of rank k, while B ∈ Rk×k
is diagonal (i.e. B = diag(β1, β2, . . . , βk)) where all the off-diagonal elements of
B are zero. Furthermore, for arbitrary non-zero integer d we introduce regular-
isation matrix D ∈ Rd×n, as well as weight λ ≥ 0. Finally, we introduce the
short-hand notation L := DTD ∈ Rn×n (symmetric and positive-definite). We
are now in a position to define the following functional F in the variables P,Q
and B:

F (P,Q,B) = ||A− PBQT ||2 + λ ||DP ||2 (19)

and the corresponding constrained optimisation problem:

min
P,Q,B

F (P,Q,B) s.t.

QTQ = Ik, ||Pi|| = 1 ∀i ∈ {1, 2, . . . , k}, and B diagonal. (20)

Algorithm 1 in below proposes a solution to this problem.

Proof. Since B is unconstrained, we can determine its optimal value by comput-
ing the derivative with respect to B and equating it to zero:

∇BF (P,Q,B) = ∇B ||A− PBQT ||2. (21)

Expanding the norm in terms of a trace (cf. eq. (1)), and using the invariance
of a trace under transposition, we arrive at (recall QTQ = Ik ):

||A− PBQT ||2 = Tr
[
(A− PBQT )(AT −QBPT )

]

= ||A||2 − 2 Tr(PTAQB) + Tr(B2PTP )

= ||A||2 − 2
k∑

i=1

(PTAQ)ii βi +
k∑

i=1

(PTP )ii β
2
i

= ||A||2 − 2

k∑

i=1

(PTAQ)ii βi +

k∑

i=1

β2
i (22)
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Hence, the gradient of the functional F with respect to B is obtained as follow:

∂

∂βi
||A− PBQT ||2 = 2 (βi − (PTAQ)ii).

For given P and Q, we find the optimal B when the gradient vanishes:

βi = (PTAQ)ii ∀i ∈ {1, 2, . . . , k}. (23)

Plugging this optimal choice back into eq. (22) the functional (19) simplifies to

||A− PBQT ||2 = ||A||2 −
k∑

i=1

β2
i (24)

To recast eq. (24) in terms of P and Q (in order to eliminate B), we observe
that for every element of an arbitrary matrix H we have Hij = eTi Hej , where
ei = (0, 0, . . . , 1, . . . , 0)T are the standard basis vectors. Hence, using the fact
that the diagonal of a matrix is unchanged under transposition, we conclude
that

βi =

{
(PTAQ)ii = eTi P

TAQ ei = pTi Aqi

(QTATP )ii = eTi Q
TATP ei = qTi A

Tpi

where pi,qi are the i-th columns of P and Q, respectively. Hence:

k∑

i=1

β2
i =

k∑

i=1

pTi Aqi q
T
i A

Tpi. (25)

As a final step, we introduce L = DTD to recast the regularisation term as:

||DP ||2 = Tr(PTLP ) =
k∑

i=1

eTi P
TLP ei =

k∑

i=1

pTi Lpi. (26)

Plugging eqs. (25) and (26) into eq. (19), we obtain the following simplified form
for the functional F (assuming that we eliminate B by using its optimal value):

F (P,Q) = ||A||2 + F1(P,Q), where

F1(P,Q) =
k∑

i=1

pTi (λL−AqiqTi AT )pi. (27)

Introducing the notation S(q) := λL−AqqTAT , we conclude that

F1(P,Q) =
k∑

i=1

pTi S(qi)pi.

Since each S(q) is a symmetric matrix, it can be diagonalised with respect
to an orthonormal basis, i.e. there is an orthogonal n × n matrix W (with
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WTW = WWT = In) and a diagonal matrix Λ = diag(λ1, . . . , λn) (ordered
λ1 ≤ λ2 ≤ . . . ≤ λn), both depending on q such that S(q) = W (q)Λ(q)W (q)T

i.e. the columns of W are the eigenvectors of S(q), with the corresponding eigen-
values on the diagonal of Λ. By introducing the notation λ1(S(q)) to denote the
smallest eigenvalue of Λ(q), we obtain the minimal value pTi S(qi)pi = λ1(qi)
when choosing pi to be the (unit) eigenvector (W1(qi)) corresponding to the
smallest eigenvalue. As a consequence, the solution strategy boils down to steps
in Algorithm 1. This choice of P,Q and B solves the constrained minimisation
problem (20).

Notice that since P and B are determined after finding Q, this optimisation
problem can essentially be translated into a search in the space of Q matrices.
Some illustrative numerical experiments are available at [17]. We conclude this
section by giving a slightly more general version (µ 6= 0) of the previous theorem,
thus re-establishing the symmetry between P and Q.

Algorithm 1: Proposed RSVD method (µ = 0)

Input: A, k, λ, D
Output: P, B, Q
Initialization
while no convergence do

1. Determine the m× k matrix Q = [q1,q2, . . . ,qk]
(with orthonormal columns: QTQ = Ik) such that the sum of the
smallest eigenvalue of each of the k symmetric matrices S(qi)
is minimal, i.e.:

min
Q

ψ(Q) = min
Q

k∑

i=1

λ1(qi) such that QTQ = Ik

where λ1(qi) = min(eig(S(qi)). To this end we use gradient
descent (see Sect. 4).

2. For each qi as determined above, take pi to be the eigenvector
W1(qi) corresponding to the smallest eigenvector λ1(qi).
Construct the n× k matrix P = [p1,p2, . . . ,pk].

3. Finally, set B = diag(β1, . . . , βn) where βi = (PTAQ)ii.

end

Theorem 6 (Regularised SVD, symmetric version). Let A be an n ×m
matrix of rank r ≤ min(n,m). For k ≤ r, let P ∈ Rn×k and Q ∈ Rm×k of rank
k, while B ∈ Rk×k diagonal (i.e. B = diag(β1, β2, . . . , βk)). Furthermore, for
arbitrary non-zero integers d and g we introduce regularisation matrices D ∈
Rd×n, and G ∈ Rg×m, as well as weights λ, µ ≥ 0. Finally, we introduce the
short-hand notation L := DTD ∈ Rn×n and M := GTG ∈ Rm×m symmetric
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and positive-definite). We are now in a position to define the following functional
F in the variables P,Q and B:

F (P,Q,B) = ||A− PBQT ||2 + λ ||DP ||2 + µ ||GQ||2 (28)

and the corresponding constrained optimisation problem:

min
P,Q,B

F (P,Q,B) s.t.

QTQ = Ik, ||Pi|| = 1, ∀i ∈ {1, 2, . . . , k} and B diagonal. (29)

Algorithm 2 provides a solution to the aforementioned problem.

Proof. Using the notation introduced above and in Theorem 5, we see that

||GQ||2 = Tr(QTMQ) =

k∑

i=1

qTi Mqi.

Hence, the functional (28) can be recast as:

F (P,Q) = ||A||2 + F2(P,Q), where

F2(P,Q) =

k∑

i=1

pTi (λL−AqiqTi AT )pi + µ

k∑

i=1

qTi Mqi. (30)

The minimum of each term in the first summation in F2 is equal to the smallest
eigenvalue λ1(S(qi)). Finding the minimum for the constrained optimisation
problem (29) therefore amounts to finding the minimum of the functional:

ψ(Q) :=

k∑

i=1

(
λ1(S(qi)) + µqTi Mqi)

)
(31)

subject to the constraint QTQ = Ik. Therefore, the minimisation problem again
calls for a minimisation in Q space, as the optimal choice for P (corresponding
eigen-vectors) follows automatically. We therefore arrive at the solution detailed
in Algorithm 2. Some illustrative numerical examples are available in [17].

4 Computational Aspects

From Algorithm 2, it becomes clear that full regularisation problem can be re-
duced to a simpler constrained minimisation problem (31). Since the ψ-functional
is smooth on a compact domain, the minimum is guaranteed to exist and one can
use gradient descent to locate it. However, gradient descent needs to respect the
constraint QTQ = Ik. This is achieved by applying orthogonal transformations
to the current Q matrix, as it will preserve orthonormality. Specifically, recall
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Algorithm 2: Proposed RSVD method (µ 6= 0)

Input: A, k, µ, λ, D, G
Output: P, B, Q
Initialization
while no convergence do

1. For any unit vector q ∈ Rm we define S(q) = λL−AqqTAT .
Since this is a symmetric n× n matrix, it has a complete set of
eigenvectors and corresponding eigenvalues.
Denote the smallest eigenvalue of each S(qi) as λ1(S(qi)).

2. For a given m× k matrix Q = [q1,q2, . . . ,qk]
(with orthonormal columns: QTQ = Ik) compute the functional:

ψ(Q) :=
k∑

i=1

(
λ1(S(qi)) + µqT

i Mqi)
)

and use gradient descent (on the compact torus domain, see Sect. 4)
to find the minimum.

3. For each qi as determined above, take pi to be the eigenvector
W1(qi) corresponding to the smallest eigenvector λ1(S(qi)).
Construct the n× k matrix P = [p1,p2, . . . ,pk].

4. Finally, set B = diag(β1, . . . , βn) where βi = (PTAQ)ii.

end

that any orthogonal m×m matrix R with determinant 1 (rather than −1) can
be generated by exponentiating an appropriate skew-symmetric matrix K [19]:

R = exp(tK) ≡ Im + tK +
1

2!
t2K2 + . . .+

1

n!
tnKn + . . . (with KT = −K)

By choosing t sufficiently small, the orthogonal transformation is close to the
identity Im. Furthermore, we can restrict the variations to orthogonal transfor-
mations that result from exponentiating a basis for the space of skew-symmetric
matrices. Such a basis is provided by the m(m− 1)/2 skew-symmetric matrices

K(ij) (where 1 ≤ i < j ≤ m) that has two non-zero entries: K
(ij)
ij = 1,K

(ij)
ji =

−1. Given the current value Q0, we construct nearby values for Q by looping
over K(12),K(13),K(23), . . . etc and constructing the corresponding orthogonal
matrices Rij(t) = exp(tK(ij)). Denoting these “infinitesimal” rotation matrices
as Rα (where α = 1, . . . ,m(m − 1)/2), we see that the partial derivatives with
respect to these rotations can be estimated as:

∂ψ(Q)

∂Rα
≈ ψ(Rα(t)Q0)− ψ(Q0)

t
(for t sufficiently small).

From these results we can select the infinitesimal rotation that results in the
steepest descent. Since computing ψ is computationally expensive (it requires
determining eigenvalues), a viable alternative to computing the gradient is ran-
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dom descent: generate random rotations (by exponentiating random skew sym-
metric matrices) and check whether they result in a lower ψ-value. As soon as
one is found, proceed in that direction, and repeat the process.

We conclude this section with a concrete example: smoothing a noisy matrix.
We start from the assumption (cf., [8,13,18]) that the n×m data matrix A has a
relatively smooth underlying structure that is corrupted by noise: A = uvT +τZ,
where the n × m matrix Z has independent standard normal entries, and τ
controls the size of the noise. To recover the underlying “signals” u and v, we
minimise the SVD-type regularisation functional (28) where the smoothness of
the result is enforced by using regularisation matrices D and F that extract the
second derivative, i.e. they have the template (1 − 2 1) along the diagonal.
A typical result for a rank-1 (k = 1) approximation is depicted in Figure 1, and
compared to the standard SVD solution. This illustrative example is available
in [17].

5 Conclusions and Future Research

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)
are important matrix factorisation techniques that underpin numerous applica-
tions. However, disturbances in the input (noise, outliers or missing values) have
a significant effect on the outcome. We investigated regularisation in two different
but related versions of the factorisation, and detailed the solution algorithms.
An important topic for further research would be to find ways in which the
gradient descent procedure in Algorithms 1 and 2 can be accelerated by taking
advantage of the fact that the functional is very smooth and locally approxi-
mately quadratic. In addition, it would be useful to derive some estimates for
appropriate values for the weights λ and µ in terms of the noise characteristics
of the underlying signal. Finally, although the P matrix in Algorithm 2 has unit-
length columns, they are not necessarily orthogonal (PTP = I) as is the case
in standard SVD. In fact, numerical experiments seem to indicate that such a
constraint is not compatible with minimisation of the functional. This requires
further theoretical elucidation.

References

1. Davenport, Mark A. and Romberg, Justin, An Overview of Low-Rank Matrix Re-
covery From Incomplete Observations, IEEE J. Selected Topics in Signal Proc., vol
10, pp. 608–22 (2016)
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5. Brooks, J Paul and Dulá, José H and Boone, Edward L, A pure L1-norm principal
component analysis, Computational statistics & data analysis, volume 61, pp. 83–98
(2013)

6. Kwak, Nojun, Principal component analysis by L {p}-norm maximization, IEEE
Transactions on Cybernetics, volume 44, pp. 594–609 (2013)

7. Candès, Emmanuel J and Li, Xiaodong and Ma, Yi and Wright, John, Robust
principal component analysis?, Journal of the ACM (JACM), =volume 58, pp. 1–37
(2011)

8. He, Jinrong and Bi, Yingzhou and Liu, Bin and Zeng, Zhigao, Graph-dual Lapla-
cian PCA, J. Ambient Intelligence and Humanized Computing, vol 10, pp. 3249–62
(2019)

9. Shahid, Nauman and Kalofolias, Vassilis and Bresson, Xavier and Bronstein,
Michael and Vandergheynst, Pierre, Robust principal component analysis on graphs,
Proceedings of the IEEE International Conference on Computer Vision, pp. 2812–
2820 (2015)

10. Zhou, Zihan and Li, Xiaodong and Wright, John and Candes, Emmanuel and
Ma, Yi, Stable principal component pursuit, IEEE Int. Symposium on Information
Theory, pp. 1518–22 (2010)

11. Shen, Haipeng and Huang, Jianhua Z, Sparse principal component analysis via
regularized low rank matrix approximation, Journal of multivariate analysis, vol 99,
pp. 1015–34 (2008)

12. Dumitrescu, Bogdan and Irofti, Paul, Regularized k-svd, IEEE Signal Processing
Letters, volume 24, pp. 309–313 (2017)

13. Jin, Taisong and Yu, Jun and You, Jane and Zeng, Kun and Li, Cuihua and
Yu, Zhengtao, Low-rank matrix factorization with multiple hypergraph regularizer,
Pattern Recognition, volume 48, pp. 1011–1022 (2015)

14. Shahid, Nauman and Perraudin, Nathanael and Kalofolias, Vassilis and Puy, Gilles
and Vandergheynst, Pierre, Fast robust PCA on graphs, IEEE Journal of Selected
Topics in Signal Processing, volume 10, pp. 740–756 (2016)

15. Strang, Gilbert, Introduction to linear algebra, Wellesley-Cambridge Press Welles-
ley, MA (1993)

16. Golub, Gene H and Van Loan, Charles F, Matrix computations, JHU press (2013)
17. Abdolrahman Khoshrou, Eric J. Pauwels, code: numerical experiments, url

: https://www.dropbox.com/sh/9k0x1q3hltszxh8/AAD0PChQpg6aNCAxzgK0r1p1a?

dl=0 (2021)
18. Gavish, Matan and Donoho, David L, The optimal hard threshold for singular

values is 4/
√

3, IEEE Transactions on Information Theory, volume 60, pp. 5040–
5053 (2014)

19. Iserles, Arieh and Munthe-Kaas, Hans Z and Nørsett, Syvert P and Zanna, An-
tonella, Lie-group methods, Acta numerica, volume 9, pp. 215–365 (2000)

Regular papers BNAIC/BeneLearn 2021

145



14 A. Khoshrou et al.

Fig. 1. Reconstruction of noisy matrix based on RSVD. Top left: noise-less rank-
1 matrix uvT , (image) , top right: noisy input image uvT + τZ (high noise level),
Middle left: standard rank-1 SVD reconstruction, middle right: RSVD reconstruction
(D and F are 2nd deriv matrices. weight parameters λ = µ = 1.5). Bottom: comparison
of standard SVD U(:, 1) (red) versus P (blue), and V (:, 1) (red, left) vs. Q (blue, right).
The actual u and v for noiseless input signal in green.
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Abstract. To be able to predict a molecular graph structure (W ) given
a 2D image of a chemical compound (U) is a challenging problem in
machine learning. We are interested to learn f : U → W where we
have a fully mediating representation V such that f factors into U →
V → W . However, observing V requires detailed and expensive labels.
We propose graph aligning approach that generates rich or detailed
labels given normal labels W . In this paper we investigate the scenario
of domain adaptation from the source domain where we have access to
the expensive labels V to the target domain where only normal labels W
are available. Focusing on the problem of predicting chemical compound
graphs from 2D images the fully mediating layer is represented using
the planar embedding of the chemical graph structure we are predicting.
The empirical results show that, using only 4000 data points, we obtain
up to 4x improvement of performance after domain adaptation to target
domain compared to pretrained model only on the source domain. After
domain adaptation, the model is even able to detect atom types that were
never observed in the original source domain. Finally, on the Maybridge
data set the proposed self-labeling approach reached higher performance
than the current state of the art. 1

1 Introduction

Chemical compounds are often represented by a graph representation of their
chemical structure. These graph representations are actually a simplification of
the chemical compound as it loses some information about the electronic struc-
ture of the molecule. However, in the field of drug discovery this graph represen-
tation is often used as valuable input for machine learning pipelines. Examples
of formats describing the graph representation of a chemical compounds are
SMILES [36] and MOLfile [5]. However, especially in patents but also in scien-
tific literature the chemical compound is only described using an image format.
Automatically recognizing the chemical structures on these images is valuable

1 Code available: https://github.com/biolearning-stadius/chemgrapher-self-rich-
labeling .
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for machine learning approaches to be able to process these sources of chemical
compounds.

Learning to recognize a graph structure from 2D images of chemical com-
pounds seems like a fairly simple task for humans. However, for machine learning
models it seems that generalization to new domains of images (e.g. different line
width, font face) [21] is not happening naturally. When we humans see an image
with a graph structure that we do not recognize completely, we start reasoning
and analyzing the part of the graph we are not sure about. We humans auto-
matically align the graph part we recognized on the image with the complete
graph including the unrecognized part of the graph. One way to finish our graph
prediction is to guess the unknown nodes or edges after which we check for cor-
rectness. If the graph prediction was correct we know that this guess was most
probably correct and we could try to apply this new knowledge to other images.

To be able to do this reasoning on for example images using graph alignment
in machine learning we need a detailed (on pixel level) representation. Therefore
we assume a fully mediated model [2] where we are interested to learn f : U →
W having a fully mediating representation V such that f factors into U →
V → W , which is visualized in Figure 1. Thus, in order to predict W from
U we first need to pass the fully mediating layer, no side paths are allowed.
When a fully mediating representation is used some assumptions [23, 25, 26] are
made about the mechanism of the underlying process. This mechanistic prior
restricts the space of possible models to all the models that follow the mechanistic
assumption. We hypothesize that the use of this richer representation (fully
mediating representation) enables for a better generalization. Additionally, as
an interesting side effect, we observe that the mechanistic assumption allows for
a better interpretability of the underlying model.

In the case of optical graph recognition of chemical compounds from 2D im-
ages, the fully mediating layer is represented using the planar embedding of the
chemical graph structure we are predicting. In order to learn the planar embed-
ding of a chemical graph structure, we start from a model described in Oldenhof
et al. [21] which has two steps: an image segmentation and an image classification
step. To train this model, pixel-wise annotations are needed for every image
describing precise locations of nodes and edges in the graph (planar embedding)
which we will call rich or detailed labels in our setup (V ). However, these rich
labels are not always available and implies a manual process where intermediate
organic chemistry knowledge is required. In the more common cases, data sets
only contain 2D images of chemical compounds (U in Figure 1) and on the other
side the final output in SMILES[36] or MOLfile[5] format (W in Figure 1). These
formats describe the graph structure of the chemical compound but not the par-
ticular planar embedding of this graph structure (V in Figure 1) in the context
of the image. To solve this problem, we propose a graph aligning approach
that generates rich labels V given normal labels W . This method would enable
learning of the fully mediating representations given only normal labels W . In
the Figures 7, 8 and 9 in Appendix A.4 examples of U , V and W are shown.
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In section 4 we empirically evaluate our domain adaption method. We observe
that compared to the non-adapted model we drastically increase accuracy even
on atoms and bond that were not present in source domain.

Key contributions: (1) we propose a novel rich labeling framework by intro-
ducing the use of a fully mediating layer, (2) in the case of graph recognition
we show that the rich labeling can be performed by graph alignment, (3) we
show it enables data efficient domain adaption and (4) reaches state-of-the-art
performance on Maybridge compound data set.

W

V

U

GRAPH

FULLY MEDIATING LAYER (planar embedding)

Fig. 1: We are interested to learn f : U → W having a fully mediating repre-
sentation V such that f factors into U → V → W . In the case of optical graph
recognition of chemical compounds from 2D images, the fully mediating layer is
represented using the planar embedding of the chemical graph structure we are
predicting.

2 Related Work

Structural scene representation and visual reasoning. Our work has sim-
ilarities with research done on structural scene representation and visual rea-
soning [11, 19, 41]. The disentanglement of the reasoning and the representation
described in Yi et al. [41] enables the model to solve complex reasoning tasks.
In our work the complex reasoning task would be graph alignment which is
disentangled from the optical graph recognition.

Slot Attention. Our method is related with a method called slot atten-
tion [17] where the Hungarian algorithm [16] is incorporated in a model for
object detection. This Hungarian algorithm is limited to only sets while in our
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case we need to map more complicated structures composed of different atoms
connected with different bond for which we need graph alignment in order to
adapt iteratively a model to a new target domain.

Image to Graph methods. In the field of computational chemistry there
are several tools available [7, 18, 20–22, 33, 34] to convert an 2D image of a
chemical compound to a SMILES [36] format or similar which in fact represents
a graph structure of a chemical compound. Also for road extraction from satellite
images there are several methods available [3, 8, 12]

Graph Matching. In computer vision graph alignment is usually known
as graph matching. It can be useful to (1) locate objects from features [10], (2)
to transfer knowledge [42] and (3) to find matches in database [13]. Also for
comparing social networks graph matching can be very important to allow to
uncover identities of communities [14]. In chemistry, comparing graphs can be
helpful to identify identical chemicals, substructures or maximum common part
of chemicals. In the work of Willett et al. [37] an overview is presented about
the use of similarity searches in chemical databases.

Domain Adaptation In the work of Kouw and Loog [15] a comprehensive
overview is given for domain adaptation methods when labels for the target
domain are not available. Our method has some similarities with semi-supervised
iterative self-labeling [4, 27] approaches where predictions on a data set of a new
domain of a pre-trained model are used as pseudo-labels and used to retrain the
model again iteratively until convergence. In the work of Das and Lee [6] even a
graph matching loss is first used to learn a domain invariant representation for
source and target domain after which the use of pseudo-labels show a significant
improvement of performance. In our work the graph matching is used for a
different purpose as opposed to the the work of Das and Lee [6]. Graph matching
is used in our work to generate rich labels given the ’normal’ labels we have
from the target domain. This is where our method also differs from other semi-
supervised methods for domain adaptation when no target label information at
all is assumed and no distinction is made between rich and ’normal’ labels.

Weak Supervision In our setup we use the term ’rich’ or ’detailed’ labels
to differentiate from the normal labels. We would like to contrast these ’rich’
labels with the term ’strong labels’ used in the setting of weak supervision. For
example, in the machine learning task of image segmentation pixel-wise labels
are needed which are expensive and often not readily available. Therefore, weak
supervision methods have been developed to address this issue. Weak supervision
can be used to help image segmentation by only using image labels (no pixel-
wise labels) [35, 38]. A more general framework was presented in Xu et al. [39]
to be able to learn semantic segmentation from a variety of types of weak labels
(e.g., image tags, bounding boxes and partial labels). Another approach is to
augment the strong labeled data set using weakly labeled data [40]. However,
the main difference with all of the methods mentioned above is that our method
does not work on weak labels because our end goal is different. The main goal
of our machine learning approach is to help to predict ’normal’ labels by using
rich labels.
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Front Door Criterion Our framework exploits fully mediating variables.
A variable is called a mediator when it meets several conditions regarding the
relationship with other variables as described in Baron and Kenny [2]. Another
perspective of the mediating relationship is given by Pearl [23, 25], Pearl et al.
[26] who introduce the front door criterion where the mediator actually enables
to estimate unbiased causal effects. A more formal interpretation of these causal
effects is presented in Pearl [24]. In order to use a mediating model the mediator
needs to be identified or assumed first, which is not always straightforward. In
our setup (see Figure 1), the assumption means that the relation between input
u ∈ U and planar embedding v ∈ V is a map and as well as the relation between
v and the final graph w ∈ W . Furthermore, we assume no side paths from u to
w.

3 Self-Labeling of Fully Mediating Representations

Our goal is to learn f : U →W assuming a fully mediating representation V such
that f factors into U → V → W . In order to learn the first part of f (U → V )
we need labels for V which are expensive in the case of optical graph recognition
of chemical compounds from 2D images where V is represented as the planar
embedding of the chemical graph structure. Our method tries to address this
issue by iteratively updating the model using self-labeled labels for V by graph
aligning the graph predictions using the model from previous iteration with the
given true graphs (labels W ).

3.1 Graph Alignment

A possible and often used closeness score to compare graphs is the graph edit
distance [29]: given 2 graphs, not necessarily of equal size and a set of oper-
ations, that are O = {vertex/edge/label insertion/deletion/substitution}, and
a cost function c : O 7→ R, so we find the cheapest sequence of operations that
convert G1 into G2, which translates to an optimization problem:

min
{ei}ki=1∈Ok:G2=(ek◦...◦e1)×G1

k∑

i=1

c(ek),

Although there are some efficient algorithms available [30–32] in order to
compute the graph edit distance, it remains a computational hard problem.

Closely related with the concept of graph edit distance we introduce for our
method the map E(v) which gives the allowed operations on a given graph v
given a specific constraint. This constraint is a parameter which can be tuned
for a specific data set or problem domain. Examples of such constraints are
maximum 2 node substitutions or maximum 1 edge substitution as shown in
Figure 2.
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(a) Example of 2 chemical compounds with
graph edit distance of 2 node substitutions.

(b) Example of 2 chemical compound with
graph edit distance of 1 edge substitution.

Fig. 2: Two examples of chemical compounds graphs with their graph edit dis-
tance. The nodes of the graphs are first aligned before computing the graph
edit distance. The node alignments are marked with the gray dashed arrows.
The differences after graph alignment are highlighted and the substitutions are
marked with the red dashed arrows.

3.2 Method

Let us now say we have a trained neural network model for f : U → V , a
projection (not trainable) φ : V → W , a pair (u,w) of input u ∈ U and normal
label w ∈W and we would like to infer rich label v ∈ V from the given datapoint
(u,w). In the setting of chemical structure recognition the projection φ : V →W
is straightforward (U implies W ) and a few examples are shown in Appendix
A.4. We also assume the map E(v) which gives all allowed graph edits for the
graph v. Let v̂ = f(u) be the predicted rich label from the model, then we define
a term correcting edit as

Definition 1. Edit e is a correcting edit if when e is applied to the prediction
v̂ and then projected to the W space the resulting graph is the true graph w (up
to isomorphism), i.e.,

φ(e× v̂) ∼= w,

where × is the application of edit to the planar embedded graph v̂.

Notice that for a given v̂ and w there can be multiple edits that are cor-
recting edits which create a dilemma of choosing the best correcting edit.
Therefore, we make the following assumption:

Assumption 1 The probability that a correcting edit e results in the true un-
derlying rich label v is monotonely decreasing with respect to the size of edit e
( i.e., |e|).

In other words, if we take two correcting edits e1, e2 then we assume the
following:

|e1|< |e2| ⇒ P (e1 × v̂ = v) > P (e2 × v̂ = v)
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The assumption is based on the fact the probability of any individual mistake
in a graph by the model is low. This is because if the probability of a mistake
would be high the model would not be able to produce a graph with a total of
1-2 edit distance. Thus, the graphs with few edits have low mistake probability
and for them the Assumption 1 is valid.

Then we use the following optimisation problem to find the best correcting
edit e to convert v̂ to rich label v for input u:

E∗ = arg min
e∈E(v̂)

|e| such that φ(e× v̂) ∼= w,

where arg min returns the set of minimal solutions or the empty set if no solutions
exist.

There are three possible outcomes of last mentioned optimization problem:
(1) no solution is found, (2) a single e is found or (3) multiple equal size e are
found. In the optimal case (2) a single e is found so we can label a new v for our
given datapoint (u, v). In the case of (1) when no solution is found, no new v is
labeled. In the last case (3) when multiple equal size solutions are found there are
four options we could do. First (3.1), we could discard the solutions and not label
u. Second (3.2), we could take e that results in the highest likelihood for e × v̂
based on the model f . Third (3.3), a solution e is picked uniformly randomly in
order to generate the rich label label v. Fourth (3.4), pick e randomly according
to the likelihood of e× v̂ in the model f .

This process is repeated for every datapoint (u,w) we have available from the
target domain. Thus, several new labels v are found for different datapoints. Once
all datapoints are processed these new rich labeled datapoints are added to the
training data set after upsampling and our model can be retrained. Upsampling
is recommended especially in the case when a low number of normal labelled
data points are available compared to the original training dataset. In section
4 different upsampling strategies will be evaluated. After this, a new iteration
begins and all available datapoints (u, v) are again processed to find even more
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new rich labels v and we can retrain the model again. This iterative process can
be repeated until convergence (see Algorithm 1).

Algorithm 1: Iterative algorithm for Self-Labeling of Fully Mediating
Representations

Data:
Target domain data L = {(uti, wt

i)}ni=1

Source domain data S = {(usj , vsj )}mj=1 (rich labels)
Result: f : U → V
repeat

// Inferring rich labels for target data

T = [];
for (u,w) in L do

v̂ ← f(u);
E∗ ← arg min

e∈E(v̂)

|e| such that φ(e× v̂) ∼= w;

if E∗ is a not empty then
e← choose(E∗);
v ← e× v̂;
appendRichLabels(T, (u, v));

end

end
T← UpSample(T);
f ← RetrainModel(S,T);

until Converged(f);

4 Experiments

For the experiments we focus on the problem of predicting chemical compound
graphs from 2D images where the fully mediating layer is represented using the
planar embedding of the chemical graph structure we are predicting. In order to
measure empirically the performance of our method of self-labeling fully medi-
ating representations we perform three steps. (1) We pre-train (training details
in Appendix A.2) a ChemGrapher [21] model (summarized in Appendix A.1)
wherefore, corresponding to the pipeline described in the work of Oldenhof et al.
[21], we sample around 130K chemical compounds from ChEMBL [9] in SMILES
format and artificially generate, using an RDKit fork [1], a rich labeled dataset
with 2D images of chemical compounds. (2) Secondly, we test the baseline per-
formance of this pre-trained model on two different test sets from two different
target domains than the source domain of the pre-trained model. (3) Thirdly,
we apply our domain adaptation method and measure performance again on the
two target domains.

For the first target domain we take a data set from the work from Staker et al.
[33], which we will call Indigo data set. For the second target domain we take
the data set which was published by the developers of MolRec [18] which we will
call the Maybridge data set. Both data sets provide 2D images from a chemical
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compound together with corresponding identifier of a the chemical compound
like SMILES [36] or MOLfile [5]. These identifiers describe the graph structure
of the chemical compound however they do not provide the planar embedding of
the graph (e.g. no information about the pixel coordinates of every node or edge
in the image). Visually we can also observe that the Maybridge dataset contains
images where the style is closer related to the training images style used for the
pre-trained model compared with the images in Indigo dataset where the style
of images is quite different. Therefore we expect a significant worse starting
performance of the pre-trained model on the Indigo dataset compared with the
Maybridge dataset.

Dataset Orig. Size.
# samples
to be considered
for self-rich-labeling

# Test samples

Indigo 50,000 4,000 1,000
Maybridge 5,740 4,000 1,000

Table 1: Summary of datasets from the 2 different target domains

From both data sets we randomly sample 5,000 datapoints which are split in
4,000 datapoints used for our method and 1,000 datapoints to measure perfor-
mance on (summarized in Table 1). When processing the 4,000 datapoints our
method will be able to generate rich labels for the datapoints where the graph
prediction could be graph aligned with the true graph. As the number of rich
labeled datapoints this way is maximum 4,000 we will upsample them (x number
of copies) before adding them to the training data set. In our experiments we
differentiate between two strategies of upsampling. One way is to upsample all
the rich labeled data points equally from the target domain to a fixed number,
for example 20,000. Another way is to take into account, while upsampling, the
number of atom types that are rich labeled and make sure that the rare atom
types are upsampled to a specific threshold.

One important tuning parameter in our method is the number of allowed op-
erations. For our experiments we will try two different values for this parameter.
Firstly, we set this parameter to zero meaning we do not allow any operation
for graph alignment. We will call this exact graph alignment. Secondly, we
allow a maximum of 2 node substitutions or a maximum of 1 edge substitution
for graph alignment, which we will call correcting graph alignment.

In total we will measure the performance of 4 variations of our method (vary-
ing allowed operations and upsampling strategy) on both data sets. The perfor-
mance we will measure is the accuracy of U → W as we only have access to
the normal labels of target domain. However, we assume that if the final graph
prediction is correct (W ) it is highly likely that also the planar embedding (V )
is correct. As our method is an iterative method we will report results for ev-
ery iteration starting with the initial performance before applying our method.
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The results of these experiments are summarized in Figure 3. We observe that
all variations of our method are able to improve performance on target domain
compared with initial pre-trained model on source domain. On the Indigo data
set the best variation is even able to obtain 4x improvement. The best variation
of our method on the Indigo data set was using correcting graph alignment
without upsampling of rare atom types while on the Maybridge data set the best
variation was also using correcting graph alignment but with upsampling of
rare atom types. Some of the underperforming variations of our method were
stopped early in order to save computational resources.

(a) Results on Indigo data set (b) Results on Maybridge data set

Fig. 3: Comparison performance of methods on Indigo and Maybridge data set.
Self-labeling by correcting graph alignment is clearly better performing than
when exact graph alignment is used. Sometimes upsampling of rare atoms
to a specific threshold (note postfix rare) before retraining of model can boost
performance. Performance on target domain at iteration 0 is the performance of
pre-trained (on source domain) ChemGrapher before domain adaptation.

We choose the best variation of our method for every data set and analyze
the performance on different atom and bond types per iteration. We measure
for every atom or bond type the percentage of graphs predicted correctly from
the total number of graphs containing that specific atom or bond type per iter-
ation, which is visualized in Figure 4. Most of the performances of the different
atom and bond types increase per iteration for both data sets even when initial
performance was 0%.

The atom types where initial performance was 0% are atom types never seen
before in source domain. For example in the Indigo data set there are compounds
with atom labels like R1, R2 and R3 representing R-groups which were not
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(a) Results on Indigo data set (b) Results on Maybridge dataset

Fig. 4: We take the best performing methods and analyze their performance on
different atom and bond types per iteration. We observe that for some atom types
the method is able to increase performance even though initial performance was
0%. This is the case in for example R-groups in Indigo data set or superatom
NO2 in Maybridge data set.

present in the original data set from the source domain. For illustration purposes
we visualize in Figure 5 the segmentation step which forms part of the graph
recognition model used in this study. In the initial segmentation from the pre-
trained model we can clearly see that the model confuses the R-group atoms with
the oxygen atom type and the hydrogen atom type. After applying our method
the model is able to make correct predictions. In the same Figure 5 we also
observe that in the Indigo data set carbon sometimes also is represented using
a C which was never the case in the original data set. The initial segmentation
mainly confuses these carbon atom types with the oxygen atom type. After
applying our method the model again makes the correct prediction.

Similarly, the superatom NO2 present in the Maybridge data set was never
observed in the source domain. However, again after applying our method the
model is able to detect superatom NO2 correctly. We illustrate the segmentation
step of the graph recognition model in Figure 6 for an example image taken
from the Maybridge data set. We observe that in the initial segmentation the
pre-trained model confuses NO2 with nitrogen atom and also oxygen atom which
chemically is not the correct prediction. In the final segmentation after applying
two iterations of our method the newly trained model is able to make the correct
prediction.

Additionally Figure 5 and Figure 6 also show an interesting side effect when
using a fully mediating representation. Consider a classical model where input
is an image and output is SMILES. When the output prediction of the model
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(a) Input image (b) Initial Segmentation (c) Final Segmentation

Fig. 5: Comparison initial segmentation with final segmentation after applying
self-labeling of fully mediating representations for Indigo data set. We observe
that the initial model is making mistakes on the R-group atom type and carbon
represented with a ’C’. In the final model we see that now predictions are all
correct.

(a) Input image (b) Initial Segmentation (c) Final Segmentation

Fig. 6: Comparison initial segmentation with final segmentation after applying
self-labeling of fully mediating representations for Maybridge data set. The initial
model predicts the superatom NO2 as two separate atoms O and N which is
chemically not correct. The final model makes the correct prediction.
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is incorrect it is not clear in which part of the image the mistake was made but
in the case of having available the planar embedding (mediation representation)
the expert can see where and how the mistakes happened. This makes the model
more interpretable.

Finally we compare in Table 2 the resulting best performance of the model
after applying our method on the Maybridge data set with several other meth-
ods available. We observe that our approach enables to reach higher performance
than the current state of the art. For the freely available tools OSRA [7] and
Molvec [28] we measured the performance using the same randomly 1000 data-
points from the Maybridge dataset. For MolRec [18] this was not possible but
we report for information the performance on the total Maybride dataset as re-
ported in the work of M. Sadawi et al. [18]. Finally for ChemGrapher [21] we
measured performance using three different training datasets. Firstly, we mea-
sure the performance when we only have access to the source domain (generated
using RDKit [1]). Secondly, we measure performance using the same training
dataset from source domain but adding upsampled (100 copies) 20 handpicked
manually rich labeled datapoints from the target Maybridge domain (as was
done in the work of Oldenhof et al. [21]). Finally, instead of manually rich label-
ing datapoints, we process the 4,000 datapoints from Maybridge target domain
where our method will be able to generate rich labels for the datapoints where
the graph prediction could be graph aligned with the true graph, after which
these rich labeled datapoints are added to the training dataset.

Method Training Dataset Accuracy
Source domain Target domain

OSRA (v2.1.0) [7] N/A N/A 80.4%
Molvec (v0.9.8) [28] N/A N/A 78.4%
ChemGrapher [21] 130K images N/A 72.6%
ChemGrapher [21]
(using manually rich-
labeling)

130K images 40 manually
handpicked
and rich-
labeled images
(upsampled)

81.6%

Proposed domain adaptation 130K images 4,000 non-rich
labeled

86.3%

MolRec [18] N/A N/A 83.8%from [18]

Table 2: Comparison performance on Maybridge data set. We observe that our
approach enables to reach higher performance than the current state of the
art. Most of the tools available for chemical graph recognition are rule based
approaches for which a training dataset is not relevant.
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5 Conclusion

Machine learning models often are faced with the problem to not generalize
well to a new domain. This is also the case for chemical graph recognition from
images. We have shown that fully mediating layers can be exploited in machine
learning models to adapt in data efficient way to new domains, without the
need of rich expensive labels as they can be generated using our method. In
the case of chemical graph recognition we empirically show that our method
is able to adapt to a new domain of chemical compounds, with previously
unobserved atom or bond types. Our rich-labeling method required only 4,000
normal labeled points in the target domain to go from 10% accuracy to 39%,
i.e., almost 4x improvement in the difficult Indigo data set. Using more normal
labeled points and more iterations would most probably give a higher resulting
accuracy. Furthermore, on Maybridge data set, again using only 4,000 images,
we reached high accuracy obtaining better performance than the current state
of the art.

Effective tools of chemical structure recognition from images enable access
to the knowledge in chemical literature which is currently only available through
expensive chemistry databases. We believe it as an important step towards open
pharmaceutical science.

It would be interesting to apply this method to other contexts where the
output of a machine learning model could be represented with a graph structure.
For example, the case of structural scene representation, where a scene could be
represented using a graph where every vertex could represent an object and
every edge would represent the relations between the objects (e.g. side-by-side,
on-top-of, under). This structural scene could be in form of 2D images or it could
be even generalized to 3D models, where point clouds are available and one is
interested to transform them into 3D graphs of connected parts.
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A Appendix

A.1 Architecture Summary of Graph Recognition tool

Every iteration of our method we need to train the graph recognition tool de-
scribed in Oldenhof et al. [21]. This graph recognition tool is built using a com-
bination of different convolutional neural networks. The first part is a semantic
segmentation network to pixel-wise predict every atom, bond and charge type.
The second part consists of three classification networks to classify every seg-
ment predicted by the semantic segmentation network. After the first step of the
ChemGrapher model [21], the segmentation network, the predicted segments are
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processed so that for every segment the center of mass is calculated. These cen-
ters of mass would be the atom/bond/charge candidates to be classified by the
classification networks.

Table 3: Summary of the layers of the segmentation network

Layer Kernel Nonlinearity Padding Dilation

conv1 3x3 ReLU 1 no dilation
conv2 3x3 ReLU 2 2
conv3 3x3 ReLU 4 4
conv4 3x3 ReLU 8 8
conv5 3x3 ReLU 8 8
conv6 3x3 ReLU 4 4
conv7 3x3 ReLU 2 2
conv8 3x3 ReLU 1 no dilation
last 1x1 none no padding no dilation

Table 4: Different layers in the classification network

Layer Kernel Nonlinearity Padding Dilation

depthconv1 3x3 ReLU 1 no dilation
conv2 3x3 ReLU 2 2
conv3 3x3 ReLU 4 4
conv4 3x3 ReLU 8 8
conv5 3x3 ReLU 1 no dilation
global maxpool input size None no padding no dilation
last 1x1 None no padding no dilation

A.2 Training details for graph recognition tool

Training details of the graph recognition tool for every iteration of our method
are summarized in Table 5. The input images used for training of the different
networks are a mix if images from source domain and upsampled rich labeled
images from target domain. For pretraining of the ChemGrapher model only im-
ages from source domain were used. The training was performed using a compute
node with 2 NVIDIA v100 GPUs with 32GB of memory.
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Table 5: Training details for different networks

Network #input images #epochs walltime minibatch size learning rate
source
domain

target domain
(upsampled)

Segm. network 114K 20K 5 24h 8 0.001
Atom Clas. 12.4K 2.6K 2 8h 16 0.001

Charge Clas. 12.4K 2.6K 2 8h 16 0.001
Bond Clas. 4.4K 2.1K 2 4h 64 0.001

A.3 Computational cost per rich-labeling iteration

In the following Table 6 the computational cost for 1 rich-labeling iteration is
summarized including all steps: (re)training, predicting and graph aligning rich-
labeling.

Table 6: Computational costs per rich-labeling iteration

Training Predict Graph Aligning

Hardware 2 NVIDIA v100 GPUs 1 NVIDIA v100 GPU Intel Xeon Gold 6240 2.6Ghz

Dataset Source+Target domain Indigo/Maybride Indigo Maybridge

#datapoints see Table 5 4,000 4,000 4,000

Walltime ∼44h (details Table 5) ∼2h ∼40min ∼3min

A.4 Examples of cases where graph alignment fails

We would like to showcase some examples where the constrained (max 2 node
substitutions or max 1 edge substitution) graph alignment fails. At the same
time it is important to note that our proposed domain adaptation method is an
iterative method, so if a graph alignment fails in a previous iteration it could
succeed in a next one when the new model makes a new graph prediction closer
to the true graph.
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(a) Input Image(U)

(b) Planar embedding prediction (V ′)

(c) Graph Prediction (W ′) (d) True Graph (W )

Fig. 7: Example 1: It is clear that to align the graph prediction W ′ with the
true graph W more than 2 node substitutions are needed. So no rich labeling is
possible for this example in this iteration.
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(a) Input Image(U)
(b) Planar embedding prediction (V ′)

(c) Graph Prediction (W ′)
(d) True Graph (W )

Fig. 8: Example 2: It is clear that alignment of the graph prediction W ′ with the
true graph W can not be solved with only substitutions.
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(a) Input Image(U) (b) Planar embedding prediction (V ′)

(c) Graph Prediction (W ′)

(d) True Graph (W )

Fig. 9: Example 3: It is clear that alignment of the graph prediction W ′ with the
true graph W can not be solved with only substitutions.
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Abstract. Dimensionality reduction and clustering techniques are fre-
quently used to analyze complex data sets, but their results are often
not easy to interpret. We consider how to support users in interpret-
ing apparent cluster structure on scatter plots where the axes are not
directly interpretable, such as when the data is projected onto a two-
dimensional space using a dimensionality-reduction method. Specifically,
we propose a new method to compute an interpretable clustering auto-
matically, where the explanation is in the original high-dimensional space
and the clustering is coherent in the low-dimensional projection. It pro-
vides a tunable balance between the complexity and the amount of in-
formation provided, through the use of information theory. We study the
computational complexity of this problem and introduce restrictions on
the search space of solutions to arrive at an efficient, tunable, greedy op-
timization algorithm. This algorithm is furthermore implemented in an
interactive tool called ExClus. Experiments on several data sets highlight
that ExClus can provide informative and easy-to-understand patterns,
and they expose where the algorithm is efficient and where there is room
for improvement considering tunability and scalability.

Keywords: Dimensionality reduction · clustering · explainable AI · ex-
ploratory data analysis · hierarchical clustering · t-SNE.

1 Introduction

Artificial intelligence methods exceed human performance on many tasks and
thus have found widespread use, yet the resulting models are often black boxes.
There is a growing demand to create scalable human-friendly implementations.
The creation of explainable white-box artificial intelligence methods is necessary
to have users trust, manage, and use these in making crucial decisions [1, 8].

This need is also present in the area of clustering and dimensionality reduc-
tion methods for high-dimensional data. Clustering and dimensionality reduc-
tion methods are frequently employed to get a grasp of the high-level structure

⋆ The research leading to these results has received funding from the ERC under
the EU’s Seventh Framework Programme (FP7/2007-2013) (ERC Grant Agreement
no. 615517) and under the EU’s Horizon 2020 research and innovation programme
(ERC Grant Agreement no. 963924), from the Flemish Government under the “On-
derzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, and from
the FWO (project no. G091017N, G0F9816N, 3G042220)
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of data. Especially non-linear dimensionality reduction methods such as Isomap
[16], LLE [12], t-SNE [10], and UMAP [11] manage to effectively map data onto a
low-dimensional space, retaining the relative distances from the high-dimensional
space, but this low-dimensional space is often difficult to understand [14].

Related work. Possible solutions in several directions have been studied: we
may explore the 2D projection by letting the data glyphs correspond to specific
attributes (e.g., color the points using the values for a specific attribute) or draw
attribute isolines (as in DimReader [7]). Such solutions are limited to a single or
very few attributes at a time and it is not obvious how to make them practical
for data whose original dimensionality is large (e.g., from 20 attributes or more).

There also exist approaches that focus on data points rather than attributes:
‘Forward projections’ show how points would move in the low-dimensional em-
bedding if their attributes would change, and we may also do the inverse exercise
of ‘backward projection’, i.e., how the attributes would need to change to move
a point in a certain direction (which does not have a unique solution, so an in-
ductive bias is necessary to resolve this) [3]. However, it is not practical to learn
the structure of a large data set by exploring each point individually. ‘Probing
clusters’ [15] means to explore the feature values for manually selected sets of
points that for example appear to form a cluster. This may lead to insights on
the high-level structure. Yet, for high-dimensional data we are still left with the
problem that this does not scale to a large number of attributes.

Most similar to our work is the Clustrophile 2 tool [4], which lets users explore
a diverse set of pre-generated clusterings by means of a scatter plot showing a
low-dimensional projection, as well as an attribute similarity matrix and/or a
decision tree for the cluster assignment. However, the decision tree does not
explicitly show how each cluster stands out, while the similarity matrix is only
a visual aid that puts the burden of the comparison fully on the user, who are
likely quickly overwhelmed for data with a large number of attributes.

Contributions. We propose in this paper to take a very different approach:
to compute an interpretable clustering that facilitates the analysis of a scatter
plot of dimensionality-reduced data. We do this in several steps: (1) first we
use information theory to quantify the informativeness of the mean and vari-
ance statistics for a given subset of points and given subset of attributes. (2) To
control the trade-off between the complexity of the clustering and the amount
of information gained, we introduce a simple notion of complexity for such a
‘bicluster pattern’, which gives us control of how complicated the explanations
for the clusters may be. (3) Integrating this with an approach to cluster the
data on the low-dimensional representation, we obtain coherent clusters on the
dimensionality-reduced scatter plot along with a subset of attributes that are
informative (in the information-theoric sense), to explain this cluster. (4) Using
this, we attempt to automatically generate an optimal explainable clustering on
low-dimensional representations of data sets, so that users can meaningfully ex-
plore complex data with a limited time cost for interpreting apparent structure.

The contributions of this paper are as follows:
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– We define bicluster patterns, their informativeness using information theory
and a simple notion of their interpretational complexity.

– We derive an algorithm to optimally cluster a dimensionality-reduced scat-
ter plot such that the clusters are as informative as possible using a few
attributes in the high-dimensional space.

– We study the computational complexity of this problem and argue for the
use of hierarchical clustering to reduce the search space of possible solutions.

– We provide an implementation of that algorithm as well as a browser-based
tool called ExClus (see Fig. 1) that can be used to explore data in practice.

– We present experimental results on a few datasets to explore the usefulness
of the tool as well as the effect of the two hyperparameters that govern
the interpretional complexity of bicluster patterns. We present some early
feedback from users and empirically study the scalability of the method.

– We find that ExClus has great potential to further facilitate data exploration
with dimensionality-reduction methods and that the method is sufficiently
scalable to use also on large data.

The ExClus tool is freely available at https://github.com/aida-ugent/ExClus

Fig. 1: The ExClus user application. Results are generated by applying the al-
gorithm on the UCI Adult data set, an extract from the 1994 USA census [6].
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The paper is structured as follows: in Section 2 we first formalize the type of
patterns that we aim to extract and define the informativeness and descriptional
complexity of these patterns. We then introduce the optimization algorithm to
extract the patterns. In Section 4 we introduce ExClus and the user interface.
Experiments are given in Section 5 and conclusions are presented in Section 6.

2 Method

The general idea is to define the substructure that we aim to find as a pattern,
which we call a bicluster pattern. Informally, this is a subset of points and the
mean and variance statistics for a subset of the attributes. The approach then
builds upon the framework for subjective interestingness for patterns [5], which
suggests the use of information theory to quantify how much information a
user gets per time unit spent. There are three key concepts in this framework:
information content, description complexity, and subjective interestingness.

The information content expresses how much the user learns by showing them
a specific pattern. The description complexity aims to express the difficulty of
understanding the pattern, and the subjective interestingness is simply the ratio
of the two. The term ‘subjective’ explicates that how much we learn can only
be specified with respect to prior expectations over the data. In practice we will
use a prior based on the data, but it may also be chosen subjectively. Barring
issues of feasibility, the prior could reflect the actual knowledge of a user.

We discuss each of these concepts in more detail: In Section 2.1, we express
the information content of a bicluster pattern, i.e., the number of bits of infor-
mation that we learn by showing the statistics for this bicluster, in comparison
to given prior expectations. In Section 2.2, we also introduce the description
complexity that aims to capture how difficult or time consuming it is to process
the presented information, for a human end-user. In Section 2.3, we then for-
malize the explainable clustering problem: to find a set of bicluster patterns that
partition the data into clusters that are coherent with respect to a given 2D pro-
jection, such that the subjective interestingness of the clustering is maximized.

2.1 Bicluster patterns and their information content

Notation. Let X be an n × m data matrix with Xi denoting data point i ∈
{1, . . . , n} and Xij the value for the j-th attribute (j ∈ {1, . . . ,m}) of Xi. We
write t(j) ∈ {bool, real} to denote the type of attribute j.

Definition 1. A bicluster pattern P is a tuple (D,A,S) with D ⊆ {1, . . . , n}
a set of data points indices, A ⊆ {1, . . . ,m} a set of attribute indices, and the
statistics S = {SA1

, . . . ,SA|A|}, corresponding to the attributes whose indices are
in A. For boolean attributes (t(j) = bool), Sj ∈ [0, 1] is a frequency and for real-
valued attributes (t(j) = real) both a mean and standard deviation: Sj ∈ R×R+.

To express how much we learn by observing the statistics for a set of at-
tributes for a subset of the data, we first need to express what we are comparing
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against, i.e., we have to define a prior distribution for the data. We take a simple
approach here and use as prior the maximum likelihood statistics fitted on the
full data, without accounting for any co-variate structure. That is, each attribute
is assumed to be independent. Although in some context it may be preferable
to already account for co-variates between the attributes, in many cases the
independence assumption is good as it is also transparent for the user.

Similarly, the information that we obtain by observing a bicluster pattern are
the maximum likelihood statistics S for the set of points D and the attributes A.
The statistics may be used to derive a Maximum Entropy model for the data. As
the statistics are assumed independent, indeed also the Maximum Entropy model
is independent and we may write it for each attribute separately. It depends
on the attribute type, so for brevity we write this model as Mt(j)(Sj). The
Maximum Entropy model is a Gaussian distribution for real-valued attributes
and a Bernoulli distribution for boolean attributes.

The information content of a pattern P is equivalent to the Kullback-Leibler
divergence between the prior expectations and the statistics contained in P:

I(P) =
|D|∑

i=1

|A|∑

j=1

DKL

(
Mt(Aj)(SDAj

)||Mt(Aj)(SXAj
)
)
. (1)

Note that we overloaded DKL here to refer to the KL divergence, but in all other
occurrences D indeed refers to a subset of the data points included in a bicluster
pattern. The KL divergences are straightforward to compute analytically for
both the Bernoulli and Gaussian distribution.

Note that it may happen that the variance of a bicluster for a specific real-
valued attribute is zero, in which case the KL divergence will be infinite. There-
fore, we add a small value ϵ to all variance estimates. Resolving this in a more
robust manner by for example considering the precision of the real-valued num-
bers is left for future work.

2.2 Description complexity

The aim of the description complexity is to quantify how difficult it is to process
the presented information, i.e., how time consuming it is to internalize. Unfor-
tunately we have no realistic models of human cognition so we will just need to
work on assumptions. It is important to realize that our aim here is not to do
model selection in the statistical sense and we are not presenting the patterns to
another computer. The aim is simply to have a formula that is suitably parame-
terized such that we can balance the amount of information and the complexity
of the identified patterns.

In previous papers on subjective interestingness, the description complexity
was quantified as a linear function over the number of statistics that is presented
to the user. Often, this leads to a more tractable optimization problem. We
instead choose to make it explicit that providing more statistics realistically has
a superlinear effect on the amount of time to process the information. Because
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we are going to present the user not a single bicluster pattern, but a set that
partitions the data, we define the description complexity directly for a set of
bicluster patterns as α plus the total number of statistics to the power β:

C({P1, . . . ,Pk}) = α+




k∑

i=1

|APi |∑

j=1

|S
A

Pi
j

|




β

. (2)

Here |SAj
| = 1 for boolean attributes and |SAj

| = 2 for real-valued attributes.
This formula also includes two hyperparameters, α, and β, which allow for tuning
by users and enable the identification of more intuitive solutions.

2.3 Explainable clustering problem

Finally, we want to find a clustering that makes a trade-off between the total
information content and description complexity. Hence, we define the subjective
interestingness for a set of bicluster patterns as

S({P1, . . . ,Pk}) =
∑k

i=1 I(Pi)

C({P1, . . . ,Pk})
. (3)

The missing component is that we have not related these concepts yet to
the low-dimensional projection that we started out from. Let Y denote this low-
dimensional—typically 2D—projection of X. We may now define the explainable
clustering problem.

Problem 1. The explainable clustering problem is to find a set of bicluster pat-
terns {P1, . . . ,Pk} (k ≥ 1) that partition the data (i.e., they cover all data points⋃k

i=1Di = {1, . . . , n} and no data point is covered twice Di ∩Dj = ∅ ∀i ̸= j) in
a coherent manner with respect to Y and that maximize the subjective interest-
ingness S({P1, . . . ,Pk}).

Here we have not defined exactly when a partitioning may be called coherent
with respect to Y. Indeed, this may differ per usage scenario and we argue that it
is not obvious there may exist a universally applicable definition. We will argue
for a particular choice in the following section that also benefits the design of an
efficient optimization algorithm.

3 Search algorithm

We are faced with a difficult optimization problem: we want to cluster the data
in a given low-dimensional projection, in such a manner that the attribute values
are coherent and we are concurrently selecting attributes to explain the clusters.

We first considered a two-step approach; first clustering the data and then
computing the optimal explanations. Alternatively, we could derive an iterative
optimization scheme, e.g., an EM scheme switching between data point assign-
ment and the explanation attributes. However, we opt for a third solution where
we constrain the search space to make it feasible to optimize the cluster assign-
ment, number of clusters, and the attribute selection in an integrated manner.
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3.1 The ExClus algorithm

Step 1. We start by computing a hierarchical agglomerative clustering using the
Euclidean distance on the projection Y. A tested and popular method for clus-
tering data, this conveniently ensures coherence of the final clustering solution
and it constrains the search space. The resulting dendrogram will be used to
guide the full clustering, but we will not use the distances in Y to select clusters.
Step 2. Given the optimization problem, we have to consider how to cut the
dendrogram to obtain the best set of bicluster patterns. We are still faced with a
large number of possible clusterings. If the tree is sufficiently large and balanced,
the number of possible clusterings with k clusters is given the corresponding
Catalan number, which is already 1430 for k = 8, for example.

To obtain an approximate solution, we optimize the clustering by splitting
one cluster of at a time. That is, we start with everything in one cluster, then
consider all possible splits for k = 2. This can be done in time linear in the size of
the dendrogram, as indeed we may exactly split any branch off. For each possible
split, we can optimize the attributes by ranking them and greedily considering
whether we should add a boolean or a real-valued attribute (because they weigh
differently in the description complexity). We obtain indeed the optimal solution
for k = 2 given the constraints, but then we take the k = 2 solution and split
this once more in any position in the tree to obtain a solution for k = 3, which
is not guaranteed to be optimal. The procedure continues for k > 3.

This procedure could go on until the number of clusters is equal to the
number of samples. This would be time consuming and it is highly unlikely
that a solution with very large k would maximize the subjective interestingness.
Hence, we implement a time limit to ensure the runtime stays in an acceptable
range. This limit can be any value, from a few milliseconds to only stopping
when all calculations end.

3.2 Solution refinement

It is not obvious how to tune the hyperparameters, so we expect this to be done
through trial-and-error. From experiments presented in Section 5, we find they
can have a dramatic effect on the resulting solution and the differences may also
be abrupt. Restarting the algorithm from scratch is then not always desirable to
find a good solution. Hence, we also introduce a procedure to modify the current
solution given new hyperparameter values.

This modification again uses the dendrogram, but instead of starting at one
cluster, it starts from the previously obtained result. The procedure then eval-
uates both whether splitting more clusters off, as described in Section 3.1, or
merging some clusters back together that were previously split off results in a
higher subjective interestingness.

4 User application

In this section we present the user interface of ExClus, which is based on the
previously introduced formalization and algorithm. The application allows test-
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ing and intuitive usage of the presented algorithm. In the following, we highlight
different aspects of the interface and summarize user feedback.

4.1 Design choices

The interactive tool helps users to understand data sets by generating clusters
and their explanations simultaneously. Users can browse through through the
explanations at their own pace and tune the algorithm to retrieve more insights.
The application is created with Dash, a Python framework for building data
science web applications. Figure 1 shows the user interface.

Dashboard. The dashboard, situated at the top of the application, shows some
essential information on the currently presented clustering. After tuning the
hyperparameters to get different results, it also shows how these values changed.
Alone, these values do not tell much, but after tuning, it is helpful the compare
how they changed.

– # clusters: How many clusters the algorithm generated.
– # attributes: Each cluster needs a certain number of attributes as an

explanation (at least one). For example, cluster one might need only one
attribute, but cluster two might need four. This number is the sum of all
these attributes for all clusters.

– Information content: This is the entire clustering’s Information Content1.

Data Embedding. In the top left of the interface we show a scatter plot of
the low-dimensional data and display the clustering result from ExClus with
different colors. Going from multiple dimensions to only two with a non-linear
transformation, which dimensionality reduction techniques as t-SNE [10] do,
results in difficult to interpret axes, so the only thing deductible from the graph,
besides the clustering, is that points close together on the 2D plot are similar in
the high-dimensional space.

Cluster explanations. This part of the application provides the identified
explanations of why specific points form a cluster. When users select one cluster
using the drop-down menu, we show the relative size of the cluster and the
description of attributes that make this cluster distinct from the rest of the
data. We sort the attributes by decreasing information content and use different
visualizations for binary and real-valued attributes as shown in Figure 2.

For binary attributes, we illustrate the distribution of values in a stacked bar
chart. The left bar shows the distribution within the selected cluster and the
right bar the distribution of the entire data set. For real-valued attributes, we
derived the information content by fitting Gaussian distributions using mean and

1 It is a deliberate choice to show the Information Content and not the Subjective
Interestingness score, as the latter depends on the values of the hyperparameters.
It is not sensible to compare those values across different hyperparameter choices,
while the Information Content can indeed be compared.
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(a) Explanation of a binary attribute. (b) Explanation of a real-valued attribute

Fig. 2: Part of the explanation for cluster four in Figure 1.

standard deviation as parameters. To compare the selected cluster to the entire
dataset, we plot both probability density functions for the Gaussian distributions
in the prior model and the model of the cluster.

Hyperparameter tuning. Below the data visualization we display the current
parameter values that influence the number of clusters and the detailedness of
their explanations. Range sliders allow the user to change α, β, and the runtime
limit of the greedy search. A more extensive look into the effects of these param-
eters follows in Section 5. Next to the parameter sliders we provide two ways of
applying the new parameter values: refine and recalc. The refine option starts
the algorithm from the current clustering as described in Section 3.2. The recalc
option starts the algorithm from scratch. That way, users can either build on the
current clustering and understanding of the data or investigate a new approach.

5 Experiments

In this section we discuss an empirical evaluation that we conducted to test
ExClus. First we present the results from case studies on three data sets, secondly
we consider quantitatvely the effects of the hyperparameters, and finally we
discuss experiments on the scalability of the method.

5.1 Use cases

This section gives a short evaluation of the algorithm’s results to give an initial
insight into the application’s possibilities.

UCI Adult. The UCI Adult data set is an extraction from a 1994 USA census
database, and the attributes included are: age (continuous), gender (male/female),
ethnicity (white/other), education level (continuous), hours worked per week
(continuous), and income (≤50k, >50k). This experiment uses a sample of only
2500 of the nearly 32000 data points for performance reasons. An example of
the algorithm’s result is visible in Figure 1.
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Dissecting the clustering reveals that the dimensionality reduction method
mostly used three attributes to create the clusters: gender, income, and ethnicity.
However, by tuning the hyperparameters, the algorithm can split these clusters
further to reveal more details on the people included in each group or put clusters
back together to show they are part of a more general pattern. For example,
cluster two (green) contains all the white males with an income above $50k,
which is more than 30% of the data set. There is a possibility of splitting this
cluster further to distinguish between attributes such as education level or hours
worked per week by reducing β. However, this can overwhelm a user initially, so
it is better to start with few clusters and then refine them to learn more details.

Other significant sections in this clustering are cluster zero (blue), which
are the female counterparts of cluster two, and this cluster’s explanation is also
partially shown in Figure 1. The top right then contains all the high-income
white people, with the red cluster being females and the other two (black and
magenta) males, where the algorithm further separates them on high education
level (black) and average education level (magenta). This difference also reveals
that the dimensionality reduction does not reveal every pattern because there
is no such split for the females as there are not enough high-income females
included for the dimensionality reduction method to emphasize it. Finally, the
bottom right has three clusters, including only other than white ethnicities, and
the algorithm split them in almost the same manner as the white people, but
again with less detail as there are not that many of them in the data sample.

German socio-economic data. This data set includes the socio-economic in-
formation of 412 German districts [2]. There are more than thirty attributes, but
many of them are related, and overall, there are three main categories. First, the
voting record attributes contain the voting percentages for the five largest par-
ties (Green, Left, CDU, SPD, and FDP) in the 2005 and 2009 elections, where
we included only the latter attribtes. Another block of attributes define the age
distribution for the district, such as the percentage of old or young people. The
remaining attributes give information on the workforce, such as which percentage
of people work in which sector (agriculture, finance, service, etc.).

The application’s outcome for two different parameter settings, shown in
Figure 3, highlight a challenge in making ExClus effective. Notably, for hyper-
parameter settings that gave solutions with only a few clusters on other data,
the solution here has two clusters with only a tiny number of data points (clus-
ter zero and one). On the UCI Adult data this happened only with extreme
parameter settings. Changing the hyperparameters here worsens this issue. On
the one hand, a user could solve this by changing the hyperparameters of the
dimensionality reduction method, t-SNE in this case, but it can be a strenuous
task to test different embeddings on the application each time. Furthermore,
assuming that the low-dimensional representation is given, we would prefer that
the application deals with this problem regardless of the embedding. It appears
the problem is at least partly related to the dendrogram of the agglomerative
hierarchical cluster. Specifically, the problem disappears if we consider another
linkage criterion, where we used single linkage in other cases, here complete or
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(a) Single linkage (b) Complete linkage

Fig. 3: Results from the ExClus algorithm on the German socio-economics data
for hyperparameter values α 250, β 1.6 and different linkage criteria.

Fig. 4: Patterns discovered on the GSE data in the subjectively interesting sub-
group discovery paper (Lijffijt et al. [9]). Reproduced with permission.

average appears to be preferable. The single linkage appears to fail here because
the clusters are not as homogeneous as for other data sets.

Interestingly, looking at the clusters in Figure 3b, and highlighting the dis-
tricts on a German map, they align almost entirely with the patterns discovered
in previous research by Lijffijt et al. in their research on finding subjectively in-
teresting subgroups in data sets with real-valued attributes [9]. Comparing some
of the attributes included in the explanations of the clusters further proves that
these patterns are almost equal. Take, for example, cluster two (green), which
maps to pattern b in Figure 4. Just as in the paper, this cluster consists of dis-
tricts with a higher population density, indicating they are cities, with a political
favor towards the Green party and a large percentage of middle-aged people.

Cytometry data. Cytometry measures the characteristics of cells and has a
broad range of applications. In this case, the experiment uses single-cell data of
one mouse also used in previous research, which looked at different ways to make
sense of increasingly higher dimensional data retrieved with a specific cytometry
technique [13]. Each cell is described by nine markers and the researchers in

Regular papers BNAIC/BeneLearn 2021

179



12 X. Vankwikelberge et al.

Fig. 5: (left) t-SNE dimensionality reduction on the cytometry data. Type of
cell indicated by color. Obtained from the original paper [13]. (right) ExClus’
clustering output on the Cytometry data set with hyperparameters α 250, β 1.2.

question used dimensionality reduction and clustering methods, which makes it
ideal to evaluate ExClus and compare results.

Figure 5(left) shows the results directly obtained from the original research
paper. This dimensionality reduced version of the data set, calculated with t-
SNE, has colored labels for each data point. The markers indicate which type of
cell it is. These results are similar to the ones obtained from ExClus (Figure 5,
right). The two large clusters are immediately distinguishable as similar and the
smaller clusters also align almost perfectly. For example, the blue cluster from
the ExClus results corresponds to the purple cluster from the original paper and
the magenta cluster corresponds to the blue cluster.

Furthermore, ExClus simplifies the explanations. In the original cytometry
paper color maps, showing the expressions of each gene marker, allows for ana-
lyzing the dimensionality reduced clustering. On the other hand, ExClus selects
the most important attributes and represents them as a distributions compared
to the data set’s average. For example, to evaluate the blue cluster using the
original method a user would have to examine all nine color maps while the
ExClus algorithm only presents two attributes.

This case study shows that ExClus can explain the data set to the same
extent as the paper, but with a lower descriptional complexity as a user does
not need to scan all the different marker figures, which eventually simplifies and
speeds up the process of understanding a data set.

5.2 Hyperparameters

Both parameters affect the number of clusters and detailedness of explanations,
but they do this differently. α is a startup cost for the description length allowing
for a more detailed explanation and more clusters as it results in the need for a
larger description length before having a substantial impact on the ratio. This
parameter’s value has values between zero and a thousand. On the other hand,
β serves as a penalty for the description length and usually has a value between
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(a) Number of attributes and clusters for
various α (color) and β (marker symbol)
on the Cytometry data.

(b) Number of clusters for various α (x-
axis) and β (colored lines) on the UCI
Adult data.

Fig. 6: Effects of varying the hyperparameters α and β.

one and two. If the value is larger than one, this applies a penalty that increases
super-linearly with an increasing description length, forcing a faster cutoff on
explanation and clustering.

Figure 6a shows the effect of α and β on the number of clusters and at-
tributes. This graph reveals an almost linear increase in the number of clusters
and attributes, where β divides the values into different sections, and α ensures
a further evolution within each section. Furthermore, Figure 6b is a testament
to why these parameters are necessary. It presents the number of clusters (y-
axis) in the clustering the ExClus algorithm decided on for different values of α
(x-axis) and β (color). If α is zero, there are almost no clusters, and changing
β does not affect the results. Besides that, if β is one (no penalty), α changes
the results almost uncontrollably (blue graph). While α and β might not have a
straightforward relationship and interaction, they are both necessary and allow
users to change the number of clusters and the number of attributes.

5.3 Scalability

Data sets can scale in two dimensions. On the one hand, the number of data
points can increase, and on the other hand, the number of features can increase.
Both can have severe effects on the runtime, and they should be taken into con-
sideration whenever the algorithm runs. The algorithm goes through multiple
iterations of the greedy optimization step. Each iteration searches for the op-
timal clustering with the number of clusters equal to the iteration. When the
runtime ends, it selects the iteration’s outcome with the highest subjective inter-
estingness. Therefore, it is best to define scalability in the number of iterations
the algorithm reaches. Figure 7a presents these effects when the number of data
points increases and Figure 7b when the number of features increases.
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(a) Number of iterations vs. number of
data points on the Cytometry data.

(b) Number of iterations vs. number of
features on the Gene expression data.

Fig. 7: Number of iterations the algorithm reaches within specified runtimes.

While both figures show an exponential decrease in iterations, this only be-
comes a noticeable issue if the data set is enormous (more than 100,000 data
points or more than 500 features). Furthermore, in most cases, some sampling
or feature importance selection will occur if the data set is this large because di-
mensionality reduction methods and hierarchical clustering techniques can also
suffer from scalability issues. Besides that, it is unlikely for these data sets that
a clustering with a vast number of clusters will be the optimal result as under-
standing more than a hundred patterns is highly complex. However, while it is
not a limiting issue in most cases, the algorithm does have room for improvement
in certain areas that could increase performance.

6 Conclusion

This paper introduced a new method to assist users in analyzing high-dimensional
data sets. It contributes to the state of the art in considering how to find a good
balance between informativeness and the complexity of information presented to
the user, by making a trade-off between information and its descriptional com-
plexity. Specifically, while generating clusterings and their accompanied optimal
explanations automatically. The presented algorithm to identify an explainable
clustering on top of a scatter plot of dimensionality-reduced data is implemented
in a publicly-available tool called ExClus.

From case studies we have observed that ExClus can be used to effectively
analyse data, by comparing results with previous studies on that data (German
SE and Cytometry data), highlighting ExClus enables identification of previously
known and possibly new patterns with little effort.

Further study could include investigation in methods to choose or support
users in choosing good values for the hyperparameters. ExClus allows quick
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experimentation with hyperparameters, but for now it remains an exercise of
trial-and-error for users of the system. Secondly, we have omitted from the scope
of this study which dimensionality-reduction method to use. We have used t-SNE
in all experiments, which is not the most scalable algorithm and about which
many critiques have been written. It would be worthwhile to investigate which
dimensionality-reduction methods would synergize best with ExClus. Finally,
we have observed that the linkage criterion can be important to consider. More
generally, it may be interesting to study other ways to build a restricted search
space like the agglomerative clustering approach used here.
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Abstract. Clustering is an inherently subjective process, where differ-
ent clusterings of the same dataset may be desired in different applica-
tions. Semi-supervised clustering relies on partial ground truth informa-
tion to obtain a clustering of interest. In the active setting, the cluster-
ing algorithm selects a query to maximize the return in each iteration.
The longer the algorithm runs, the more constraints it obtains; how-
ever, even the best-performing algorithms do not consider the available
constraints effectively. We propose an approach that exploits previously
obtained constraints extensively in each iteration to avoid asking redun-
dant queries and hence to decrease the number of queries that are needed
to reach the same clustering quality. To be more specific, before asking
a query to the user, we check for the existing constraints that are suffi-
ciently similar to the selected query, and infer the response from them if
possible. To assess the dissimilarity between constraints (and queries), we
define a geometrical dissimilarity measure so that we reuse only relevant
constraints and not the ones that may be misleading. We integrate our
approach into the best-performing semi-supervised clustering algorithm,
COBRAS, and name it COBRAS+. We demonstrate that, our approach
decreases the number of required queries by more than 15% to achieve
the same clustering quality on multiple publicly available datasets. We
also show that our approach can more effectively use externally pro-
vided constraints in an incremental learning setting where the clustering
algorithm starts with existing, externally provided constraints.

Keywords: Active learning · Semi-supervised clustering · Pairwise con-
straints.

1 Introduction

As an unsupervised learning problem, clustering is a popular technique in data
analysis. It is inherently subjective, as for the same dataset there might be
multiple clusterings of interest, depending on the application [10]. In the semi-
supervised approach, there is limited user feedback, which might be in different
forms such as labels of some instances or a set of constraints [19]. We consider
pairwise constraints, each of which specifies whether two particular instances
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should be in the same cluster or not; i.e., must-link (ML) or cannot-link (CL).
Pairwise constraints suit the clustering problem better than labels of a subset of
instances, because they are in line with what the user expects from the clustering
problem: whether some instances are separated from each other or not. Moreover,
in many applications it is easier to obtain pairwise constraints rather than class
labels of instances. For example, instances in a query can be visually represented
and the user only needs to answer as ML or CL; e.g., according to whether the
animals in the given pair of images are of the same species or not.

User feedback is quite limited and costly in many applications; hence, should
be leveraged to the greatest extent possible to maximize query efficiency. Equiva-
lently, minimum number of queries should be asked to obtain a desired clustering
quality. To this end, the clustering algorithm actively selects the pair of instances
to be queried in active semi-supervised clustering. Furthermore, some algorithms
have the anytime feature so that the user may stop the algorithm anytime and
use the intermediate clustering that is available at that moment.

COBRAS is the most query-efficient constraint-based active semi-supervised
clustering technique to date [17]. It forms a clustering and iteratively updates
it by means of pairwise queries. It considers the transitivity and entailment
properties to prevent redundancy in queries. However, it has a drawback that it
does not extensively check previously obtained constraints before asking a query.
This causes some of the queries to be similar to each other, which not only has
an adverse effect on the query efficiency but also may annoy the user because
he/she might think that his/her answers to previous queries are not considered
by the algorithm.

The aim of this paper is to develop a technique that exploits existing con-
straints before asking a new query to the user in active semi-supervised cluster-
ing. A query can sometimes be similar to a previously asked one, the response of
which we already know. In this case, we infer the response from the existing one
instead of asking the new query to the user, which improves query efficiency at
the risk of introducing noise. To compromise between wasting and overusing the
available information, we define a measure to assess the dissimilarity between an
existing constraint and the new query under investigation (Sec. 3.1), so that we
infer the response only when the dissimilarity is below a predetermined thresh-
old. We observe that the probability that randomly selected constraints are of
the same type (ML or CL) increases when their dissimilarity decreases (Sec. 3.2).
We evaluate our approach by integrating it into the COBRAS algorithm [17],
and refer to the modified algorithm as COBRAS+ (Sec. 3.3).

Our proposed technique can leverage both internally obtained constraints
during the execution of the clustering algorithm and externally provided con-
straints; hence, we have two experimental setups. For the former, we compare
the query efficiency and clustering quality of COBRAS and COBRAS+ (Sec. 4).
For the latter, we start these two algorithms with a set of previously obtained
constraints for a subset of the data (Sec. 5). We show that, in both cases, our
proposed approach achieves the same clustering quality by asking fewer queries,
or, a more accurate clustering by asking the same number of queries.
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2 Related Work

The most straightforward way to develop a constraint-based active semi-
supervised clustering algorithm is to extend an unsupervised clustering tech-
nique. The main approaches are to take pairwise constraints into account in the
clustering process [19, 12, 20], in learning the similarity metric [21, 4], or both [2].

Most of the existing methods expect constraints to be provided to them in the
beginning, and do not have the anytime feature [2, 3, 11, 18, 21]. Some of these
methods query random pairs of instances [3, 21], decreasing the query efficiency.
Active methods that select optimal queries, outperform them in terms of query
efficiency [1, 2, 11, 18, 15–17, 22]. Some of these algorithms exhibit the anytime
feature [22, 16, 17]. Among them, normalized point-based uncertainty (NPU) [22]
is not time-efficient for large datasets, although it is query-efficient [17]. The
remaining and more recent methods, COBRA [16] and COBRAS [17], are both
query- and time-efficient while also having the anytime feature.

COBRA (constraint-based repeated aggregation) [16] relies on the concept
of a super-instance: It first overclusters the dataset into the so-called super-
instances by k-means clustering. Then, it obtains all of the pairwise relations be-
tween these super-instances by querying the user and assigns the super-instances
to clusters. During this process, it exploits the transitivity and entailment prop-
erties of the constraints. In the resulting clustering, each cluster is comprised of
one or more super-instances.

A more recent algorithm, COBRAS (constraint-based repeated aggregation
and splitting) [17], has been shown to outperform other methods. Although it
relies on super-instances as COBRA does, it is more query-efficient and requires
less parameters. It starts with a single super-instance that contains the entire
dataset. Then, it iteratively splits super-instances and merges them (i.e., assigns
them to clusters). In the splitting step, it divides the largest super-instance into
multiple super-instances according to the splitting level that is determined by
queries asked within the super-instance. In the merging step, it asks further
queries to assign the super-instances to clusters, similar to COBRA. As the
number of queries increases, the dataset is modeled using a greater number of
super-instances of smaller size, and the granularity of the clustering increases, in
parallel with the number of queries asked. It is shown to be more query-efficient
than the other algorithms on multiple datasets [17].

There is a significant drawback of these algorithms: They are too strict in
checking for previously obtained constraints and do not make use of existing
constraints that are similar to the relation that is under investigation. Hence,
they may ask somehow redundant queries that are similar to those answered
before. COBRAS suffers from this problem because the independent splitting
and merging phases cause similar queries to be asked and it has no procedure to
prevent this. We address this issue by developing a selective constraint checking
procedure to minimize the redundancy in the queries, and use them more effi-
ciently. We consider the query responses (that are provided by the user) as the
ground truth, as done in the majority of machine learning problems except for
some studies such as [13].
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3 Extensive Use of Existing Constraints and COBRAS+

To exploit only relevant existing constraints, we first determine a measure to
assess the dissimilarity between an existing constraint and a query under investi-
gation (which can be considered as another constraint) (Sec. 3.1). We investigate
whether two constraints that are similar to each other are more likely to be of
the same type (ML or CL) or not (Sec. 3.2). Then, we describe our approach to
reuse existing constraints based on their dissimilarity and integrate it into the
COBRAS method to obtain the COBRAS+ algorithm (Sec. 3.3). Finally, we
empirically analyze the reuse of existing constraints (Sec. 3.4).

3.1 Assessing the dissimilarity between constraints

We need to calculate the dissimilarity between any two constraints, or between
a constraint and the query under investigation. We develop our proposed dis-
similarity measure geometrically and progressively as follows:

We consider each constraint as a line segment between two instances in the
data space. An intuitive way to compare two constraints A = (A1, A2) and B =
(B1, B2) is to calculate the Euclidean distance between their end points, |A1B1|
and |A2B2|, as shown in Fig. 1a. For the constraints to be considered as similar
to each other, both endpoints should be close to each other, so we may calculate
the dissimilarity measure as max (|A1B1| , |A2B2|). To take into account the fact
that the constraints do not have any direction ((A1, A2) ≡ (A2, A1)), we may
reverse one of them before the comparison and take the smaller of the two cases,
having the dissimilarity of min [max (|A1B1| , |A2B2|), max (|A1B2| , |A2B1|)].

To apply a consistent threshold level to the dissimilarity measure across dif-
ferent datasets with different numerical ranges of features, we need to normalize
the dissimilarity value. For this purpose, we use the average length of the two
line segments that represent the constraints. Then, the dissimilarity measure
between the constraints A and B becomes

d (A, B) =
min [max (|A1B1| , |A2B2|), max (|A1B2| , |A2B1|)]

|A1A2|+|B1B2|
2

(1)

Nine example pairs of constraints are shown in Fig. 1b. For each constraint
pair, the two dashed lines between the end points show the distances that are
used in the comparison, the shorter of them being the numerator of (1). The
denominator is simply the average length of the blue and purple sticks. Rota-
tion, shift, and shrinking of one (purple) constraint is illustrated while the other
remains the same. In all of the three cases, we observe that the length of at least
one dashed line increases from left to right in the grid; in addition, the length of
one constraint decreases for scaling. Therefore, it is evident that the dissimilarity
increases from left to right in the figure, as one might expect.
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(a) Comparison of
endpoints. (b) Constraint pairs with different dissimilarity levels.

Fig. 1: Calculating the dissimilarity between constraints.

Fig. 2: Conditional probability that two random constraints are of the same type
(ML or CL) given that their dissimilarity is below a threshold.

3.2 Evaluation of dissimilarity on randomly selected constraints

To analyze the relation between the dissimilarity between a pair of constraints
and whether they are of the same type or not (ML or CL), we randomly select
a number of constraints from real datasets (which are specified in Sec. 4.1). We
make use of the true class information to randomly select constraints of a desired
types. We have four cases for the types of constraint pairs; namely, ML-ML, ML-
CL, CL-ML, and CL-CL. For each case, we select random instance pairs for the
constraints with the restriction that the two constraints include an instance from
a common class. This means that each ML-ML constraint pair is within the same
class and the constraints of each CL-CL pair are associated with the same pair
of classes. For every ML-CL pair, the ML constraint is within the class that is
associated with one of the instances of the CL constraint.

The left vertical axis of Fig. 2 shows the conditional probability that two
randomly selected constraints are of the same type given that the dissimilarity
between them is below a threshold. This probability gradually decreases from 1
to around 0.5 when the dissimilarity increases from 0 to 2. Hence, there is a neg-
ative correlation between constraint agreement and the proposed dissimilarity
measure, as desired. The right vertical axis shows the number of randomly gen-
erated constraint pairs with a dissimilarity below a threshold.
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3.3 Incorporating the constraint dissimilarity into the COBRAS
algorithm: COBRAS+

To evaluate our approach, we build up on the COBRAS algorithm (which is
originally presented in reference [17]), as it is the best-performing one in terms
of query efficiency to date [17]. To obtain COBRAS+, we replace the querying
function of COBRAS, which asks a query to the user each time it is called,
by the proposed analyze_relation algorithm, which first checks the existing
constraints and then asks the query if necessary. Below, we explain the COBRAS
and COBRAS+ algorithms and then describe the analyze_relation function.

In COBRAS [17], instances are represented by super-instances, each of which
is assigned to a cluster. Each super-instance has a representative, which is cho-
sen as the medoid. As the algorithm runs, super-instances increase in number
and decrease in size (i.e., they contain fewer instances); hence, the granularity of
the clustering increases. Initially there is a single cluster that comprises a single
super-instance which contains all the instances in the dataset. In each itera-
tion, the largest super-instance is split into smaller super-instances. Then, the
clustering assignments of super-instances are determined through queries formed
between their medoids by considering the transitivity and entailment properties.

The COBRAS algorithm performs an exact constraint check before asking
a query; that is, it checks whether a constraint between exactly the same pair
of instances exists in the set of previously obtained constraints to avoid form-
ing the same query. As super-instances are split into multiple smaller super-
instances, their representative instances almost always change, and the previ-
ously obtained constraints no longer include the new representatives in general.
Hence, COBRAS is very unlikely to find exactly the same constraint to rely on,
so it almost neveruses previously obtained constraints.

In COBRAS+, we replace this exact constraint check by a more advanced
process to reuse existing constraints according to a dissimilarity threshold τ
that is specified by the user as a hyperparameter between 0 and 1. (Note
that COBRAS+ is equivalent to COBRAS when τ = 0.) This is implemented
by replacing the must-link function in COBRAS by the analyze_relation

algorithm, which is provided in Algorithm 1 and explained below.

The inputs of the analyze_relation algorithm are the pair of instances
sa, sb, the existing constraints (ML and CL), and the dissimilarity threshold τ .
The pair (sa, sb) is associated with a pair of super-instances as well as a pair of
clusters (Ca, Cb), the relation of which is investigated. To determine this relation,
a new query (sa, sb) is considered but not always asked, unlike what is done in
the must-link function that is called by the original COBRAS algorithm [17].
Instead, in line 3 of Algorithm 1, we check for the previously obtained constraints
(if any) between Ca and Cb, and select the one (c∗) that is closest to (sa, sb) in
terms of the dissimilarity measure d defined in Sec. 3.1. If the dissimilarity is
below or equal to τ (line 4), we infer the relation r between Ca and Cb from c∗

(lines 6 and 8) and do not add (sa, sb) to the set of constraints. Otherwise, all
the existing constraints are above the threshold; hence, a new query (sa, sb) is

Regular papers BNAIC/BeneLearn 2021

189



COBRAS+: Reusing Previously Obtained Constraints... 7

asked to determine the relation r (line 10) and the query response is added in
the set of constraints (lines 12 and 14).

3.4 Evaluation of previously obtained constraints in COBRAS

To observe to what extent we can reuse existing constraints, we analyze the
the relation between existing constraints and the new query that is asked in an
average COBRAS iteration in terms of the dissimilarity between them.

For each query COBRAS asks, we find the existing constraints between the
clusters to which the instances in the query belong because the COBRAS+
algorithm checks the existing constraints that are between the same pair of
clusters as the query to be asked. We show the scatter plot of these existing
constraints according to their dissimilarity to the query to be asked and their
type (ML or CL) in Fig. 3a. Although the scatter plots are obtained on multiple
datasets (see Sec. 4.1), the dissimilarity value congregates around 1 and is on
the same scale for all datasets (which are specified in Sec. 4.1) thanks to the
normalization (the denominator of Eq. (1)).

Fig. 3b (left) shows the number of existing constraints below and above
the dissimilarity threshold of 0.75 (see Sec. 6 for its selection) as a function of
the number of queries. The number of existing constraints above the threshold
increases as the algorithm runs. The right part of the figure shows that the ratio
of using a previously obtained constraint (between the same pair of clusters)
starts around 30% and gradually decreases to around 20%.

Algorithm 1: analyze relation

Input: sa, sb: instance pair to query,
ML,CL: sets of previously obtained ML and CL constraints,
τ : threshold for constraint dissimilarity

Output: r: relation (ML or CL),
ML,CL: updated sets of ML and CL constraints

1 Ca, Cb = the clusters to which sa and sb are assigned
2 if ML∪CL 6= ∅ then
3 c∗ = arg min(s′a,s

′
b
) {d ((sa,sb), (s

′
a,s
′
b)) | s′a ∈ Ca, s′b ∈ Cb, (s′a,s

′
b) ∈ ML∪CL}

4 if d ((sa,sb), c
∗) ≤ τ then

5 if c∗ ∈ ML then
6 r = ML
7 else
8 r = CL
9 Return r,ML,CL

10 r = query (sa,sb)
11 if r == ML then
12 ML = ML ∪ {(sa,sb)}
13 else
14 CL = CL ∪ {(sa,sb)}
15 Return r,ML,CL
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(a) Scatter plot of the dissimilarity of the existing constraints for each iteration.

(b) The number of existing constraints and the ratio they are reused, both plotted as
a function of the number of queries for τ = 0.75.

Fig. 3: Statistics about existing constraints that are calculated cumulatively over
all the datasets that are described in Sec. 4.1.

4 Experimental Evaluation

In this section, we explain the procedure we follow to evaluate the effectiveness of
our approach. We first explain the datasets, our experimental methodology, and
the evaluation metrics. Then we comparatively present the clustering quality
and query efficiency for our approach, COBRAS+1, and the state-of-the-art
technique, COBRAS. Please refer to [17] for a comparison with other methods.

4.1 Datasets and experimental methodology

To evaluate COBRAS+, we use 21 publicly available datasets (UCI ML Repos-
itory2, [3, 14, 1]): breast-cancer-wisconsin, column-2C, dermatology, ecoli, faces-
expression-imagenet, faces-eyes-imagenet, faces-identity-imagenet, faces-pose-
imagenet, glass, hepatitis, ionosphere, iris, newsgroups-diff3, newsgroups-sim3,
optdigits389-full, parkinsons, segmentation, sonar, spambase, wine, and yeast.3

These datasets were used in the original COBRAS algorithm [17] and also in
earlier studies on constraint-based clustering [3, 22].

We consider the true class labels of the datasets as cluster labels by ignoring
their ordering. We execute the clustering algorithms COBRAS+ and COBRAS
on the full datasets but we allow the queries to include only training instances.
To determine the training instances, we apply 10-fold cross validation and repeat
the whole process 5 times. We limit the number of queries to 1000.

1 https://github.com/aras-y/cobras
2 http://archive.ics.uci.edu/ml.
3 There are four different set of class labels for the faces dataset, and two different sub-

sets for the newsgroup dataset; hence, 21 clustering tasks, each of which is considered
as a dataset in this text. Refer to [17] for details.
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4.2 Evaluation metrics

To evaluate the methods in terms of their clustering quality, we use Average Rand
Index (ARI), which measures the similarity between cluster labels obtained by an
algorithm and true cluster (or class) labels [7, 6]. To calculate ARI, first the Rand
index is calculated, which is the probability that two randomly chosen instances
agree on whether they are in the same cluster or not in the two clustering
assignments. Then, ARI is obtained by correcting this probability by using its
expected and maximum values [8]. ARI is 1 when the clustering is the same as
the ground truth, expected to be 0 when it is randomly obtained, and less than
0 when it is worse than random.

COBRAS+ (and COBRAS) generates a clustering in every iteration, which
is returned if the algorithm is stopped at the end of that iteration; hence, an ARI
is calculated for every iteration. We average the ARI over the repetitions and
cross-validation iterations (and for datasets in some cases). We always retain the
dependence of ARI on the number of queries in order to show the progressive
course of the algorithm and to evaluate the query efficiency.

To make it manageable to compare the ARI values of different algorithms
(COBRAS and COBRAS+, possibly with different threshold values) on multi-
ple datasets, we summarize the number of wins of the algorithms against the
others. To this end, we calculate average aligned rank of the ARI values for ev-
ery iteration as follows [9]: For each dataset, we calculate the average ARI over
the algorithms and subtract it from the individual ARI values. We then average
the ranks of the items associated with each algorithm in a sorted list of all ARI
values (for every algorithm for each dataset). The lower the average aligned rank
is, the better the clustering is.

4.3 Evaluation of the proposed approach

Fig. 4 depicts clustering results for the proposed approach COBRAS+ and for
the COBRAS algorithm as a reference [17]. The threshold is selected as τ = 0.75
for COBRAS+ (see Sec. 6). Parts (a) and (b) of the figure show the average ARI
and aligned rank curves, respectively. COBRAS+ clearly outperforms COBRAS
after 25 queries in terms of clustering quality that is represented by the ARI.
After asking 25 queries, it improves the query efficiency by at least 15% on the
average; that is, it requires at least 15% less queries to obtain the same ARI.

The ARI curves are shown for individual datasets in Fig. 4c. For the majority
of the datasets, we observe a trend similar to the overall results; however, there
are some exceptions: For example, the dataset dermatology is trivial to cluster for
all threshold values, and both COBRAS and COBRAS+ performs equally well in
practice. In contrast, faces-expression-imagenet is quite difficult to cluster in this
scheme, and the ARI is close to 0, which corresponds to random clustering, for
both of the algorithms. The main reason is the dimensionality being much larger
than the number of instances. The yeast dataset is also clustered inaccurately for
both of the algorithms, which is consistent with moderate accuracies obtained
using other clustering methods [5].
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(a) (b)

(c)

Fig. 4: (a) Average ARI and (b) average aligned rank as a function of the number
of queries for COBRAS+ and COBRAS. (c) ARI for each dataset. The number
of instances (i), dimensions (d), and classes (c) are provided at the bottom right
corner of each plot.

5 Incremental Clustering: iCOBRAS+

In this section, we comparatively analyze the proposed algorithm COBRAS+
when there exists a set of pairwise constraints that were previously obtained
based on (a subset of) the dataset and provided to the algorithm. This is an
incremental learning problem because the algorithm starts with the previously
obtained, limited information. When the COBRAS and COBRAS+ algorithms
are run in this incremental setting, we call them iCOBRAS and iCOBRAS+, re-
spectively. We expect iCOBRAS+ to make use of externally provided constraints
to a greater extent and obtain a more accurate clustering than COBRAS by ask-
ing the same number of new queries.
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We apply the following steps to evaluate incremental clustering for a given
dataset D:

1. We split D into two parts: D1 and D2. We consider the following methods
to perform this, and analyze each method separately:
– 50% stratified split (SS): We randomly split each class into two, and

include them in D1 and D2. This way, we retain the proportions of
instances of each class so that D1 and D2 have a similar distribution.

– 50% split according to classes (SAC): We include instances associ-
ated with a random half of the classes in D1, and the rest in D2.

– Leave-1-Out (L1O): We include data associated with a randomly se-
lected class in D2, and store the remaining part in D1.

In SAC and L1O, we omit 8 of the 21 datasets that contain only two classes.
2. We execute the COBRAS+ and COBRAS algorithms on D1 by limiting

the number of queries by 250, and save the pairwise constraints that are
obtained from the queries.

3. We execute the algorithms on the full dataset D = D1 + D2 by providing
the constraints that are obtained in Step 2. We limit the number of newly
asked queries by 1000. The algorithms may utilize these externally provided
constraints as well as new constraints that are obtained gradually based on
newly asked queries. Table 1 shows main properties of the relevant clustering
algorithms about their reliance to existing constraints.

As in Sec. 4.1, we repeat the incremental learning process 5 times for
each technique (iCOBRAS+ and iCOBRAS), and present the results for both
Steps 2 and 3 as a function of the number of queries in Fig. 5–7 for the three
splitting methods (SS, SAC, and L1O). For Step 3 (the right parts of the figures),
we also execute non-incremental methods, COBRAS+ and COBRAS, that do
not use externally provided constraints that are obtained in Step 2. Part (a) of
these figures provides the ARI whereas Part (b) provides aligned average ranks
(see Sec. 4.2). For iCOBRAS+ and COBRAS+, we select the threshold of 0.75
for the dissimilarity, as the non-incremental version.

The left parts of Fig. 5–7 are provided for completeness, and show the
ARI and the averaged aligned rank for the non-incremental algorithms ex-
ecuted on the D1 part of the datasets (Step 2). As expected, COBRAS+
performs better than COBRAS. 250 queries obtained (for each dataset) in
this COBRAS+/COBRAS execution are fed to the iCOBRAS+/iCOBRAS
algorithms that are executed on the full dataset D1 +D2 for which the results
are provided in the right parts of the figures.

Table 1: Types of clustering algorithms.

method COBRAS iCOBRAS COBRAS+ iCOBRAS+

uses externally provided constraints 7 7

uses constraints obtained within the execution

: yes : partially 7: no
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(a)

(b)

Fig. 5: (a) Average ARI and (b) average aligned rank plotted as a function of
the number of queries for iCOBRAS with SS (stratified split).

(a)

(b)

Fig. 6: (a) Average ARI and (b) average aligned rank plotted as a function of
the number of queries for iCOBRAS with SAC (split according to classes).
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(a)

(b)

Fig. 7: (a) Average ARI and (b) average aligned rank plotted as a function of
the number of queries for iCOBRAS with L1O (leave-one-out) split.

For SS (Fig. 5), iCOBRAS+ performs slightly better than COBRAS+ when
the number of queries exceeds 120, mainly because from this point the clusters
become pure enough (i.e., mostly contain instances from a single class) so that
existing constraints between them often represent correct relations. In contrast,
in the beginning, clusters are mostly mixed; hence, existing constraints between
them are unreliable and iCOBRAS+ performs less accurately than iCOBRAS.
For the splitting methods SAC and L1O (Fig. 6 and 7), the outperformance
of iCOBRAS+ over iCOBRAS starts when the number of newly asked queries
reaches 50, and is more consistent across the datasets, as the average aligned
rank curves (in Part (b) of the figures) suggest.

For all of the three splitting methods, iCOBRAS and COBRAS perform sim-
ilarly (see Fig. 5–7), because the (i)COBRAS algorithm cannot use previously
obtained constraints unless there is an exact match, which is very unlikely to
happen. The algorithms iCOBRAS+ and COBRAS+ perform much better than
iCOBRAS and COBRAS because both of them can use existing constraints that
are obtained during the execution of the algorithm, with the former being able
to additionally use the externally provided constraints that are obtained in the
previous execution on a smaller dataset (D1).

Note that Fig. 5–7 provide results that are averaged over datasets. The same
type of results are shown for individual datasets in Fig. 10–12 in the Appendix.
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(a) (b)

Fig. 8: (a) Average ARI and (b) average aligned rank plotted as a function of
the number of queries for COBRAS+. The numbers in the legend indicate dis-
similarity threshold levels (τ). A threshold of 0 corresponds to COBRAS.

6 Sensitivity analysis for the dissimilarity threshold

We consider multiple threshold values for the constraint similarity for the
COBRAS+ algorithm: τ ∈ {0, 0.25, 0.5, . . . , 2} (see Sec. 3.3 for its use). For
each threshold value, we plot the average ARI and the average aligned rank as
a function of the number of queries in parts (a) and (b) of Fig. 8. ARI curves
for individual datasets are provided in Fig. 9 in the Appendix. Note that higher
ARI and lower rank are desired. The threshold of 0 corresponds to the original
COBRAS algorithm [17].

Compared to COBRAS, selecting a small threshold does not change the ARI
curve much. Noticeably higher ARI values can be reached with the threshold
values of 0.75 and 1. As the threshold further increases, ARI decreases due to the
overuse of previously obtained queries. Thus, COBRAS+ with an appropriately
selected threshold (e.g. 0.75 or 1) considerably improves the clustering quality
for the same number of queries. For this reason we have used the threshold level
of τ = 0.75 for the proposed (i)COBRAS+ algorithm throughout the paper.

7 Conclusion

We have proposed an approach to extensively leverage previously obtained
queries in constraint-based active semi-supervised clustering. Considering that
even the state-of-the-art approaches sometimes ask a query that is similar to a
previous one, inferring the response from a similar existing constraint instead
of consulting the user improves query efficiency and reduces the annoying be-
haviour of asking similar queries to the user. We have defined a dissimilarity
measure between constraints and queries so that we can selectively exploit ex-
isting constraints based on their similarity to a new query to be asked. We have
developed COBRAS+ by integrating our approach in the the state-of-the-art
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technique, COBRAS, and improved its query efficiency. Compared to COBRAS,
the proposed algorithm, COBRAS+, reaches the same clustering quality (ARI)
by asking at least 15% fewer queries, or, equivalently, obtains a more accurate
clustering by asking the same number of queries. We have also shown that the
proposed algorithm provides higher ARIs in an incremental clustering setting
where there are previously obtained queries obtained from a subset of the data.
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Appendix A Supplementary Results

Fig. 9 shows the ARI curves for individual datasets for different dissimilarity
threshold levels for COBRAS+. The average results over the datasets are given
in Fig. 8.

Fig. 9: Average ARI for different threshold levels for individual datasets. The
numbers in the legend indicate the threshold levels. The number of instances (i),
dimensions (d), and classes (c) are provided at the bottom right corner of each
plot.

Fig. 10–12 show the ARI curves for individual datasets for iCOBRAS. Their
averages over datasets are provided in Fig. 5–7, respectively.
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Fig. 10: ARI plotted as a function of the number of queries for each dataset for
iCOBRAS with stratified split.
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Fig. 11: ARI plotted as a function of the number of queries for each dataset for
iCOBRAS with class-based 50% split.

Fig. 12: ARI plotted as a function of the number of queries for each dataset for
iCOBRAS with leave-one-class-out split.
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Abstract. Pronunciation is one of the fundamentals of language learn-
ing, and it is considered a primary factor of spoken language when it
comes to an understanding and being understood by others. The persis-
tent presence of high error rates in speech recognition domains result-
ing from mispronunciations motivates us to find alternative techniques
for handling mispronunciations. In this study, we develop a mispronun-
ciation assessment system that checks the pronunciation of non-native
English speakers, identifies the commonly mispronounced phonemes of
Italian learners of English, and presents an evaluation of the non-native
pronunciation observed in phonetically annotated speech corpora. In this
work, to detect mispronunciations, we used a phone-based ASR imple-
mented using Kaldi. We used two non-native English labeled corpora;
(i) a corpus of Italian adults contains 5,867 utterances from 46 speakers,
and (ii) a corpus of Italian children consists of 5,268 utterances from 78
children. Our results show that the selected error model can discrimi-
nate correct sounds from incorrect sounds in both native and non-native
speech, and therefore can be used to detect pronunciation errors in non-
native speech. The phone error rates show improvement in using the
error language model. Furthermore, the ASR system shows better accu-
racy after applying the error model on our selected corpora.

Keywords: ASR · L2 learners · Detection of pronunciation errors ·
Computer−assisted pronunciation training (CAPT).

1 Introduction

The number of people who are learning a second language (L2) worldwide is
increasing. Consequently, the need to evaluate and grade their pronunciation is
becoming an important topic. Based on [10,16], in L2 learning progress, pronun-
ciation plays an important role. However, this part of the learning process has

? Erasmus Mundus funded joint degree in Language and Communication Technologies
(LCT).
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always received less attention due to a lack of time and resources compared to
other skills in classrooms [16]. The most challenging part of learning a new lan-
guage is the pronunciation part because it is challenging to imitate sounds that
are different from those of the native language’s phoneme inventory [10,16,21]. [8]
defines mispronunciation as surface pronunciation forms differing from canonical
pronunciation forms. Phoneme level mispronunciation refers to the inter-
ference of a second language learner’s native language during speech production,
where foreign sounds are produced similar to a phoneme in their native language.
Most of the classroom’s pronunciation activities rely on the teacher to monitor,
evaluate, and provide feedback on student pronunciation. This traditional tech-
nique does not seem adequate to correct student pronunciation, and it tends to
be costly and time-consuming.

Given these constraints, the growing tendency to assess non-native languages
leads to increased interest in automatic proficiency assessment of the speech. It
boosts Computer Assisted Language Learning (CALL) tools in the field of lan-
guage teaching for L2 learners [26,19,12]. CALL tools are designed to recognize
words or sentences uttered by L2 learners by using an ASR system. The CAPT
system is one of CALL’s essential tools designed for automatically evaluating and
detecting the learner’s pronunciation errors. In the CAPT system, pronunciation
evaluation can happen at two levels [20,21,25]: (i) detecting specific pronuncia-
tion errors, and (ii) an overall assessment of a speaker’s proficiency (i.e., goodness
of pronunciation (GoP) [29,5,28]). This study seeks to examine the use of ASR
to empower learners to practice and improve their pronunciation on their own.
Using a well-designed ASR system allows students to work autonomously while
also offering flexibility to improve their pronunciation. The persistent presence
of high error rates in speech recognition domains resulting from mispronuncia-
tions motivates us to find alternative techniques for handling mispronunciations.
We use two corpora (see section 4) of both children and adult Italian speakers.
These corpora contain both spontaneous and read-aloud tasks.

The innovation of our system is to use error rules in our language model (error
language model) based on the most common errors seen in L2 learners’ speech to
improve our detection system (see section 3). Error detection of mispronounced
input is similar to the process in which an annotator manually indicates pronun-
ciation errors. Mainly, the topic of interest in this study is the mispronunciation
assessment at the phone level. Ideally, our system should be able to detect errors
the same as human annotators do.

2 Related Work

At the early stages of using ASR for pronunciation quality assessment, the pre-
ferred method was to consider the whole phrase without pointing to the error
type and perform the assessment with the help of a hidden Markov model (HMM)
[7]. In automatic pronunciation assessment, various features were evaluated such
as speaking rate, articulation rate, phonation time ratio (for more information,
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see [23]); apart from these features, ETS presents 29 candidate features 5 for
scoring the speech of non-native learners of English.

Segmental features have been a subject of phonetics from the 1950s up to
now [23]. The most common segmental features for investigating the pronun-
ciation of L2 learners on automatic speech assessment are consonant features:
stop closure duration, aspiration, and vowel features: vowel duration. In one of
the first studies on the pronunciation assessment at a phone level, [27] found
that the scoring accuracy for assessing errors was 80-92% for non-native English
speakers (73 speakers).

Early research by [9] used two kinds of acoustic models to conduct automatic
mispronunciation detection: (i) a model trained on native-speaker pronunciation,
and (ii) a model trained on non-native speech. They used an acoustic model to
calculate the log probability for each predicted phone in both models. They then
calculated the difference between these two probability scores and used it as a
metric for rating the pronunciation’s quality. The result showed that the log-
likelihood ratioLLR had a better performance than the log-posteriors method.
According to [13], posterior probabilities and log-likelihood scores were the meth-
ods that were most correlated with word and phone level human assessments of
pronunciation.

As an example of the earliest work in this field, we refer to the FLUENCY sys-
tem [6] to detect pronunciation problems at both the phonetic and the prosodic
levels (i.e., segmental and suprasegmental levels). They used the SPHINX-II
speech recognizer to evaluate and detect phone errors and prosodic information
(namely prosodic problems) of non-native speakers of French, German, Hebrew,
Hindi, Italian, Mandarin, Portuguese, Russian, and Spanish learned English as
their second language. It was reported that using ASR technology while learning
a foreign language can reduce embarrassment and enhance learning for learners.
[24] investigated three ASR systems for nativeness evaluation in their study:
a GMM-HMM system, a DNN-HMM system, and a GMM-HMM system us-
ing DNN for feature extraction. The feature sets were categorized into fluency,
rhythm, pronunciation, grammar, and vocabulary for segmental (at the con-
sonant and the vowel level) and suprasegmental measurements of non-native
speech in automatic non-native speech assessment. We will base our work on
these features in our ASR system. The latest work related to the mispronun-
ciation detection (e.g., [14]) tried to model uncertainty using a pronunciation
model of L1 speech.

The above studies are a small set of examples that are related to segmen-
tal features. We focus on segmental features, in which we observe the specific
phoneme-level errors made by second language learners. For learners, the most
challenging part of learning a new language is the pronunciation part due to the
fact that it is challenging to imitate sounds that are different to those of the
native language’s phoneme inventory [21]. Using a well-designed ASR system al-
lows students to work autonomously while also offering flexibility that can lead
to the improvement of their pronunciation.

5 These features are related to the fluency or duration of silences of spoken English.
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3 Methods

In the following sections, we describe the methods (language model and acoustic
model) used to identify pronunciation errors made by Italian learners of English,
to develop an ASR system to improve their L2 pronunciation.

3.1 Speech file transcriptions: Ideal, Manual, & ASR

For this study, the three transcriptions at the phone level were considered: Ideal,
Manual, and ASR output. All the transcriptions are automatically time-aligned
to the related speech signals:

– Ideal (IDE) (reference) refers to the canonical word’s pronunciation.

– Manual (MAN) (reference) is the hand-corrected version of the ideal data
at the phoneme level. Trained annotators corrected files manually using
Praat tool [2], noting substitution, insertion, and deletion at the phoneme
level. The manual output contains the manually corrected time-aligned pho-
netic transcription and can be considered the best possible transcription at
the phone level.

– ASR output is the results of ASR processing given a set of phones as input
(see section 3.3).

Given these three representations (i.e., IDE & MAN, IDE & ASR, and MAN
& ASR), the comparison between specific pairs of phone sequences can provide
us the following information:

IDE vs. MAN output: this gives us a true map of the errors made by
Italian speakers when trying to speak English. Furthermore, the comparison of
IDE & MAN could be used to build some models of the errors made by L2
speakers.; IDE vs. ASR output: this gives us a feeling of what an automatic
system can detect for a new utterance, where no manual annotation is available;
MAN vs. ASR output: this tells us how well an automatic system detects
errors. Based on our purpose, the comparisons are as follows: MAN & ASR, IDE
& ASR. The phoneme level matrix was computed as follows:

– Obtained the canonical (reference) phoneme level transcriptions of the speech
data

– Obtained the phoneme level ASR output transcripts as a hypothesis (test)
of the speech data, and the ASR output transcriptions were aligned with the
canonical/reference transcriptions (here Manual and Ideal).

– Furthermore, the probability was computed per each phone.

The mispronunciation at the segmental level (i.e., phonetic) was categorized into
three kinds at the phone level: substitution (i.e., a phoneme is replaced with
another), insertion (i.e., an extra phoneme is inserted), and deletion (a certain
phoneme is deleted) [21]. The following refers to the examples for each error type
in the corpora. A sample of manual (MAN), ideal (IDE), and ASR annotations
for the sentence “I said white not bait” are as follows:
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Table 1: Sample transcription: Manually (MAN), Ideally (IDE), & ASR

MAN: sil ay s eh d w ay t n oh t b ey t sil
IDE: sil ay s ax d w ay t n oh t b ey – sil
ASR: sil ay s ax d w ay t n oh t b ey – sil

Silences were marked as “sil”.

The vowel /ax/ was substituted by the accurate vowel /eh/, and the con-
sonant /t/ was deleted in ideal and ASR outputs. It means that the speaker
mispronounced that vowel and replaced it with another vowel, close to the ac-
curate vowel. The phone /t/ was not pronounced by the speaker, which refers
to the deletion in this sample.

3.2 Sample of speech file

Generally, the sound wave representation of spoken words has two axes: time on
the x-axis and amplitude on the y-axis. Figure 1 illustrates a sample sentence
pronounced by a child, showing the speech waveform (top), the spectrogram
(middle), and three text tiers (bottom) that report different segmental informa-
tion in terms of words, phones, and some other information, along with their
time boundaries. The spectrogram is a graphical representation which has three
axes: time, frequency, and amplitude, where in 2-dimensional graphs, the ampli-
tude is approximately visualized using a darker shading. Both corpora (ISLE and
ChildEn) provided orthographic transcriptions at the word level for the speech
input.

Figure 1 refers to the annotation and pronunciation of the phrase “A birth-
day cake” by an Italian male speaker. Three tiers were defined for each sound
file; tier1) word, tier2) phone, and tier3) word score. Generally, three types of
annotations were added to each audio for both corpora: sentence-level anno-
tations (e.g., score and intonation), word-level annotations (e.g., pause), and
phoneme-level annotations.

3.3 Proposed approach

Language model : The basic idea of language models is to provide a probability
of a sentence or sequence of words; these probabilities are combined with the
acoustic likelihood of the sequence and generate the resulting hypothesis [11]. In
this work phone n-grams are used as a language model to allow the generation
of phone sequences not constrained by only the words appearing in the lexicon;
n-grams are trained on the phonetic transcription of the audio data with n
ranging from 1 to 5.

Apart from the n-gram model, another novel approach is the application
of an error language model based on the most frequent errors (hereafter
error model). For the error model, we used lexical information by providing the
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Fig. 1: A TextGrid of manual annotation example from ChildEn corpus. Top: Raw
waveforms of (x-axis: time; y-axis: amplitude). Middle: Spectrograms (x-axis: time;
y-axis: frequency; shading: amplitude (energy), darker means higher). Bottom: Word-
level annotation of the signal.

ASR with the canonical pronunciations of the (known) words to be recognized
and other pronunciations obtained by applying phonetic rules. These rules were
defined manually by looking at the most common errors resulting from the 5-
gram phone model (Table 3).

Acoustic Model: The acoustic model is learned from a set of audio recordings
and their corresponding transcripts. We trained hybrid GMM-DNN models on
English and Italian speech data from the child and adult Italian speakers. Based
on the common Kaldi recipe 6, the selected acoustic models’ features are: (i) ini-
tial GMM models trained on MFCC acoustic features with LDA transform and
speaker adaptive training [18], (ii) use of i-vectors [15] of size 100, stacked to the
MFCCs, and (iii) TDNNs trained using LF-MMI [22].

4 Data

The description of each corpus will be given below; (i) a corpus of Italian children
(ChildEn) 7 [1], and (ii) corpus of Italian adults (ISLE) [17], who are learning

6 Kaldi: http://kaldi-asr.org/doc/
7 This corpus was designed and collected by ITC-irst: http://www.itc.it
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English as their second language. Detecting mispronunciations in ASR requires
corpora with labeling at the phonetic level: we selected these two corpora because
they were manually labeled in terms of pronunciation quality by humans, and
both were manually transcribed at phone level.

ChildEn consists of 5,268 utterances, with an overall duration of 3h:28m:26s
from 78 children at about ten years of age. The selected students had been
studying English at school for 3 or 4 years.

ISLE is a non-native speech dataset that contains utterances recorded by
intermediate-level adult German and Italian learners of English. The audio files
are 17h:54m:44s in total. The Italian section contains 23 Italian speakers.

4.1 Phone set

We created a phone list of each phoneme that includes canonical pronunciation
and every possible mispronunciation of English phones by L2 learners; in other
words, we have created a phoneme dictionary containing both English and Italian
phones to be able to capture all possible mispronunciations. According to [3],
Italian and English share only 40% of their phones. Therefore, we expect to see
more phonological interference from Italian when L2 learners need to pronounce
the phones in English. Moreover, in Italian, the relationship between spelling and
pronunciation is straightforward compared to English. For example, in Italian,
the letter ’a’ is pronounced /a/, but in English, pronunciation and spelling are
not strictly related to each other. For example the letter ’u’ is pronounced /u/,
/V/ or /3/ in English8.

4.2 Evaluation

According to Figure 2, the most common mispronunciations for Italian speakers
occur when the English target phone is not in the phoneme set of Italian (e.g.,
English phoneme /ax/). These phones are not contrastive for Italian speakers,
leading to the speaker attempting to substitute the phonetically-closest phone
from the Italian phoneme set or delete that phone. By “close” means that the
acoustic signal has similar formants in both languages or the orthographic rep-
resentation (spelling) is similar to spelling in Italian.

[26] provided a list of pronunciation errors that can be considered in ASR
studies: Phonemic deletion, phonemic insertion, and phonemic substitution. For
assessing the performance of a phoneme, the phone error rate (PER) will be
used. The phone-error rate calculated the log-likelihood of a predicted phoneme
given the acoustic signal [13,?]. The PER takes into account the errors related
to phoneme substitutions (S), phoneme deletions (D), phoneme insertions (I),
and P stands for the number of phones. If there are P phones in the reference
transcript, and the ASR output has S, D, and I, then multiply by 100:

PER =
S + D + I

P
∗ 100 (1)

8 http://archive.is/zsxA
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Fig. 2: Phoneme errors distributions of ISLE (left graph) & ChildEn (Right
graph).

5 Results

5.1 Detection output

In this study, we are concerned with identifying mispronounced phonemes by
L2 learners and improving our ASR system; we are interested in the PER and
accuracy of our system.

We used Kaldi to perform speech recognition for phoneme error detection us-
ing the dictionary of words and phonemes. The acoustic model was trained with
mixed speech data (i.e., children and adults), and the utterances were force-
aligned based on the newly adapted word transcription. In our ASR system,
we considered the following procedures in the acoustic model; (i) speech recog-
nition based on the phone-level n-gram model, (ii) forced-alignment based on
the existing word transcriptions, including the transcriptions modified using the
mispronunciation data, and (iii) GMM classifier on using the native and the non–
native acoustic model. The following sections compare the output of phoneme
sequences to the gold standard, which leads us to identify pronunciation errors.

N-gram output The ASR was run on 1-gram, 2-gram, 3-gram, 4-gram, and 5-
gram of phones. We first trained the algorithm introduced on our data to obtain
the baseline values for the top frequent errors to determine the rules for the error
model. According to [11], the common n-gram models, when there is sufficient
training data, are trigram, 4-gram, or even 5-gram.

We trained all the n-gram models, but we saw that performance was much
better with the 5-gram language model. For the rest of the n-grams, we only
report the PERs for ASR & MAN, ASR & IDE, and IDE & MAN. The reason
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is that the 5-gram model captures more context than other models, and thus
we chose to report in full detail only the 5-gram results based on the number
of substitutions, insertions, and deletions. For this reason, the 5-gram model
was used for finding modified transcriptions. The PERs of 5-gram in ISLE and
ChildEn are 42% and 38% for ASR & MAN comparison, respectively. As we
have enough data for training, we considered the output of 5-gram models to
develop our error model rules. The ASR systems’ performance that used n-gram
models was low; the PER for each n-gram model was between 33-52%.

Error model output Thus far, we have tried to improve the PER to estimate
the ASR system’s performance for mispronunciation recognition of L2 learners
of English. The second model used the predefined rules (Table 3) from the n-
gram model to train native and non-native speech data to check if the output
of our ASR system will be improved compared to the n-gram model; we applied
the forced-alignment by using the adapted lexicon. We compared our models’
performance (n-gram model and error model) by calculating PER. We choose
the best model based on the PER metric.

Interestingly, the new ASR system performs better in terms of PER for
ChildEn, and the error rules showed better improvement for the ASR system.
The speech recognition phone error rates are typically greater for adults than
children. The low improvement in ISLE might be due to more complex and
long sentences used in this corpus that lead to error propagation differently. The
other possible reason might be due to the recordings’ quality (i.e., noise in the
background).

The purpose of this study is to find an ASR system with high accuracy
for detecting mispronounced phonemes. Table ?? shows the statistics of error
detection results comparing the error detected by our ASR system and errors
reported by annotators for each corpus.

Table 2: Detection Accuracy: n-gram & error model

Corpora 5-gram error model

ISLE
ASR MAN 58% 56%
ASR IDE 62% 60%
IDE MAN 88%

ChildEn
ASR MAN 62% 72%
ASR IDE 67% 76%
IDE MAN 85%

Overall, the highest Average Accuracy (see Eq. 1) to date was obtained
using the error model. The accuracy results range from 72%-76% for correct
error detection of phones in ChildEn (Figure 3).
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Fig. 3: Overall detection accuracy for ISLE (top graph). & ChildIt (bottom
graph)

6 Discussion

Focusing on the smaller units would allow students to focus more on specific
aspects of their pronunciation. However, the evaluation of smaller units for pro-
nunciation assessment has a higher uncertainty compared to the evaluation of
longer units [28]. For pronunciation training, especially for L2 learners, automatic
pronunciation evaluation can play an important role, for example, by using ASR
systems to evaluate the pronunciation of non-native input and quantify how close
the speech is to a native-like pronunciation.

One of the challenges in using non-native speech for automatic recognition is
the diversity of allophones, accents, invented words by L2 learners, and longer
hesitations. Therefore, we identified high-priority phones (i.e., the phones used
for creating the error rules (see Table 3)) and evaluated our system based on
them. Since achieving a perfect native-like pronunciation is an unrealistic goal
for adult learners, we focused on the specific mispronounced phones summarized
in Table 3. As an example:

– dh → dh/d: “dh” can be replaced by itself or “d”.
– n d → n d/: “d” can be deleted if it is in the sequence of “n d”.
– er→ er r/R/: means that our adapted lexicon1 will have three transcriptions for

the word “HER” (i.e., “hh er” (ideal phonetic transcription), “hh er” R, & “hh er”
r.

This model was trained on the phone errors observed in our corpora. We
created a set of rules to consider these errors in our corpora and implemented
our system based on the adapted lexicon. From the output of our ASR system, it
is clear that the selected architecture is more capable of detecting mispronounced
phones. In fact, our ASR systems’ outputs showed that by applying n-gram and
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Table 3: Error rules: Substitutions, Deletions, & Insertions

Substitution rules Deletion rules Insertion rules

Original Sub Original Del Original Insert

ih –> ih/i/iy n d –> n d/ er –> er r/R/

dh –> dh/d l d –> l d/ aa –> aa r/R/

ax –> ax/a/o/oh th d –> th d/ ao –> ao r/R/

z –> z/s s t –> s t/ p l –> p ax/o l

r –> r/R n t –> n t/ b l –> b ax/o l

uh –> uh/u ay k –> ay k/ k l –> k ax l

ae k – ae k g l –> g ax l

error models, the model proposed in this work obtained the lowest PER and
better accuracy for both ISLE and ChildEn. In other words, in our system, the
model that produced the best PER is the error language model with a PER of
23%, which is better than the rate in previous studies.

Previous works in speech recognition report that word error rate (WER) for
human annotators on native data is around 5% compared to WER on non-native
speech data, which is as high as 30% for automatic annotations [29]. Our ASR
system may not perform better than this human-level performance from human
annotators in detecting mispronounced phonemes in non-speech data. The best
recent performance report on WER comes from an ETS project, in which the
authors trained an ASR system on 800 hours of speech data, and the reported
WER was 28.5% [4]. By considering the error language model, we can see that
the ASR system performs better at recognizing the phones.

Furthermore, we can see that our ASR system selected the transcription
defined in the new adapted lexicon based on our error model. Improving ASR will
provide more speaking possibilities for learners to learn a new language. Using
ASR can improve the traditional class to a more learner-centered environment
with less anxiety. Apart from the segmental aspect, the suprasegmental aspect
also plays a role in pronunciation training, but the ASR for the suprasegmental
part is less reliable and still needs more work to improve it.

7 Conclusions

In this study, we worked on the language model - at the phone level - to extract
the mispronounced phones and trained an acoustic model of native and non-
native training examples to detect mispronunciations. We compared the PER
of our ASR system using native and non-native speech data to determine our
error model hypothesis’s validity. Our system’s innovation uses error rules in
our language model (error model) based on the most common errors seen in L2
learners’ speech to improve our detection system. Our error rules were defined
based on the common errors of Italian speakers who learn English as their second
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language. The error detection system records the learners’ utterances, and the
ASR-based detector will provide the phone-level transcription.

Finding errors is not the final destination. The next important step is to
provide initiative feedback to learners which helps learners to correct their errors
recognized by the ASR system. As the final step, a list of possible feedbacks can
be given to L2 learners based on their pronunciation errors. Our ASR system
needs to be adapted to the mother tongue of the L2 learners since different
L1s can cause different pronunciation errors. Improving ASR will provide more
speaking possibilities for learners to learn a new language.
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Abstract. A commonly observed weakness of deterministic reinforce-
ment learning policies with continuous action spaces, such as those ob-
tained after training with the DDPG or TD3 methods, is the tempo-
ral roughness of their output signals (chosen actions). This is a serious
deterrent for real-life application of such policies in continuous control
tasks. For instance, in autonomous driving the rate of change of lateral
acceleration is typically restricted to ensure passenger safety and com-
fort. Therefore, we propose a set of modified TD3 algorithms to improve
the temporal smoothness of the trained agent’s chosen actions. These
smoothed TD3 (STD3) algorithms can be applied to smoothen poli-
cies; either in a post-processing training phase, or from the very start
of training in an attempt to reduce the roughness cost (constraint) to
an acceptable level throughout training. The proposed methodology is
applied to some well-known benchmark environments, as well as to a
more complex autonomous driving problem. Results show a consistent
reduction of roughness without significant performance deterioration.

Keywords: Smooth Control · Reinforcement Learning · Deterministic
Policies · Autonomous Driving.

1 Introduction

The usage of deterministic policies with continuous action spaces can lead to
very oscillatory system behavior (see Figure 2). Such behavior is typically char-
acterized by control signals with large, altering gradients in the time domain and
high frequency components in the frequency domain. Although not as much of a
problem in virtual simulations, this can severely impact the applicability of the
learned policies in the real world, where such jerky control signals might wear
down or damage critical components.

Mitigation. For simple or purely virtual environments such roughness issues
could be dealt with using mitigation strategies. One option is to redefine the
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action space and switch to derivative control of the system [4, 23, 17]. This way,
the rough derivative actions will be smoothed out by the extra integrators in
the environment’s dynamics. Alternatively, the rough action signals could be
low-pass filtered, effectively damping high frequency oscillations [8]. Another
commonly used mitigation strategy in reinforcement learning consists of adding
a roughness penalty in the reward signal [4, 23, 15], making it beneficial for
the agent to select actions that do not change too much from one timestep to
the next. While such techniques may work on relatively simple environments,
they quickly become cumbersome in more realistic setups. In this paper, we
try to tackle the roughness problem at its core, by embedding the smoothness
constraints into the training process, leading to a set of smoothed TD3 (STD3)
algorithms. These algorithms lead to smoother policies and simpler models (no
unnecessary integrators and filters, less convoluted reward signals), allowing the
designer to focus more on prime objectives instead.

Smooth exploration. Smoothness issues with neural network outputs have
been addressed before [6] to increase the network’s generalization capabilities. A
recent overview of existing smoothing techniques for neural networks and their
advantages is given by Rosca et al. [16]. In optimal control, the requirement
of smooth control signals has been dealt with, e.g. under the form of slew rate
constraints. It is thus surprising that such techniques have been rarely applied
to the reinforcement learning domain. Initial attempts mostly focused on the
smoothness of the exploratory policy during training. Lillicrap et al. [11] sug-
gested the usage of autocorrelated Ornstein-Uhlenbeck noise to guarantee proper
exploration of the state-action space when working with deterministic policies.
Under small time discretizations, the rough uncorrelated Gaussian noise samples
could cancel each other out, leading to insufficient exploration and suboptimal
learned policies. Raffin et al. [14] presented generalized state-dependent explo-
ration (gSDE) as another solution for the non-smoothness of Gaussian noise
samples. By making the noise function state-dependent through a linear com-
bination of policy features and fixing the linear weights for a given amount of
training steps, the smoothness of the behavioural policy is drastically improved.
The prime focus of such techniques lies on the smoothness of policies during
training and exploration, while our focus in this paper lies on the smoothness
of the learned policies during evaluation or deployment. Hence these methods
could be seen as an orthogonal approach and could be readily combined with
our proposed smoothed TD3 variants to improve the overall smoothness, during
both training and evaluation.

Regularization. The usage of output regularization, in combination with deriva-
tive control, has been investigated by Chisari et al. [4]. By forcing the action rates
to remain small, the integrated actions that are passed to the environment’s dy-
namics remain smooth. Recently, Mysore et al. [12] introduced ‘Conditioning
for Action Policy Smoothness’ (CAPS), a method to improve temporal and spa-
tial smoothness of policies through the addition of two regularization terms on
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the policy network. This smoothness regularization is also leveraged by our pro-
posed STD3 methods, albeit in a more generic setting. In fact, the temporal
smoothness regularization of CAPS corresponds to the specific STD3C,fix vari-
ant, introduced here. Spatial smoothness is not further considered in this work,
but could also be accounted for using an extra regularization term and a dedi-
cated spatial smoothing schedule.

This paper is organized as follows. In Section 2 the required reinforcement
learning (RL) preliminaries are described, followed by a short motivational exam-
ple in Section 3 to highlight the importance of additional smoothness constraints.
Section 4 proceeds by introducing the different smoothed TD3 variants, used to
improve the learned policy’s temporal smoothness. Finally, the different vari-
ants are evaluated and compared on different environments in Section 5. These
experiments show the great potential of the added smoothness constraints, as
they not only drastically improve the policy’s smoothness, but also outperform
standard TD3 policies on a majority of the investigated environments.

2 Reinforcement Learning

In model-free Reinforcement Learning (RL) the objective is to find an optimal
controller (policy) for an entity (agent) acting under a-priori unknown system
dynamics (an unknown environment). At any given point in time t, the agent
has access to the current state st ∈ S of the environment; or an observation of
this state if the system is only partially observable. The controller then maps
these states st to suitable actions at ∈ A and is often referred to as the agent’s
policy. The execution of an action, will bring the agent to a new state st+1

— following the system dynamics — after which the same procedure can be
repeated. To improve its policy, the agent has one extra source of information
available: the reward signal r(st,at, st+1) which describes how favourable it
was to select action at while being in state st and transitioning to state st+1.
The optimal controller is thus the one which maximizes the agent’s long term
accumulated reward.

More formally, the RL problem can be described as the Markov Decision
Process (MDP) (S,A, σ0, τ, r, γ) with state space S ⊂ RS , action space A ⊂
RA, initial-state distribution σ0(s0) : S → [0 ; 1], state-transition distribution
τ(st+1|st,at) : S ×S ×A → [0 ; 1], reward signal r(st,at, st+1) : S ×A×S → R
and discount factor γ ∈ [0 ; 1). Note that the stochastic environment dynamics
τ, σ0 are modelled as a probability distribution but remain unknown to the agent.
Usually, the agent’s policy is also modelled through a probability distribution
π(at|st) from which suitable actions can be sampled at every timestep. The
special case of deterministic policies can also be considered at = π(st). Learning
the optimal policy π∗ under such a framework then corresponds to finding the
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policy maximizing the agent’s future discounted return Rt at every timestep

Rt =
∞∑

k=0

γkr(st+k,at+k, st+k+1),

π∗ = arg max
π

Eπ,τ,σ0 [R0] . (1)

The notation Eπ,τ,σ0
is used to denote an expectancy taken over the probability

distribution of actions at ∼ π(·|st), induced by the policy, and over the prob-
ability distribution of states s0 ∼ σ0(·) and st+1 ∼ τ(·|st,at), induced by the
environment. Although some RL methods try to directly search for the opti-
mal policy using the objective (1), it is often useful to use (an estimate of) the
policy’s action-value function Qπ(s,a) for extra guidance

Qπ(s,a) = Eπ,τ [Rt|st = s,at = a] .

This action-value function satisfies following recursive relationship, known as the
Bellman equation

Qπ(s,a) = Eπ,τ [r(st,at, st+1) + γQπ(st+1,at+1)|st = s,at = a].

A more extensive introduction to the domain of reinforcement learning is
given by Sutton & Barto [21]. In this paper we will further limit the discussion to
deterministic, off-policy, actor-critic methods, such as ‘Deep Deterministic Pol-
icy Gradient’ (DDPG) [11] and ‘Twin Delayed DDPG’ (TD3) [5]. These meth-
ods consist of two major components: the actor network µ(s;θµ) modelling the
deterministic policy (state-action mapping) and the critic network Q(s,a;θQ)
estimating the optimal state-action value function. Both components are jointly
updated, improving one another as training progresses, using experience col-
lected while the agent is interacting with the environment during training. As a
deterministic policy maps the same state always to the same action, an exter-
nal source of stochasticity is often required in order to sufficiently explore the
state-action space. Hence, the behavioural policy β(s) = µ(s;θµ)+ε with explo-
ration noise ε ∼ N(0,σexpl) is used to collect experience during training instead
of the deterministic policy modelled through the actor, making these methods
off-policy. The collected experience tuples (st,at, rt, st+1) are first stored in a
replay buffer B. In a second step, uniformly sampled batches of experience tuples
from this buffer are used to update the actor and critic networks.

The critic network is updated by minimizing a squared temporal difference
error3

LQ(θQ) = E(st,at,rt,st+1)∼B
[
(Q(st,at;θQ)− yt)2

]
,

yt = rt + γQ(st+1, µ(st+1;θ′µ);θ′Q),

3 For TD3 extra twin networks are introduced to avoid overestimation bias and an
extra noise term is added to the target policy’s actions to smoothen the value esti-
mate [5].
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where the primes on the weight vectors denote the usage of target networks to
improve the stability of the learning process. The actor network is updated by
minimizing the actor loss

Lµ(θµ) = −Est∼B [Q(st, µ(st;θµ);θQ)] , (2)

leading to an approximation of the deterministic policy gradient [19]

∇θµJ ≈ Est∼B
[
∇θµµ(s;θµ)|s=st∇aQ(s,a;θQ)|s=st,a=µ(st;θµ)

]
.

3 Motivation

As a first, motivational example, the task of learning a simple overtaking ma-
noeuvre on a three-lane highway is considered (Figure 1). At the start of each
episode, the virtual driver (agent) is positioned in the rightmost lane behind
a slower lead vehicle, travelling at a constant velocity. The virtual driver can
perceive its current velocity components, the relative lateral offset w.r.t. its cur-
rent lane center and the lanes directly to the left and right, and the relative
offset and velocity components w.r.t. the car to overtake. The action space is
two-dimensional, consisting of a longitudinal reference velocity and lateral refer-
ence offset (which are tracked by lower-level controllers). The reward r(st) is a
weighted sum of two components 0.75rV + 0.25rR. Where rV is a penalty given
when traveling at low velocities — thus rewarding policies which overtake the
slow vehicle instead of staying behind it — and rR is a penalty given when not
driving in the rightmost lane (to obtain policies following common rules of the
road). More details on the simulation environment and definitions of states and
reward signals can be found in Appendix A.

Five policies (each initialized with a different seed) are learned in this en-
vironment using the TD3 method [5]. While each of them is able to correctly
overtake the slow vehicle, therefore maximizing their long-term reward, only two
of them do so in a smooth way. The others suffer from high-frequency oscilla-
tions in their lateral reference signals, severely impacting passenger comfort as

𝑥

𝑦

𝑣 = 21 Τ𝑚 𝑠𝑣0 = 25 Τ𝑚 𝑠 ∆𝑥0= 200𝑚

Fig. 1. Schematic overview of the motivational overtaking environment. The virtual
driver (agent) is in control of the yellow vehicle and has to overtake the slower moving
blue vehicle in front of it.
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Fig. 2. Lateral reference offset of two policies trained for 250 episodes (with 600
timesteps) on the motivational overtaking environment. The blue line corresponds to
the policy trained using the vanilla TD3 method, the orange line corresponds to the
policy trained using the smoothed STD3S,lin variant (after 50 episodes of smoothing).
While both policies correctly learn the overtaking manoeuvre (around 15 − 25s), the
rough reference changes of the TD3 policy prevent its usage in real vehicles.

illustrated in Figure 2. The occurrence of these oscillations throughout training
is also quite volatile, as they seem to vanish and reappear within a few training
episodes.

For simple environments, such smoothness problems could be dealt with by
incorporating extra penalties in the reward signal and/or the usage of derivative
control (see Section 1). However, this becomes increasingly more difficult for
problems with more complex reward functions or state representations. Without
proper care, the resulting policies could take a significant performance hit, as
compared to their unconstrained counterparts (see discussion in Section 5.3 and
Figure 6). The proposed smoothed TD3 variants in this work are more easily
applicable and have higher robustness to such problems.

4 Methodology

To improve the smoothness of the learned policies, different smoothed TD3
(STD3) variants are introduced in the following subsections. First, a brief overview
of the used roughness metrics is given.

4.1 Roughness metrics

Different metrics of smoothness or roughness of a curve or control signal exist:

– The integral of the second-order time-derivatives (or its approximation us-
ing sums and finite differences for discrete signals), as commonly used in
smoothing spline applications [7].
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Improving temporal smoothness of reinforcement learning policies 7

– A metric defined over the frequency spectrum of the time signal, obtained
after a Fourier transform, typically used in signal processing [6, 12].

– The average squared temporal difference of consecutive samples [14].

In the context of this paper, we use the third metric and calculate the average
roughness of a discrete time signal xk, 0 ≤ k ≤ kM as

ρ̄ =
1

kM

kM∑

k=1

ρ(xk−1,xk). (3)

The immediate roughness of the signal is then defined as

ρ(x0,x1) = ‖x0 − x1‖2P = (x0 − x1)>P (x0 − x1), (4)

where P is a positive definite matrix that can be used to put more or less weight
on certain signal components.

Equation (3) can be further generalized to time signals originating from sam-
pling actions from a policy π under an MDP with finite episode length kM . For
the specific case of calculating the average roughness of the sampled actions we
have

ρ̄π = Eπ,τ,σ0

[
1

kM

kM∑

t=1

ρ(at−1,at)

]
. (5)

Different ways to approximate this expectancy will be given in the next sub-
section. Beside being a simple metric to calculate, this definition of roughness
will turn out to be advantageous when combined with model-free reinforcement
learning schemes.

Notice that taking P = I gives the unscaled roughness, using the Euclidean
norm of the action difference. Another commonly used choice for P throughout
this paper is the diagonal matrix with elements pi,i = ∆a−2

i where ∆ai is the
maximum absolute difference between the i-th component of two actions. This
gives rise to the immediate normalized roughness ρnorm, which is less impacted
by action components with a larger range of possible values (i.e. with a higher
∆ai).

4.2 Smoothed TD3

We propose to modify the actor loss (2) by adding an extra weighted smooth-
ness term, following existing smoothness regularization techniques for neural
networks [6]. In this case, the smoothness term approximates the average rough-
ness of the policy

Rsmooth ≈ ρ̄π.
The actor weights are then updated by minimizing the total loss

Lµ,smooth = Lµ + λsRsmooth. (6)
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Actor

Smoothness 
constraint

𝑟

𝑎

𝑠
𝑟𝑆

𝐿𝜇

Env.

𝑅𝑠𝑚𝑜𝑜𝑡ℎ

Performance 
objective

Smoothness 
constraint

Critic

Fig. 3. Schematic overview comparing the information flow of the applied smoothness
constraints using reward penalties (orange) and actor regularization (yellow). With
reward penalties, the information flow is indirect, i.e. it is first used to update the
critic model and this updated critic model is then used to update the actor model. With
regularization, the information flow is directly acting on the actor model, interfacing
with the environment.

This effectively forces the actor network to not only optimize the expected dis-
counted value, but also to force its outputs corresponding to consecutive states
(st and st+1) to be similar in the chosen roughness norm (4).

Figure 3 provides a schematic overview showing the major difference be-
tween smoothness constraints imposed through the reward and those imposed
through actor regularization. Notice the indirect application of the smoothness
constraints on the actor model, through the critic model, when using the re-
ward signal. As a consequence, the actor model can not be smoothed properly
whenever the critic is not able to accurately capture the underlying smoothness
constraints. In fact, as the critic is only an approximation of the optimal value
function, there is no guarantee that the critic is able to capture this relationship
at all. In practice this means many experience samples are required in order for
the critic to discover the complex relationship between states, actions and accu-
mulated returns — encoding both the performance objective and the smoothness
constraints — without any certainty of success. Hence, while such an indirect in-
formation flow works reasonably well for complex functions of states and actions,
such as the performance objective (1), it is needlessly complex for the applied
smoothness constraints, which only depend on consecutive transitions in state-
action space. In contrast, when using the regularization term, the smoothness
constraints are applied directly on the actor model, without any intermediate
approximation step. Moreover, in the calculation of the regularization term we
can explicitly utilize the tight temporal connection in state-action space of the
smoothness constraints, leading to a more sample-efficient smoothing effect.

The introduced hyperparameter λs ≥ 0 in (6) can be tuned to trade-off
performance and smoothness objectives. Low values will result in policies op-
timizing their future rewards, but they might be non-smooth (see the example
of Section 3). High values will result in smooth policies, but might not always
achieve a good performance. Remark that the effective amount of smoothing
also depends on the definition of the reward signal. After all, the smoothness

Regular papers BNAIC/BeneLearn 2021

224



Improving temporal smoothness of reinforcement learning policies 9

weight λs balances the regularization term Rsmooth relatively against the actor
loss Lµ (6), which is proportional to the average Q-value (2). Hence, the same
value of λs will have less smoothing impact on environments with larger rewards
(in absolute value), leading to Q-values and actor loss values with higher order
of magnitude, effectively suppressing the smoothness regularization term. For
this reason, it is recommended to normalize the reward signal, prior to storing it
in the replay buffer. Then, bounds on the Lµ term can be calculated and traded
off against the maximum value of Rsmooth, which is bounded by maxi,j ρ(ai,aj).
Such reward normalization is also applied in the conducted experiments of Sec-
tion 5 and shows the improved robustness of the smoothness weight parameter:
a single λs value leading to acceptable policy smoothing across varying environ-
ments.

Different approximations of the used roughness metric ρ̄π (5) and different
schedules for the smoothness weight λs lead to different STD3 variants. In the
remainder of this subsection, these different variants will be introduced. Remark
that the specific combination STD3C,fix corresponds to the temporal smoothness
regularization term of the CAPS method presented by Mysore et al. [12].

Roughness approximation The expectancy in (5) can be approximated in
different ways, leading to two STD3 variants introduced below. Both approxi-
mations can reuse the same batch of sampled experience from the replay buffer
B, used to calculate (2). Hence, the extra smoothness regularization term can
be easily plugged into existing training loops of off-policy actor-critic methods
such as DDPG, TD3, Proximal Policy Optimization (PPO) [18] and Soft Actor
Critic (SAC) [9].

The first supervised smoothing (STD3S,•) variant uses the current action at,
as sampled from the replay buffer, and the next action ãt+1 = µ(st+1;θµ), as
given by the policy for the next state st+1, in the regularizer calculation

Rsmooth(θµ) = E(at,st+1)∼B [ρ(at, µ(st+1;θµ))] .

The name ‘supervised’ stems from the fact that the resulting smoothness regu-
larizer forces actor network outputs to be similar to given targets (the sampled
at actions from the replay buffer) in the chosen roughness norm (4), analogous
to the classical supervised learning setting.

The second contrastive smoothing (STD3C,•) variant uses the current action
ãt = µ(st;θµ) and next action ãt+1 = µ(st+1;θµ), both as given by the policy
for the current and next states, in the regularizer calculation

Rsmooth(θµ) = E(st,st+1)∼B [ρ(µ(st;θµ), µ(st+1;θµ))] .

In this case the name ‘contrastive’ stems from the fact that two outputs from
the same actor network are forced to be similar in the chosen roughness norm
(4), comparable to the contrastive learning setting. Remark that the calculation
of ãt = µ(st;θµ) and the corresponding forward and backward pass through the
actor network are already performed for the calculation of the actor loss Lµ (2).

Regular papers BNAIC/BeneLearn 2021

225



10 B. De Cooman et al.

Timestep 𝑡 + 1Timestep 𝑡

𝑠𝑡

𝑠𝑡+1

ǁ𝑠𝑡+1

𝑎𝑡~𝛽(∙, 𝑠𝑡)

𝑎𝑡 = 𝜇(𝑠𝑡)

Timestep 𝑡 + 2

ǁ𝑠𝑡+2

𝑎𝑡+1 = 𝜇(𝑠𝑡+1)

Fig. 4. Comparison of supervised and contrastive smoothing approximations. In blue
are the states and actions present in the replay buffer B. In green are the actions
calculated during evaluation of the smoothness regularizer. For supervised smooth-
ing, ρ(at, ãt+1) is used for the immediate roughness approximation. For contrastive
smoothing, ρ(ãt, ãt+1) is used instead.

Hence, there is no significant computational overhead for using the contrastive
variant, as compared to the supervised variant.

Notice that only a single (at, st+1) or (st, st+1) experience sample is needed
to already start improving the smoothness of the actor model for the sampled
state transition. As previously mentioned this is more sample-efficient than the
usage of smoothness penalties in the reward, which require multiple experience
samples to uncover the underlying smoothness goal.

A comparison of the used state and action information by both variants is
shown in Figure 4. The supervised variant has the strongest temporal connection
between the consecutive actions at and ãt+1 used in the regularizer calculation.
More precisely, it is guaranteed that taking action at in state st can lead to state
st+1, where the current deterministic policy will take action ãt+1. Hence, forcing
the actor output µ(st+1;θµ) to be similar to at in the chosen roughness norm,
will indeed improve the temporal smoothness of the policy. For the contrastive
variant there is no such strong temporal connection, as taking action ãt in state
st does not necessarily lead to state st+1. This discrepancy (between states st+1

and s̃t+1) will however diminish as training goes on and the behavioural policy
β becomes more similar to the deterministic policy µ.

Smoothing schedules A smoothing schedule is a function λs(f) : [0 ; 1] →
[λs,m ;λs,M ] mapping the current training progress f = T

TM
to a value for the

smoothing weight λs, where the current training episode is denoted by T and the
total amount of training episodes by TM . All considered schedules are bounded,
i.e., 0 ≤ λs,m ≤ λs(f) ≤ λs,M ∀f ∈ [0 ; 1].

The most straightforward STD3•,fix variant keeps the smoothness weight λs
fixed during the whole training process. The smoothness weight then becomes
another hyperparameter to tune, depending on the complexity of the environ-
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Improving temporal smoothness of reinforcement learning policies 11

ment and desired amount of policy smoothing

λs(f) = λs = λs,m = λs,M ∀f ∈ [0 ; 1].

On difficult environments, it can be hard to find good smoothness weight val-
ues under the fixed scheme. Extra smoothing constraints too early in the train-
ing process can hamper the optimization process, leading to suboptimal learned
policies. The second STD3•,lin variant tries to resolve this issue by splitting the
training process in two phases: an initial phase from f = 0 to f = fp1 < 1, fol-
lowed by a second phase until f = 1. In the first training phase λs remains equal
to λs,m = 0, allowing the agent to maximally optimize the policy’s performance
without any smoothness constraints. Hence, during this phase, there is no differ-
ence between the smoothed and raw TD3 method. In the second training phase,
after a reasonably good policy has been found, the smoothness constraints are
gradually introduced by linearly increasing λs as training progresses (until the
end of training). The resulting schedule effectively ‘smoothens out’ the policies
obtained after the first training phase

λs(f) =





0 0 ≤ f ≤ fp1 (Phase 1)

λs,M
f − fp1
1− fp1

fp1 < f ≤ 1 (Phase 2)
.

In practice, the determination of fp1 — the end of phase 1 — might require
some trial-and-error experiments. Moreover, it might not always be necessary to
maximally reduce the policy’s roughness at the potential cost of a reduced perfor-
mance. For some applications, keeping the roughness below a certain threshold
may satisfy all real-world requirements on smoothness. The last STD3•,adapt

variant addresses both issues, by automatically putting more weight on smooth-
ing or value optimization depending on a current roughness estimate ρ̃π. This
roughness estimate tries to approximate ρ̄π (5) by averaging the measured aver-
age roughness (3) over E evaluation episodes (i.e. using the deterministic policy
a = µ(s;θµ) without exploration noise)

ρ̃π =
1

E

E∑

e=1

1

Ne

Ne∑

t=1

ρ(aet−1,a
e
t ), (7)

where the superscript on the actions denotes the specific evaluation episode
in which they occurred. This estimate is then reevaluated every Te training
episodes, keeping the smoothness weight constant in between the evaluations

λs(f) = λs,k ∀f : kTe ≤ fTM < (k + 1)Te,

λs,0 ∈ [λs,m ;λs,M ],

λs,k+1 =





max{λs,m, s−λs,k} ρ̃π < ρm

λs,k ρ̃π ∈ [ρm ; ρM ]

min{λs,M , s+λs,k} ρ̃π > ρM

.
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The resulting smoothing schedule is piecewise constant and adapts the amount
of smoothing throughout training, based on the specific needs. More precisely,
in case the roughness estimate lies above a predefined upper threshold ρM , more
weight is put on the policy smoothing for the next Te training episodes — through
multiplication of λs by s+ > 1. Similarly, in case the roughness estimate lies
below a predefined lower threshold ρm, more weight is put (again) on policy
optimization for the next Te training episodes — through multiplication of λs
by s− ∈ (0 ; 1).

This last variant could be seen as an ad-hoc strategy to find an approximate
solution of the constrained MDP (CMDP)

π∗ = arg max
π

Eπ,τ,σ0
[R0]

s.t. ρ̄π ≤ ρM .

Here, the focus is not to maximally reduce the roughness of the obtained poli-
cies (as is the case for the first two smoothing schedules), but rather to reduce
the roughness of the policies to an acceptable level determined by the specified
roughness thresholds. In optimal control, such a constraint is also referred to as
a slew rate constraint.

5 Experimental results

Three different experiments were conducted to compare the different smoothed
TD3 variants across different environments of varying complexity. The training
and evaluation procedures are briefly described first.

For every hyperparameter configuration, the experiment is repeated five
times, using five different seeds for initialization. After every Te training episodes
or ke training timesteps, E independent evaluation episodes are executed to get
an estimate of the learned policy’s average performance R̃π and roughness ρ̃π
(7)

R̃π =
1

E

E∑

e=1

1

Ne

Ne∑

t=1

r(set−1,a
e
t−1, s

e
t ).

To summarize these average evaluation metrics and make a comparison between
different settings easier, only evaluation metrics of the best B episodes, occurring
in the last TB episodes of the training process4 are retained. Note that the best B
episodes are determined based on the average evaluation performance R̃π only.
Combined with the five independent repeats of each experiment, this leads to 5B
datapoints, from which comparison statistics are calculated (e.g. a mean value
and standard deviation).

4 This is to guarantee proper convergence of both the performance and smoothness
objective on every environment.
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Improving temporal smoothness of reinforcement learning policies 13

5.1 Highway overtaking

As the first experiment, let us quickly revisit the motivational example of Sec-
tion 3, where the goal was to learn a policy that can overtake a slow vehicle
in the rightmost lane of a highway (Figure 1). First, five policies (initialized
using different seeds) were trained using the TD3 method without smoothness
constraints. Afterwards, five policies (reusing the same five seeds) were trained
using the STD3S,lin method to smoothen out the previously obtained policies
after an initial 200 training episodes (fp1 = 2/3). While almost all TD3 policies
suffered from jerky actions throughout training, the smoothness has improved
a lot for the STD3 policies. Only one policy still had some oscillatory reference
actions after smoothing, but for only a fraction of the time as compared to the
unsmoothed policies. Figure 2 shows an evaluation episode of one of the five poli-
cies after 250 training episodes (i.e. after 50 smoothing episodes for the STD3
policy).

5.2 OpenAI benchmarks

In this second experiment, the different STD3 variants will be compared against
each other (and the standard TD3 method) on 10 commonly used OpenAI gym
environments5. We use a customized version of the latest Stable-Baselines im-
plementation6 to perform these experiments. Their tuned hyperparameters for
the TD3 algorithm are reused with a few exceptions for some environments re-
quiring a longer training time. A summary of the used hyperparameters and full
environment names can be found in Appendix B. The used smoothness param-
eters are summarized in Table 1. Notice that for the fixed and linear smoothing
schedule, the same parameters could be reused across all environments. This was
possible due to the normalization of states and rewards, prior to storage in the
replay buffer, and shows the robustness of these smoothness parameters. For the
adaptive smoothing schedule, the extra imposed smoothness constraint was set
as to reduce the roughness of the policies by half, as compared to standard TD3.
More precisely, we put the maximum threshold ρM equal to approximately half
the roughness of policies obtained using default TD3. The minimum threshold
was set to roughly 90% of the maximum threshold’s value.

The training and evaluation procedure outlined at the beginning of this sec-
tion was followed using five independent repeats with E = 5 evaluation episodes
every ke = 5000 training timesteps. Evaluation metrics of the five best episodes
occurring in the last 20% of the training process were used to make the compari-
son between different configurations (B = 5, TB = 0.2TM ). The mean values and
standard deviations for the performance and roughness metrics are summarized
in Table 2.

In general, all investigated STD3 variants significantly improve the policy
smoothness. However, some do so at the cost of a reduced performance. For ex-
ample, the STD3S,fix method consistently leads to the smoothest policies, but

5 https://gym.openai.com
6 https://github.com/DLR-RM/stable-baselines3
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Table 1. Smoothness parameters for the different environments. The normalized
roughness norm ρnorm was used for both the regularizer calculation Rsmooth and rough-
ness estimation ρ̃π. The remaining parameters for the adaptive variant were set as
follows for every environment: λs,0 = 1 · 10−4, λs,m = 1 · 10−6, λs,M = 1.

Environment STD3•,fix STD3•,lin STD3•,adapt

λs fp1 λs,M ρm ρM

Ant 0.2 0.6 0.4 0.36 0.4

Bipedal 0.2 0.6 0.4 0.16 0.18

Hopper 0.2 0.6 0.4 0.04 0.05

IDP 0.2 0.6 0.4 0.08 0.09

IPS 0.2 0.6 0.4 0.08 0.1

Lunar 0.2 0.6 0.4 0.18 0.2

Minitaur 0.2 0.6 0.4 0.36 0.4

MCC 0.2 0.6 0.4 0.004 0.005

Pendulum 0.2 0.6 0.4 0.08 0.1

Walker 0.2 0.6 0.4 0.16 0.18

often not to the best performing ones. The reverse situation is also observable
for the STD3C,fix method: this method leads to the best performing policies,
but other methods can typically reduce the roughness slightly more. It should
be noted however that results lie close together for some environments. Further-
more, the addition of extra smoothness constraints does not always lead to a
reduction in performance. On five environments the best performing TD3 poli-
cies are outperformed by an STD3 variant. In particular, the STD3C,lin method
seems to find the best balance between performance and smoothness, as it leads
most often (on five environments) to both the best performing and smoothest
policies.

It might not always be required to obtain the absolute best performing or
smoothest policy though. Depending on the performance-smoothness trade-off
acceptable for a given application, the best STD3 variant can be selected. The
maximum flexibility in defining the desired smoothing behaviour is obtained
using the adaptive smoothing schedules. As can be seen from Table 2, reducing
the roughness by 50% seems to succeed in at least 6 different environments. This
comes without large performance costs, as we still obtain best performing policies
in half of the environments. The adaptive smoothing schedules seem to have the
most difficulty on environments where the best performing TD3 policies have
a high smoothness variability (high roughness variance in Table 2). A possible
explanation for this behaviour is the observed abrupt vanishing and reappearance
of rough actions throughout training. This might lower the smoothness weight,
even though the policies are still ‘vulnerable’ to emerging jerky actions. One
possible solution for this, is the usage of an exponential moving average for the
roughness estimate, instead of recalculating it from scratch every evaluation. In
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Table 2. Benchmark results of the different STD3 variants. All values are relative
changes with respect to the mean value obtained by the TD3 algorithm. The best
performing policies (top) and smoothest policies (bottom) are highlighted in bold. The
bottom row summarizes the data, denoting the number of environments for which both
the best performing policy and smoothest policy was obtained using the given method.
For the adaptive variants, the number in parentheses is the amount of environments for
which the best performing policy was obtained, under the given smoothness constraint.

Environ Average return (↑) [%]
ment TD3 STD3S,fix STD3S,lin STD3S,adapt STD3C,fix STD3C,lin STD3C,adapt

Ant 0.00 ± 4.92 −21.87± 5.33 −11.47± 7.29 −20.26± 38.03 −4.00 ± 8.68 −1.62 ± 6.29 −1.19 ± 3.62
Bipedal 0.00± 0.88 −3.45± 1.02 −0.24± 1.24 −0.09± 2.09 2.95 ± 0.61 2.99 ± 0.56 1.74± 0.39
Hopper 0.00± 4.18 −4.92± 5.76 −0.86± 4.47 −2.25± 3.50 9.70 ± 2.60 −2.48± 4.11 2.72± 5.74
IDP 0.00 ± 0.02 −0.06± 0.01 −0.03± 0.02 −0.02 ± 0.04 −0.02± 0.03 −0.01 ± 0.02 −0.02 ± 0.02
IPS 0.00 ± 0.09 −2.58± 2.65 −0.95± 0.46 −0.04 ± 0.07 −0.08 ± 0.21 −0.19± 0.24 −0.15± 0.17
Lunar 0.00± 2.88 5.02 ± 1.75 1.60± 4.49 1.51± 2.10 5.91 ± 4.24 1.94± 3.11 2.30± 2.70
Minitaur 0.00± 15.42 −27.89± 32.24 −23.32± 22.35 3.15± 27.48 25.84 ± 9.73 −3.03± 26.09 19.75 ± 6.22
MCC 0.00± 0.15 −19.21± 40.61 0.72 ± 0.23 0.24± 0.11 0.36± 0.10 0.35± 0.09 −20.10± 40.00
Pendulum 0.00 ± 26.96 −3.35 ± 28.93 −4.37 ± 28.59 −1.40 ± 29.14 −1.52 ± 26.10 −0.36 ± 26.57 −2.31 ± 26.73
Walker 0.00 ± 4.55 −2.16 ± 2.94 1.02 ± 3.21 −1.60 ± 6.16 2.18 ± 5.32 −1.78 ± 3.80 −1.82 ± 3.44

Environ Average roughness (↓) [%]
ment TD3 STD3S,fix STD3S,lin STD3S,adapt STD3C,fix STD3C,lin STD3C,adapt

Ant 0.00± 9.89 −83.93± 1.02 −83.46± 1.97 −63.53± 18.81 −84.62± 1.91 −87.04 ± 1.65 −55.17± 5.64
Bipedal 0.00± 7.61 −85.31 ± 2.40 −84.45 ± 3.05 −48.76± 4.46 −82.08± 4.78 −85.59 ± 2.54 −53.15± 5.64
Hopper 0.00± 27.74 −70.23 ± 4.62 −65.40± 8.73 −43.37± 8.60 −66.12± 8.95 −75.98 ± 8.93 −48.31± 7.49
IDP 0.00± 58.45 −97.82 ± 0.69 −97.31 ± 1.10 −16.07± 88.20 −98.66 ± 2.29 −98.92 ± 1.70 −33.76± 42.98
IPS 0.00± 146.19 −99.70 ± 0.22 −98.61± 0.64 −0.27± 139.53 −99.74 ± 0.20 −99.38± 0.40 −68.86± 36.79
Lunar 0.00± 32.70 −96.79 ± 1.11 −96.96 ± 1.26 −48.66± 18.96 −91.13± 2.44 −92.04± 3.19 −48.00± 25.37
Minitaur 0.00± 16.36 −82.00 ± 5.70 −76.02± 6.79 −49.75± 4.14 −59.03± 4.63 −66.41± 11.81 −52.63± 4.38
MCC 0.00± 63.12 −74.66 ± 14.05 −71.53 ± 5.11 −33.44± 24.95 −68.87 ± 2.37 −69.75 ± 4.27 −20.68± 69.77
Pendulum 0.00± 114.96 −98.81 ± 0.51 −98.75 ± 0.51 −38.01± 82.90 −98.17± 1.22 −98.74 ± 0.74 13.20± 125.25
Walker 0.00± 18.60 −77.15± 2.55 −77.42± 3.22 −48.39± 9.01 −76.94± 4.24 −82.79 ± 4.38 −52.17± 11.10

# Best − 2 2 − (4) 1 5 − (5)

Fig. 5. Exponentially smoothed (α = 0.1) evolution of the average return (left) and
roughness (right) of the policies as training goes on for the Bipedal environment.
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this way, past non-smooth behaviour is accounted for longer. It is left for future
work to investigate such more elaborate smoothing schemes.

Finally, Figure 5 shows the different smoothing schedules’ effect on the pol-
icy’s roughness throughout training. The simplest fixed scheme immediately acts
on the policy, from the very start of the training process, giving no chance for
policies to become too rough. In the linear scheme, the same roughness behaviour
as for the TD3 method is obtained during the initial training phase. As soon as
the smoothing phase starts, the roughness is drastically reduced to roughly the
same level as the fixed scheme. Both of these clearly try to reduce the rough-
ness as much as possible. The final adaptive scheme starts to smoothen out the
policies as soon as the predefined threshold is crossed, after which the roughness
settles around this threshold value.

5.3 Highway driving

In this last experiment, we investigate the best performing STD3C,lin variant and
compare it against its supervised counterpart on a more complex environment.
The same simulator as in the first experiment is used, but this time there are
multiple moving vehicles on the three-lane highway. The objective in this envi-
ronment is to travel as fast as possible, while respecting all traffic rules (speed
limit, keep right) and safety constraints (preventing crashes). Details can be
found in Appendix A.

Once again, all configurations are repeated five times with differently seeded
initializations. Average performance and smoothness metrics are calculated from
one evaluation episode after every training episode (E = Te = 1). The smooth-
ness estimate is calculated as

s̃π =
1

Ne

Ne∑

t=1

(
exp[−ρ(at−1,at)]− 1

)
,

giving values closer to 0 for smoother policies and values closer to −1 for non-
smooth policies. The performance metric is the accumulated sum of normalized
rewards without smoothness penalty rS , with maximum value 0 and minimum
value −1. All policies were trained for TM = 300 episodes with kM = 5000
timesteps, smoothing started after one third of the training was done (fp1 = 1/3
empirically determined) using different values of the final (maximum) smoothing
weight λs,M and of the smoothness penalty weight wS in the reward. Performance
and smoothness statistics are calculated from the best 20 episodes occurring in
the second half of the training process (B = 20, TB = 0.5TM ). A summary of
the results is shown in Figure 6. The first experiment (on top) compares the
STD3S,lin method with the standard TD3 method using smoothness penalties in
the reward. Clearly, the smoothness of the obtained policies is increased for both
approaches. However, using smoothness penalties quickly becomes impractical,
as performance starts to deteriorate for increasing values of wS . Using smoothed
TD3 on the other hand, results in policies having higher smoothness values
without any performance reduction. Naturally, this only holds up to certain
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Performance ()

Supervised Reward

Smoothness ()

Supervised Reward

Smoothness ()

Supervised Contrastive

Performance ()

Supervised Contrastive

Fig. 6. Comparison of performance (left) and smoothness (right) for policies trained
on the highway driving environment. In blue the standard TD3 method without any
smoothness constraints or penalties. In green the supervised STD3S,lin method. In or-
ange the policies trained with extra smoothness penalties in the reward signal (top)
or using the contrastive STD3C,lin method (bottom). The whiskers denote the mini-
mum/maximum values, the shaded area shows an estimate of the underlying distribu-
tion, the middle rectangle spans from the first to the third quartile and the white dot
shows the mean value.
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limits but policies trained using STD3 were found to be much more robust to such
performance declines empirically. Hence less time can be spent on finetuning the
trade-off between performance and smoothness, which typically required trying
to fit in smoothness penalties into an already existing reward signal.

In the second experiment (bottom of Figure 6), the constrastive and super-
vised STD3 variants were compared (both using the ‘lin’ smoothing schedule).
Both lead to roughly the same amount of smoothness improvement for different
values of λs,M . Performance stays roughly at the same level, although there is
a slight increase for the supervised variant and a slight decrease for the con-
trastive variant. This might be a bit surprising, as the results on the openAI
gym environments seemed to indicate the contrastive variants had superior per-
formance. But this confirms the fact that different environments require different
smoothing measures. For the simplest environments, an extra penalty in the re-
ward might suffice. As complexity increases, the smoothed TD3 variants become
necessary to prevent severe performance deterioration. Finally, for the most com-
plex environments (such as chaotic systems [2]), it seems the stronger temporal
connection of actions in the supervised smoothing setting, makes them more
relevant. In such environments initial policy estimates might be far off from the
later, more optimal policies; and slight changes in the chosen actions could lead
to vastly different state transitions. Both contributing to higher discrepancies in
the compared states of the contrastive smoothing method (see Figure 4).

6 Conclusion

In this paper we introduced different smoothed TD3 (STD3) variants to im-
prove the learned policy’s temporal smoothness. The specific choice of rough-
ness metric (5) used for the calculation of both the smoothness regularization
term and the smoothness estimate, makes it easily combinable with existing
off-policy, policy-based and actor-critic reinforcement learning algorithms. Ex-
periments using normalized returns and roughness metrics show that the extra
smoothness weight hyperparameter generalizes well across a variety of different
environments, leading to smooth policies without significant performance deteri-
oration. For more fine-grained control over the desired smoothness–performance
trade-off, a proper smoothing schedule can be selected. From these schedules,
the adaptive smoothing variant is the most versatile. Using an estimate of the
currently learned policy’s roughness on evaluation episodes, it tries to automati-
cally reduce this policy’s roughness below a predefined threshold set at the start
of training. The resulting policy is an approximate solution of the constrained
MDP with added smoothness constraints.

A possible path forward is the application of the introduced smoothing reg-
ularizers to other actor-critic methods, such as PPO and SAC. Although a sim-
ilar investigation by Mysore et al. [12] observed smoothness regularization to be
mostly effective for TD3 as “soft-policies such as PPO and SAC appear to learn
relatively smoother policies on their own”. Another direction of future work can
be the investigation of other methods to deal with constrained MDPs, such as
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Constrained Policy Optimization (CPO) [1] or Lagrangian methods [20], and
compare them with the adaptive STD3 variant introduced here.
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A Autonomous highway driving environment

The results shown in Section 5 for the highway overtaking and driving environ-
ments are obtained using a proprietary highway simulator. In this section the
most relevant components of this simulator will be briefly discussed. See also
Figure 1 for a schematic overview of the overtaking environment.

A.1 Roads

All experiments were conducted on a three lane highway. For the overtaking
environment, this highway was straight along the whole trajectory. For the driv-
ing environment, the highway was a closed-loop circuit, with both straight and
curved segments. The maximum speed limit was set to 30m/s in all lanes, al-
though some vehicles were instructed to slightly deviate from this limit, to get
more varying situations on the road.

A.2 Vehicles

Every vehicle in the simulator follows the kinematic bicycle model (KBM) [3] to
update its state based on the selected inputs




ẋ
ẏ

ψ̇
v̇


 =




v cos (ψ + β)
v sin (ψ + β)

v
lr

sinβ
a

cos β


 β = arctan

(
lr

lf + lr
tan δ

)
.

The vehicle’s local state vector consists of an absolute x and y position, a head-
ing angle ψ and velocity v. The vehicle can be controlled through its inputs,
consisting of a steering angle δ and a longitudinal acceleration a. To make the
control task of the virtual driver (agent) easier, extra low level controllers are
used to stabilize the vehicle on the road, allowing the agent to select high-level
steering actions a, consisting of a desired longitudinal velocity and desired lateral
position, to solve the driving task. To take correct high level steering decisions,
the virtual driver needs some extra information about other traffic participants
in its neighbourhood. This information is all gathered in the agent’s observation
vector s, containing local information such as the vehicle’s offset w.r.t. differ-
ent lane centers and its velocity components; and relative information such as
relative gaps and velocities w.r.t. neighbouring traffic. Internally, the simulator
discretizes time with step size ∆t = 0.1s and a Runge-Kutta integration scheme
to calculate subsequent states.

A.3 Policies

Every vehicle is controlled by a policy, mapping observations s to suitable high-
level actions a. The policy of the autonomous vehicle is learned using any of the
described RL methods in this paper. The policies of the other vehicles in the
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simulation environment are fixed beforehand. In the overtaking environment,
the policy used for the slow leading vehicle (blue in Figure 1) yields the same,
fixed actions for every state, keeping the vehicle within the initial lane at a
constant velocity. In the driving environment, a mixture of vehicles equipped
with a custom rule-based policy and a policy implementing the ‘Intelligent Driver
Model’ (IDM) [22] and ‘Minimizing Overall Braking Induced by Lane change’
(MOBIL) [10] is used. Both policies try to mimick rudimentary human driving
behaviour, although being fully deterministic. Safety of the chosen actions was
guaranteed through an extra safety check, similar to what is done by Nageshrao
et al. [13]. Unsafe actions are mapped to the nearest safe actions, before being
passed to the lower level controllers, avoiding most collisions.

A.4 Reward

The used reward signal is calculated as a weighted sum of different penalties

r = wF rF + wV rV + wCrC + wRrR + wBrB + wSrS .

The first ‘frontal’ component rF gives a penalty whenever the following distance
to the leading vehicle is smaller than a predefined threshold. The ‘velocity’ com-
ponent rV gives a penalty whenever the virtual driver is not travelling at or near
the maximum allowed speed. The third ‘center’ component rC gives a penalty
whenever the vehicle is not correctly aligned within its current lane – travelling
central in the lane. To force the virtual driver to keep right whenever possible,
the ‘right’ penalty rR is given whenever there is a free lane to the right available.
Finally, for some experiments a penalty for non-smooth policies is given in the
reward through the rS component.

The final reward is rescaled by the sum of all composing weights, such that
it always lies in the interval [−1 ; 0].

B TD3 hyperparameters for the gym environments

The table below shows the used hyperparameters for the TD3 algorithm (and
its smoothed variants) on the 10 used OpenAI gym environments used in the
experiments section. Most of these values correspond to the tuned hyperparame-
ters of the Stable-Baselines3 repository7, the differences are highlighted in bold.

7 https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/td3.
yml
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Table 3. Overview of the used hyperparameters for each environment. The shown
hyperparameters are: maximum timesteps per episode kM , total training timesteps
kM · TM , distribution of the exploration noise ε ∼ E, discount factor γ, replay buffer
size |B|. The exploration noise generators are: the normal distribution N(µ, σ) with
mean µ and standard deviation σ, the Ornstein-Uhlenbeck process O(µ, σ, θ) with
mean µ, standard deviation σ and damping θ.

Environment kM kMTM E γ |B|
Ant (AntBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

Bipedal (BipedalWalker-v3) 1600 1 · 106 N(0, 0.1) 0.98 2 · 105

Hopper (HopperBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

IDP (InvertedDoublePendulumBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

IPS (InvertedPendulumSwingupBulletEnv-v0) 1000 5 · 105 N(0, 0.1) 0.98 2 · 105

Lunar (LunarLanderContinuous-v2) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

Minitaur (MinitaurBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.99 1 · 106

MCC (MountainCarContinuous-v0) 999 5 · 105 O(0, 0.5, 0.15) 0.99 1 · 106

Pendulum (Pendulum-v0) 200 1 · 105 N(0, 0.1) 0.98 2 · 105

Walker (Walker2DBulletEnv-v0) 1000 1 · 106 N(0, 0.1) 0.98 2 · 105

Table 4. Overview of the used hyperparameters, common across all used environments.

Common hyperparameters

Learning rate (actor + critic) η 1 · 10−3

Warmup timesteps 10000
Batch size B 100
Policy update delay d 2
Target policy noise distribu-
tion

N(0, 0.2)

Target policy noise clipping [−0.5 ; 0.5]
Polyak averaging constant τ 5 · 10−3

Network architecture – hidden
dimensions (actor + critic)

400× 300
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Abstract. Learning arguments is highly relevant to the field of explainable arti-
ficial intelligence. It is a family of symbolic machine learning techniques that is
particularly human-interpretable. These techniques learn a set of arguments as an
intermediate representation. Arguments are small rules with exceptions that can
be chained to larger arguments for making predictions or decisions.
We investigate the learning of arguments, specifically the learning of arguments
from a ‘case model’ proposed by Verheij [34]. The case model in Verheij’s ap-
proach are cases or scenarios in a legal setting. The number of cases in a case
model are relatively low. Here, we investigate whether Verheij’s approach can
be used for learning arguments from other types of data sets with a much larger
number of instances. We compare the learning of arguments from a case model
with the HeRO algorithm [15] and learning a decision tree.

Keywords: Explainable AI · Argumentation · Learning Arguments · Data Min-
ing

1 Introduction

Explainable AI Artificial intelligence, in a societal context, is confronted with a vari-
ety of requirements that are recently being investigated by the research fields around
explainable, responsible and socially aware artificial intelligence [31]. Here, we are
concerned with explainability, that is, making the criteria transparent that underlie the
decision of an algorithm.

Explainability is also increasingly becoming a legal requirement of algorithms. In
many countries, which as of recently includes the Netherlands [25, 27], administrative
and judicative decisions that have been supported by an algorithm are required to be
comprehensible for judges and citizens [9]. The General Data Protection Regulation of
the EU (see [12]), as well as similar legislation in the United States gives citizens a right
to explainability also towards companies; albeit only when important decisions such as
credit status are involved.

Surveys have been undertaken as to which machine learning techniques are suitable
for explainable artificial intelligence, according to a range of sub-criteria. The result is

1 The authors thank Julien Havel for his contribution to the initial phase of the reported research.
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that decision trees and approaches based on deductive logic are the most suitable tech-
niques [3, 36]. Here we investigate the learning of arguments, which can be classified
broadly as a deductive logic approach.

Benefits of arguments Arguments provide reasons for believing conclusions given data
[33]. Providing arguments for conclusions, considering exceptions to these arguments,
and putting multiple small arguments together to build larger, convincing arguments,
is the human way of justifying things. Learning of arguments from data sets and us-
ing these arguments for future decision making will provide more transparency than
black box approaches. This transparency is important in domains such as law, public
administration, health care, etc, as well as to the discovery of scientific explanations.

Decision making based on learned argument addresses three problems:
The first problem is the mentioned requirement of the explainability of the decision
of the algorithm. An algorithm that substantiates its claims with arguments can, if the
arguments are properly presented, be understood by a human. Thus, humans can detect
potential errors in the algorithm’s decision, or, hopefully, verify that no such errors have
been made. This increases trust between human and machine [9].

The second problem is that experts (or even non-expert humans) may possess some
relevant knowledge that can improve learning form training data, such as known causal
relationships between some of the attributes of the data. Machine learning systems that
produce arguments can incorporate the knowledge of both the data set and the expert.

The third problem is that humans may pose certain requirements towards the jus-
tification of a decision that are in conflict with the training data. Important example
are racial, sexual, and other biases, that may be present in the training data, and would
lead to the perpetuation of discrimination (and hence, further biased data sets) in the
future. In order to avoid vicious circles of discrimination, humans may wish to reject
discriminatory decisions implied by the data. This may also be realized by discarding,
for example, racially motivated arguments.

Research aims Verheij [34] proposed an approach for learning arguments from a ’case
model’. The case model in Verheij’s approach are cases or scenarios in a legal setting,
and the number of cases in a case model are relatively low. We investigate whether
Verheij’s approach can be used for learning arguments from other types of data sets
with a much larger number of instances. We compare the learning of arguments from
a case model with another approach for learning arguments, the HeRO algorithm [15],
and with learning a decision tree.

Paper outline The next section describes the related work. Section 3 describes the
preliminaries and Section 4 describes our implementation of Verheij’s approach [34] as
well as the other approaches that we implemented for comparison. Section 5 describes
experimental evaluation and Section 6 concludes the paper.

2 Related work

Here we give a concise overview on the most relevant related work.
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Argumentation The modern view of argumentation was introduced by Toulmin [33].
He describes an argument as a (defeasible) warrant for a claim / conclusion given some
data / premises. One of the first argumentation systems based on this idea was devel-
oped by Pollock [24], who extended predicate logic with defeasible and undercutting
rules. An important issue in argumentation systems that make use of defeasible infor-
mation, is determining which arguments are valid. Dung [10] showed that this problem
can be described by an argumentation framework, which is a couple consisting of a set
of atomic arguments with an attack relation over the arguments. He defines three argu-
mentation semantics for determining the set of valid arguments given an argumentation
framework, namely, the grounded, stable and preferred semantics. Arguments learned
by Verheij’s approach can be evaluated using the grounded semantics, while arguments
learned by the HeRo algorithm may require the preferred semantics.

Learning arguments Kakas and Michael [18] give an insightful overview on argumen-
tation in machine learning, enumerating multiple use cases of arguments. Here, we are
concerned with argumentation as the target language for learning. Within this use case,
they distinguish two paradigms. In the first paradigm, arguments are potentially large
monolithic rules that directly map input facts to output facts. This paradigm comprises
decision lists, exception lists, inductive logic programming with exceptions, and ran-
dom forest methods. In the second paradigm, arguments consist of multiple chained
smaller arguments, with intermediate concepts connecting the arguments. The smaller
arguments describe local relations, that is, relations that only involve a small number of
attributes. Within this paradigm fall the NERD algorithm [20], machine coaching, and
SLAP.

Two algorithms are explicitly concerned with the mining of defeasible rules: Firstly,
the DefGen algorithm uses association rule mining, for which highly optimized algo-
rithms for big data exist, and post-processes the output by applying relevance criteria
[13]. This high-level structure can also be found in our Pruned Search algorithm intro-
duced in Section 4.2. Secondly, the HeRO algorithm iteratively applies the criterion of
information gain, taking inspiration from decision list mining and covering rule algo-
rithms. We have implemented the HeRO algorithm; see Subsection 4.2.

Other rule-based learning approaches Competing approaches for the explainable learn-
ing of rules are decision trees, relational learning and inductive logic programming, and
probabilistic and causal networks.

While decision trees are equivalent to sets of classification rules [37, ch. 3.4], [14,
p. 358], the rules to which they correspond are long and unstructured. Domain experts
prefer to work with well-structured sets of arguments, which then can be easily trans-
formed into decision trees for classification [4]. The advantage of decision trees is their
suitability for big data. Some of the mentioned disadvantages can be overcome by prun-
ing the decision tree (see also Section 4.2).

Relational learning and inductive logic programming are concerned with the learn-
ing of first-order logic and logic program representations, respectively, which can poten-
tially be downgraded to work on propositional logic or attribute-value representations
[7]. Usually, algorithms in these fields produce monotonic rules. These do also allow
for the construction of arguments, but these arguments cannot defeat each other and are
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therefore less similar to everyday argumentation than arguments from defeasible rules.
One possibility for simulating exceptions is to use an exception predicate for each rule
that has an exception. [8] explores the theory of non-monotonic logic programming,
XHAIL [26] and TAL [6] provide algorithms.

Probabilistic networks are most suitable for reasoning with uncertainty. Causal net-
works present an improvement over probabilistic networks (and all other methods) by
taking into account the causal relationships between the variables. Causal networks also
allow for counterfactual reasoning [30, ch. 13.5.2]. Moreover, experiments indicate that
it is easier to reason causally than it is to reason diagnostically [17, p.121-128].

Propositionalization The representation of both data and hypotheses in Verheij’s ap-
proach is restricted to propositional logic [34]. In this project we investigate an exten-
sion to input data with an attribute-value representation [7], including categorical and
continuous attributes. Our approach here is to preprocess the input data by transform-
ing continuous and categorical attributes into propositions. Some techniques for propo-
sitionalization are described in [7]. The propositionalization techniques explored in
this project are Equal-Width Binning, Equal-Depth Binning, K-Means and DBSCAN,
where each of the algorithms has its respective strengths and weaknesses. Equal-Width
Binning and Equal-Depth Binning are the approaches with the least complexity, and
K-Means and DBSCAN are more complex.

3 Preliminaries

Here, we present Verheij’s approach [34], which uses the notion of a case model and
three different notions of arguments.

Case models A case model is a description of different scenarios or situations (the
cases) that can occur in the world, together with a preferences ordering over the cases
denoting their relative likelihood. Each case is distinguished by the propositions that
follow from it. We can alternatively define a case as the most general proposition which
entails the propositions that follow from the case.

In this paper, a case will be a set of literals (or equivalently, a conjunction of literals).
In this way, we arrive at a Boolean (propositional) representation that is suitable for
machine learning. We do this by interpreting a case as a data point in the training data.

Presumption of innocence is an example of a case model from [34]. This case model
has two cases, {innocent,¬guilty} and {¬innocent, guilty, evidence}, where the first case
is most preferred, that is, the first case has a higher probability.

Arguments An argument is a couple (P,C) consisting of a premise P and a conclusion
C, each of which is a set of literals (or equivalently, a conjunction of literals). Note
that an argument need not be valid. Verheij [34] defines the three types of arguments:
coherent arguments, presumptively valid arguments and conclusive arguments. There
holds a superset relation between the three types of arguments.

An argument is coherent for a case model if there exists a case in which both the
premise and the conclusion are true. Note that the premise can be an empty set of liter-
als. Examples of coherent arguments are: (∅, {guilty}), ({evidence}, {¬innocent}), etc.
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A coherent argument is a presumptively valid argument if the conclusion is true in
the most preferred case in which the premise is true, given the preference ordering over
the cases. Note that the conclusion need not be true in less preferred cases in which the
premise is true. Presumptively valid arguments are most interesting in the context of this
project, since they can have exceptions and are thus very much like human arguments,
which is desirable from an explainable AI perspective. We use the notation P  C to
denote a presumptively valid argument with premise P and conclusion C. If the premise
P is an empty set of literals, the conclusion C holds by default:  C. Examples of
presumptively arguments are: {¬guilty}, {innocent}, {evidence}  {¬innocent},
{innocent} {¬guilty}, etc.

An argument is conclusive if the conclusion is true in every case where the premise
is true. Clearly, conclusive arguments are also presumptively valid. Conclusive argu-
ment need not be conclusive in the sense of everyday language because there is no
formal requirement on a case model that it describes all possible cases. We use the no-
tation P→ C to denote a conclusive arguments. Examples of conclusive arguments are:
{innocent} → {¬guilty}, {guilty} → {¬innocent}, etc.

4 Learning of Arguments

This section discusses the learning of arguments, specifically from data sets that specify
possibly continuous values for attributes. We assume a set of attributes for which each
instance of the data sets specifies the attribute values.

4.1 Discretization Techniques

With the exception of decision trees, the rule-mining algorithms in this project cannot
be trained on continuous data. Therefore, in order to apply the rule-mining algorithms
to data sets, we must rely on data discretization techniques to preprocess the data before
mining the rules.

Equal-Width Binning This algorithm is a comparatively simple binning technique.
Here, the range spanned by the smallest and largest value of a feature (referred to as
min and max respectively,) is divided into a number of bins k, where each of these bins
have size max−min

k . To discretize, values are assigned to the respective bin they fall into.

Equal-Depth Binning Equal-depth or equal-frequency binning is another simple dis-
cretization approach. Here, values are assigned to one of k bins, such that each bin
approximately holds the same number of instances. This is done by sorting the val-
ues of the feature and assigning n

k of the sorted instances into each bin, where n is the
number of total values.

Clustering approaches To discretize more complex features in the data, clustering ap-
proaches are considered. Here, values of a given feature in the data are clustered, and
replaced by the discretized value. In the data set, clusters are represented as ranges,
where each cluster is described by its smallest and largest value. By the nature of the
given clustering algorithms, these ranges do not overlap.
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K-Means Clustering K-Means [19] is based on the idea of centroids, which are points in
the centre of the cluster. Here, k centroids are initialized randomly, and the instances are
assigned to the cluster whose centroid is closest. Then, the centroids are moved to the
mean of the cluster, and the instances are assigned to their new cluster. The algorithm
converges when the movement of centroids is below a certain threshold.

DBSCAN Clustering DBSCAN by [11] considers clusters to be regions of high density.
For each instance, the algorithm counts the number of instances within a distance ε,
also called the instance’s ε-neighbourhood. If this number of neighbours of an instance
surpasses a given threshold, the instance is considered to be a core instance, an instance
within a dense region. The neighbours of this core instance are considered to be in the
same cluster, where some neighbours may also be core instances themselves. Therefore,
a cluster consists of a multitude of core instances.

Cluster Optimization The aforementioned clustering algorithms all provide parameters
that can be tuned in order to find clusters representing the data correctly. In this project,
the silhouette score introduced by [28] has been utilized to provide a metric for accu-
racy of clusters. This score computes the mean silhouette coefficient of all samples:
silhouette score = b−a

max(a,b) . Here, a denotes the mean distance to the other instances in
the same cluster (intra-cluster distance) and b denotes the minimal distance to another
instance that is not part of the same cluster (nearest-cluster distance).

Clusters are optimized by exhaustive search in this project, i.e., every combination
of parameters is tested using the silhouette score, before returning the parameters re-
sulting in the highest score.

4.2 Algorithms for learning arguments

We have implemented three different algorithms for learning arguments from data.2

The first algorithm is devised by ourselves, the second one is implemented by ourselves
according to the high-level description in [16], and the third one is based on the open-
source library scikit-learn [23].

Pruned Search A naive implementation of Verheij’s approach is not very efficient and
has a worse case time complexity of nk where k is the number of attributes of the data
set and n is the number of bins. The Pruned Search algorithm improves the run-time by
pruning the search space in a systematic way. This technique is known from frequent
pattern mining (and its application to association rule mining [2]), and is described in
the context of logical learning in [7]. The idea is to identify a quality criterion, for which
the following is true: If a set fulfills the quality criterion, all its subsets must also fulfill
the quality criterion. (Alternatively: If a set fulfills the quality criterion, all its supersets
must also fulfill the quality criterion; this can be visualized by ”flipping” the search
space or the direction of the search). For example, in the context of frequent pattern

2 Our code is available as an open source Python module at:
https://github.com/learning-arguments/ learning arguments
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Fig. 1: Pruning specializations. From [7, p. 52]. All 2n subsets of {s,m, c, b} are sys-
tematically searched, starting from the most general set at the top. Knowing that the set
{s, b} is infrequent allows us to prune all its specializations, which is a lot.

mining, if a set is frequent, then all its subsets must also be frequent. The principle of
pruning the search space is visualized in Figure 1.

This raises the issue of the selection of a suitable quality criterion for pruning the
search space in our application of learning arguments. We found two quality criteria:

1. If an argument (P,C) is conclusive, then all coherent arguments (P′,C) must also
be conclusive, for all P′ that are a superset of P.

2. If an argument (P,C) is coherent, then all arguments (P′,C) must also be coherent,
for all P′ that are a subset of P.

The most important part of the learning algorithm in terms of efficiency is the learn-
ing of presumptively valid arguments: They are relevant for a prediction, and there are
usually many more presumptively valid arguments than conclusive arguments. Unfor-
tunately, we can prove that being presumptively valid is not a quality criterion that can
be used to prune the search space. The underlying reason is that presumptively valid
arguments can be overruled by more specific arguments.

Although we cannot use presumptive validity itself as a quality criterion for pruning
the search space, we can at least use a condition for presumptive validity, namely: co-
herence. Our algorithm starts a search for each literal (each combination of an attribute
and a bin), looking for coherent arguments with this literal as a conclusion. We search
for premises with increasing number of literals. After the search is completed, we filter
and merge the resulting arguments.

1. The filtering step is necessary for removing irrelevant rules. For example, when
there are two arguments a  d and a ∧ b ∧ c  d, then the second argument is
more specific than the first argument and therefore only relevant if there is another
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relevant argument, such as a ∧ b  ¬d, to which it is an exception. Generally
speaking, an argument A is relevant if there is no less specific argument to A, or if
A is an exception to a relevant argument. We say that an argument P1  c1 is more
specific than another argument P2  c2, if its premise P1 are a proper superset of
the premise P2 of the other argument.

2. During the argument generation, we only generate arguments with a conclusion of a
single literal. We reduce the number of arguments for legibility by merging together
any arguments (P1, c1), ..., (Pm, cm) that have the same premises P1 = ... = Pm to a
single argument (P1 = ... = P2, {c1, ..., cm}) with multiple conclusions.

At the end of the search step we gather all coherent arguments of the step, and check
all combinations of these arguments whether their premises differ in exactly two literals.
The reason is: If they are different in two literals, we can take the union of the premises
as a new premise of size i + 1, and we know that many subsets of this premise lead to a
coherent argument. Consider, for example, two premises {a, b, c, d} and {b, c, d, e}: The
union is {a, b, c, d, e} with size n = 5. Enumeration shows that 2n − 2n−2 = 24 of its
subsets are also subsets of at least one of the two premises of which we already know
that they are coherent. It is thus much more likely for the new premise to also lead to a
coherent argument than it would be for an arbitrary premise. We use this observation as
a heuristic to speed up the search for other coherent arguments.

The principle of combining small sets fulfilling the quality criterion into larger sets
likely to fulfill the quality criterion is known from the Apriori algorithm [32]. It makes
the Apriori algorithm suitable for big data sets. Here, because coherence is only a con-
dition but not the same as presumptive validity (which we are looking for), it at least
makes the algorithm efficient enough for the medium-sized data sets we use.

An argument that is presumptively valid but not conclusive will have exceptions.
We recursively search for exceptions on each presumptively valid argument, as well as
exception on exceptions on exceptions etc., till a maximum specified depth.

HeRO algorithm The HeRO algorithm has been devised by [15], and the research
behind it, like [34], is also originally targeted towards the legal domain [16]. It does not
primarily perform a systematic search, but rather an incremental search: At each step,
it considers which argument would be most valuable to be added to the theory in order
to increase the accuracy the most; and then it adds the most valuable argument to the
theory and asks the question again, until there is no more argument that can increase
the accuracy.

The algorithm builds up a totally ordered set of arguments, and at every step it con-
siders all positions (before, after, or between the existing arguments) for adding the
next argument. For determining the most valuable argument (and its most valuable po-
sition), the criterion of information gain, that is increase in accuracy on the training set,
is used. Similar to the Pruned Search algorithm presented above, the HeRO algorithm
also starts by considering simple arguments and then in some cases also considers argu-
ments where the premise is more specific. The mechanism for deciding whether a more
specific premise should also be considered uses the criterion of maximum information
gain. The maximum information gain of an argument is the highest information gain
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that can be achieved by any argument that is more specific. This is equivalent to the in-
formation gain that would be achieved by adding an argument that correctly predicted
all the rows where the premises hold.

Decision tree algorithm To classify by building tree models, the open-source library
scikit-learn [23] is used. This implementation utilizes the CART [5] algorithm. Here,
the tree is built choosing a feature k and a threshold tk by using a cost function measuring
the purity of the subsets produced by the split. In this project, this is measured by the
Gini impurity introduced by [5]. Once the split has been made, the algorithm iteratively
splits the subsets further, until a given maximum depth is reached, or no split reducing
impurity can be found.

In a decision tree, the nodes at the bottom of the tree are referred to as leaf nodes.
Trees can be converted into decision rules, where each leaf node is associated with one
rule. Here, the path traversed through the decision tree represents the premise that must
hold for the conclusion at the child node.

To maximize performance of the decision tree algorithm, various hyper-parameters
can be tuned. In this project, this is done via Bayesian Optimization [21] utilizing the
scikit-optimize package [1]. This algorithm samples points to construct an interpolation
function, also called posterior function. This function represents the objective function
(which, in this case, is a function measuring the accuracy of the tree with its parameters
as inputs). New points are found using an acquisition function, which balances explo-
ration and exploitation by calculating uncertainty in the posterior function. These query
points are then used to update the posterior function. After a given number of iterations,
the algorithm converges, returning an estimate of the optimal parameters by using the
posterior function.

5 Experimental evaluation

5.1 Experimental setup

Legal examples We have evaluated the Pruned Search and the HeRO algorithm on
legal examples described in [34] and [35].

Boston Housing Dataset We have evaluated all algorithms on the Boston Housing
Dataset3. The Boston Housing Dataset specifies the values of 14 attributes for 506 in-
stances. We evaluated the performance on this data set in combination with descretiza-
tion algorithms. The main parameters were the number of bins used. An optimization al-
gorithm for finding the ideal number of bins has been implemented. Because the search
algorithms are very sensitive to the number of bins, we also ran the discretization algo-
rithms with predefined number of bins, namely 2, and 4 bins.

Binning implies that several data points of the data set are grouped together. Assum-
ing that all data points in the data set are equally likely, the number of data points that
are grouped together determine the relative likelihood that we need for the case model.

3 http://lib.stat.cmu.edu/datasets/boston
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The four main steps of the experiments are data preprocessing, model training, pre-
dictions, as well as model evaluation. In a first step, the data is discretized by a method
described in section 4.1. In the experiment using decision trees, only the target column
is discretized. In a second step, the selected algorithm for learning the arguments from
the data is applied. Afterwards, the learned model is used to generate predictions from
the training data as well as the test data. Finally, the predictions are evaluated by com-
puting accuracy and weighted F1-score. The training time is measured in order to get
an understanding of the relative computational cost of the algorithms.

Parameter tuning The Pruned Search algorithm has two hyper-parameters that needed
to be tuned. Next to the search depth for exception on exceptions etc., which is tested
with the values 1, 5 and 20, the values 2 and 4 are tested for the maximum premise size
constraint. A priori, we assume that the former will have a significant impact on the
run-time while the latter will mainly determine the quality of the predictions.

Although the decision tree algorithm optimizes the parameters by Bayesian Op-
timization, there is still a need for specifying the parameter search space. Here, the
maximum number of features randomly chosen at a split can be set between 1 and the
number of features of the training data. The maximum depth is capped at 50 to retain ex-
plainability and the minimum number of samples required at a leaf node is constrained
between 1 and 1000. The minimum number of samples required to split an internal node
is between 2 and 1000.

The HeRO algorithm does not require any hyper-parameter tuning.

5.2 Results

Legal examples The experimental results show that the Pruned Search algorithm finds
all arguments mentioned in the papers [34] and [35]. It also finds quite a few additional
arguments that are correct but often irrelevant.

The HeRO algorithm generates a more concise set of arguments. However, the argu-
ments can imply counter-intuitive self-attacks. Consider for instance the first case model
in [34]: Presumption of innocence. This case model has two cases, {innocent,¬guilty}
and {¬innocent, guilty, evidence}, where the first case is most preferred. HeRO deter-
mines the following two arguments: innocent ∧ ¬guilty ∧ evidence and
evidence ¬innocent ∧ guilty, which imply a self-attacking argument. The first argu-
ment is counter-intuitive. HeRO determines this argument because if any information is
given regarding whether or not there is evidence, then indeed it will be the information
that there is evidence. Note that self-attacking arguments imply that we need to use
Dung’s preferred semantics [10] for determining the set of valid arguments.

Boston Housing Dataset We trained the three algorithms using 80% of the Boston
Housing Dataset. The remaining 20% were used to test the models learned by the algo-
rithms. We evaluated the algorithms on both the training and the test data set.

Decision Trees When using the Boston Housing Data set, the decision trees were scor-
ing a perfect accuracy of 1 when using equal-depth binning or equal-width binning. Us-
ing DBSCAN gave a slightly lower accuracy of 0.99 and using k-means yielded 0.86;
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Table 1: Summary of the Decision Tree results. The ‘–’ denotes that there is no depen-
dence on the parameter.

data type binning method # bins search depth accuracy F1
training kMeans – – 0.8613 0.8634
test kMeans – – 0.8613 0.8634
training DBSCAN – – 0.9975 0.9963
test DBSCAN – – 0.9975 0.9963
training other methods – – 1 1
test other methods – – 1 1

see Table 1. Those figures showcase very well the impact and importance of choos-
ing a good technique when discretizing the data. Note that the accuracy alone does not
provide a complete picture of the quality of the algorithm: For example, using one bin
for all the data would result in an accuracy of 1, yet the algorithm would not explain
any structure in the data. With regard to the training time, the decision trees run sig-
nificantly longer than the Pruned Search algorithms. When only discretizing the target
column using equal-width binning and leaving the input values continuous, the deci-
sion trees achieve an accuracy of 0.92. This indicates that the decision trees are able to
capture the structure well.

Pruned Search When it comes to Pruned Search, the results also exhibit high results
for the accuracy and F1 scores. The average accuracy (F1 score) on the training set is
0.88 (0.83) and 0.85 (0.83) on the test set; see Table 2. We ran 198 experiments with the
Pruned Search algorithm. The standard deviation of the evaluation metrics (accuracy:
0.0868, F1: 0.0864) indicate that the algorithms performance is rather robust.

Table 4 shows the correlation between the hyperparameters as well as the accuracy
and F1 score. The results are based on the test set and training set together. When study-
ing the correlations, we noticed that the Pruned Search algorithms do not significantly
vary in accuracy and F1 score when adjusting search depth and maximum number of
literals in a premise. This observation is contrary to our initial hypothesis. The posi-
tive correlation between the maximum number of literals in a premise and the run-time
suggests that it increases the computational complexity. The number of bins are also
positively correlated with the run-time, yet exhibit a negative correlation on the accu-
racy metrics. Since fewer bins make the problem easier for the algorithm, this does not
come as a surprise. A very interesting observation is the negative correlation of the run-
time and accuracy / F1 score. This indicates that simpler and faster algorithms perform
better on this data set, likely because they are less predisposed to overfitting.

As mentioned, the discretization algorithm has a significant impact on the success
of the algorithm. When looking at the situation where Pruned Search is used to mine
the arguments and the number of bins is fixed to 2, one can observe that the accuracy
on the test set increases when using the discretization algorithms in the following or-
der: k-means (average accuracy 0.80), equal depth binning (0.83), equal width binning
(0.91), DBSCAN (0.97). The ordering is strict, meaning that using a different discretiza-
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Table 2: Summary of the Pruned Search results. The ‘–’ denotes that there is no de-
pendence on the parameter. The optimized number of bins is denoted ’opt’ in the table.
Note that the optimal number of bins may be different for each column of the data set
and may depend on the binning method.

data type binning method # bins search depth max # premises accuracy F1
training kMeans 2 – – 0.7772 0.6798
test kMeans 2 – – 0.8039 0.7165
training kMeans opt – – 0.8515 0.8537
test kMeans opt – – 0.8168 0.8137
training DBSCAN – – – 0.9530 0.9335
test DBSCAN – – – 0.9706 0.9561
training EWBinning 2 – – 0.9431 0.9154
test EWBinning 2 – – 0.9118 0.8697
training EWBinning 4 – – 0.9431 0.9154
test EWBinning 4 – – 0.9118 0.8697
training EWBinning opt – – 0.9431 0.9154
test EWBinning opt – – 0.9118 0.8697
training EDBinning 2 – – 0.8317 0.8317
test EDBinning 2 – – 0.8333 0.8334
training EDBinning 4 – – 0.8243 0.8226
test EDBinning 4 – – 0.8725 0.8132
training EDBinning opt – – 0.8168 0.8137
test EDBinning opt – – 0.7353 0.7318

tion algorithm will always yield a higher or lower accuracy in the given settings. This
emphasizes the significant impact of binning on the algorithm’s performance.

HeRO The HeRO algorithm behaves similar compared to the Pruned Search algorithm
in terms of performance; see Table 3. Similar as outlined above, the discretization algo-
rithm is the main driver for the algorithm’s performance. While the equal-depth binning
yields an average accuracy (F1) of only 0.53 over all experiments, using k-means im-
proves the results already significantly with an average accuracy of 0.79 (0.70). Equal-
width binning further improves the situation by yielding 0.91 (0.86) and with an average
accuracy 0.95 (0.93), DBSCAN gives the best results for the HeRO algorithm.

5.3 Discussion

The experiments show that arguments learned from a case model enables accurate pre-
dictions, yet needs further efforts to become practically applicable. There are two main
issues that the experimental results bring to light. The first one is the exponentially
increasing computational complexity of both the search and discretization algorithms.
These limitations should be addressed first.

Another point worth mentioning is the binning itself. In cases where the data is
binned in very few bins, it can happen that the data is heavily skewed due to outliers.
When e.g. 95% of the houses are categorized as ’high price’, the algorithm will score
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Table 3: Summary of the HeRO results. The ‘–’ denotes that there is no dependence
on the parameter. The optimized number of bins is denoted ’opt’ in the table. Note that
the optimal number of bins may be different for each column of the data set and may
depend on the binning method.

data type binning method # bins search depth max # premises accuracy F1
training kMeans – – – 0.8039 0.7165
test kMeans – – – 0.7772 0.6798
training DBSCAN – – – 0.9706 0.9561
test DBSCAN – – – 0.9455 0.9191
training EWBinning 2 – – 0.9431 0.9154
test EWBinning 2 – – 0.9118 0.8697
training EWBinning 4 – – 0.8861 0.8326
test EWBinning 4 – – 0.8725 0.8132
training EWBinning opt – – 0.9431 0.9154
test EWBinning opt – – 0.9118 0.8697
training EDBinning 2 – – 0.5392 0.3778
test EDBinning 2 – – 0.5 0.3333
training EDBinning 4 – – 0.5392 0.3778
test EDBinning 4 – – 0.5 0.3333
training EDBinning opt – – 0.5817 0.4278
test EDBinning opt – – 0.5588 0.4007

Table 4: Pruned Search Hyper-parameter Correlation Table
n=198 Acc F1 # bins Depth Run-time Max # prem.
Acc 1.000
F1 0.940 1.000
# bins -0.008 0.057 1.000
Depth 0.000 0.000 0.000 1.000
Run-time -0.173 -0.001 0.170 0.035 1.000
Max # prem. 0.000 0.000 0.207 1.000

a very high accuracy with a naive prediction of always predicting ’high price’. It is
obvious that the ability of the algorithms to explain patterns in data will decrease if
the number of bins is reduced, while accuracy tends to increase. For that reason, just
considering the accuracy might lead to false conclusions.

Furthermore, the experiments showed that simpler algorithms seem to do better
than the more complex algorithms. The key takeaway from this may be that learning
arguments tends to over-fit quickly.

6 Conclusion

We have implemented Verheij’s approach [34] for learning arguments from a case
model and showed that (1) it can reproduce the examples given in [34] and [35], and (2)
it can also be used to learn arguments from a data set consisting of instances specifying
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values of attributes. However, the implementation of Verheij’s approach produces many
correct but irrelevant arguments. A serious limitation is the run time of our implemen-
tation. To make the approach applicable to larger data sets, further research in reducing
the run time is needed. Finally, the accuracy of the learned arguments for the Boston
Housing Dataset depends on the used discretization algorithm with DBSCAN giving
the highest performance.

We also implemented the HeRO algorithm [15] for comparison. The HeRO algo-
rithm does not learn irrelevant arguments because it is employing the criterion of in-
formation gain. However, the learned arguments are not always intuitively plausible
and may imply self attacking arguments. The accuracy of the learned arguments for
the Boston Housing Dataset is 4% less compared to the implementation of Verheij’s
approach. Moreover, HeRO is more sensitive w.r.t. the choice of the discretization al-
gorithm, with DBSCAN giving the best performance.

The decision tree algorithm that we implemented uses pruning on the learned tree
to discard less relevant nodes. The arguments implied by the decision tree are not very
intuitive. However, the decision tree algorithm reaches an accuracy of 100%.
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Abstract. Human reasoning under uncertainty is conjectured to use
Mental Models as a representation format. Each Mental Model charac-
terizes a possible state of the world based on and constrained by the
available information. Conclusion about the world must hold in each
of these Mental Models. An important task in human reasoning is the
construction these Mental Models using the available information. This
paper investigates whether it is possible to design a neural network ar-
chitecture that enables the construction of Mental Model, similarly to
the conjectured way that humans reason. The paper investigates differ-
ent architectures in an incremental way. The final architecture not only
produces the correct mental models but also learns correct mental mod-
els for intermediate representation without being explicitly trained to do
so. This contributes to the explainability of the approach.

Keywords: Machine Learning · Mental Models · Neural Networks · Rea-
soning

1 Introduction

Machine Learning and reasoning have been extensively researched in the past,
with different attempts to combine those two research fields by encoding rule
sets, with which a neural network learns the ability to reason through specified
rules [4,12]. Human reasoning however, is not thought to work with a fixed
set of reasoning rules that is encoded in the human natural neural network
(the brain). Reasoning in the human mind comes with the concept of Mental
Models (MMs), a simplified representation of how humans understand the
world [7]. A single MM is an abstract representation, an internal picture, of one
distinct possible instantiation of the world. For example, if you are concerned if
you can wear your new all-white sneakers the next day under the uncertainty of
the weather, you might have two MMs for tomorrow: either it is good weather
and you wear your sneakers, or it is bad weather and you will not wear your
sneakers. These models allow complex situations to be simplified by getting rid
of uncertainty through duplication and help make decisions based on similar
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situations. Reasoning can be defined as “Algebraic manipulation of previously
acquired knowledge in order to answer a new question”.[1] Humans can combine
two or more mental models representing pieces of information in order to reach
a conclusion. For example, knowing that both “p ∨ q” and “¬q” is true, we can
conclude that p must be true. We should therefore be able to generate MMs
and algebraically manipulate them in a machine learning setting to produce a
conclusion (possibly a single or multiple MMs). Since it is not obvious what
a mathematical definition of a MM could be, the first task of this paper is to
translate this concept into a machine learning setting.

This paper investigates whether it is possible to design a neural network
architecture that enable the construction of Mental Model, similarly to the con-
jectured way that humans reason. The approach differs from, for instance, neuro-
symbolic computing by not explicitly encoding knowledge in link of the neural
network. All information / knowledge is provided as input to the neural network.
In this investigation, we start with information formulated in Boolean algebra
sentences. Of course it is not difficult to create a neural network that answers
queries for such inputs. However, that is not the goal of this investigation.

The remainder of this paper is organized as follows. The next section describes
related work. Section 3 defines the setting in which we do our research. Section 4
describes the neural network architectures that we have developed and Section 5
describes the experiment that we have performed with these architecture. Section
6 concludes the paper.

2 Related Work

Machine Learning and reasoning originated as separate research fields of Artifi-
cial Intelligence in the past, but have recently seen different approaches of com-
bining those in conjuncted research [4,12]. The research field of Neural-Symbolic
Computing aims to embed the two most fundamental human cognitive abilities
into a system: “the ability to learn from the environment, and the ability to
reason from what has been learned.” [4] They make use of neural networks, by
encoding reasoning rules in between the layers of a neural network.

However, it has been argued that humans reason with the use of MMs, aiming
to find conclusions that are true [9]. Those conclusions can be an outcome of a
conjunction or a repetition of the premise concerned. Humans search for relations
that are not explicitly asserted in the premises, reaching conclusions that seem
the most probable [8]. Since the implementation of MMs in this project does
not hard-code reasoning rules in between the layers of a neural network, it adds
to current research by investigating a more general and flexible approach to
reasoning in neural networks.

Since MMs are an integral component of this paper, we repeat some of the
theory on MMs. As Johnson-Laird explains, “[...], each mental model represents
what is common to a distinct set of possibilities.” [8, p. 2]. They do not reflect
every detail of that distinct state of the world, but reduce the available infor-
mation to the aspects necessary for the context. In the sneaker example that
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was given in Section 1, the only necessary information in the context of deciding
whether or not to wear new, white sneakers (without getting them dirty on the
first day) are the weather conditions, which can be good or bad in this case. All
other information that might be available is not reflected in the two MMs that
arise from this context. It does not matter if the person had one or two cups
of coffee in the morning, it is irrelevant what was in TV the night before. MMs
reduce the mental load by excluding unnecessary information.

To further reduce load on our working memory, humans build MMs on the
principle of “truth” [9]. The principle of truth dictates that MMs only repre-
sent propositions of the premise that are true and neglect those that are false,
i.e. they follow the closed world assumption. For instance, when considering the
exclusive disjunction “I can go on holiday or else I can finish the project I am
working on”, humans would build two MMs according to the principle of truth:
“I go on holiday” and “I finish my project”. Observe that each model does not
include the falsification of the respective other premise. If one would to be pre-
cise and construct complete models, we would get “I go on holiday and I don’t
finish my project” and “I do not go on holiday and I finish my project”. However,
this shortcut used by our brains results in predictable misjudgement in deduc-
tion, which we do not want to imitate with neural networks. Therefore, we will
disregard the principle of truth when constructing the MMs for our networks in
Section 3.

Another assumption of MM theory states that MMs are iconic. "The struc-
ture of a [Mental Model] representation corresponds to the struc-ture of what
it represents.”[8, p. 2]. This is intuitive, as we think about different topics in
different ways. The concept of biological evolution for example is entirely dif-
ferent from theory on radioactive decay. The considerations and dependencies
that need to be taken into account greatly change from one context to another,
implying that the structure of corresponding MMs also differ. This paper will
take all of the three mentioned aspects of MM theory into account when defining
the MMs in the next section.

3 Defining the Setting

In this section, the representation of MMs used in this paper will be described.
As stipulated by iconicity, a MM needs to resemble the structure of what it
represents. Therefore, it is necessary to first fix the context, i.e. whatever it is that
the MM should represent. For this paper, a MM will be defined in the context of
boolean algebra, because of its scalability, modularity 1, and relative simplicity.
The sentences used in the datasets are composed of two simple sub-sentences,
which are both assumed to be true. To increase complexity, sub-sentences can
be combined with the “and” operator in order to obtain a single more complex
sentence. This process can be repeated for further complexity.

1 This results from the fact that any sentence can be transformed into conjunctive
normal form [11, p. 253]
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The truth table of a logical sentence represents a possible state of the world
and can be interpreted as a MM, which allows us to think about the information
contained in a logical sentence and helps us to perform further reasoning tasks.
Even though the human mind might not need to fall back on truth tables and
rather represents Boolean algebra in a more advanced way [9, p. 114], this does
not compromise the validity of using truth tables for this context.

There is one modification to traditional truth tables used in this paper: when
a variable does not appear in a sentence, or if the value of the variable does not
influence the value of the sentence given the other variables, a value of “none”
will be assigned to this variable, instead of “true” or “false”. This modification
is again inspired by MM theory, which states that MMs reduce the amount of
stored information to a minimum in order to preserve cognitive capacity. The
value of a variable that does not appear in a sentence has no effect on the value
of the sentence. Hence, a single MM which assigns such variable the “none"
value contains the same information of two other MMs which are identical to
the first, except that the value of the variable is now changed to “true” and “false”
respectively.

4 Methodology

This section describes the datasets we created to evaluate the architectures on
a Boolean algebra reasoning task and gives a detailed description of the created
neural networks. The neural networks can be divided into architectures predict-
ing conclusion in the form of one MM or multiple MMs. This is also reflected in
the structure of the datasets.

4.1 Creating the Learning Data

The datasets consist of inputs in the form of two logical sub-sentences2 (Boolean
expressions) and labels that represent a single or multiple MMs induced by both
of the sub-sentences being true. For all datasets in this paper, it is always as-
sumed that the logical sentence (or both sub-sentences) given as input is “true”.

When creating the datasets a parameter representing the “depth” of a logical
sentence is used. A sentence can be represented as a tree-structure with the
variables in the leafs and non-terminal nodes containing logical operators. This
means that a sentence of depth 1 consists of at most one logical operator and
two variables. Examples for sentences of depth 1 are “x1 or x2" and “not x3”;
and of depth 2 are “x1 or not x2” and “(x1 or x2) and x3”.

The labels (MMs) use a vector representation. The length of the vector n
corresponds to the number of logical variables used in the dataset. In the experi-
ments n = 5, the logical variables are denoted with symbols x1-x5. Each element
in the vector encodes the value of one variable in the MM. A value of 1 indicates
2 If the evaluated neural network requires exactly one sentence as the input, the two
sub-sentences can be concatenated with the “and” operator between them.
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that the variable is true in the MM, the value -1 indicates false. Additionally,
a variable in the vector can be assigned a value of 0, which corresponds to the
“none” value described in Section 3.

All datasets were created by implementing the generate-and-test approach.
We randomly generate a sentence and algorithmically determine what MMs
are compatible with the sentence. If both the sentence and the resulting MMs
(conclusion) fulfil the specifications, the sentence is added to the dataset. These
steps were performed a specified number of times.

The first two datasets are called Many-to-Single MM Small and Many-
to-Single MM Big respectively. Examples in these datasets induce one single
MM, where any number of variables can be true or false (as long as at least
one variable is not “none”). Additionally, The difference between the small and
big version is the depth of the two sub-sentences. In Many-to-Single MM Small
dataset, sub-sentences have a maximum depth of 1. This leads to a combined
sentence of a maximum length of 11 (the length of the sequence of variables,
operators and brackets that forms a sentence) with the sub-sentences of length
5 at most. This dataset contains 2369 sentences (consisting of two sub-sentences
each). On the other hand, sub-sentences in the Many-to-Single MM Big dataset
can have a maximum depth of 2 therefore the maximum length of a sentence is
increased to 27. Each subsentence has 2 · 13 (including the outer brackets) plus
1 for the combining “and" operator. The size of this dataset is 276178 sentences
and labels. The third dataset is called Many-to-Many MM. For this dataset,
no restrictions were put on number of the induced MMs. Again, sentences are
made up of two conjuncted sub-sentences, each of depth 2 at maximum. This
dataset contains 3489 datapoints. Both Many-to-Single MM Small and Many-
to-Many MM datasets consist of all possible sentences fulfilling the conditions
(depth and number of conclusion MMs). The size of Many-to-Single MM Big
dataset results from running the generate-and-test algorithm until less than 1%
of generated sentences were not already included in the dataset.

4.2 Constructing the Architecture

The goal of our design is to encourage the network to not only output vectors
which we interpret as MMs, but also to internally use these MMs in order to
derive the desired output. In addition to testing if we can increase performance
this way, we hope to achieve greater interpretability for the internal reasoning
process of the neural network.

For the task of predicting MMs we designed a neural network that accepts
two logical sub-sentences as input and predict a single or multiple mental mod-
els that are a conclusion of the input (with the assumption that both the sub-
sentences are true). The first network we implement in this context is called
Single-mental model Net (Single-mmNet) and is trained on the Many-
to-single MM datasets. In addition, we define two other networks, that go by
the names of Multi-mental model Net with direct input (Multi-mmNet
direct), and Multi-mental model Net combination (Multi-mmNet com-
bination). These networks are trained on the Many-to-multiple MM dataset.
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To encourage our networks to internally use MMs, sub-sentences are fed into
a shared sub-sentence encoder, before a final reasoning module combines the
outputs for each sub-sequence (see Figure 1). Conceptually, we want our network
to generate the MMs for every sub-sentence before merging the information in
those sub-sentences in the final reasoning module. This concept is rooted in the
modularity property described in Section 3. We introduce the inference layer
that combines the MMs induced by sub-sentences. While not explicitly forced
into a specific representation for sub-sentence MMs, the sub-sentence encoder
adopts our definition of MMs during training.

To implement this architecture, it is sufficient to use a simple feed-forward
architecture with an embedding layer and one fully-connected hidden layer. The
activation functions were set to hyperbolic tangent for the output layer and
ReLU for the hidden layer. The output is reshaped to a matrix Y ∈ RM×D ,
where M is a constant number of MMs (specified as a hyper-parameter) and D
is the number of logic variables (five in our case).

Fig. 1: General architecture of neural network consisting of shared sub-sentence
encoders and a final reasoning module

Predicting a Single Mental Model The Single-mmNet architecture uses a
fully connected network as a sub-sentence encoder and the reasoning module
described in detail below. It is trained end-to-end using standard gradient-based
optimization on the Many-to-single MM dataset.

The reasoning module dubbed "MM-Inference Layer" is meant to combine
two outputs of the sub-sentence encoder (one output for every sub-sentence). The
inference layer accepts two matrices, each representing the MMs induced by one
sub-sentence. We denote the matrices with Y 1 ∈ RM×D and Y 2 ∈ RN×D, where
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M and N are the numbers of MMs induced by the first and second sub-sequence
respectively, and D is the number of variables. It is assumed that all elements
of the two matrices are in the range [−1, 1]. Let Y 1

m for m ∈ {1, 2, . . . ,M}
denote a MM model from the first sub-sentence (i.e. a row of Y 1) and Y 2

n for
n ∈ {1, 2, . . . , N} a MM model from the second sub-sentence (i.e. a row of Y 2).
For every pairing m, n, we calculate two quantities: Vm,n ∈ RD and Cm,n ∈ R,
which we call value and correctness. To obtain the value Vm,n between two MMs,
we simply add the two MMs element wise and “clamp"3 the resulting numbers
between -1 and 1.

This approach disregards the situation when two MMs are incompatible with
each other. Two MMs are incompatible when the same variable is true in one
model and false in the other. (We will sometimes refer to such a variable as an
incompatible variable). To indicate when two MMs are incompatible, we intro-
duce correctness. For “perfect” values for variables of either exactly -1, 0, or 1,
the correctness of a pair of MMs will be 1 if the two models are compatible
(i.e. no variable is true in one of the models and false in the other) and 0 other-
wise. During training and testing however, the sub-sentence encoder could assign
any value between -1 and 1 to the variables. As a consequence, the correctness
becomes a number between 0 and 1. Therefore in practice, two MMs become
increasingly incompatible, as the absolute difference between the variables in-
creases. The two quantities (value and correctness) are calculated using Eq. 1
and 2 respectively.

Vm,n = min(1, max(−1, Y 1
m + Y 2

n ))

∀m = 1, ...,M, ∀n = 1, ..., N
(1)

Cm,n =

D∏

d=1

[1−max(0, |Y 1
m − Y 2

n | − 1)]d

∀m = 1, ...,M, n = 1, ..., N

(2)

The Single-mmNet network only outputs one MM, which is calculated us-
ing Eq. 3. In essence, Z is a sum of all values weighted with their respective
correctness and normalised by the sum of all correctness.

Z =

∑M,N
m=1,n=1 Vm,n · Cm,n
∑M,N

m=1,n=1 Cm,n

(3)

The use of a fully-connected network as a sub-sentence encoder means that
the number of MMs is set beforehand and identical for each sub-sentence. To
allow a variable number of sub-sentence MMs, we added a second type of output
to the fully-connected network - scores S1 ∈ RM and S2 ∈ RN for the first and
second sub-sentence respectively. Each MM has a corresponding score, where the
value of 1 indicates that the MM is correct and contains important information
and value of 0means that the MM is erroneous or redundant. In contrast to value
3 Clamping indicates setting all values < −1 to −1 and all values > 1 to 1
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and correctness, scores are taken directly from the outputs of sub-sentence en-
coders. The MM-Inference Layer is subsequently adapted to accept these scores
as additional inputs and take them into account when calculating the output -
Eq. 4 shows the formulation used. The introduction of scores does not change
the dimension of the output Zs ∈ RD. It was empirically found that normalizing
the sum by the summed correctness (hence without scores) yields more stable
results in terms of test accuracy.

Zs =

∑M,N
m=1,n=1 Vm,n · Cm,n · S1

m · S2
n∑M,N

m=1,n=1 Cm,n

(4)

Predicting Multiple Mental Models Allowing more MMs as a conclusion is
inherently a many-to-many problem. For this problem we propose two encoder-
decoder architectures built around a modified version of the MM-Inference Layer
for the encoder part, and an LSTM layer for the decoder part. Both models use
the same shared fully-connected sub-sentence encoder with scores. The MM-
Inference Layer is modified to produce values (see Eq. 1) and scores based on
correctness and input scores as defined in Eq. 5.

Sm,n = Cm,n · S1
m · S2

n (5)

The output values V and scores S are flattened and concatenated, and are
used as the initial hidden state and cell state of the LSTM in the decoder part.
The output of the LSTM feeds into the fully-connected layer.

In the first architecture Multi-mmNet (direct output) the fully-connected
layer has a number of neurons equal to the number of variables n and uses a hy-
perbolic tangent activation function. The outputs of this layer are interpreted as
predicted MMs (see Figure 2a), and are auto-regressively fed back as the input
for the prediction of the next MM. We stop the model when the end-of-sequence
token is reached.

In the second architecture Multi-mmNet (combination) the fully-connected
layer has a number of neurons equal to the number of mental models returned
by the encoder (M ·N), and a sigmoid activation function. Its output S′ is inter-
preted as scores for combining the MMs obtained from the MM-Inference Layer
of the decoder part. This combination happens through a MM-Combination
Layer that computes the sum of MMs weighted by the scores predicted by the
decoder (see Figure 2b). The following shows the calculation for the p-th output
of the network:

Zc
p =

∑M ·N
i=1 Vi · Si · S′p,i

max(1,
∑M ·N

j=1 Sj · S′p,j)
. (6)

To avoid division by 0, we do not allow the deliminator to be less than 1.
During training we use teacher forcing [14,5], where the training data is used as
the input to the decoder instead of the output generated by the network in the
previous step. During inference the resulting output is used auto-regressively
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(a) Multi-mmNet (direct output) (b) Multi-mmNet (combination)

Fig. 2: Schematic connections of Multi-mmNet (direct output) architecture on
the left and Multi-mmNet (combination) on the right, where X1 and X2 are the
input sub-sentences, M1 to Mp are the output MMs, and S′1 to S′p are the scores
returned by the decoder of the Multi-mmNet (combination).

to predict the next output, until the end-of-sequence token is reached. This
technique is used to mitigate the network instability, and make it converge faster.
In the experiments, we chose a MM containing only 0s as the end-of-sequence
token for both architectures.

5 Experiments

Each dataset is split into training, validation and test subsets according to 80%,
10% and 10% ratios respectively. Training used the Adam optimizer [10] and
a mean squared error as loss function for all models. Training was terminated
early based on the validation loss.

5.1 Many-to-single Mental Model Architectures

As discussed above the Single-mmNet architecture predicts one MM given two
sub-sentences. The number of mental models of the fully-connected sub-sentence
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encoder was set to 3 for the Many-to-Single MM Small dataset experiments. For
the Many-to-Single MM Big dataset it was experimentally found that using 6
mental models resulted in the best performance. The network was evaluated both
without and with the use of scores. With the use of scores, the Single-mmNet
with scores theoretically has the ability to distinguish which MM is important
and which is not. In practice however, scores converge to 1.0 and are not used
by the network as intended. For comparison we trained a standard LSTM [6]
on the datasets concatenating the two sub-sentences using an and operator. We
choose the LSTM as baseline after empirically comparing alternatives on the
simple task of predicting a single true variable in a logical sentence.4

Results reported on the small version Many-to-Single MM dataset summarise
6 repetitions of the experiment, while those on the big version stem from 3
repetitions. Because Single-mmNet with scores performed better than the one
without, only this architecture was evaluated on the big dataset.

Observations and Discussion Table 1 summarises the performances. The
addition of scores seems to increase the robustness of the single-mmNet archi-
tecture, despite the fact that they converged to 1.0 during training. The model
with scores achieved similar accuracy as the LSTM.

Table 1: Experiments with the small and big version of the Many-to-single MM
dataset

Model
Average
Accuracy

Small
Dataset

Big
Dataset

LSTM 100% 99.80%

Single-mmNet
without scores 96.84% -

Single-mmNet
with scores 100% 99.96%

The LSTM and Single-mmNet with scores both reached perfect accuracy on
the small version of the dataset. They also performed very well on the big dataset
with an average accuracy of 99.80% and 99.96% respectively. The Single-mmNet
without scores reached this perfect accuracy only in some runs (on the small
dataset).

While the scores don’t seem to fulfill the purpose of indicating which MM is
relevant, their use improved accuracy and stability of the architecture, possibly
4 The LSTM outperformed a Vanilla RNN [3], a GRU [2], and a simplified Transformer
[13] that consisted of the encoder part of the Transformer with a fully-connected
output layer.
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being of use during the training phase, so it was decided to keep them in the
subsequent, more complex architectures as well.

5.2 Many-to-many Mental Model Architectures

Many sentences imply multiple MMs, so the Many-to-Many MM dataset was
used to reflect this fact. Based on the performance of the Vanilla LSTM, the
Single-mmNet architecture was expanded by feeding the encodings into an LSTM
decoder as discussed in Section 4.2. The MMs and scores are used as initiali-
sation of the LSTM-decoder, which outputs MMs directly for "Multi-mmNet
(direct output)" or outputs scores used in the Mental Model Combination Layer
for "Multi-mmNet (combination)". The number of mental models of the fully-
connected sub-sentence encoder was once again set to 3.

As benchmarks, we used encoder-decoder networks based on an LSTM. The
first two architectures use sub-sentence representations where one uses specific
Start of Sequence (SOS) and End of Sequence (EOS) tags, while the other does
not. The third model uses a symbolic concatenation of the two sub-sentences
and without specific SOS/EOS tags.

Observations and Discussion The performance of the Multi-mmNet archi-
tectures (both "direct output" and "combination") and benchmark networks can
been seen in Table 2. These results are achieved after fine-tuning the models’
parameters. A perfect accuracy was achieved by the model outputting MMs and
an average 99.67% accuracy by the model outputting scores for combining MMs,
actually reaching perfect accuracy 4 out of 6 times.

The two LSTM networks using sub-sentences exhibit the similar accuracy,
while the encoder-decoder model using symbols performed even slightly better,
but the differences are very small. In fact, all models performed comparable to
the benchmarks when judging accuracy. Beside predicting the correct MM, the
model predicts the MMs in the same order they were listed in the dataset. This
is an expected result for an LSTM network.

Table 2: Experiments with Many to Many dataset

Model Average
Accuracy

LSTM – Encoder decoder
sub sentences no start index 99.70%

LSTM – Encoder decoder
sub sentences with start index 99.70%

LSTM – Encoder decoder
symbol no index 99.95%

Multi-mmNet (direct output) 100%
Multi-mmNet (combination) 99.67%
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Contrary to single-mmNet with scores however (see Section 5.1) Multi-mmNet
(combination) does use the scores to mark the importance of the MMs. This
was not observed for the Multi-mmNet (direct output) - the sub-sentence en-
coder of this model did not output MMs at all. Using MMs as output of the
decoder, resulted in reverting back to an uninterpretable latent representation
of sub-sentences, not unlike the LSTM benchmark models. In case of Multi-
mmNet (combination) however, without being explicitly trained to do so, the
sub-sentence encoder produced MMs as we hypothesized they could be used.

5.3 Sub-sentence encodings

To illustrate the MMs (and scores if applicable) produced by the fully-connected
sub-sentence encoder, Table 3 shows the rounded outputs for a selection of sub-
sentences. The outputs of Single-mmNet without scores are easily interpreted
as MMs corresponding to the sub-sentence. When only one MM is sufficient to
represent the information in the sub-sentence, it is copied to all three outputs.
Despite using scores to allow the network to use less MMs for each sub-sentence
in the Single-mmNet with scores, the network learned to output all scores as 1.

The encoder of Multi-mmNet (direct output) did not learn to output MMs
at all. Although the network achieves perfect accuracy, the output of the sub-
sentence encoder is not easily interpreted: the vectors do not correspond to MMs
of sub-sentences, with scores close to 0 for all outputs. The introduction of the
Mental Model Combination layer in Multi-mmNet (combination) enabled sub-
sentence encoder to output MMs, and subsequently improved the interpretability
of the encodings. Additionally, the encoder learned to use less outputs by setting
corresponding scores to 0. That said, the encoder still sets two scores to 1 for
most of the sub-sentences, therefore the duplication of MMs is still present in
the output.

The networks were trained in end-to-end fashion and were not directly op-
timized to internally employ MMs. The usage of MMs as an intermediate rep-
resentation is imposed through MM-Inference Layer in all three architectures
exhibiting this behaviour. In case of these architectures - and in contrast to the
Multi-mmNet (direct output) - this layer is the last (output) layer of the net-
works, which were trained to predict MMs. The layer preserves the diminsionality
of the input as it is being processed, and the processing itself was designed utilize
of the semantics of the introduced representation of MMs. This leads to a sub-
stantial improvement for the interpretability of the latent space of the proposed
architectures.

6 Conclusion

This paper investigated enabling neural networks to make use of Mental Mod-
els for solving reasoning tasks. We conclude that it is possible to construct and
train neural network architecture to generate Mental Models for the input infor-
mation. This can been done by introducing vector encoding of Mental Models,
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Table 3: Rounded output of the sub-sentence encoder in MM architectures
Architecture Sub-sentence Y1 S1 Y2 S2 Y3 S3

Single-mmNet
without scores

(x2 or x1) [1, 1, 0, 0, 0] - [-1, 1, 0, 0, 0] - [1, -1, 0, 0, 0] -
not x1 [-1, 0, 0, 0, 0] - [-1, 0, 0, 0, 0] - [-1, 0, 0, 0, 0] -
x5 [0, 0, 0, 0, 1] - [0, 0, 0, 0, 1] - [0, 0, 0, 0, 1] -

(x1 and x5) [1, 0, 0, 0, 1] - [1, 0, 0, 0, 1] - [1, 0, 0, 0, 1] -
(x3 and x2) [0, 1, 1, 0, 0] - [0, 1, 1, 0, 0] - [0, 1, 1, 0, 0] -
(x2 or x1) [ 1, 1, 0, 0, 0] - [-1, 1, 0, 0, 0] - [1, -1, 0, 0, 0] -
(x1 and x3) [1, 0, 1, 0, 0] - [1, 0, 1, 0, 0] - [1, 0, 1, 0, 0] -

not x3 [0, 0, -1, 0, 0] - [0, 0, -1, 0, 0] - [0, 0, -1, 0, 0] -
x1 [1, 0, 0, 0, 0] - [1, 0, 0, 0, 0] - [1, 0, 0, 0, 0] -

Single-mmNet
with scores

(x2 or x1) [1, -1, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 1
not x1 [-1, 0, 0, 0, 0] 1 [-1, 0, 0, 0, 0] 1 [-1, 0, 0, 0, 0] 1
x5 [0, 0, 0, 0, 1] 1 [0, 0, 0, 0, 1] 1 [0, 0, 0, 0, 1] 1

(x1 and x5) [1, 0, 0, 0, 1] 1 [1, 0, 0, 0, 1] 1 [1, 0, 0, 0, 1] 1
(x3 and x2) [0, 1, 1, 0, 0] 1 [0, 1, 1, 0, 0] 1 [0, 1, 1, 0, 0] 1
(x2 or x1) [1, -1, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 1
(x1 and x3) [1, 0, 1, 0, 0] 1 [1, 0, 1, 0, 0] 1 [1, 0, 1, 0, 0] 1

not x3 [0, 0, -1, 0, 0] 1 [0, 0, -1, 0, 0] 1 [0, 0, -1, 0, 0] 1
x1 [1, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0] 1

Multi-mmNet
(direct output)

(x2 or x1) [1, 0, 0, -1, -1] 0 [0, 1, 0, -1, 0] 0 [0, -1, 1, 0, 0] 0
not x1 [1, 1, -1, 1, -1] 0 [-1, 1, 1, 0, 0] 1 [-1, 1, 0, 1, 1] 0
x5 [1, 0, 1, 1, -1] 1 [1, 0, 0, 1, 0] 1 [0, 1, 1, 1, 0] 0

(x1 and x5) [0, -1, 1, 1, -1] 1 [1, 0, 0, 1, 1] 1 [1, -1, 1, 1, 0] 1
(x3 and x2) [1, 1, -1, -1, -1] 0 [1, 1, -1, 0, 0] 0 [1, 1, -1, 0, -1] 1
(x2 or x1) [1, 0, 0, -1, -1] 0 [0, 1, 0, -1, 0] 0 [0, -1, 1, 0, 0] 0
(x1 and x3) [-1, 1, -1, 0, -1] 1 [1, 0, 0, 1, 1] 1 [1, -1, -1, 0, -1] 1

not x3 [0, -1, 1, -1, -1] 1 [-1, 0, 1, 0, 0] 1 [0, 1, 1, 0, 1] 0
x1 [-1, 0, 0, -1, -1] 1 [1, 0, 0, 1, 1] 1 [1, -1, 1, 0, 0] 1

Multi-mmNet
(combination)

(x2 or x1) [1, 0, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 0
not x1 [0, 1, 1, 0, 1] 0 [-1, 0, 0, 0, 0] 1 [-1, 0, 0, 0, 0] 1
x5 [-1, 1, 1, 1, 0] 0 [0, 0, 0, 0, 1] 1 [0, 0, 0, 0, 1] 1

(x1 and x5) [1, 1, 1, 1, 1] 0 [1, 0, 0, 0, 1] 1 [1, 0, 0, 0, 1] 1
(x3 and x2) [-1, 1, 1, 1, 1] 0 [0, 1, 1, 0, 0] 1 [0, 1, 1, 0, 0] 1
(x2 or x1) [1, 0, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 0
(x1 and x3) [1, 1, 1, 1, 1] 0 [1, 0, 1, 0, 0] 1 [1, 0, 1, 0, 0] 1

not x3 [0, 1, 1, 0, 0] 0 [0, 0, -1, 0, 0] 1 [0, 0, -1, 0, 0] 1
x1 [1, 1, 1, 0, 1] 0 [1, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0] 1

and formulating neural network layers that perform differentiable operations to
combine those encodings. By incorporating those layers with existing neural net-
works, we created several architectures and trained them using gradient-based
methods for the Boolean algebra reasoning tasks. All proposed neural networks
achieved accuracy comparable to existing architectures. Additionally, three out
of four architectures exhibited the internal usage of Mental Models in the latent
space (the exception was Multi-mmNet with direct output). Only when there
exists a direct path through the MM layers to the output, which is also an en-
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coded MM, we observe that the simple sub-sentence encoder learned to output
human-interpretable encodings - even though we trained the architectures in the
end-to-end fashion. We see this fact as the advantage of those architectures as it
can be used to achieve greater explainability of neural networks. The code-base
of the project can be found on Github. 5

Currently mental models are being processed in a specific order in the neural
networks. The networks are good at predicting what to expect. However, in
real world problems, the order of the mental models is irrelevant. This could be
solved by using a permutation invariant loss function but is left for future work.
A restriction of our research is how this theoretical setting can be translated
to a real world problem. In this work, a specific Boolean algebra problem was
explored. The presented experiments were intended as a proof-of-concept and the
experiments involving larger datasets (in terms of both the number of variables
and the depth of the Boolean expressions) should be conducted. The difficulties
could arise when the architectures are adapted to accept other forms of input
(ultimately, natural language). Additionally, our architecture is limited to reason
from exactly two sub-sentences. This is left for future research.
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Abstract. SHACL is a W3C-proposed language for expressing struc-
tural constraints on RDF graphs. In recent years, SHACL’s popularity
has risen quickly. This rise in popularity comes with questions related
to its place in the semantic web, particularly about its relation to OWL
(the de facto standard for expressing ontological information on the web)
and description logics (which form the formal foundations of OWL). We
answer these questions by arguing that SHACL is in fact a description
logic. On the one hand, our answer is surprisingly simple, some might
even say obvious. But, on the other hand, our answer is also controver-
sial. By resolving this issue once and for all, we establish the field of
description logics as the solid formal foundations of SHACL.

Keywords: Shapes · SHACL · Description Logics · Ontologies.

1 Introduction

The Resource Description Framework (RDF [17]) is a standard format for pub-
lishing data on the web. RDF represents information in the form of directed
graphs, where labeled edges indicate properties of nodes. To facilitate more ef-
fective access and exchange, it is important for a consumer of an RDF graph to
know what properties to expect, or, more generally, to be able to rely on certain
structural constraints that the graph is guaranteed to satisfy. We therefore need
a declarative language in which such constraints can be expressed formally.

Two prominent proposals in this vein have been ShEx [5] and SHACL [19].
In both approaches, a formula expressing the presence (or absence) of certain
properties of a node (or its neighbors) is referred to as a “shape”. In this paper,
we adopt the elegant formalization of shapes in SHACL proposed by Corman,
Reutter and Savkovic [6]. That work has revealed a striking similarity between
shapes and concept expressions, familiar from description logics (DLs) [4].

The similarity between SHACL and DLs runs even deeper when we account
for named shapes and targeting, which is the actual mechanism to express con-
straints on an RDF graph using shapes. A shape schema is essentially a finite
list of shapes, where each shape φs is given a name s and additionally associated
with a target query qs. The shape–name combinations in a shape schema specify,
in DL terminology, an acyclyc TBox consisting of all the formulas

s ≡ φs.

Regular papers BNAIC/BeneLearn 2021

271



2 B. Bogaerts et al.

Given an RDF graph G, this acyclic TBox determines a unique interpretation
of sets of nodes to shape names s. We then say that G conforms to the schema
if for each query qs, each node v returned by qs on G satisfies s in the extension
of G.

Now interestingly, the types of target queries q considered for this purpose
in SHACL as well as in ShEx, actually correspond to simple cases of shapes φqs
and the actual integrity constraint thus becomes

φqs v s.
As such, in description logic terminology, a shape schema consists of two parts:
an acyclic TBox (defining the shapes in terms of the given input graph) and a
general TBox (containing the actual integrity constraints).

2 The Wedge

Despite the strong similarity between SHACL and DLs, and despite the fact that
in a couple of papers, SHACL has been formalized in a way that is extremely
similar to description logics [6,2,11], this connection is not recognized in the
community. In fact, some important stakeholders in SHACL recently even wrote
the following in a blog post explaining why they use SHACL, rather than OWL:

“OWL was inspired by and designed to exploit 20+ years of re-
search in Description Logics (DL). This is a field of mathemat-
ics that made a lot of scientific progress right before creation
of OWL. I have no intention of belittling accomplishments of
researchers in this field. However, there is little connection be-
tween this research and the practical data modeling needs of
the common real world software systems. — [16]

”
thereby suggesting that SHACL and DLs are two completely separated worlds
and as such contradicting the introductory paragraphs of this paper. On top of
that, SHACL is presented by some stakeholders [21] as an alternative to the Web
ontology language OWL [13], which is based on the description logic SROIQ [7].

This naturally begs the question: which misunderstanding is it that drives
this wedge between communities? How can we explain this discrepancy from a
mathematical perspective (thereby patently ignoring strategic, economic, social,
and other aspects that play a role).

3 SHACL, OWL, and Description Logics

Our answer is that there are two important differences between OWL and
SHACL that deserve attention. These differences, however, do not contradict
the central thesis of this paper, which is that SHACL is a description logic.
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SHACL: A Description Logic in Disguise 3

1. The first difference is that in SHACL, the data graph (implicitly) rep-
resents a first-order interpretation, while in OWL, it represents
a first-order theory (an ABox). Of course, viewing the same syntactic
structure (an RDF graph) as an interpretation is very different from view-
ing it as a theory. While this is a discrepancy between OWL and SHACL,
theories as well as interpretations exist in the world of description logic and
as such, this view is perfectly compatible with our central thesis. There is,
however, one caveat with this claim that deserves some attention, and that
is highlighted by the use of the world “implicitly”. Namely, to the best of
our knowledge, it is never mentioned that the data graph simply represents
a standard first-order interpretation, and it has not been made formal what
exactly the interpretation is that is associated to a graph. Instead, SHACL’s
language features are typically evaluated directly on the data graph. There
are several reasons why we believe it is important to make this translation
of a graph into an interpretation explicit.
– This translation makes the assumptions SHACL makes about the data

explicit. For instance, it is often informally stated that “SHACL uses
closed-world assumptions” [10]; we will make this statement more pre-
cise: SHACL uses closed-world assumptions with respect to the relations,
but open-world assumptions on the domain.

– Once the graph is eliminated, we are in familiar territory. In the field
of description logics a plethora of language features have been studied.
It now becomes clear how to add them to SHACL, if desired. The 20+
years of research mentioned in [16] suddenly become directly applicable
to SHACL.

2. The second difference, which closely relates to the first, is that OWL and
SHACL have a different (default) inference task: the standard infer-
ence task at hand in OWL is deduction, while in SHACL, the main task is
validation of RDF graphs against shape schemas. In logical terminology, this
is evaluating whether a given interpretation satisfies a theory (TBox), i.e.,
this is the task of model checking.
Of course, the fact that a different inference task is typically associated
with these languages does not mean that their logical foundations are sub-
stantially different. Furthermore, recently, other researchers [11,14,15] have
started to investigate tasks such as satisfiability and containment (which are
among the tasks typically studied in DLs) for SHACL, making it all the
more obvious that the field of description logics has something to offer for
studying properties of SHACL.

In the next section, we develop our formalization of SHACL, building on the
work mentioned above. Our formalization differs form existing formalizations of
SHACL in a couple of small but important ways. First, as we mentioned, we
explicitly make use of a first-order interpretation, rather than a graph, thereby
indeed showing that SHACL is in fact a description logic. Second, the semantics
for SHACL we develop would be called a “natural” semantics in database the-
ory [1]: variables always range over the universe of all possible nodes. The use
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of the natural semantics avoids an anomaly that crops up in the definitions of
Andreşel et al. [2], where an “active-domain” semantics is adopted instead, in
which variables range only over the set of nodes actually occurring in the input
graph. Unfortunately, such a semantics does not work well with constants. The
problem is that a constant mentioned in a shape may or may not actually occur
in the input graph. As a result, the semantics adopted by Andreşel et al. violates
familiar logic laws like De Morgan’s law. This is troublesome, since automated
tools (and humans!) that generate and manipulate logic formulas may reason-
ably and unwittingly assume these laws to hold. Also other research papers (see
Remark 4) contain flaws related to not taking into account nodes that do not
occur in the graph. This highlights the importance of taking a logical perspective
on SHACL.

A minor caveat with the natural semantics is that decidability of validation is
no longer totally obvious, since the universe of nodes is infinite. A solution to this
problem is well-known from relational databases [1, Theorem 5.6.1]. Essentially,
an application of solving the first-order theory of equality, one can reduce, over
finite graphs, an infinite domain to a finite domain, by adding symbolic constants
[3,8]. It turns out that in our case, just a single extra constant suffices.

In this paper, we will not give a complete syntactic translation of SHACL
shapes to logical expressions. In fact, such a translation has already been de-
veloped by Corman et al. [6], and was later extended to account for all SHACL
features by Jakubowski [9]. Instead, we show very precisely how the data graph
at hand can be viewed as an interpretation, and that after this small but crucial
step, we are on familiar grounds and know well how to evaluate expressions.

4 SHACL: The Logical Perspective

In this section of the paper we begin with the formal development. We define
shapes, shape schemas, and validation. Our point of departure is the treatment
by Andreşel et al. [2], which we adapt and extend to our purposes.

From the outset we assume three disjoint, infinite universes N , S, and P
of node names, shape names, and property names, respectively.3 We define path
expressions E and shapes φ by the following grammar:

E ::= p | p− | E ∪ E | E ◦ E | E∗ | E?

φ ::= > | s | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ≥n E.φ | eq(p,E) | disj (p,E) | closed(Q)

where p, s, and c stand for property names, shape names, and node names,
respectively, n stands for nonzero natural numbers, and Q stands for finite sets
of property names. In description logic terminology, a node name c is a constant,
a shape name is a concept name and a property name is a role name.

3 In practice, node names, shape names, and property names are IRIs [17], hence the
disjointness assumption does not hold. However, this assumption is only made for
simplicity of notation.
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Fig. 1. An example graph to illustrate language features of SHACL.

As we will formalize below, every property/role name evaluates to a binary
relation, as does each path expression. In the path expressions, p− represents
the inverse relation of p, E ◦ E represents composition of binary relations, E∗

the reflexive-transitive closure of E and E? the reflexive closure of E. As we
will see, shapes (which represent unary predicates) will evaluate to a subset of
the domain. The three last expressions are probably the least familiar. Equality
(eq(p,E)) means that there are outgoing p-edges (edges labeled p) exactly to
those nodes for which there is a path satisfying the expression E (defined below)
. Disjointness (disj (p,E)) means that there are no outgoing p-edges to which
there is also a path satisfying E. For instance in the graph in Figure 1, eq(p, p∗)
would evaluate to {c}, since c is the only node that has direct outgoing p-edge to
all nodes that are reachable using only p-edges, and disj (p, p−) would evaluate
to {d} since d is the only node that has no symmetric p-edges. Closedness is also
a typical SHACL feature: closed(Q) represents that there are no outgoing edges
about any predicates other than those in Q. In our example figure closed({p})
would evaluate to {a, b, c, d} and closed({q}) to the empty set.

Remark 1. Andreşel et al. [2] also have the construct ∀E.φ, which can be omitted
(at least for theoretical purposes) as it is equivalent to ¬ ≥1 E.¬φ. In our
semantics, the same applies to φ1∧φ2 and φ1∨φ2, of which we need only one as
the other is then expressible via De Morgan’s laws. However, here we keep both
for the sake of our later Remark 3. In addition to the constructors of Andreşel
et al. [2], we also have E?, disj , and closed , corresponding to SHACL features
that were not included there. ut

A vocabulary Σ is a subset of N ∪ S ∪ P . A path expression or shape is
said to be over Σ if it only uses symbols from Σ. On the most general logical
level, shapes are evaluated in interpretations. We recall the familiar definition:
An interpretation I over Σ consists of

1. a set ∆I , called the domain of I;
2. for each constant c ∈ Σ, an element JcKI ∈ ∆I ;
3. for each shape name s ∈ Σ, a subset JsKI of ∆I ; and
4. for each property name p ∈ Σ, a binary relation JpKI on ∆I .

On any interpretation I as above, every path expression E over Σ evaluates to
a binary relation JEKI on ∆I , and every shape φ over Σ evaluates to a subset of
∆I , as defined in Tables 1 and 2.
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E JEKI

p− {(a, b) | (b, a) ∈ JpKI}
E1 ∪ E2 JE1KI ∪ JE2KI

E1 ◦ E2 {(a, b) | ∃c : (a, c) ∈ JE1KI ∧ (c, b) ∈ JE2KI}
E∗ the reflexive-transitive closure of JEKI

E? JEKI ∪ {(a, a) | a ∈ ∆I}
Table 1. Semantics of a path expression E in an interpretation I over Σ.

φ JφKI

> ∆I

{c} {cI}
φ1 ∧ φ2 Jφ1KI ∩ Jφ2KI

φ1 ∨ φ2 Jφ1KI ∪ Jφ2KI

¬φ1 ∆I \ Jφ1KI

≥n E.φ1 {a ∈ ∆I | ](Jφ1KI ∩ JEKI(a)) ≥ n}
eq(p,E) {a ∈ ∆I | JpKI(a) = JEKI(a)}
disj (p,E) {a ∈ ∆I | JpKI(a) ∩ JEKI(a) = ∅}
closed(Q) {a | JpKI(a) = ∅ for every p ∈ Σ \Q}

Table 2. Semantics of a shape φ in an interpretation I over Σ. For a set X, we use
]X to denote its cardinality. For a binary relation R and an element a, we use R(a) to
denote the set {b | (a, b) ∈ R}.

As argued above, we define a shape schema S over Σ as a tuple (D,T ), where

– D is an acyclic TBox [4], i.e., a finite set of expressions of the form s ≡ φs
with s a shape name in Σ and φs a shape over Σ and where
1. each s occurs exactly once as the left-hand-side of such an expression

and
2. the transitive closure of the relation {(s, t) | t occurs in φs} is acyclic.

– T is a TBox, i.e., a finite set of statements of the form φ1 v φ2, with φ1 and
φ2 shapes.

If S = (D,T ) is a shape schema over Σ and I an interpretation over Σ \ S,
then there is a unique interpretation I�D that agrees with I outside of S and that
satisfies D, i.e., such that for every expression s ≡ φs ∈ D, JsKI�D = JφsKI�D. We
say that I conforms to S, denoted by I |= S, if Jφ1KI�D is a subset of Jφ2KI�D,
for every statement φ1 v φ2 in T . In other words, I conforms to S if there exists
an interpretation that satisfies D ∪ T that coincides with I on N ∪ P .

Remark 2. In real SHACL, a shape schema is called a “shapes graph”. There
are some notable differences between shapes graphs and our shape schemas.

First, we take abstraction of some features of real SHACL, such as checking
data types like numbers and strings.

Second, in real SHACL, the left-hand side of an inclusion statement in T
is called a “target” and is actually restricted to shapes of the following forms:

Regular papers BNAIC/BeneLearn 2021

276



SHACL: A Description Logic in Disguise 7

a constant (“node target”); ∃r.{c} (“class-based target”, where r is ‘rdf:type’);
∃r.> (“subjects-of target”); or ∃r−.> (“objects-of target”). Our claims remain
valid if this syntactic restriction imposed.

Third, in real SHACL not every shape name needs to occur in the left-hand
side of a defining rule. The default that is taken in real SHACL is that shapes
without a definition are always satisified. On the logical level, this means that
for every shape s name that has no explicit definition, a definition s ≡ > is
implicitly assumed. ut

5 From Graphs to Interpretations

Up to this point, we have discussed the logical semantics of SHACL, i.e., how to
evaluate a SHACL expression in a standard first-order interpretation. However,
in practice, SHACL is not evaluated on interpretations but on RDF graphs. In
this section, we show precisely and unambiguously how to go from a graph to a
logical interpretation (in such a way that the actual SHACL semantics coincides
with what we described above). A graph is a finite set of facts, where a fact is
of the form p(a, b), with p a property name and a and b node names. We refer
to the node names appearing in a graph G simply as the nodes of G; the set
of nodes of G is denoted by NG. A pair (a, b) with p(a, b) ∈ G is referred to as
an edge, or a p-edge, in G. The set of p-edges in G is denoted by JpKG (this set
might be empty).

We want to be able to evaluate any shape on any graph (independently of
the vocabulary the shape is over). Thereto, we will unambiguously associate, to
any given graph G, an interpretation I over N ∪ P as follows:

– ∆I equals N (the universe of all node names).
– JcKI equals c itself, for every node name c.
– JpKI equals JpKG, for every property name p.

If I is the interpretation associated to G, we use JEKG and JφKG to mean JEKI
and JφKI , respectively.

Remark 3. Andreşel et al. [2] define JφKG a bit differently. For a constant c, they
define J{c}KG = {c} like we do. For all other constructs, however, they define
JφKG to be JφKI , but with the domain of I taken to be NG, rather than N . In
that approach, if c /∈ NG, J¬¬{c}KG would be empty rather than {c} as one
would expect. For another illustration, still assuming c /∈ NG, J¬(¬φ ∧ ¬{c})KG
would be JφKG rather than JφKG∪{c}, so De Morgan’s law would fail. We tested
both of these examples with existing SHACL implementations and all of these
implementations indeed coincide with our semantics. Details of this (executable
with actual SHACL engines) are included in Appendix A. ut

Remark 4. The use of active domain semantics has also introduced some errors
in previous work. For instance [11, Theorem 1] is factually incorrect. The problem
originates with the notion of faithful assignment introduced by Corman et al. [6]
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and adopted by Leinberger et al. This notion is defined in an active-domain
fashion, only considering nodes actually appearing in the graph. For a concrete
counterexample to that theorem, consider a single shape named s defined as
∃r.>, with target {b}. In our terminology, this means that

D = {s ≡ ∃r.>}, and
T = {{b} v s}.

On a graph G in which b does not appear, we can assign {s} to all nodes from
G with an outgoing r-edge (meaning that all these nodes satisfy s and no other
shape (names)), and assign the empty set to all other nodes (meaning that
all other nodes do not satisfy any shape). According to the definition, this is
a faithful assignment. However, the inclusion {b} v s is not satisfied in the
interpretation they construct from this assignment, thus violating their Theorem
1. ut

The bug in [11], as well as the violation of De Morgan’s laws will only occur
in corner cases where the shape schema mentions nodes that not occur in the
graph. After personal communications, Leinberger et al. [11] included an errata
section where they suggest to fix this by demanding that (in order to conform)
the target queries do not mention any nodes not in the graph. While technically,
this indeed resolves the issue. Under that condition, Theorem 1 indeed holds,
this solution in itself has weaknesses as well. Indeed, shape schemas are designed
to validate graphs not known at design-time, and it should be possible to check
conformance of any graph with respect to any shape schema. As the following
example shows, it makes sense that a graph should conform to a schema in
case a certain node does not occur in the graph (or does not occur in a certain
context), and that — contrary to the existing SHACL formalizations — the
natural semantics indeed coincides with the behaviour of SHACL validators in
such cases.

Example 1. Consider a schema with D = ∅ and T consisting of a single inclusion

{LuisLeiva} v ¬∃(author ◦ venue).{BNAICBNLEARN2021},
which states that a BNAIC PC chair does not author any BNAIC paper. If Luis
Leiva does not occur in the list of of accepted papers, this list should clearly4

conform to this schema. In all the proposed active domain semantics, however,
the answer will be negative.

The definition of I makes — completely independent of the actual language
features of SHACL — a couple of assumptions explicit. First of all, SHACL uses
unique names assumptions (UNA): each constant is interpreted in I as a different
domain element. Secondly, if p(a, b) does not occur in the graph, it is assumed
to be false. However, if a node c does not occur anywhere in the graph, it is
not assumed to not exist. The domain of I is infinite! Rephrasing this: SHACL
makes the Closed World Assumption on predicates, but not on objects.

4 Technically, the standard is slightly ambiguous with respect to nodes not occurring
in the data graph, but the behaviour of all existing validators (see AppendixA)
corresponds to what is “clearly” the correct behaviour here.
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Effective evaluation Since the interpretation defined from a graph has the infinite
domain N , it is not immediately clear that shapes can be effectively evaluated
over graphs. As indicated above, however, we can reduce to a finite interpreta-
tion. Let Σ ⊆ N ∪ P be a finite vocabulary, let φ be a shape over Σ, and let
G be a graph. From G we define the interpretation I? over Σ just like I above,
except that the domain of I? is not N but rather

NG ∪ (Σ ∩N) ∪ {?},

where ? is an element not in N . We use JφKG? to denote JφKI? and find:

Theorem 1. For every x ∈ NG ∪ (Σ ∩ N), we have x ∈ JφKG if and only if
x ∈ JφKG? . For all other node names x, we have x ∈ JφKG if and only if ? ∈ JφKG? .

Hence, I conforms to S if and only if I? does.

Theorem 1 shows that conformance can be performed by finite model check-
ing, but other tasks typically studied in DLs are not decidable; this can be shown
with a small modification of the proof of undecidability of the description logic
ALRC, as detailed by Schmidt-Schauß [18].

Theorem 2. Consistency of a shape schema (i.e., the question whether or not
some I conforms to S) is undecidable.

Following description logic traditions, decidable fragments of SHACL have been
studied already; for instance Leinberger et al. [11] disallow equality, disjointness,
and closedness in shapes, as well as union and Kleene star in path expressions.

6 Related Work and Conclusion

Formal investigations of SHACL have started only relatively recently. We already
mentioned the important and influential works by Corman et al. [6] and by
Andreşel et al. [2], which formed the starting point for the present paper. The
focus of these papers is mainly on the extending the semantics to recursive
SHACL schemas, which are not present in the standard yet, and which we also
do not consider.

The connection between SHACL and description logics has also been ob-
served by two other groups of researchers [11,14,15]. There, the focus is on typi-
cal reasoning tasks from DLs applied to shapes, and on reductions of these tasks
to decidable description logics or decidable fragments of first-order logic. In its
most general form, this cannot work (see Theorem 2), but the addressed works
impose restrictions on the allowed shape expressions.

Next to shapes, other proposals for adding integrity constraints to the seman-
tic web have been proposed, for instance by integrating them in OWL ontologies
[20,12]. There, the entire ontology is viewed as an incomplete database.

None of the discussed works takes the explicit viewpoint that a data graph
represents a standard first-order interpretation or that SHACL validation is
model checking. We took this viewpoint and in doing so formalized precisely
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how SHACL relates to the field of description logics. There are (at least) three
reasons why this formalization is important. First, it establishes a bridge be-
tween two communities, thereby allowing to exploit the many years of research
in DLs also for studying SHACL. Second, our formalization of SHACL clearly
separates two orthogonal concerns:

1. Which information does a data graph represent? This is handled in the trans-
lation of a graph into its natural interpretation.

2. What is the semantics of language constructs? This is handled purely in the
well-studied logical setting.

Third, as we showed above, our formalization corresponds closer to actual SHACL
than existing formalizations, respects well-known laws (such as De Morgan’s)
and avoids issues with nodes not occurring in the graph requiring special treat-
ment. As such, we believe that by rooting SHACL in the logical setting, we have
devised solid foundations for future studies and extensions of the language.
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A Actual SHACL specifications

In this appendix, we provide some actual SHACL specifications that support
our claims that for some, possibly more controversial, choices our semantics
indeed corresponds to actual SHACL. All the examples presented below have
been tested on three SHACL implementations: Apache Jena SHACL5 (using
their Java library) TopBraid SHACL6 (using their Java library as well as their
online playground), and Zazuko7 (using their online playground).

All the examples in this section will assume the following prefixes are defined:

@prefix : <http://www.example.org/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

Example 2. The following SHACL shape :MyShape states that the node :c must
have at least one outgoing :r-edge.

:MyShape a sh:NodeShape ;

sh:property [

sh:path :r ;

sh:minCount 1 ] .

:MyShape sh:targetNode :c .

When validating a graph that does not contain the node :c against :MyShape, it
will return a violation stating that the node :c does not have an :r-edge. This
supports the choice made in [2], as well as in our work, to evaluate constants
(node names) to themselves, even if they do not occur in the data graph. When
translating this into the logical setting, this example thus shows that all node
names, even those that do not occur in the graph, are part of the
domain, which is exactly how our natural interpretation is defined.

In our formal notation, this shapes graph corresponds to the shape schema

:MyShape ≡ ∃:r.>
{:c} v :MyShape,

where the first line is the definition of :MyShape, and the second line its target.
ut

Example 3. The following SHACL shape :MyShape states that all nodes with an
:r-edge must conform to the :NoDef and :AlsoNoDef shapes which we do not
define.

:MyShape a sh:NodeShape ;

sh:and ( :NoDef :AlsoNoDef ) .

:MyShape sh:targetSubjectsOf :r .

5 https://jena.apache.org/documentation/shacl/index.html
6 https://shacl.org/playground/
7 https://shacl-playground.zazuko.com/
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When validation a graph containing only the triple :a :b :r , it will validate
without violation. This supports our observation that shapes without an ex-
plicit definition are assumed to be satisfied by all nodes (i.e., are
interpreted as >).

In our formal notation, this shapes graph corresponds to the shape schema

:MyShape ≡ :NoDef ∧ :AlsoNoDef

∃:r.> v :MyShape

where again, the first line is the definition of :MyShape, and the second line its
target. ut

Example 4. The following SHACL shape :MyShape states that it cannot be so
that the node :this is different from itself (i.e., that it must be equal to itself,
but specified with a double negation).

:MyShape a sh:NodeShape ;

sh:not [ sh:not [ sh:hasValue :this ] ] .

:MyShape sh:targetNode :this .

Clearly, this shape should validate every graph and it does so in all SHACL
implementations we tested. This supports our choice of the natural seman-
tics, rather than the active domain semantics of [2] (see also Remark 3). Indeed,
in that semantics, this shape will never validate any graph because the left-hand
side of the inclusion will be evaluated to be the empty set.

The inclusions

:MyShape ≡ ¬¬{:this}
{:this} v :MyShape

again formalize the above shapes graph. ut

Example 5. Another example in the same vein as the previous, to show that the
natural semantics correctly formalizes is the one where [2]’s semantics does
not respect the De Morgan’s laws (again, see Remark 3), as follows:

:MyShape a sh:NodeShape ;

sh:not [

sh:and (

[ sh:not [

sh:path :r ;

sh:minCount 1 ] ]

[ sh:not [ sh:hasValue :this ] ] ) ] .

:MyShape sh:targetNode :this .
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This shape graph becomes

:MyShape ≡ ¬(¬∃:r.> ∧ ¬{: this})
{:this} v :MyShape

when translated to our formalism. ut

Example 6. Finally, in the following SHACL shapes graph, the shape :NotAnAuthor
holds for all nodes (whether or not they occur in the data graph) that are not
an author of a BNAIC paper. This example illustrates the utility of targeting
nodes that do no occur in the graph.

:NotAnAuthor a sh:NodeShape ;

sh:not [

a sh:PropertyShape ;

sh:path (:author :venue) ;

sh:qualifiedValueShape [ sh:hasValue :BNAICBNLEARN2021 ] ;

sh:qualifiedMinCount 1 ] .

:NotAnAuthor sh:targetNode :LuisLeiva .

which corresponds to

{LuisLeiva} v ¬∃(author ◦ venue).{BNAICBNLEARN2021},

from Example 1.
When the node :LuisLeiva does not occur in the data graph, then in every

SHACL implementation, this schema validates: any graph that does not contain
the node :LuisLeiva (or where that node is not an author of a BNAICBN-
LEARN2021 paper), conforms to the above shapes graph, supporting our argu-
ment in Example 1. ut
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Abstract. The cooperation between machines and humans could be
improved if machines could understand and respond to the emotions of
the people around them. Furthermore, the features that machines use to
classify emotions should be explainable to reduce the inhibition threshold
for automatic emotion recognition. However, the explainability in bodily
expressivity of emotions has hardly been explored yet. Therefore, this
study aims to visualize and explain the features used by neural networks
to classify emotions based on body movements and postures of human
characters in videos. For this purpose, a state-of-the-art neural network
was selected as classification model. This network was used to classify
the videos of two datasets for emotion classification. As a result, the ac-
tivation of the classification features used by the model were visualized
with heatmaps over the course of the videos. Furthermore, a combination
of Class Activation Maps and body joint coordinates were used to com-
pute the activation of body parts in order to investigate the existence
of prototypical activation patterns in emotions. As a result, similarities
were found between the activation patterns of the two datasets. These
patterns may provide new insights into the classification features used
by neural networks and the emotion expression in body movements and
postures.

Keywords: emotion recognition · bodily emotional expressions · deep
learning · explainable AI · XAI

1 Introduction

Many future machine applications in the areas of care, education, and social
robotics, among others, will require close collaboration between machines and
humans. That is why machines used in these areas, in particular, can bene-
fit from a comprehensive understanding of the people around them. Emotional
state recognition can provide a more natural human-machine interaction, with
machines responding to people’s actions according to their emotional state. The
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emotion classification studies use different types of models to distinguish emo-
tions from each other such as categorical [6] and dimensional [15] models. The
categorical model, which is utilized in this study, divides emotions into several
different categories. For example, Ekman et al. categorizes emotional expressions
in six basic emotions, which contain Anger, Disgust, Fear, Happiness, Sadness,
and Surprise [6]. The categorical model simplifies the emotional state recognition
task and transforms it into a classification task. Thus, an approach to emotion
recognition does not need to capture the emotional state entirely, but rather
needs to learn features to classify emotions accordingly.

The state-of-the-art approaches focus predominantly on facial expressions to
classify emotions [4] [5]. However, the use of facial expressions alone can often
lead to ambiguity of emotion. Besides, there may be applications for emotion
recognition where the human body is present, but the face may be distant,
hidden, or obscured [8]. Body expressions can be utilized in emotion recognition
since they encode rich information about the emotional state of a person [14].
Thus, in recent studies, both body and facial expressions are used to classify
emotions [12]. For example, Filntisis et al. [7] presented a method to combine
children’s body posture and facial expressions for emotion classification. Their
results showed that the additional use of body expressions could significantly
improve emotion recognition.

Moreover, in recent years, it has become essential not only to create neural
networks with high accuracy, but also to develop methods that provide insight
into the computed classification features of the neural networks. Neural networks
do not give direct information about the features used in classification since
they are black-box models [17]. Although explainable AI is currently getting
attention in recent studies [9] [17], explainability in bodily expressivity is still
hardly explored.

To address these issues, this study aims to visualize and explain the features
used by neural networks to classify emotions based on body expressions of human
characters in videos. For this purpose, a neural network was trained to classify
emotions based on two video datasets. Subsequently, the classification features
learned by the neural network were visualized with heatmaps to analyze them
qualitatively. There is a lack of a quantitative approach to compare the features
used by 3D-Convolutional Neural Networks to classify emotions. Thus, in this
study, a method was developed to compare the activation of specific body parts
for different emotions.

2 Related Work

In the presentation of the Body Language Dataset (BoLD) (section 3.1), Luo et
al. [14] already tested different approaches for classifying the dataset. A distinc-
tion was made between the approaches learning from skeleton and learning from
pixels. For the learning from skeleton approach, the body key points (section 3.5)
of the persons to be classified were determined. These body key points were used
to distinguish the emotions portrayed in the videos using classification models.
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For this purpose, 2 different methods were presented for learning from skele-
tons. With the first method, handcrafted features were analyzed in the videos
using Laban Movement Analysis (LMA) [13]. Subsequently, these features were
used as input to a Random Forest Classifier to classify the videos. The second
method is based on the fact that the movement of the key points over the course
of the video can be represented as a spatiotemporal graph. Therefore, Spatial
Temporal Graph Convolutional Networks (ST-GCN) were used as an end-to-end
feature learning method to classify the videos based on the body key points. In
contrast, classification features were determined directly in the RGB frames of
the videos for the learning from pixels approach. For the learning from pixels ap-
proach, also 2 different methods were presented. For the first method, Support
Vector Machines (SVM) were used to classify the videos based on trajectory
based handcrafted features. In contrast, the performance of different 2D- and
3D-Convolutional Neural Networks (CNN) was validated on the dataset for the
second method. Luo et al. found that 2D- and 3D-CNNs perform significantly
better than all the other models on the BoLD dataset [14]. One of the best
performances was delivered by a Two-Stream Inflated 3D ConvNet (I3D) [2].
The I3D model (section 3.3) is a 3D-CNN architecture that uses video sequences
as input. Thus, the model learns spatiotemporal classification features directly
from the RGB frames of the video sequences.

Hiley et al. [9] summarized the state-of-the-art methods for explainable deep
learning on video classification tasks. They highlighted that application of deep
neural networks on video sequences for tasks like action and emotion recognition
is currently at the forefront of computer vision. As a result, they mentioned
that a wide variety of work is devoted to this task. However, they note the
lack of research on explanations for these methods. Nevertheless, Hiley et al. [9]
emphasized the Saliency Tubes [17] method as particularly promising. For this
method, Class Activation Maps (CAMs) of a neural network are computed for
the complete duration of the video. This not only makes it possible to identify
regions in each frame where classification features are present. Furthermore, this
method also provides the ability to display frames where these features are higher
concentrated [17].

In their study, Dael et al. [3] investigated the extent to which patterns can be
identified in actors’ body movements when portraying emotions. It was shown
that most emotions were systematically represented by several different body
movement patterns. Only a few emotions were characterized by a single specific
pattern. Thus, it was possible to differentiate the emotions. These patterns in-
cluded different specific movements of body parts like the head, the arms, or the
knees. Moreover, complete body movements were considered as a component in
the patterns [3].

3 Methodology

Fig. 1 shows the proposed methodology to visualize and explain features used by
neural networks for the classification of emotions. First, the neural network (here,
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the I3D [2] model) is trained to classify the emotions presented in videos. The
learned classification features are utilized to compute Class Activation Maps
(CAMs) for the complete duration of the videos using the Saliency Tube [17]
method. These CAMs are visualized using heatmaps. Besides, the body joint co-
ordinates in the videos are obtained with OpenPose [1]. Finally, the combination
of CAMs and body joint coordinates is utilized to validate the activation of cer-
tain body parts during the expression of emotions. The individual components
of the proposed methodology are described in the following sections.

Fig. 1: Methodology flow chart

3.1 Datasets

The GreenStimuli dataset was developed by the Faculty of Psychology and Neu-
roscience (FPN) at Maastricht University [16]. This dataset was created to study
body expression in the representation of different emotions. For this purpose, 871
videos were taken of persons depicting the 6 Ekmanian emotions (Anger, Dis-
gust, Fear, Happiness, Sadness, Surprise) and Neutral . Fig. 2a illustrates that
all persons wore long dark clothes and were recorded against a green background.
Besides, the complete body was always recorded. Moreover, the faces were sub-
sequently blurred to verify the representation of emotions independent of facial
expressions.

Luo et al. [14] introduced the large-scale Body Language Dataset (BoLD)
used in the Bodily Expressed Emotion Understanding (BEEU) challenge. The
dataset consists of 9,876 videos recorded in the wild. Moreover, the videos may
contain multiple persons expressing their emotions with body movements. This
results in a total of 13,239 annotations created through crowdsourcing. The
annotations include 26 categorical emotion labels and are split into training and
validation subsets by the authors [14]. Fig. 2b and Fig. 2c display two example
frames of the BoLD dataset. The field sizes can vary considerably since the
dataset contains videos from the wild. Thus, the dataset includes videos as long
shots (Fig. 2b) but also as close-ups (Fig. 2c).
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(a) GreenStimuli frame [16]
(b) BoLD long shot [14]

(c) BoLD close-up [14]

Fig. 2: Dataset sample frames

3.2 Data preprocessing

The frame sizes of the videos are different not only among the datasets but
also within the datasets. Therefore, the videos of both datasets were uniformly
reduced to a width and height of 224 × 224 to use them as input for the I3D
(section 3.3) model. Moreover, the videos were uniformly reduced to a number
of 48 consecutive frames.

The GreenStimuli dataset does not have a train, validation, and test subset
split, hence, the dataset was split into training (70%, 605), validation (15%,
131), and testing (15%, 135) subsets. Furthermore, no label balancing method
was performed for the GreenStimuli dataset since the video amount across the
labels were similar.

It is not in the scope of this study to run an extensive analysis for too many
emotions. Instead, this study focuses on the most basic emotions to explore
the potential of explaining emotions using body expressions. Therefore, 5 basic
emotions (Anger, Fear, Happiness, Sadness, Surprise) were selected from the
26 categorical emotions of the BoLD dataset for the classification task. These
5 basic emotions correspond to 5 of the 7 labels of the GreenStimuli dataset.
There are no corresponding labels for Disgust and Neutral in the BoLD dataset,
resulting in different number of classes for each dataset.

Originally, the videos of the BoLD dataset were labeled with a float value in
the range of 0 to 1 for each emotion. Thus, the magnitude of the float value is
used to represent how much a label applies to an expressed emotion in a video.
To use the BoLD dataset in the scope of this study, the classification task was
converted into a single-label classification. Therefore, it was searched for videos
that were maximal for one of the 5 basic emotions. If the value was maximum
for one of the basic emotions, this basic emotion was selected and assigned to
the corresponding video as a single label. Videos were discarded if the videos
were not maximal for one of the basic emotions or maximal for several basic
emotions. There were 2030 videos for training and 268 videos for validation after
the BoLD dataset was converted to a single-label classification task. The training
and validation subsets were unbalanced. Therefore, a weighted loss function and
accuracy score depending on the occurrence of the labels was used to handle
the imbalance of the BoLD dataset. Moreover, the person whose emotion is to
be classified was cropped from the videos since there can be multiple people
simultaneously in the videos of the BoLD dataset.
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3.3 Model structure

The Two-Stream Inflated 3D ConvNet (I3D) [2] model is a 3D-CNN that per-
forms classification based on video sequences. Through the 3D-convolutional
layers, the I3D model learns spatial and temporal classification features directly
from the RGB frames. Carreira et al. [2] pretrained the I3D model on the Deep-
Mind Kinetics [10] dataset. The Kinetics dataset contains humans performing
400 different actions. Besides, the I3D model has been successfully used for
emotion classification [14]. The best performance on the Kinetics dataset was
obtained by training the model separately on an RGB and an optical flow field
stream of the videos and averaging the outputs for testing [2]. Optical flow fields
were omitted in the scope of this study since this would have made it difficult
to conclude about the detected features and the associated explanatory power
of the features. Besides, the original architecture of the I3D model could be
preserved mostly as presented by the original authors. Fig. 3 presents that the
layers of the original I3D model were taken over from the first convolutional
layer to the ninth and last Inception Module. An Inception Module is a combi-
nation of convolutional and pooling layers with their outputs concatenated into
a single output vector. The last Inception Module was originally followed by a
final layer sequence containing an average pooling and a 3D-convolutional layer
as classification layer. This final layer sequence was replaced by a global average
pooling layer and a fully connected linear layer as classification layer. The size
of the output vector was adjusted to the label amount of the respective dataset.
The GreenStimuli dataset has 7 labels, hence, the output vector corresponds to
a size of (7×1). In contrast, the vector has a size of (5×1) for the BoLD dataset
since only 5 labels were classified.

Fig. 3: Model architecture

3.4 Classification feature visualization

Saliency Tube [17] is a method to visualize classification features of 3D-CNNs
for a class of interest. This is intended to provide human-interpretable visual
explanations for various classification problems. For this purpose, Saliency Tubes
display regions of the input pixels that contain classification features at frame
level and over time. Therefore, Saliency Tubes are an extension of the Class
Activation Mapping (CAM) [18] method for visualizing activation maps of 2D-
CNNs. Saliency Tubes are computed using equation 1 where a is the weights of
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the classification layer, F is the convolution features of the last convolutional
layer, i is the selected label index, and j is the feature index.

saliency tubei =
∑

j=1

ai,j · Fj (1)

First, all weights ai,j are multiplied by the corresponding convolution feature
Fj . A convolutional feature is a matrix of the size (n′×h′×w′). n′ corresponds to
the frame amount of the convolution feature, h′ corresponds to the height, and w′

to the width of a convolution feature frame, hence, h′ and w′ are the two spatial
dimensions and n′ is the temporal dimension. Therefore, a float value (ai,j) is
multiplied by a matrix (Fj). Convolution features with higher weights get higher
intensity and convolution features with lower weights get lower intensity. The
intensity of the weighted convolution features, thus, indicates how strongly they
contribute to the classification. This intensity of weighted convolution features is
referred to as activation. The activation matrices of all convolution features are
summed up to consider the entire activation of convolution features. The result
is a matrix also with the dimensions (n′×h′×w′) that contains the information
of all convolution features cumulatively. This matrix is called Saliency Tube.
The frames of Saliency Tubes along the temporal dimension are called Class
Activation Maps [17]. Furthermore, the Saliency Tube is reshaped to match the
original video dimensions (n × h × w) by using the spline interpolation to in-
crease the spatiotemporal dimensions (equation 2). Consequently, Saliency Tube
matrix has one activation value per pixel for the original video. The values were
normalized in a range from 0 to 1 since the value ranges of Saliency Tubes can
vary considerably from each other [17].

saliency tubei = (n′ × h′ × w′) interpolation−−−−−−−−−−−−−−→
factors=( n

n′× h
h′× w

w′ )
(n× h× w) (2)

The final Class Activation Maps of Saliency Tubes can be visualized with
heatmaps. Therefore, the heatmaps have a gradient from red for important fea-
tures to blue for unimportant features [17]. Fig. 4 presents heatmaps in the course
of a GreenStimuli dataset video, which is labeled as Happiness. The red-colored
regions in Fig. 4b show that classification features for this video are contained
in the arms and the upper body. In contrast, the legs are colored blue and thus,
do not contain classification features. Besides, arms and torso are colored rela-
tively small-scale green/yellow at the beginning (Fig. 4a) and end (Fig. 4c) of
the video. In contrast, the arms and torso are colored red over a large area in
the middle of the video sequence (Fig. 4b). This shows that the classification
features seem to cluster in the middle of the video sequence. At the beginning
and end of the video, they are relatively more weakly represented.

3.5 Calculation of the body part activation

Dael et al. [3] presented the connection of emotions with the movement of certain
body parts. Therefore, the extent to which the I3D model use classification
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(a) Start frame heatmap (b) Middle frame heatmap (c) End frame heatmap

Fig. 4: Heatmaps in the course of a sample video

features of arms, legs, and the torso should be further explored. For this purpose,
the OpenPose [1] library was used to estimate body key points of people in the
videos. In this study, the COCO key point format that contains 18 body key
points was utilized [1]. The key points can be used to calculate the coordinates
of the body joints. Therefore, the coordinates of the points that lie on a line
between two key points were computed. Then, the body joints were divided into
3 categories (arm: green, leg: yellow, torso: purple) to generalize the calculation
of body part activation. The combination of Class Activation Maps (section 3.4)
and body joint coordinates can be used to calculate the activation of the different
body parts in the videos. Therefore, the average activation values for torso, arm,
and leg joints were obtained separately for each video. Fig. 5 presents a) a sample
frame of a GreenStimuli dataset video with the obtained heatmap, b) 17 body
joints extracted from the same frame, and c) the combination of the extracted
joints and heatmap.

(a) Heatmap sample (b) Body joint sample (c) Joints with heatmap

Fig. 5: Heatmap and joint samples

4 Results

This chapter covers the results of the proposed methodology on the two datasets.
In the following sections, the model performance is evaluated on the datasets,
classification features are visualized, and the activation of the individual body
parts is calculated for different emotions.

4.1 Model performance evaluation

The model was trained for 100 epochs with a batch size of 32 using the cross-
entropy loss function and optimized with Adam [11] where the learning rate was
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10−3. After each epoch, the validation dataset was used to measure the general
accuracy of the models. After training, the model with the highest validation
accuracy was selected. The I3D model achieved a training accuracy of 72.6%
and 39.8%, and a validation accuracy of 64.1% and 34.2% for the GreenStimuli
and BoLD dataset, respectively. For the GreenStimuli dataset, the performance
of the I3D model was additionally evaluated with the test dataset. The model
achieved a test accuracy of 68.9%.

4.2 Classification feature visualization

Fig. 6a and 6b show heatmap samples for two labels of the GreenStimuli dataset.
Based on the red colored regions, it is visualized that especially for Anger the
arms seem to contain the classification features. For Fear, the complete body
seems to contain classification features. In Fig. 6c and 6d, heatmap samples
are displayed for two labels of the BoLD dataset. For Anger, the faces seem to
contain the most important classification features. The postures of the torso and
especially the hands seem to include classification features for Fear.

(a) Anger (GreSt.) (b) Fear (GreSt.) (c) Anger (BoLD) (d) Fear (BoLD)

Fig. 6: Heatmap samples for both datasets

4.3 Calculation of the body part activation

The 3 activation values for arm, leg, and torso joints were calculated as described
in section 3.5 for all videos. Then, only the activation values were selected of the
videos that were correctly predicted by the model in order to discard features or
activation values that led to incorrect predictions. Consequently, distributions of
activation values for all 3 joint categories of all emotions were obtained. In Fig. 7,
the activation of the different body parts is shown for the 5 common labels of the
datasets. The distributions of the 3 joint categories were plotted as a bar plot
with average (bar) and standard deviation (antennas) for the different labels.
Furthermore, Welch’s t-test was performed to test the similarity of the different
distributions where a p-value less than 0.05 indicates a significant difference. For
this purpose, the difference was categorized as p < 0.05 for slightly significant (*),
p < 0.001 for considerably significant (**), and p < 0.0001 strongly significant
(***). These significant differences are additionally displayed in the bar plot
diagrams. The main similarities between the joint activation for the respective
labels of both datasets are listed below:
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– In Fig. 7a and Fig. 7b, similarities can be identified between the activation
patterns for Anger. The activation of the arm and leg joints is not signifi-
cantly different from each other for both datasets.

– A similar activation pattern can also be detected for Fear (Fig. 7c and Fig.
7d). The activation of the torso joints is not significant different from the
activation of the arm and leg joints for both datasets.

– It is illustrated that the activation patterns for Happiness for both datasets
behave identically (Fig. 7e and Fig. 7f). For both datasets, there are two
levels of activation. The leg joints have the lowest activation significantly.
Arm and trunk joint activations are not significantly different from each
other. However, they are at a higher activation level than leg joints.

– For Sadness (Fig. 7g and Fig. 7h), no common pattern can be identified
between the two datasets.

– Also for Surprise, a similarity between the activation pattern is shown for
the GreenStimuli (Fig. 7i) and the BoLD dataset (Fig. 7j). The leg joint
activation is strongly significantly the lowest for both datasets.

(a) Anger (GreSt.) (b) Anger (BoLD) (c) Fear (GreSt.) (d) Fear (BoLD)

(e) Happy (GreSt.) (f) Happy (BoLD) (g) Sad (GreSt.) (h) Sad (BoLD)

(i) Surprise (GreSt.) (j) Surprise (BoLD)

Fig. 7: Activation of the joint categories for the respective labels

In Fig. 8, the activation of the respective joint category is displayed for the
5 common labels of the datasets. It is illustrated that the activation patterns
behave significantly differently for both datasets. The similarities between the
activation of a certain joint category for different labels of both datasets are
listed below:

Regular papers BNAIC/BeneLearn 2021

294



Explainable Features of Emotion in Body Expressions 11

– Happiness is at the highest activation level for the arm joint activation for
both datasets (Fig 8a and Fig. 8d).

– The commonalities of the activation patterns of the two datasets for the
leg joints (Fig. 8b and Fig. 8e) are that the activation for Surprise is on the
lowest activation level. Anger, on the other hand, is on the highest activation
level.

– For the torso joint activation (Fig. 8c and Fig. 8f), it can only be roughly
said that the torso joint activation for Happiness is on high activation levels
for both datasets. Happiness is at the highest activation level for the Green-
Stimuli dataset. In contrast, it is at the second highest activation level for
the BoLD dataset.

(a) Arm joints (GreSt.) (b) Leg joints (GreSt.) (c) Torso joint (GreSt.)

(d) Arm joint (BoLD) (e) Leg joint (BoLD) (f) Torso joint (BoLD)

Fig. 8: Activation of a certain joint category for different labels

5 Discussion

5.1 Model performance evaluation

The performance of the I3D model on the GreenStimuli dataset is significantly
better than the performance on the BoLD dataset. Luo et al. also achieved only
an average precision of 15.37% with an I3D model on all 26 labels of the BoLD
dataset [14]. This average precision value can not be compared with the accuracy
scores from the experiments of this study due to the label reduction and the
different preprocessing steps. However, the precision value shows that it is a hard
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dataset to classify in general. Relatively low accuracy scores of a classification
model can be assumed since the basic conditions of the classification of the BoLD
dataset are already difficult.

5.2 Classification feature visualization

In section 4.2, clear differences can be observed between the obtained heatmaps
of the models trained on both datasets. In the GreenStimuli dataset videos,
the model always has all body parts available. On the other hand, in the BoLD
dataset, the legs of the subjects in the videos are often not present. Furthermore,
the videos of the GreenStimuli dataset are similar in their presentation, which
allowed the model to be fully trained on the actual classification of emotions.
With the BoLD dataset, the model additionally had to learn to deal with different
field sizes (section 3.1). This makes the classification task for the model even more
difficult. Moreover, it is displayed that the model used classification features in
faces, especially in the close-ups and medium shots of the BoLD dataset videos.
This is a major difference from the GreenStimuli dataset, as this information is
not available at all due to the blurred faces. Although the I3D models have the
same architecture and classified similar labels, they used different classification
features. The reason for this is the different nature of the two datasets.

5.3 Calculation of the body part activation

The basic conditions (different field sizes and face representations) of the two
datasets differ considerably, and therefore both models learned partly distinctly
different classification features (section 5.2). Nevertheless, the activation of the
body parts for the 5 common labels of the datasets was compared to assess
whether similar activation patterns can be identified despite the large differences
(section 4.3). Despite the different nature of the two datasets, similarities can
be found in the activations of the body parts. However, the patterns found can
at best be declared as prototype patterns. To test the activation patterns for
generalizability, applying the proposed methodology to more video datasets for
emotion classification is necessary.

6 Limitations

Although the presented method seems to provide measurable and comparable
activation patterns, this method has limitations. For example, there are some
cases where the model correctly predicts the video label. However, the computed
Class Activation Maps do not give any information about the learned classifica-
tion features. A related GreenStimuli dataset sample is displayed in Fig. 9a. In
this case, hardly any features are used of the person’s body for emotion classi-
fication. Moreover, the main classification features tend to be detected outside
the body. Unfortunately, it is not clear from these example what features the
model used to classify this video.
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The BoLD dataset presents different problems since it contains videos ob-
tained in the wild. There are events or elements in videos that the model uses
as classification features that are not directly related to the portrayed emotion.
Two examples are shown in Fig. 9b and Fig. 9c. In figure 9b, it is displayed that
playing a guitar is used as a classification feature for Happiness in some videos.
The reason for this is that videos of characters playing guitar predominantly
appear for the label Happiness. In most cases, this may also be true that playing
an instrument is associated with a positive emotion. However, playing an instru-
ment can not be used as a clear indicator for Happiness. Furthermore, despite
the person to be classified is cropped from the videos, it can not be prevented
that other people are visible in the image details. These, in turn, can also lead
to side effects. In Fig. 9c, the person to be classified is displayed in the front
of the video. However, the model uses the dancing people in the background to
classify the emotion.

(a) Hardly body features (b) Playing guitar (c) Additional persons

Fig. 9: Samples for limitations of the method

Despite the limitations described above, the Class Activation Maps over-
whelmingly provide explainable information about what body part features were
used to classify the emotions. Therefore, the samples with unexplained features
or side effects were also used to calculate the activation of the joint categories
(section 4.3) for the sake of completeness. This means that the Class Activation
Maps were selected automatically without any manual intervention. Therefore,
the samples loaded with the more unexplained features or side effects could influ-
ence the determined activation patterns. These samples, thus, often formed the
outliers of the statistics as their activation values differed from the activation
values of samples with body-related features. This explains the partially high
standard deviations in the bar charts (Fig. 7 and Fig. 8). However, since the ma-
jority of the Class Activation Maps contain explainable body-related features, it
was assumed that the activation values and activation patterns, on average, can
be attributed to body parts.

7 Conclusion

In this study, a new method is presented to calculate and compare the influence
of different body parts on the expression of emotions. For this purpose, I3D
was identified as a model that is suitable for the classification of emotions in
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videos since the I3D model is capable of providing classification features that can
be explained in most cases. Heatmaps were used to visualize the classification
features obtained from the I3D model. Then, by combining the Class Activation
Maps and the body joint coordinates, the activation of certain body parts for
the different emotions was calculated. Finally, activation patterns were identified
for each emotion based on the similarity or difference of joint activations.

The proposed methodology was applied on the GreenStimuli and BoLD
datasets. Some of the patterns in the activations were identical or at least quite
similar for both datasets, although the two datasets differ in their nature. Never-
theless, these patterns may only be considered as prototype patterns since they
still need to be verified on further video datasets for emotion classification to be
considered as general patterns.

In future studies, the presented method for calculating the activation of body
parts could be improved by increasing the accuracy of the classification model
through different architectures or by using different hyper-parameters in training.
Furthermore, an automatic selection method could be developed to classify Class
Activation Maps as explainable and unexplainable, which would lead to the
definition of thresholds for the activation values of the body joints. A selection of
the Class Activation Maps could reduce the standard deviation of the calculated
body joint activation values. Besides, the calculation of body joint activation
could be made much more fine-grained to determine the activation not only for
torso, arm, and leg joints but also for the head, hand, and foot joints separately.

To the best of our knowledge, there is no quantitative approach to compare
the features used by 3D-CNNs in the classification of emotions. Moreover, the
link between emotion expression, and body gestures and movements is hardly
explored. This study aims to provide new insights into the classification features
used by 3D-CNNs and the emotion expression in body movements and postures.
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Abstract. As a requirement for brain tumor diagnosis and therapy, ac-
curate and dependable diagnosis of brain tumors based on Magnetic Res-
onance Images (MRI) is required. The automated detection and segmen-
tation of tumors may take place using deep learning methods, which are
increasingly being used for medical image diagnostics due to their high
accuracy. This work examines the use of two deep learning approaches
for detection and segmentation: both detection (CNN) and segmentation
(U-Net) models were designed and trained on the benchmarking OASIS
and BraTS 2020 datasets. On the test dataset, the detection model ob-
tained the accuracy of 0.946 and the segmentation model obtained the
accuracy of 0.994. The evaluation of segmenation model for the whole tu-
mor (WT), the tumor core (TC) and the enhancing tumor (ET) achieved
dice coefficients of 0.85, 0.74, 0.67, respectively. These results are equiv-
alent to the currently published state-of-the-art, but are twice as fast
on average. Despite being relatively simple, the proposed strategy has
resulted in a good and balanced performance and can be a valuable di-
agnostics tool for doctors. The proposed solution is openly available at
https://github.com/grimjjow/Medical_Image_Analysis

Keywords: Brain tumor detection · CNN · U-Net · Tumor segmentation

1 Introduction, Motivation

Magnetic resonance imaging (MRI) is widely used for diagnosing and evaluating
brain tumors[20], as it provides distinctive tissue contrast. The manual inspection
of MRI brain tumor images is a time-consuming process, highly dependent on
the doctor’s level of expertise, and may produce varied and subjective results.
Today various computer vision algorithms are being developed for the automated
analysis of brain tumor MRI images, achieving increasingly high accuracy[23].
The automated detection of tumors helps doctors localize them more efficiently,
while their segmentation supports the classification of important tumor regions.

Deep Learning (DL) techniques are currently gaining ground, as they out-
perform traditional machine learning techniques[24]. Specifically, Convolutional
neural networks(CNNs) dominated the field during the ImageNet Large-Scale
Visual Recognition Challenge(ILSVRC)[17] and proved their ability to accu-
rately detect and localize different types of objects. Benchmarking datasets for
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brain tumor imaging have been made public for fundamental problems of brain
tumor diagnostics, such as detection and segmentation. In this work, the OASIS-
3 dataset images[10] and images from the Brain Tumor Segmentation (BraTS)
Challenge 2020 are used, which provides real-world data of MRI brain tumor
scans[11]. Models with improving accuracy have been proposed for these chal-
lenges, however, they are often time-consuming, and tailor-made to specific prob-
lems, and datasets, which make them non-generalizable[19].

The main motivation of this work is to explore and develop simple but gen-
erally applicable methods that can accurately detect and segment tumors with
high accuracy, with very limited computational resources. Due to limited time
and memory resources, the datasets used in this work are not as large as some
that are used in high-level SoA. Moreover, the architectures used are designed
to be not very deep and are simply constructed, aiming to provide a general
detection solution for tumors.

2 Datasets for Brain Tumor Detection and Segmentation

2.1 Detection Challenge

MRI images from the OASIS-3 dataset(Cross-Sectional and Longitudinal)[10]
were obtained for training and testing. There are 3000 images of T1 and T2-
weighted MRI images, which are classified in two categories: healthy patients
and patients with tumors. Figure 1 depicts several OASIS brain MRIs.

Fig. 1: Example of OASIS MRI images in two categories: yes respresents an image
containing a tumor, no represents an image not containing a tumor.

2.2 Segmentation Challenge

The BraTS 2020 dataset contains 369 training, 125 validation and 166 test multi-
modal brain MRI studies[2][3][11]. Each study has four MRI images: T1-weighted
(T1), post-contrast T1-weighted (T1ce), T2-weighted (T2), and fluid attenuated
inversion recovery (Flair) sequences[22]. All these sequences were used for both
training and testing. Four distinct tumoral subregions can be defined from the
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images: the “Enhancing Tumor” (ET), the “Non-Enhancing Tumor” (NET),
the “Necrotic tumor” (NCR) and the “Peritumoral Edema” (ED)[22]. These
subregions can be then combined to classify three main tumoral regions. The
ET is the first region. The ET with the addition of NET and NCR creates the
”Tumor Core”(TC) region. Finally, the ED with the TC creates the ”Whole Tu-
mor”(WT). This subregion classification is used in many SoA approaches that
work with BraTS datasets[8]. Examples of each region are provided in Fig. 2.

Fig. 2: Example of an MRI image of a brain tumor from the BraTS 2020 dataset.
Brown represents an enhancing tumor (ET), Blue represents a non-enhancing tu-
mor/necrotic tumor (NET/NCR), and Pink represents peritumoral edema (ED).

3 Methods

To develop robust brain tumor detection and segmentation, a combination of
various image processing and deep learning techniques was applied. The initial
data underwent preprocessing, and was then used for training and testing.

Data Preprocessing: Preprocessing is an important first step, even in au-
tomated computer-based diagnostics, as MRI images may accumulate noise, for
example, due to patient motion. For this reason, images are first cropped, then
resized and normalized. Normalization is done by identifying the largest contour
of the brain in every image and cropping the images according to an outline of
the contour points of the brain (Figure 3). Data augmentation is also applied,
to increase variation in the training data, and thus improve robustness and ac-
curacy, using the Keras ImageDataGenerator. It includes horizontal and vertical
flip, rotation, shift, zoom, and brightness adjustment. These transformations
are chosen as they result in slight distortion of original data, but do not create
completely different shapes, which can negatively affect the model evaluation.

3.1 Detection Convolutional Neural Network

As a part of the primary analysis of the MRI images, a CNN was designed to
detect the tumors and classify images according to the outcomes of the detection
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Fig. 3: Image preprocessing: initial image, normalized and cropped image.

classifier. The CNN architecture proposed in this paper (Figure 4), referred to
in the sequel as DCNN, is built upon standard CNN models[14], with original
optimization approaches. A 2D CNN is used for this purpose, although 3D solu-
tions have also been developed. This is because one of the goals of this work is to
find very low-resource solutions to accurate tumor detection. In the literature,
3D data is often separated into 2D slices, from which rich features are extracted
by the CNN.

At a starting point, the model takes an input layer of images of a specified
size (200 × 200) that are then relayed to the first processing block. This block
consists of two convolution layers containing 32 feature kernel filters of 5 x 5 size.
A new feature map of 200 × 200 × 32 dimensions is obtained and combined in
the max-pooling layer built with a stride size of 2 pixels and 2 × 2 kernels.
This procedure decreases the spatial dimension of the preceding layer’s feature
map to 100 x 100 x 64. Following the max-pooling layer, the output is routed to
the second processing block composed of two convolution layers. It includes 64
feature kernel filters of 3 x 3 size. Then the updated feature map is again relayed
to the max-pooling layer built with a stride size of 2 pixels and 2 × 2 kernels.
The resulting combined map then has the spatial dimension of 50 × 50 × 128.
This process is repeated in two more blocks. Finally, the last feature map is
processed through two fully connected layers that contain the ReLU activation
function.

3.2 U-Net Based Convolutional Neural Network

U-Net is one of the most popular CNN architectures designed for more complex
level classification problems like medical image segmentation. The proposed U-
Net model utilizes the idea of simplicity, meaning fewer layers and the use of 2D
volumes instead of 3D. These design choices were made to lower time and mem-
ory costs, as a 2D U-Net model can process a full slice at once while a 3D model
can only process a small patch of the 3D volume[6]. A modified architecture of
a standard U-Net model was developed and is shown in Figure 5.
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Fig. 4: Detection CNN model architecture

Fig. 5: U-Net model architecture

The encoder path is built using 5 processing blocks. Each block has two con-
volutional layers with a filter size of 3 × 3, a stride of 1, and rectifier activation.
As such, these layers increase the number of feature maps from 1 to 512. The
max-pooling layer with a stride of 2 × 2 is applied to every updated feature map
in each block. Similarly, the decoder path also consists of 5 processing blocks.
Every processing block starts with a deconvolutional layer with a filter size of 3
× 3 and a stride of 2 × 2. This effectively increases the size of feature maps in
both directions while significantly reducing the number of feature maps. Finally,
there are no fully connected layers invoked in the proposed model, which is very
common in CNNs for classification problems[15].

4 Experiments

This section describes the evaluation of experiments and elaborates on the signif-
icance of the obtained results in the context of the research questions. The com-
putational requirements of the methods described are very low, as experiments
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were run locally on a CPU, demonstrating the effectiveness of deep learning
approaches even in very resource-constrained environments

Training: In our experiments, both detection and segmentation models were
trained with the dropout rate set to 0.2 using Adam Optimiser and learning rate
of 0.001, which is proven to be an optimal approach for brain tumor diagnos-
tics models[4]. The training consisted of 55 epochs with a batch size of 120 for
the detection model and 35 epochs with a batch size of 250 for the segmenta-
tion model. A visualization of training process is shown for both detection and
segmentation models in Figure 6 and Figure 7 respectively.

The proposed detection model obtained the best accuracy of 0.912 and a loss
of 0.132. From Figure 6 it can be seen that the model slightly overfits due to the
small dataset size. Although overfitting poses an issue, the model is still highly
generalizable and is only constrained to the format of the input MRI images.
This is achieved by applying data normalization and data augmentation, as well
as using real-world MRI studies which have high variability.

The proposed segmentation model achieves a very high accuracy of 0.994,
loss of 0.189, and a Dice coefficient of 0.656. Figure 7 shows that training and
validation metrics are more consistent and stable, which shows that the U-Net
architecture significantly improves the performance in comparison to a basic
CNN model. This is expected since the U-Net model performs well in the SoA[24].

Fig. 6: Detection model training and validation: accuracy and loss

Testing: Detection
For detection, performance evaluation metrics are shown in Table 1. The pro-

posed technique has a high accuracy of 0.946, as well as a notable F1-score(0.921)
and precision value(0.923), all of which indicate the model’s efficiency. Addition-
ally, different configurations were added to the detection CNN model, starting
with a basic model, as a control accuracy, and building upon it. These configu-
rations, or improvements, are the following: a base model with Adam optimizer,
an optimized model with Data augmentation, and optimized and augmented
model with Dropout. These specific improvements were chosen based on find-
ings in the related SoA. The various configurations and their corresponding
accuracy values are shown in Table 2. While the base case already gives a rela-
tively high accuracy(0.872), it is surprising to see that using different gradient
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Fig. 7: Segmentation model training and validation: accuracy, loss and dice coef

descent optimizers, like the Adam optimizer, almost doesn’t affect the accuracy.
This issue was addressed via data augmentation and regularization in a form
of a Dropout[7], which forces the model to learn important features indepen-
dently. The final accuracy, which is obtained by adding Dropout, is considered
as the best accuracy shown by the detection model. Finally, the proposed de-
tection model is compared to other SoA algorithms in Table 3. Models that use
standard classifiers like Random Forest[16] or Deep Neural Networks(DNN)[18]
show accuracy below 90%, while models that utilize more modern approaches,
like CNN, show higher accuracy, going up to a maximum of 95%. The proposed
detection model obtains almost full 95% accuracy, which is a very good result
considering that the training time of this model, approximately 1 hour, is a lot
less than of some SoA, up to 17 hours[1].

Evaluation metrics Performance score

Accuracy 0.946

Precision 0.923

Sensitivity 0.950

F1-score 0.921

ROC AUC 0.913

Table 1: Performance metrics of the DCNN model

Testing: Segmentation

For segmentation, the evaluation metrics in Table 4 indicate high accu-
racy(0.994) and high precision(0.994). Additionally, sensitivity(0.992) and mean
IoU(0.831) values are calculated. All these values are higher than most SoA
methods[24], so it can be stated that the proposed segmentation model has a
high performance for the BraTS challenge.
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CNN improvements Accuracy

Base case 0.872

Adam optimizer 0.878

Data augmentation 0.913

Dropout 0.946

Table 2: Improvements and accuracy of various CNN optimizations

Method Algorithm Accuracy

Sobhaninia et al.[18] Cascaded DNN 78.1%

Reza et al.[16] Random Forest 86.7%

Nasim et al.[12] SVM 92.4%

Proposed DCNN 94.6%

Amin et al.[1] 2D CNN 95.1%

Table 3: Comparison of detection models

Table 5 shows the DSC results of our proposed segmentation model results for
the whole tumor (WT), tumor core (TC) or edema (ED), and enhancing tumor
(ET), respectively. Obtained performance scores were comparable to recently
published studies within the scope of the BraTS challenge. Even though the
studies overall contain the same type of data, the ones that are related to BraTS
2013 and BraTS 2015 datasets contain much fewer patient cases than the BRATS
2019 and BraTS 2020 datasets[5]. Taking this into account, a comparison of
the methods was only done based on the testing data. When compared to the
BraTS 2015 and BraTS 2019 challenge datasets, the suggested segmentation
approach achieved equivalent results of 0.85 DSC for the WT segmentation.
Segmentation of TC and ET showed higher performance for the older studies,
but lower performance for the recent studies. This can be due to the fact that
both these tumoral regions might look similar in some MRI images and this can
cause an increase in accuracy loss.

5 Discussion, Conclusions

The proposed detection and segmentation models showed results comparable
to the SoA methods, at a significantly lower computational cost, and provided
valuable insights.

Evaluation metrics Performance score

Accuracy 0.994

Precision 0.994

Sensitivity 0.992

Mean IoU 0.831

Table 4: Performance metrics of the U-Net model
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Method Data WT ED/TC ET

Pereira et al.[13] BraTS 2013 challenge 0.84 0.72 0.62

Havaei et al.[7] BraTS 2015 challenge 0.79 0.58 0.69

Kamnitsas et al.[9] BraTS 2015 challenge 0.85 0.67 0.63

Feifan et al.[21] BraTS 2019 challenge 0.85 0.79 0.77

Proposed model BraTS 2020 challenge 0.85 0.74 0.67

Henry et al.[8] BraTS 2020 challenge 0.89 0.84 0.79

Table 5: Comparison of segmentation models

The evaluation of both proposed models (Tables 1, 4) shows all performance
metrics’ values are relatively high and the proposed models can be applied to
real-world patient data, which indicates that the CNN architecture is an effective
method for brain tumor detection and segmentation.

The approach proposed for detection showed higher accuracy than most of
the traditional models and it required less computational power. Comparative
analysis of segmentation approach was more complex, as it showed higher overall
accuracy, but lower or equal accuracy per tumoral region. An important piece
of evidence that affected the final segmentation model evaluation is that it has a
computational time (per case) of half the time required on average for the SoA
methods, which is a significant improvement. Summarizing all the observations
provided the following answers:

The detection model has comparatively high performance compared to con-
ventional methods and it can be expected to improve with increase and diversity
to training and testing data. The segmentation model has a higher performance
based on evaluation metrics values and computational time, excluding region-
specific segmentation performance. This model can also improve by using target-
centered training and testing methods, where targets are specific tumoral regions.
Different configurations of the CNN model optimizations were tested and showed
that regularization and data augmentation methods can be considered the most
promising improvements in terms of increase of accuracy.

As a result of mentioned improvements, the proposed detection model achieved
high performance values and it can be used in further research as a baseline archi-
tecture. For segmentation, while obtained results were not cutting-edge for the
BraTS 2020 challenge, the proposed method’s segmentation results are within
the normal range of applicable models for tumor segmentation and could already
be useful for clinical use.

Aside from assessing the accuracy and validity of brain tumor segmentation
results, computation time is a significant factor. Having limited GPU and mem-
ory at hand, it wasn’t possible to develop more advanced techniques for the
models. On the other hand, the proposed segmentation model showed a com-
putation time of approximately 14 seconds per case, which is up to the current
standard computation time of a few minutes. Compared to this model some
other studies were less computationally efficient with times of approximately 30
seconds[9], 20 seconds to 3 minutes[7] and 7 minutes[13] per case. All observa-
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tions referring to computation time of both models shown significant benefits
of proposed models compared to the SoA, which justifies the motivation and
methodology used in this work.

Fig. 8: Sample test image(1) segmentation obtained by proposed U-Net model

Fig. 9: Sample test image(2) segmentation obtained by proposed U-Net model

Figures 8 and 9 show segmentation results for the proposed U-Net model
generated from the sample testing images. In both figures, the first image shows
the initial flair, while the second image shows the manual ground truth seg-
mentations. The results of the proposed automated approach for segmentation
are shown in the next images. They include a whole tumor(WT), necrotic tu-
mor(NET/NCR), tumor core(ED/TC), and enhancing tumor(ET) segmenta-
tions. By visual comparison of both figures, it can be noted that the segmenta-
tion of ET can be more complex for some cases, where the initial image contains
various distortions(like noise) or the ET tissue is barely present in the MRI scan.
Considering this it can be assumed that the ET segmentation is expected to have
the lowest accuracy and it is in fact confirmed by the data in the results section.
On the contrary, the segmentation of the WT is consistent and comparable to
the manual segmentation.

In this work, computationally efficient and generalizable CNN and U-Net
architectures are presented, which achieve SoA levels of brain tumor detection
and segmentation. The simple architecture used in the CNN ensures it has a low
computational cost and can be applied to a wider range of problems, as it is not
tailor-made to a specific type of visual data. In future work, the two proposed
models can be combined into an extensive specialized diagnostics system and
in combination with solutions to the challenges listed above it can obtain even
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better clinical results. This system could be a useful method for doctors to deliver
a reliable medical diagnoses of brain tumors and help thousands of patients.
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Abstract. Knowledgeable FAQ chatbots are a valuable resource to any
organization. While powerful and efficient retrieval-based models exist
for English, it is rarely the case for other languages for which the same
amount of training data is not available. In this paper, we propose a novel
pre-training procedure to adapt ConveRT, an English conversational re-
triever model, to other languages with less training data available. We
apply it for the first time to the task of Dutch FAQ answering related to
the COVID-19 vaccine. We show it performs better than an open-source
alternative in both a low-data regime and a high-data regime.

Keywords: Chatbot · Conversational Agent · FAQ Answering · Con-
veRT · Transformers

1 Introduction

In this paper, we present a Dutch-based FAQ retrieval system trained using a
limited amount of training data.

FAQ answering is the task of retrieving the right answer given a new user
query. It is widely used in chatbots and has been studied for many years [6,
22, 9, 18, 10, 20], although the attention has shifted towards extractive question
answering more recently [19], probably because of a lack of dedicated datasets.
FAQ answering systems typically use retrieval systems [6, 22, 9, 18, 10, 20] rather
than generative models grounded on external knowledge [13, 4, 14]. The gener-
ative approach is more flexible as it is able to generate new answers. However,
these models suffer from knowledge hallucinations [21], limiting their usefulness
in a corporate environment.

Most previous research focusing on FAQ retrieval and non-factoid question
answering were developed for English. ConveRT [7], a response selection module
available within Rasa [1], caught our attention as it is effective and does not
require a GPU at inference time. Unfortunately, it is only available in English.
Despite having significantly less conversational training data (400K pairs of ut-
terances) than the original ConveRT model (727M pairs), we successfully trained
the same model for Dutch.

Our contributions are the following:

– We show it is possible to train a ConveRT model for a non-English language
using a limited number of conversation pairs by adopting a two-phase pre-
training approach (general and conversational).
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– We show that a Dutch ConveRT model performs better than the response
selector module from Rasa, both in a low and high data regime.

2 Related Work

An FAQ dataset consists of pairs of questions and answers. The FAQ retrieval
task involves ranking the available answers for a given user query. There are
three methods available to solve this problem: matching a new user query on
the available questions, the answers, or the concatenation of both. FAQ retrieval
can be broadly divided into 4 categories: lexical, supervised, unsupervised, and
conversational.

Lexical To our knowledge, FAQ-Finder [6] was the first to explicitly study the
task of FAQ retrieval, it tries to do so by matching user queries to FAQ ques-
tions of the Usenet dataset with TF-IDF. FAQ-Finder was later improved by
including the similarity to the answer (on top of the similarity to the question)
[23]. Another improvement comes from adding a rule-based layer on top of the
TF-IDF module [22].

Unsupervised Another approach is to used unsupervised techniques to retrieve
the right FAQ pair given a new user query. One possible way is to use Latent Se-
mantic Analysis (LSA) to overcome the lexical mismatch between related queries
[11].

Supervised The first supervised methods were developed using tree kernels and
SVMs [15]. BERT methods were later developed specifically for the task of FAQ
retrieval [20].

Conversational In this paper, we propose a fourth type not yet explored in
the literature: conversational. FAQ retrieval can be treated as a special case of
conversational modeling: retrieving the answer is similar to retrieving the next
utterance in a conversation.

Dual-encoder architectures, pre-trained on response selection, have become
increasingly popular in the dialog community due to their simplicity and ease
of control [8, 2]. There are two options when it comes to retrieving the next
utterance. One can either encode the two sentences separately (dual-encoder)
[7], or simultaneously (cross-encoder) [3]. Dual-encoders are faster than cross-
encoders as they can cache the answer representations. ConveRT [7] is a dual-
encoder pre-trained on a large-scale conversational dataset. Thanks to various
design optimizations (such as using single-headed self-attention) ConveRT can
vastly reduce the size of the model.

In this work, we choose to focus on ConveRT as it has a low computational
cost and does not require a GPU for inference.
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Fig. 1. Illustration of the ConveRT model architecture. The model has three distinct
parts. First, the subword and positional embeddings. Second, a shared Transformer
block followed by a two-headed self-attention. Third, separate feed-forward networks
(3 layers) for the input and responses.

3 ConveRT

In this section, we give a brief overview of the ConveRT (Conversational Rep-
resentations from Transformers) model [7]. The objective of the model is to
generate vector representations for utterances that are as similar as possible (in
terms of dot-product) for a given pair. ConveRT takes as input the sequence of
tokens of the two utterances. Both sequences are tokenized using the same byte
pair encoding vocabulary.

3.1 Architecture

The ConveRT architecture (Fig. 1) is composed of three distinct parts: the em-
bedding layer, the Transformer block and the feedforward layers.

Embedding The first element stores the embeddings for the subwords and po-
sition tokens. Embeddings are shared for the input and response representations.
Unlike the original Transformer architecture [24], ConveRT uses two positional
encoding matrices of different sizes to handle sequences larger than seen during
training. We refer the reader to the original paper for a detailed description [7].
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Transformer Block The next element is the Transformer block. It closely fol-
lows the original Transformer architecture [24] with some notable differences.
First, the model uses a single-headed self-attention using a 64-dimensional pro-
jection for computing the attention weights. Second, the model applies a two-
headed self-attention after the six Transformer layers. The parameters of the
Transformer block are fully shared for the input and response sides. ConveRT
uses the square-root-of-N reduction [2] to convert the embedding sequences to
fixed-dimensional vectors.

Feed Forward The last elements are a series of feed-forward hidden layers
with skip connections. The parameters are not shared between the inputs and
responses side, as there is a separate feed-forward for the inputs and responses.

3.2 Training Objective

The training objective of ConveRT is to select the right response given a question
from a question-answer pair. The relevance of each response to a given input is
quantified with a dot-product between the input and response representation.
Training proceeds in a batch of K pairs of utterances. The objective is to dis-
tinguish between the true relevant responses and irrelevant negative examples
(we use other responses from the batch as negative examples). ConveRT uses
cross-entropy as the loss function. The model is optimized with Adam [12] and
L2 weight decay. The learning rate is warmed up over the first 10,000 steps to a
peak value and then linearly decayed.

4 ConveRT for Dutch

In this section, we explain our approach to training a ConveRT model for Dutch.
To overcome the limited supply of conversational data available in Dutch, we use
a two-stage pre-training: general pre-training on a large open-domain corpus, and
conversational pre-training using a smaller conversational dataset from Reddit.

4.1 Data

The original ConveRT model was developed for English using a large-scale con-
versational dataset from Reddit. We did not have access to such a dataset for
Dutch. Instead, we chose to split the problem in two. First, we pre-train the
model on a general Dutch corpus. Second, we use a smaller Dutch conversa-
tional corpus from Reddit.

General Dataset We consider the same Dutch-language corpora as Bertje [5],
a successful Dutch BERT model:

– Books: a collection of contemporary and historical fiction novels
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– TwNC [17]: a Multifaceted Dutch News Corpus

– SoNaR-500 [16]: a multi-genre reference corpus

– Web news

– Wikipedia

In total, this is about 12GB of uncompressed text.

To match the setup expected by ConveRT (the tokens of a pair of utterances),
we first split each paragraph into sentences. Next, we save pairs of sentences
and treat them as pairs of input and response. To avoid small inputs, we filter
out pairs with less than 64 characters. After transformation, the general corpus
dataset for pre-training has 110M pairs.

Conversational Dataset We also consider a Dutch conversational dataset for
which we downloaded comments from around 200 Dutch subreddits. Non-Dutch
comments were filtered out. After filtering for the language we arrive at a size
of 400K pairs of utterances.

4.2 Pre-training

We followed the training procedure of ConveRT, except for the number of epochs
and the batch size. For the general pre-training, we trained the model for 8
epochs. To facilitate the training, we used other examples from the batch as
negative examples.

To increase the difficulty of the training, we doubled the batch size at every
second epoch. The batch size increased from 128 at the first epoch to 2048 at
the last epoch. The larger the batch size, the harder it is for the model as the
model has to select the correct response amongst more negative examples.

For the conversational pre-training, we trained for 10 epochs with a fixed
batch size of 2048.

model split 1 split 2 split 4 split 6 split 8 split 10

RASA (baseline) 22% 42% 50% 55% 61% 65%
without pre-training 20% 25% 33% 45% 52% 65%
general pre-training 30% 36% 40% 55% 58% 43%
conversational pre-training 40% 44% 55% 63% 66% 69%
general + conversational pre-training 46% 57% 68% 69% 75% 79%
Table 1. Accuracy on the COVID-19 vaccination FAQ dataset per splits of increasing
size. Split one has one training example per answer, while split ten has ten training
examples. Pre-training ConveRT on both a general dataset, as well as a conversational
dataset provides the best results on this task.
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5 Experiments

In this section, we fine-tune our model on a corpus of FAQs related to the
COVID-19 vaccine. We then perform an ablation study to analyze which part of
the pre-training has the most impact on the downstream performance. To have
a better understanding of how our model would perform in the real world, we
study its performance as the number of training examples increases.

5.1 Data

We test the performance of our model on a proprietary dataset. The dataset was
collected while running a COVID-19 vaccination FAQ bot with Rasa. It consists
of 1,200 questions for 76 distinct answers.

5.2 Baseline

As our higher objective is to use this model in a Rasa chatbot, we compare
our Dutch ConveRT model to a baseline response retrieval model developed by
Rasa.1 All models are trained using the same number of epochs and dropout
probability.

5.3 Low Data Scenario

When starting out, FAQ bots usually have a one-on-one mapping between the
number of questions and answers (one question for one answer). As the number
of users increases, the number of available questions per answer also increases.
To evaluate the generalization capabilities of our model in a low data scenario,
we artificially create datasets of increasing sizes, which we call splits. The first
split has one training example per answer (the same as when someone starts a
new FAQ chatbot), the second split has two training examples per answer, and
so on until split ten. We also generate a test set by randomly selecting (and
removing from the training set) one training example per answer.

5.4 Results

Results in Table 1 confirm our intuition that the baseline accuracy of the Rasa
model radically improves with the number of training examples. In our analysis,
the accuracy increases by a factor of 3 from split 1 to split 10. The results
also show that a ConveRT model without any pre-training underperforms the
baseline, on every split. General pre-training modestly improves the model’s
performance, but the results are not significantly different from the baseline.
Conversational pre-training alone (without any general pre-training) shows a
consistent improvement over the baseline. The gain is more visible in the low
data regime than in the high data regime. The Dutch ConveRT model reveals
its true power when pre-trained on a general corpus and a conversational corpus
as it outperforms the baseline by a wide margin on every split.

1 Rasa does not have a published paper describing their model.
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6 Conclusion

We have successfully pre-trained, fine-tuned, and evaluated a Dutch ConveRT
model. This model consistently outperforms a baseline response selector from
Rasa on a COVID-19 vaccine FAQ dataset.

Conversational datasets for non-English languages are scarce. Our two-phase
pre-training procedure bypasses this problem by first pre-training on a general
corpus, then pre-training on a smaller conversational corpus.

In future work, we plan on extending the two-stage training to additional
languages and additional domains.
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zoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme. We also
thank the reviewers for their helpful comments.

References

1. Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. Rasa: Open
source language understanding and dialogue management. CoRR, abs/1712.05181,
2017.

2. Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni
St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian
Strope, and Ray Kurzweil. Universal sentence encoder for English. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pages 169–174, Brussels, Belgium, November 2018. Asso-
ciation for Computational Linguistics.

3. Sonam Damani, Kedhar Nath Narahari, Ankush Chatterjee, Manish Gupta, and
Puneet Agrawal. Optimized transformer models for faq answering. In Hady W.
Lauw, Raymond Chi-Wing Wong, Alexandros Ntoulas, Ee-Peng Lim, See-Kiong
Ng, and Sinno Jialin Pan, editors, Advances in Knowledge Discovery and Data
Mining, pages 235–248, Cham, 2020. Springer International Publishing.

4. Maxime De Bruyn, Ehsan Lotfi, Jeska Buhmann, and Walter Daelemans. Bart for
knowledge grounded conversations. In Converse@KDD, 2020.

5. Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli,
Gertjan van Noord, and Malvina Nissim. BERTje: A Dutch BERT Model.
arXiv:1912.09582, December 2019.

6. Kristian Hammond, Robin Burke, Charles Martin, and Steven Lytinen. Faq finder:
a case-based approach to knowledge navigation. In Proceedings the 11th Conference
on Artificial Intelligence for Applications, pages 80–86. IEEE, 1995.
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Abstract. Deep Reinforcement Learning (RL) is a promising technique
towards constructing intelligent agents, but it is not always easy to under-
stand the learning process and the factors that impact it. To shed some
light on this, we analyze the Latent State Representations (LSRs) that
deep RL agents learn, and compare them to what such agents should
ideally learn. We propose a crisp definition of ’ideal LSR’ based on a
bisimulation metric, which measures how behaviorally similar states are.
The ideal LSR is that in which the distance between two states is pro-
portional to this bisimulation metric. Intuitively, forming such an ideal
representation is highly favorable due to its compactness and generaliza-
tion properties. Here we investigate if this type of representation is also
desirable in practice. Our experiments suggest that learning representa-
tions that are close to this ideal LSR may improve upon generalization
to new irrelevant feature values and modified dynamics. Yet, we show
empirically that the extent to which such representations are learned
depends on both the network capacity and the state encoding, and that
with the current techniques the exact ideal LSR is never formed.

Keywords: Deep Reinforcement Learning · Bisimulation Metrics.

1 Introduction

Recent years have seen a surge of algorithms and architectures for deep Rein-
forcement Learning (RL), many of which have shown remarkable success for
various problems. Yet, little work has attempted to relate the performance of
these algorithms and architectures to what the resulting deep RL agents actually
learn, and whether this corresponds to what we suppose they should ideally
learn. Such a comparison may allow for both an improved understanding of why
certain algorithms or network architectures perform better than others and the
development of methods that specifically address discrepancies between what
is and what should be learned. We thus explore empirically the Latent State
Representations (LSRs) a deep RL agent forms of its environment to see whether
these match our theoretical expectations.

When we speak of what a deep RL agent learns, we mean the internal
representation that a neural network forms of the environment. That is, the
activation patterns that arise in each hidden network layer as the result of feeding
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(histories of) observations to the network. As the observation space is potentially
very large and the capacity of an RL agent is limited, an agent has to learn what
to attend to when creating this internal representation. A robot that is trained
to fight fires in a residential area, for instance, might learn that certain features
such as the house colors do not matter. If so, it will map two observations that
differ only in this feature to the same activation pattern. The house color will
then no longer influence the action choices, as the agent has learned to ignore it.

Among the desirable properties of such an LSR are that it should make only
necessary distinctions between (histories) of observations, allow the agent to
learn to act optimally, and enable generalization to new irrelevant feature values
and modified dynamics. An LSR that has these properties is one in which the
Euclidean distances between states are proportional to a bisimulation metric [6],
which measures how ”behaviorally different” [7] states are. As such an LSR makes
only those distinctions that are needed for the prediction of the next reward and
state [12], we call it the Coarsest Markov State Representation (CMSR). It is
this CMSR that we suppose a deep RL agent should ideally learn. Our main
contribution is that we propose a way to measure the degree to which the CMSR
is learned, and use this measure to gain insights into the learning process of deep
RL agents using Deep Q-Networks (DQNs) [22] as example. Moreover, we show
empirically that learning closer to the CMSR may lead to better generalization
to new irrelevant feature values and modified dynamics. These evaluations are
based on differences in the Markovianity of LSRs that either occur naturally or
are obtained via a novel auxiliary loss that pushes a DQN to learn the CMSR.

2 Related Work

Exploring the Learning of Deep RL Agents. Our main goal is to contribute
to a better understanding of the learning process of deep RL agents. To this end,
we propose using measures based on bisimulation metrics that quantitatively
denote how Markov an LSR is. Other research has used saliency maps [13] or
t-SNE plots [22][25], the latter of which we also use as supporting evidence. These
approaches result in figures that are easy to understand, but they do not produce
quantitative measures to effectively summarize the characteristics of an LSR.
Instead, to compare state representations, one has to look at multiple images and
deduce based on domain knowledge what an agent has learned. An alternative is to
plot the test performance [16] or state-action values for certain states [22] during
training. Yet, in contrast to our approach, these approaches do not say anything
about whether an agent has actually learned or simply memorized [14], the latter
of which may hinder generalization. Although offering some improvement, this
also holds for measuring out-of-distribution generalization [4][26]. The reason
is that such out-of-distribution generalization may be good even if the agent
has largely memorized. Lastly, to the best of our knowledge, no prior work has
analyzed the learning process by computing how similar to the CMSR an LSR is.

Representation Learning Based on Bisimulation Metrics. To inves-
tigate the properties of LSRs that are more similar to the CMSR, we design
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an auxiliary loss based on bisimulation metrics. Related work in this regard is
presented by [25], who also propose learning LSRs based on bisimulation metrics.
Yet, while [25] create an LSR in which distances between states correspond to how
behaviorally different they are under a varying policy, we take all actions into
consideration. Thus, an LSR learned by means of the approach of [25] potentially
makes fewer distinctions than are needed to predict the reward and next state for
all actions. Such an LSR hence generalizes to only a subset of the changes made to
the dynamics that still allow for generalization based on the LSR that we propose
to learn. In a similar vein to [25], [1] also base their approach on π-bisimulation
metrics. Another related work is the one by [11]. Yet, whereas the Euclidean
distances in our proposed LSR are proportional to the distances assigned by a
bisimulation metric, the Euclidean distances between states in the LSR learned
by means of the auxiliary loss of [11] provide an upper bound to bisimulation
metric-based distances. Lastly, [23] employ the more general notion of MDP
homomorphism metrics for representation learning. MDP homomorphism metrics
differ from bisimulation metrics in that actions are also abstracted.

Representation Learning Based on Other Notions. The auxiliary loss
we design introduces a bias to the learning. Several other approaches to bias
the representation learning of deep RL agents have been proposed. For example,
[17] and [8] put forward auxiliary losses based on predicting the next reward or
the discount factor. Such methods tend to be successful in practice, but do not
have strong theoretical foundations. Other work such as [19] is based on forming
a model of the environment as auxiliary task. Yet, this tends to not work well
for high-dimensional observations with large amounts of irrelevant information.
Furthermore, rather than biasing the learning of deep neural networks by means
of auxiliary losses, other work has proposed different models to learn more useful
representations such as by incorporating ideas from symbolic reasoning [10]. For
instance, [24] constrain neural networks to capture typical characteristics of
relational reasoning. Another approach to learning more useful representations is
to specifically focus on factors that may hurt generalization. [16], for example,
improve generalization by reducing the non-stationarity an agent encounters
during training. Moreover, [15] adapt to RL several regularization techniques from
the context of classification that are based on injecting noise during training.

3 Background

Markov Decision Process. An infinite-horizon Markov Decision Process (MDP)
is a tuple 〈S,A, P,R, γ〉 where S and A describe the space of Markov states and
possible actions, respectively, P : S ×A→ Π(S) is the transition function such
that P (s′|s, a) ∈ [0, 1] is the probability of arriving in state s′ after taking action
a in state s, R : S × A → R is the reward function such that R(s, a) is the
instant reward for taking action a in state s, and 0 ≤ γ ≤ 1 is a discount factor.
The goal of an agent in an MDP is to learn an optimal policy π∗ : S → Π(A)
that maximizes the expected cumulative (discounted) reward E

[∑∞
t γtrt

]
for

acting in the given environment. The Q-value function Qπ : S×A→ R describes
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the expected cumulative reward for taking action a in state s and executing π
thereafter. The expected cumulative reward for taking an action a in a state s and
following an optimal policy afterwards is given by Q∗(s, a), where Q∗ = maxπ Q

π.
Bisimulation Metrics. Bisimulation metrics [6] are based on the notion of

stochastic bisimulation [12], which considers states as equivalent if and only if
they have the same expected reward and the same transition distribution over
all other abstract states for all actions. Such states that are equivalent under
the notion of stochastic bisimulation are called bisimilar. Bisimulation metrics
can be regarded as a quantitative version of stochastic bisimulation in that they
assign a distance of zero only to bisimilar states, and that if the parameters of
two bisimilar states are altered on a small scale, the metric distance between the
two states will stay small. Thus, bisimulation metrics can be seen as a measure
of behavioral similarity [7]. Theorem 4.5 in [6] defines one bisimulation metric
dfix that considers states as equivalent if and only if they are bisimilar. Given
F : M →M , where M is the set of all semimetrics on S that assign distances of
at most 1, this dfix is defined as the least fixed point of the following equation:

F (d)(s, s′) = max
a∈A

(
cR|R(s, a)−R(s′, a)|+ cTTK(d)

(
P (s, a), P (s′, a)

))
. (1)

cR and cT are two positive one-bounded constants and TK(d) is the Kantorovich
distance. It is dfix that Euclidean distances in the CMSR are proportional to.

4 Markovianity of LSRs During Learning

Here we analyze the LSRs deep RL agents naturally form of their environments
and how they compare to what such agents should ideally learn.

4.1 Methodology

Measuring Characteristics of LSRs. We propose using Pearson correlation
coefficients1 to gain insights into the learning process. These correlation coef-
ficients are based on (components of) bisimulation metrics one the one hand,
and the Euclidean distances between the activations states are mapped to in a
network layer on the other hand. Let zi, zj be the activations si, sj are mapped
to in a network layer, dE(zi, zj) the Euclidean distance of zi and zj , dB(si, sj)
the distance of si and sj for some bisimulation-based measure, and dE and dB
averages. Then the Pearson correlation coefficient rdB is:

rdB =

∑|S|−2
i=0

∑|S|−1
j=i+1(dE(zi, zj)− dE)(dB(si, sj)− dB)

√∑|S|−2
i=0

∑|S|−1
j=i+1(dE(zi, zj)− dE)2

√∑|S|−2
i=0

∑|S|−1
j=i+1(dB(si, sj)− dB)2

.

(2)
Using measures based on or inspired by bisimulation metrics for dB leads to

the Pearson correlation coefficients that are defined in Table 1. These correlation

1 The Pearson correlation coefficient measures the linear correlation of two variables.
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Table 1. Correlation coefficients (CCs) based on Equation 2 and their interpretations.
rdfix and rRew are based on (components of) bisimulation metrics, and rQ∗ replaces
the immediate reward in rRew by Q∗.

CC dB Interpretation

rdfix dfix(si, sj) Similarity of representation to CMSR.
rRew maxa∈A |R(si, a)−R(sj , a)| Degree of clustering based on rewards.
rQ∗ maxa∈A |Q∗(si, a)−Q∗(sj , a)| Similarity to Q∗-irrelevance abstraction.

coefficients allow us to analyze the degrees to which the CMSR is learned, states
are grouped based on instant rewards, and states are clustered based on Q-values
in an LSR. Moreover, we can formally define the CMSR based on rdfix

, which is
obtained by letting dB in Equation 2 be the bisimulation metric dfix

2.

Definition 1 (Coarsest Markov State Representation (CMSR)). The
CMSR is a representation for which the following holds:

rdfix
= 1. (3)

Theoretical Properties of the CMSR. We suppose that a deep RL agent
should ideally learn the CMSR. This is due to several desirable theoretical
properties of this representation. These theoretical properties arise because 1) the
CMSR makes the lowest number of distinctions that still enables the prediction
of the reward and next state [12], and 2) Euclidean distances between states in
the CMSR are proportional to how behaviorally different states are. This leads
to the following advantageous characteristics of the CMSR:

– Feasibility of Learning π∗. If an agent can predict the next reward and state
for each action, an LSR is said to be Markov and the agent may find an
optimal policy based on (histories of) observations3 [21]. If, however, the
reward and next state cannot be predicted based on the LSR, the agent in
the most general case cannot learn an optimal policy.

– Indifference to Irrelevant Features. The CMSR does not distinguish observa-
tions that refer to the same state in the abstract MDP. That is, the CMSR
treats as equivalent two observations that differ only in features that are
irrelevant for predicting next states and rewards. This is especially important
for domains with high-dimensional observations such as images.

– Generalization to Modified Dynamics. If a subset of the features required
for predicting the reward and next internal state for an original domain is
sufficient for predicting the reward and next internal state after modifying
the dynamics, the distinctions the CMSR makes for the original domain

2 Computed via the MCFZIB solver [9].
3 While representing an optimal policy may require solely a coarser abstraction of the

state space, such a representation may not suffice for learning an optimal policy [21].
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suffice to learn the Q-values of such a modified domain. Moreover, since the
Euclidean distance between two states in the CMSR varies smoothly as their
parameters are changed, the CMSR is likely to still be useful if small such
changes are made. This is important, as dynamics are commonly estimated
and domain shifts may arise in problems such as robotics [15].

Q∗-irrelevance Abstraction. We suppose that LSRs should ideally be
similar to the CMSR. Yet, the output layer of a DQN is pushed to represent Q-
values, which may also cause LSRs to do so. We call an LSR in which the Euclidean
distances between activations are proportional to the Euclidean distances between
the corresponding Q-values a Q∗-irrelevance abstraction. This definition is based
on generalizing the levels of state abstraction by [18] to the Euclidean space in
which the activations in network layers fall. As non-bisimilar states may have the
same Q-values, such an LSR may make fewer distinctions than the CMSR and
hence no longer preserve the one-step model. Thus, a Q∗-irrelevance abstraction
may not have the theoretical properties of the CMSR. We measure the extent to
which a Q∗-irrelevance abstraction is formed via the correlation coefficient rQ∗ .

Domain. Our results presented here are based on a modified version of the
fully observable Gridworld 3x3 domain [5], but supporting results from Gridworld
5x5, FrozenLake 8x8 from OpenAI Gym and the partially observable Hallway
domain are described in [2]. In Gridworld 3x3, the state is a combination of the
agent’s position on a 3x3 grid and its orientation. Apart from the ground state,
the agent’s observations in our domain version contain a superfluous feature fS ,
which can take 5 possible values sampled uniformly at random. This creates 5
behaviorally identical or bisimilar states out of each ground state. The agent can
choose from the deterministic actions {forward, rotate}. The reward is 1 for
reaching the goal location in the center of the grid and 0 otherwise.

State Encoding. We one-hot encode the ground states, and use 3 different
ways of encoding fS (Table 2). The encodings vary in the degree to which bisimilar
states are encoded similarly, as mirrored by the encoding-based value for rdfix

in
Table 2. Thus, the encodings have different effects on the initial LSR, which may
impact the final LSR and its similarity to the CMSR.

4.2 Analysis of the Learning Process

In the following, we now use our proposed correlation coefficients and t-SNE
[20] plots to shed light on the natural learning process of deep RL agents. Fig. 1
shows that the learning process consists of three overlapping learning phases:

1) States are grouped based on multi-step rewards. Since the target
network provides the estimates of the Q-values of next states during training, it
is not surprising that the activations of states with the same n+ 1-step rewards
tend to be grouped together, where n is the number of times the target network
has been updated. Fig. 1-1 shows the hidden activation patterns right after the
DQN has been initialized4. At this point, any clustering is incidental in that it

4 Since the encoding of fS is lower-dimensional than the one of the ground state, the
t-SNE plot shows one cluster for each value for fS rather than for each ground state.
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Table 2. State encodings and their definition of the superfluous feature fS . We also
show the value for rdfix based on the encoded states.

Encoding fS rdfix

Norm (N) fS ∈ {0, 0.25, 0.5, 0.75, 1} 0.251
One-hot (OH) fS ∈ {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]} 0.087
Original (O) fS ∈ {0, 1, 2, 3, 4} 0.015

Fig. 1. rRew, rdfix , rQ∗ and t-SNE plots of the activations observations are mapped to
during training for the LSR of a 2-layer DQN for the OH-encoding. The hidden layer
size is 50 and the target network is updated every 50 episodes. All observations differing
solely in fS are drawn in the same color in the t-SNE plots and the coloring scheme
for the ground states is shown on the left. Bisimilar ground states are shown in the
same color. The vertical lines mark the episodes for which we show t-SNE plots. The 3
non-black lines thereby indicate 1) the first time the agent reaches the goal in each of
100 test episodes, 2) the first time the agent has learned π∗ and 3) convergence to π∗.

depends on the state encoding5 and network initialization. In Fig. 1-2, we see that
the DQN has formed a separate cluster for those states that have an immediate
reward of 1 (dark green). The target network has not yet been updated, so
all other states, which have an immediate reward of 0, should not yet fall into
separate clusters. Also note that the yellow curve (rRew) is now at its maximum.
This is expected, because rRew measures the degree of similarity between the
current LSR and a representation that clusters states together if and only if they
have the same immediate reward. After the target network has been updated
once, a new separate cluster is formed for those states that have a non-zero
two-step reward (Fig. 1-3, dark pink). This is accompanied by a drop in rRew, as
states are now no longer distinguished solely based on their immediate rewards.

2) The LSR becomes more similar to the CMSR. This pattern is
mirrored by the increase in the green curve (rdfix

) at the beginning of training.
However, the exact CMSR is not learned, as rdfix

is never equal to 1.

5 The impact of the state encoding is discussed in the next section.
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Fig. 2. Mean peak and final rdfix and final rQ∗ with 95%-confidence intervals for the
LSRs of 2-layer DQNs for different state encodings and hidden layer sizes. The vertical
lines indicate the smallest hidden layer sizes for which 1) the agent always arrives at the
goal in 100 test episodes and 2) the DQN converges to π∗ at least 1 out of 5 times. Each
curve is labeled with the Pearson correlation of the respective correlation coefficient
and the hidden layer sizes that are large enough for the DQN to learn π∗ at least 1 out
of 5 times.

3) States are increasingly clustered based on Q-values, as visualized
by the step-wise increase in the gray curve (rQ∗), after an initial plateau. Ulti-
mately, rQ∗ reaches a value near 1 when the DQN converges to π∗. At the same
time, rdfix

decreases for this domain as the inter-cluster distances become more
and more different from those of the CMSR6. This is shown near episode 200,
where rdfix

begins to decrease when rQ∗ strongly increases again. The final LSR
is thus less similar to the CSMR for this domain than during the second phase.

This analysis suggests that while a DQN does naturally form the CMSR to
some degree, the exact CMSR is not learned. Instead, states are at some point
clustered based on Q-values rather than bisimilarity, which may cause the LSR to
become less similar to the CMSR. Given the useful theoretical properties of the
CMSR, the latter might have negative consequences for a network’s generalization
ability. We examine this impact on the generalization performance in Section 5.

4.3 Factors Impacting the Learning Process

When training a DQN, one has to make a plethora of choices such as for the
network architecture and the state encoding. Commonly, we make such choices
primarily based on average returns. However, the decisions we make might also
impact the LSRs that are formed. We therefore analyzed how different factors
impact the learning process described above. We find that the extent to which
LSRs become similar to the CMSR during and still are at the end of training
depends on the network capacity and state encoding. This is discussed below.

Network Capacity. The dark green curve (peak rdfix
) in Fig. 2(a) shows

that the LSR becomes most similar to the CMSR during training for hidden
layer sizes just to the right of the second vertical line. These hidden layer sizes

6 The decrease in rdfix is related to the network capacity, discussed in the next section.
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are necessary for the DQN to be able to converge to π∗. For larger hidden layers,
the LSR becomes progressively less similar to the CMSR during training. This is
captured by the value of −0.118 for the Pearson correlation coefficient between
peak rdfix

and sufficiently large hidden layer sizes (Fig. 2(a)). The reason for this
pattern is that larger hidden layers make a network more flexible, and thus allow
the network to converge to the true Q-values even if less similar to the CMSR is
learned in the hidden layer during training. Such large networks hence learn the
Q-values without grouping behaviorally equivalent observations together.

The LSR at the end of training, however, is more similar to the CMSR for
larger hidden layers. This is indicated by the bright green curve (final rdfix

)
and the corresponding Pearson correlation coefficient of 0.272 with respect to
sufficiently large hidden layer sizes in Fig. 2(a). The reason is that DQNs with
smaller hidden layers eventually need to largely cluster states based on Q-values
in their hidden layers due to their lower flexibility. Otherwise, their output layers
cannot represent the true Q-values. Thus, while DQNs with smaller hidden layers
initially learn closer to the CMSR, their LSR is ultimately further abstracted
towards a Q∗-irrelevance abstraction. The latter is supported by the observation
that the final values for rQ∗ (gray curve) are higher for smaller hidden layers,
which is captured by the Pearson correlation coefficient of −0.199 between the
final values for rQ∗ and sufficiently large hidden layer sizes in Fig. 2(a).

State Encoding. The CMSR is formed to a lesser degree during learning
if it is more difficult and less necessary to be learned. Based on the three dark
green curves (peak rdfix

) in Fig. 2, we can see that the LSRs become most similar
to the CMSR during learning for large hidden layers for the N-encoding and
least similar for the O-encoding. The reason for this pattern is that bisimilar
states have the most similar encodings in the N- and the least similar ones in
the O-encoding (see rdfix

in Table 2). Hence, for the latter encoding it is most
difficult to group bisimilar states together in the LSR. Thus, as the network
capacity increases and it therefore becomes less necessary to learn the CMSR,
the CMSR is progressively less formed during learning for state encodings that
make it more difficult to do so. This also impacts the LSRs present at the end of
training, as mirrored by the three bright green curves (final rdfix

) in Fig. 2.
Given that both the network capacity and the state encoding impact the

degree to which the CMSR is formed, it is important to make a considerate choice
of the network architecture and state encoding if learning the CMSR is desired.

5 Practical Usefulness of the CMSR

While the theoretical advantages are apparent, we will now investigate whether
striving to learn the CMSR is also useful in practice. To obtain LSRs that are
very similar to the CMSR, we introduce a bisimulation-based auxiliary loss that
pushes a network to form the CMSR as LSR.

Bisimulation-based Auxiliary Loss. We calculate dfix(si, sj) for all si, sj ∈
S, i 6= j. During training, we then compute an auxiliary loss based on the premise
that we want the Euclidean distances between the activations of states to be
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(a) Hidden layer size of 10.
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(b) Hidden layer size of 20.
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(c) Hidden layer size of 65.

Fig. 3. Average percentage of optimal actions learned by 2-layer DQNs with different
hidden layer sizes for the O-encoding, trained with and without the auxiliary loss.
Optimal actions returned by the DQN for each non-terminal ground state are measured
for 1, 000 values for fS sampled uniformly at random from an interval that is i times as
large as the one used during training. The value i is shown on the x-axis. 95%-confidence
intervals based on 10 repetitions are shown.

proportional to their distances assigned by the bisimulation metric dfix. In other
words, we want that dE(zi, zj) is equal to d∗E(zi, zj) = dmaxE × dfix(si, sj), where
dmaxE is a hyperparameter for how far apart the activations of non-bisimilar states
should be. We thus compute a target activation z∗i for all si ∈ S:

z∗i = zi +
1

2
×
∑

j 6=i

(
d∗E(zi, zj)− dE(zi, zj)

) zi − zj
||zi − zj ||

, (4)

where ||zi − zj || is the length of the vector zi − zj . Note that the unit-length

vector
zi−zj
||zi−zj || between zi and zj is multiplied by half of the amount by which

dE(zi, zj) should change. The idea behind this is that if zi and zj should be
pulled apart or closer together, both are moved by half the total amount in the
respective direction. Based on this, we minimize the MSE between zi and z∗i for
all si ∈ S. We found this approach to work better than directly minimizing the
MSE between dE and d∗E .

5.1 Generalization to New Irrelevant Feature Values

The first type of generalization we consider is the one to new values of irrelevant7

features. We train 2-layer DQNs for Gridworld 3x3 with and without the auxiliary
loss. At test time, we sample 1, 000 values for the superfluous feature fS randomly
from an interval that is i times as large as the one used during training, where
i ∈ {1, 2, 4, 6, 8, 10, 25, 50, 100, 500, 1000}. For each sampled value for fS , we
compute the optimal action returned by the trained DQN and compare it to π∗.

Fig. 3 reveals that if the auxiliary loss is used, the generalization to new
values for fS tends to be better than if no auxiliary loss is used. This makes
sense, as using the auxiliary loss causes the LSR to ignore fS to a larger extent
(Fig. 4). However, Fig. 3 shows that there are two exceptions to the observation
that introducing the auxiliary loss improves upon the generalization. These are 1)
the generalization to very large intervals and 2) DQNs with large hidden layers:

7 Irrelevant features are not required for predicting the next reward and internal state.
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Very Large Intervals. Generalization to values for fS sampled from very
large intervals tends to be better if LSRs that are not entirely indifferent to fS are
closer to a Q∗-irrelevance abstraction. Notice that while introducing the auxiliary
loss leads to improved generalization for small and moderately sized intervals,
it deteriorates the generalization for very large intervals. This can be explained
by the fact that even though the LSRs learn to ignore fS to a larger extent
when we apply the auxiliary loss, they do not do so entirely. At the same time,
the Euclidean distances between the activations of states with different optimal
actions are on average more similar to those between the activations of states
with the same optimal actions in the CMSR than in a Q∗-irrelevance abstraction
for this domain8. Hence, that for very different values for fS an observation is
mapped to a latent representation that causes the DQN to return a sub-optimal
action is less likely if the DQN learns closer to a Q∗-irrelevance abstraction. Yet,
this only holds because the DQNs do not learn the precise CMSR.

DQNs with Large Hidden Layers. One would expect DQNs with varying
hidden layer sizes to generalize similarly well if the LSRs are very close to the
CMSR. Yet, using the auxiliary loss tends to lead to worse generalization to large
intervals for large hidden layers (Fig. 3(c)) than for smaller ones (Fig. 3(a) and
3(b)). The reason is that the LSRs of DQNs with large hidden layers become less
similar to the CMSR again towards the end of training for our settings for the
auxiliary loss. More precisely, we decay the weight of the auxiliary loss during
training and continue to train even after the weight has become 0. This continued
training after the auxiliary loss is no longer applied causes the LSRs of larger
DQNs to increasingly distinguish observations based on fS again and hence to
generalize worse to large intervals. Thus, for large DQNs to have an LSR that is
very similar to the CMSR by the end of training, it is not sufficient to apply the
auxiliary loss only until close to the CMSR is formed. Instead, the auxiliary loss
needs to be applied longer, if not during the entire training.

Worse generalization hence only arises when the exact CMSR is not formed.
Moreover, even then it only occurs when either extremely different values for fS
are sampled or the auxiliary loss is stopped too soon for very large DQNs.

5.2 Generalization to Modified Dynamics

Here we now explore a second type of generalization, namely the one to modifi-
cations of the dynamics that do not make formerly irrelevant features relevant.
2-layer DQNs with hidden layer sizes between 3 and 60 are trained each 10 times
on Gridworld 3x3, and subsequently retrained after modifying the transition
function. We reset the output-layer representation before and hold the LSR fixed
during retraining. Based on Fig. 5, we find that the following three factors impact
the generalization to the modified domain:

8 Non-terminal ground states have mean Euclidean distances of 0.175 and 0.333 to other
non-terminal ground states with the same and different optimal actions, respectively,
in a Q∗-irrelevance abstraction for Gridworld 3x3. In the CMSR, however, the mean
Euclidean distances to non-terminal ground states with the same and different optimal
actions are 0.141 and 0.144, respectively, if dmax

E = 1.
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Fig. 4. t-SNE plots and rdfix of the LSRs at the end of training b) without and c) with
the auxiliary loss for a 2-layer DQN with a hidden layer size of 10 for the O-encoding.
Activation patterns of bisimilar observations have the same color.
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Fig. 5. Mean L1-error with respect to the Q-values during retraining of 2-layer DQNs
with varying hidden layer sizes on the modified domain for the Norm (N), One-Hot
(OH) and Original (O) state encodings. The hidden-layer weights are initialized to those
of DQNs trained on Gridworld 3x3 either with or without the auxiliary loss and are
not updated during retraining. The output-layer weights are newly initialized before
retraining. Values are based on 10 repetitions and 95%-confidence intervals are shown.

Similarity to Q∗-irrelevance Abstraction. The generalization is better
when the LSR is less similar to a Q∗-irrelevance abstraction for the original
domain. Recall that DQNs with larger hidden layers learn LSRs that are less
similar to a Q∗-irrelevance abstraction (gray curves in Fig. 2). This explains why
DQNs with larger hidden layers tend to generalize best for the Norm (N) and
One-Hot (OH) encodings. Moreover, the created LSRs for large hidden layers are
closer to a Q∗-irrelevance abstraction for the N- and OH- than for the Original
(O)-encoding (gray curves in Fig. 2), which is why the former lead to higher
L1-errors on the modified domain.

Similarity to CMSR. Lower L1-errors are achieved when the LSR is closer
to the CMSR. Moderately sized hidden layers are more similar to the CMSR
for the O-encoding than even larger hidden layers (bright green curve in Fig.
2(c)), which is why the former lead to better generalization. Note that this occurs
despite the higher flexibility of larger networks. For the OH- and N-encodings,
the largest tested hidden layer sizes do not yet cause the final LSR to be less
similar to the CMSR (Fig. 2(a) and 2(b)). Thus, DQNs with moderately sized
hidden layers do not outperform DQNs with larger ones for those two encodings.
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Network Capacity. DQNs with larger hidden layers are less dependent
on the LSR when it comes to learning the new Q-values due to their higher
capacity. This adds to the fact that larger DQNs generalize best for the N- and
OH-encodings. Note also that due to their lower flexibility, DQNs with very small
hidden layer sizes need to learn an LSR that is more similar to a Q∗-irrelevance
abstraction for the new domain to be able to learn the new Q-values. This is not
possible if the LSR is fixed during retraining.

Thus, the naturally occurring differences in Markovianity between LSRs show
that learning an LSR that is more similar to the CMSR tends to aid generalization,
especially for moderately sized hidden layers. Furthermore, adding an auxiliary
loss to the training that pushes a DQN to learn closer to the CMSR in its hidden
layer leads to better generalization for all networks except those with very small
hidden layers (Fig. 5(d)). The latter occurs because due to their lower flexibility,
very small networks need to learn closer to a Q∗-irrelevance abstraction in their
hidden layers to be able to learn the new Q-values in their output layers.

6 Conclusions

We analyzed the LSRs deep RL agents form of their environments to gain a better
understanding of the learning process and the factors that impact it. Thereby,
we suppose that due to its theoretical and especially generalization properties,
an agent should ideally learn the CMSR. In the CMSR, distances between states
are proportional to how behaviorally different the states are. We find that while
LSRs tend to become more similar to the CMSR at the start of training, states
are ultimately clustered based on Q-values rather than behavioral similarity. This
may cause the LSRs to become less similar to the CMSR again. Moreover, the
precise CMSR is not learned in any of our experiments. Our standard network
architectures and optimization algorithms thus do not lead to ideal LSRs. While
our analysis in this paper is based on Gridworld 3x3, we obtained comparable
results for the learning process on Gridworld 5x5, FrozenLake 8x8 from OpenAI
Gym and the partially observable Hallway domain in [2].

Our analysis of the factors impacting the learning process further reveals that
both the state encoding and the network capacity impact the degree to which
the CMSR is formed during and is still present at the end of training. For large
hidden layer sizes, for example, networks learn the CMSR to a much lesser extent
during training. The reason is that due to their higher flexibility, such networks
can learn the Q-values without grouping behaviorally equivalent observations
together. Notably, the CMSR is even less learned by such large networks if it is
also rather difficult to form the CMSR due to the state encoding. It is thus crucial
to carefully choose both network architecture and state encoding if learning closer
to the CMSR is desired. Future work should explore the generalization of these
findings to environments with more complex observations. For such environments,
our proposed correlation coefficients can be made more scalable by approximately
computing the bisimulation metric based on the algorithm by [3].
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Our claim that deep RL agents should ideally learn the CMSR is supported
by our empirical findings. That is, we find that learning closer to the CMSR
may improve upon generalization to new irrelevant feature values and modified
dynamics. Our results thus show that learning good LSRs is crucial. Rather than
selecting architectures and optimization algorithms primarily based on average
returns, we should hence strive to make a more informed decision based on the
LSRs that are formed. To this end, we need to also report the quality of the LSRs
learned in our experiments via measures such as the ones we propose. Moreover,
as our current architectures and algorithms do not form ideal LSRs, it is impor-
tant that we as a community strive to develop scalable methods that address the
discrepancies between what is and what should be learned. The auxiliary loss we
designed provides a starting point, but has to be made more scalable to be useful
in practice. For example, the expensive exact computation of the bisimulation
metric could be replaced by an approximation that is incorporated into training
in a vein similar to the approach by [3].
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Abstract. This paper surveys the nascent experimental research on the interac-
tion between human and algorithmic traders in experimental markets. We first 
discuss studies in which algorithmic traders are in the researcher’s hands. Spe-
cifically, the researcher assigns computer agents as traders in the market. We then 
discuss the studies in which the researchers allow human traders to decide 
whether to employ algorithms for trading. The paper introduces the types and 
performances of algorithmic traders that interact with human subjects in the la-
boratory, including zero-intelligent traders, arbitragers, fundamentalists, adaptive 
algorithms, and manipulators. The potential impact of interactions with algo-
rithms on the investor’s psychology is also discussed.  
 

Keywords: Experimental Asset Market, Algorithmic Trading, High-Frequency Trad-
ing, Human-Agent Experiments, Survey 

1 Introduction 

 
The financial world has witnessed a skyrocketing volume of algorithm trading since the 
beginning of the 2000s. Today most transactions in financial markets are executed by 
automated trading systems. According to Treleaven et al. (2013), algorithm trading al-
ready accounted for more than 70% of US stocks’ trading volume in 2011. Flash 
crashes, which until May 6, 2010, were unprecedented phenomena of extreme short-
term volatility triggered by high-frequency trading (Kirilenko et al. 2017), prominently 
demonstrate that algorithms have radically changed the financial market environment. 
It seems fair to say that today, without understanding the impact of algorithmic trading, 
a thorough understanding of market behavior would become almost impossible.   

 
To understand the behavior, we need answers to many questions. For example, what 
are the impacts of trading algorithms on market quality, the return to the usage of such 
algorithms, and how will human traders’ returns be affected? How do humans, espe-
cially individual investors, respond to trading in markets dominated by algorithms; does 
interaction with algorithms also generate emotional or psychological responses by hu-
man traders that could create more price fluctuations due to market sentiment? Can 
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financial advice be rationalized with algorithms? What type or features of algorithms 
are either helpful or rather harmful to investors; what kind of regulation is sensible? We 
contribute to this research by reviewing the answers given to some of these questions 
by the experimental literature focusing on the interaction between algorithms and hu-
mans in laboratory markets.  

 
There have been some extensive related literature reviews on the real-world financial 
marketplace. Kirilenko and Lo (2013) provide an initial review of algorithmic trading 
in the real-world financial marketplace. The authors acknowledge types of automated 
trading, including passive strategies like market-making, arbitrage trading, and more 
aggressive high-frequency trading. They recount important historical events in the age 
of machine trading, including the 2010 flash crash and other cases of high-frequency 
trading manipulation such as spoofing. Finally, they reflect on potential regulatory 
measures, particularly in view of the presence of high-frequency trading algorithms, 
including speed bumps and Tobin taxes. Goldstein et al. (2014) provide a literature 
survey on algorithmic trading, including theory and studies based on real-world data. 
Miller and Shorter (2016) survey recent developments in high-frequency strategies, fo-
cusing on recent efforts in regulatory measures. Beckhardt et al. (2016) provide a broad 
survey on high- frequency trading strategies, including simulation analyses of profita-
bility. We refer the interested reader to the surveys mentioned above as these issues go 
beyond the scope of the current review, which is limited to controlled laboratory stud-
ies.  

 
A related area of interest is agent-based modeling, where algorithms interact with algo-
rithms. Duffy (2006) provides an excellent survey. He summarizes the literature on 
zero-intelligence agents, learning, and evolutionary algorithm models of agent behav-
ior. Duffy also reviews the literature that compares human laboratory results with sim-
ulation results. Brewer (2008) and De Luca et al. (2011) also review zero-intelligence 
agents and their extensions. In the following section, we review some relevant algo-
rithms for the interaction with humans discussed in that literature.  

 
Closer to us in terms of coverage, March (2019) provides a broad survey on the inter-
action of computer players with human subjects, including experiments on strategic 
reasoning, social dilemmas, markets, auctions, bargaining and negotiation, and other 
topics. Naturally, this literature survey overlaps with March’s survey, notably with his 
section on market experiments. Nevertheless, our focused approach allows a more de-
tailed report of the studies and also includes unpublished work.  

 
This paper provides an overview of the experimental literature on algorithmic trading 
in experimental financial markets, focusing on human-robot interaction. The reported 
research is interdisciplinary. The interaction of man and machine is of general interest 
to the behavioral sciences and the computer sciences. The findings of this research can 
have implications for regulation. That said, the laboratory research that we report here 
is nascent. Based on the literature survey, we propose, without the ambition of being 
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conclusive, some interesting questions for future research in this area and possible pol-
icy implications.  

 
The remainder of the paper is organized as follows. Section 2 reviews the literature on 
experimenter-induced algorithms that concentrate on the performance of algorithms 
versus human traders, studies that look at market quality, the behavioral effects of al-
gorithm speed, manipulation, and arbitraging activity, and the question of subjects’ 
aversion to interacting with algorithms. In section 3, we review studies in which the 
experimenter puts algorithms in the hands of human subjects. In section 4, we finally 
conclude and discuss future directions.  
 

2 Experimenter induced algorithms  

In this section, we review the literature on experiments involving subjects playing the 
role of traders competing against algorithms programmed by researchers. Loosely fol-
lowing a historical perspective, we begin by briefly reviewing the literature in which 
the efficiency of markets populated by algorithms is compared to experimental markets 
with only human subjects before we look at the performance in hybrid markets. We 
dedicate a sub-chapter to discuss the effects of the algorithm’s reaction time, another to 
discuss arbitrage in multiple markets, and yet another to cover the manipulation with 
algorithms. Finally, we turn to how the announcement of possible market participation 
of an algorithm can impact human subject behavior.  

2.1 Comparison of algorithms in simulations with human traders in 
experimental markets  

The early experimental studies involved no interaction between algorithms and human 
subjects. These studies compare the outcomes in experiments with human subjects to 
the ones of interacting algorithms in the continuous double auction (hereafter CDA) 
markets.  

The documented academic research on algorithms in asset markets seemingly started 
in the late 1980s. Shyam Sunder (2003, p. 10f) recounts his approach: the press blamed 
the stock market crash of 1987 on algorithmic trading. Skeptical of this claim, Sunder 
designed and taught a course at Carnegie Mellon University on algorithmic trading to 
learn about the structure of trading strategies and the behavior of the CDA market. Be-
ing challenged by the students in the course, he and Gode programmed a random algo-
rithm -later labeled ‘zero intelligence or ZI traders (Gode and Sunder 1993), which 
adheres to a budget constraint. The chosen CDA market environment was Smith (1962), 
with induced values and costs. ZI traders provide liquidity to the market by repeatedly 
submitting orders; ZI buyers submit bids between 0 and the experimenter induced 
value; ZI sellers submit offers between the upper bound of the cost distribution and the 
induced cost level. Since traders have zero intelligence, they do not profit-maximize, 
remember nor learn. In Gode and Sunder (1993), a ZI transaction occurs whenever the 
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best bid exceeds the best offer (each for one unit), the transaction price being equal to 
the earlier submitted one of the two.  

The result was that ZI agents achieved an allocative efficiency of 99% across different 
sessions, comparable to the one found in data from experiments with human subjects. 
Gode and Sunder (1993, p. 134) conclude that “the high allocative efficiency of double 
auctions is [caused by] market discipline imposed on traders” and not by profit maxi-
mization, learning, and intelligence. This literature on zero-intelligence traders (sum-
marized in Duffy 2006; De Luca et al., 2011) provides a very important micro-founda-
tion of the general equilibrium theory by showing that market efficiency does not rely 
on perfect individual rationality and utility maximization behavior. Nonetheless, the 
trajectories of equilibrium market prices with human subjects are relatively flat, 
whereas the ZI agents produce continued volatility around the equilibrium price. Duffy 
and Ünver (2006) report related similarities of price efficiency patterns between ZI 
agents and human subjects in the Smith et al. (1988) CDA market with a multi-period 
lived asset,1 which frequently generates bubbles and crashes in laboratory studies.  

Arifovic (1996) finds in an experimental macroeconomic setting that the market price 
behavior of human experimental subjects shares similarities to that of a genetic algo-
rithm.2 The genetic algorithm selects a decision rule defined by a binary string (length 
30) and is updated using three genetic operations to produce offspring; reproduction, 
crossover, and mutation.3 

 
1 The design of Smith et al. (1988) is described as follows: Nine subjects, initially 
endowed with cash and assets, can buy or sell assets between each other during 15 
periods in a CDA market. No margin purchases and no short sales are permitted. Assets 
and cash carry over between periods. At the end of the period, a dividend is paid to the 
asset holders, which takes one of four values in cash units, {0, 8, 28, 60}, and is 
independently and identically drawn in each period. At the end of the last period, the 
assets are redeemed at 0 cash units. Hence, the fundamental dividend value is constantly 
declining across periods.  

2 Arifovic studies exchange rate behavior in an overlapping generations model with fiat 
money. Endowed with units of the consumption good in two periods, the decision 
makers decide on their consumption when young and their savings in two currencies, 
which both allow the purchase of the consumption good when old. Intertemporal 
consumption is valued with an utility function, which translates to a fitness value in the 
genetic algorithm.  

3 Selection involves the random mating of two parental decision rules. The probability 
of selection of each parent decision rule depends on its fitness value, which is the ex-
post value of the utility function. Reproduction implies an identical copy of the binary 
strings of each parent to begin with. Crossover is the exchange of parts of the initial 
strings. Mutation is a random change from 0 to 1 or 1 to 0 of a position within a string. 
The initial two generations in the genetic algorithm are randomly determined decision 
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Rust et al. (1994) report on the Santa Fe Institute double auction tournament -SFDAT 
in 1990/91. For the SFDAT, 30 colleagues submitted profit-maximizing algorithms, 
including quite complex ones, to trade with another in the Smith (1962) CDA market. 
To their surprise, the tournament winner involved relatively simple liquidity absorbing 
(profit-making) strategy -later labeled Kaplan’s Sniping Agent. The Sniper seller 
(buyer) sends a limit order to sell (buy) at the market best bid (offer) if at least one of 
three conditions is met; the best bid (offer) is at least as good or better as the high (low) 
transaction price of the previous period; the offer-bid spread is small (≤ consts) while 
the expected profit is more than a minimum profit factor (≥ constP); few instances of 
time left until the closing of the market period (≤ constt). Later simulation studies high-
lighted that this Kaplan’s sniper could only be profitable if few agents apply it, as it is 
not the best response against itself.4 

2.2 Performance of algorithmic and human traders in hybrid experimental-
markets  

Das et al. (2001) study how agent-human interaction influences human traders’ market 
outcome and trading performance in an experimental asset market setting within a CDA 
environment with induced values (Smith 1962). In each of their experimental markets, 
there are 6 human traders and 6 algorithmic traders. The algorithmic trader may adopt 
two types of adaptive trading strategies: (1) the “zero intelligence plus (ZIP)” algorithm 
(Cliff 1997) provides liquidity to the market, similarly to ZI. Still, its orders involve a 
private profit margin updated over time if a limit order fails to transact or transacts 
immediately. When a trade takes place, all agents adjust their bids towards the transac-
tion price. If no trade occurs in 1 second, all agents adjust their bids to improve the best 
existing bid. (2) The GD algorithm (Gjerstad and Dickhaut, 1998) submits orders to the 
market that maximize its expected surplus based on an updated belief distribution. The 
GD agent forms a belief about an offer or bid being accepted at price p based on the 
recent market history of accepted and unaccepted (including inframarginal and extra-
marginal) orders at that price. The authors find that different from past experimental 
studies on CDA markets with all-human design or all-algorithm design, the market 
price in their experiment shows slower convergence to the equilibrium price. Mean-
while, for both types of strategies, human traders underperform algorithms by about 
20% in trading surplus.  

 
rules. The following generations are offsprings of the young generations. Kirman 
(1993) suggests a related model of mutation of heterogeneous opinions, e.g., chartists 
and fundamentalists (see also Brock and Hommes (1997) and Lux and Marchesi (1999); 
Hommes(2006) surveys the literature on heterogeneous agents).  

4 Varying the share of Snipers and ZI agents, Brewer and Ratan (2019) find (in an all-
algorithm setting) that market efficiency and Snipers' profits are strongly impacted 
when 20% or more of traders are Snipers.  
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Gjerstad (2007) studies how different paces of submitting bids and asks influence the 
trading performance of humans and the GD algorithm in a CDA market with induced 
values (Smith 1962). There are 6 buyers and 6 sellers in the experimental market. In 
the hybrid markets involving interaction between human and GD agents, 3 human buy-
ers/sellers and 3 automated buyers/sellers are on each side of the market. Interested in 
reaction speed, the author differentiates between “patient” and “impatient” algorithmic 
traders regarding waiting time before submitting a new order. Patient traders submit 
bids and offer at a slower pace than impatient ones. The result of the paper shows that 
first, all markets achieve a very high level of efficiency (usually more than 99.5%).  

Meanwhile, there seems to be a “curse of impatience” for algorithmic traders. If algo-
rithmic buyers/sellers are too active in submitting new limit orders, they will push the 
price up/down and lower their profit. In general, the profit of patient algorithmic traders 
is highest, followed by the impatient ones, and human traders’ profit is lowest. These 
results are obtained for the simplistic CDA market with induced values. 5 

In a more complex environment, in which earnings depend on the share price at period 
end, Feldman and Friedman (2010) study human-algorithm interaction in an experi-
mental CDA market. Their experimental treatments vary the composition and the size 
of markets. Human traders interact with algorithmic traders in large markets (1 human 
and 29 robots or 5 human and 25 robots) and small markets (5 human traders and 5 
robots). The key findings of their study include: (1) human traders’ average trading gain 
is smaller than algorithmic traders, but they may outperform algorithmic traders in mar-
ket crashes; (2) human traders tend to destabilize small markets and neither stabilize 
nor destabilize large markets; (3) human traders respond to the payoff gradient similarly 
as the algorithmic trader. In their study, it is interesting to note that human traders 
earned higher profits during crashes (i.e., lose less with extreme market volatility) and 
tend to sell faster after experiencing a loss, although generally exhibit the same trading 
behavior as the algorithms.  

Tai et al. (2018) let one human subject interact in CDA markets populated with ZI 
traders or with adaptive algorithmic traders of SFDAT, including Kaplan’s Sniper, GD, 
and ZIP. Surprisingly, subjects’ earnings are higher in the treatment with adaptive al-
gorithmic traders than with ZI traders. The authors conjecture that subjects’ cognitive 
working memory capacity impacts their trading acuity and test this hypothesis in asym-
metric and symmetric CDA markets of Smith (1962) type. The result confirms the hy-
pothesis; subjects with high elicited working memory capacity earn higher profits than 

 
5 Algorithms seem to obtain better returns also in more complex environments (Sato et 
al. 2002), but the relative superiority of the algorithms can depend on the market 
conditions. That is a result of Sato et al. (2002) who report a hybrid human-algorithm 
market in which students interact with algorithmic traders programmed by teams of 
researchers at a conference. 
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those with low elicited working memory capacity; the difference is pronounced in the 
more complex environments, i.e., asymmetric markets and adaptive agents.  

Akiyama et al. (2017) implement an algorithm that trades on fundamentals in a Smith 
et al. (1988) call-auction asset-market design involving belief elicitation on future 
prices. The authors propose two treatments to study the question of strategic uncertainty 
as a course for bubbles and crashes: treatment with 6 human subjects and treatment 
with 1 human trader and 5 algorithmic traders committing transactions at fundamental 
value. In the second scenario, strategic uncertainty is eliminated while participants have 
perfect information about the algorithm’s presence and its performed strategy.  

The results suggest that strategic uncertainty might partly explain observed mispricing 
in this market. Using the same experimental setting, Hanaki et al. (2018) show that 
traders’ performance is negatively correlated with their confidence in their short-term 
price forecast. In a related study, Ahrens et al. (2019) also use this experimental design 
with the fundamentalist algorithm to investigate subjects’ overconfidence in their price 
forecast to find that the level of overprecision (i.e., the narrowness of the predicted 
confidence interval) may be endogenously determined or influenced by the observed 
market price dynamics. It tends to go up (down) when the asset price goes up (down).6 

2.3 Algorithm Speed  

Faster than human response-time to profit from trading has been one of the main rea-
sons for the adoption of algorithmic trading in asset markets, and therefore, it has been 
an innate research question how much the algorithmic trader profits from low latency 
i.e., the minimal response delay.  

Das et al. (2001) vary the algorithm’s response speed, introduced by a sleep-wake cycle, 
to examine the interaction between humans and algorithmic traders. The “fast” algo-
rithm would be idle for 1 second and become active when a new quote or trade is made. 
The “slow” algorithm would be idle for 5 seconds and only become active when a trade 
is made. When active, the algorithm would update its orders by submitting a new order 
or updating the existing order. Das et al. (2001) find that both the “fast” and “slow” 
algorithms outperform their human counterparts and observe decelerating price trajec-
tories in both set-ups.  

 
6   Besides the experimental studies studying the role of algorithm traders in financial 

markets, some studies employ algorithm traders and do not choose the impact of 
algorithm traders as the primary research question. For example, Cason and Fried-
man (1997) used algorithms trading at fundamentals to train subjects. In the learning 
to forecast experiment by Hommes et al. (2005), the authors also include a funda-
mental algorithmic trader in the market who constantly predicts and trades based on 
the asset’s fundamental value. The purpose of including these robot traders is to 
mimic the mean-reverting forces in financial markets. 
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De Luca et al. (2011) adopt the “fast” and “slow” algorithm with slight adjustments. 
The “fast” algorithm can calculate and submits orders every 1 second, while the “slow” 
algorithm can only calculate every 2.5 seconds and submits orders every 10 seconds. It 
is interesting to note that the interactions between humans and algorithms are flipped 
in Das et al. (2001) and De Luca et al. (2011).7 In Das et al. (2001), the majority of 
trades are observed in the “fast” algorithm setting, and in contrast, they are observed 
with the “slow” algorithm setting in De Luca et al. (2011). Algorithms tend to trade 
among themselves first before trading with human traders in the “slow” algorithm set-
ting in Das et al. (2001) and in the “fast” algorithm setting in De Luca et al. (2011).  

Cartlidge et al. (2012) conduct a series of laboratory experiments assessing the role of 
algorithms’ speed in market efficiency and their performance in an environment where 
human traders and algorithms interact in the market. They demonstrate that the market 
inhabited with slower algorithms, whose trading speed resembles the speed of human 
traders, will be closer to a competitive equilibrium, and the market efficiency is en-
hanced. Also, in an environment where human traders interact with algorithms, Cart-
lidge and Cliff (2013, 2018) investigate the impact of the millisecond-by-millisecond 
speed of the stock price movement. They argue that there is a price movement speed 
threshold above which human traders can still engage in market transactions and trade 
with human traders and algorithms. Below the threshold, the speed is too fast for human 
traders to react, and they can no longer participate in the market. Essentially, it is a 
tipping point that creates a phase transition from a mixed human-robot phase to a robot-
robot phase. Cartlidge and Cliff (2013, 2018) coined this phase transition as a robot-
phase transition. They also show that faster algorithmic traders cause lower market ef-
ficiency and market disintegration so that algorithms interact with other algorithms in-
stead of algorithmic traders interacting with human traders.  

Peng et al. (2020) investigated the role of speed in different market structures and con-
figurations. They employed hybrid continuous double auction markets where human 
traders exist side by side with algorithmic traders. They partially replicated the result 
of the study done by Das et al. (2001), which shows that algorithmic traders that employ 
simple and speedy adaptive trading rules could outperform human traders. In particular, 
they showed that the result of Das et al. (2001) only holds when these algorithmic trad-
ers act as buyers and the market is balanced in that the demand-supply schedules are 
symmetric and market structures are competitive.  

2.4 Arbitrage Algorithms  

In real-world exchanges, financial assets are traded in fragmented markets because the 
regulatory authorities seek to enforce competition among exchanges to avoid monopoly 
fees for transactions. Market fragmentation can lead to situations in which an identical 
asset is demanded or offered at different prices at different venues, thus creating an 

 
7   It is also important to note that Cartlidge and Cliff (2013) admitted a bug in the 

algorithm’s code used in the experiments of Luca et al. (2011) and Cartlidge et al. 
(2012). 
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arbitrage opportunity (e.g., see Figure 1a). Algorithms can also provide arbitrage price 
discrepancies between an exchange-traded index fund and the assets that compose the 
index. Similar price discrepancies can arise with two or several different exchange-
traded funds based on the same index or between a derivative financial contract and the 
underlying asset. Automation is usually much faster at exploiting arbitrage opportuni-
ties than manual transmissions and, therefore, arbitrage algorithms have been among 
the most frequently applied algorithmic traders in financial markets (Kirilenko and Lo 
2013).  

Harrison (1992) studies an 8-period lived asset with imperfect payoff information. In-
cluding two one-period-ahead futures markets, for period 4 and period 8, he implements 
an algorithm that arbitrages between spot and futures CDA market (in treatment 4). 
Harrison (1992) concludes that arbitragers could be crucial for ensuring the spot mar-
ket’s informational efficiency and help constrain the length of any mispricing in spot 
prices in the study.  

Angerer et al. (2019) study algorithmic arbitrage in the setting of Charness and 
Neugebauer (2019), which allows for trading in twin markets of the Smith et al. (1988) 
type. The dividends in the two markets A and B are perfectly correlated modulo a shift, 
i.e., the B-share pays in each period the same dividend as the A-share plus a fixed pay-
ment of 24 cash units. The authors investigate two liquidity absorbing algorithms called 
FastBot (see Figure 1a) and SlowBot, the liquidity providing algorithm LiqBot (see 
Figure 1b), and the two control treatments NoBot (in which the potential participation 
of an algorithm is announced, but no algorithm participates) and Control (with no an-
nouncement and no algorithm). The FastBot arbitrager immediately exploits arbitrage 
opportunities in real-time when they arise, while the SlowBot arbitrager trades with a 
delay. The study suggests that algorithmic arbitrage improves market efficiency. The 
arbitrage algorithms help approximate the law of one price and marginally amend the 
discovery of the fundamental value. The market quality is generally enhanced. Volatil-
ity is lower, transaction volume higher, and, particularly in the LiqBot treatment, li-
quidity is enhanced relative to the NoBot treatment. The arbitragers reap some earnings 
from human subjects upon transaction by design.  

Nonetheless, subjects’ earnings are not significantly lower compared to the treatments 
without algorithms. Interestingly, the SlowBot algorithm amends market efficiency 
similar to the other two algorithms, although it earns only a fraction of what the other 
algorithms earn. Finally, the authors find no announcement effect (see the following 
subsection) comparing the treatments Control and NoBot.  
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Figure 1. Liquidity (a) absorbing and (b) providing algorithmic arbitrageurs in  
Angerer et al. (2019) 

P, B, O, F, DF, and x denote price, bid, offer fundamental value, the difference in fundamental 
value, and a random variable with support on the interval [0, F/2], respectively. The algorithmic 
trader exploits an arbitrage opportunity by selling high and buying low an identical claim of cash 
flows transacting at prices PA and PB. The sequence of events is numbered 1-4; 5 indicates the 
size of the arbitrage gain. 

Neugebauer et al. (2020) test the Modigliani-Miller theorem of dividend policy irrele-
vance involving a FastBot algorithmic arbitrager (as in Angerer et al. 2019) and the 
trading of two 4- period lived assets in a complete asset market. Each asset pays a div-
idend at the end of the period, which is drawn without replacement from a set of four 
dividends. After the four regular dividends, shareholders receive a liquidating dividend 
which is high or low with equal probability. Owed to the fact that the remaining regular 
dividends are known, the difference in the fundamental value of the two assets is known 
in each period. Hence, if order in one market crosses the spread in the other market, an 
arbitrage opportunity arises (step 2 in Figure 1). In the treatment with the algorithmic 
arbitrager, such arbitrage opportunities are immediately exploited. The result of the 
study is that the law of one price (and thus dividend policy irrelevance) holds with and 
without arbitrager if dividend streams of both assets are identical. If dividends are not 
identical, the Modigliani-Miller theorem of dividend policy irrelevance can only be 
supported in the presence of (and must be rejected without) the algorithmic arbitrager. 
Hence, the result of the study adds further laboratory evidence that an algorithmic ar-
bitrager may amend market efficiency.  

Rietz (2005) studies index arbitrage in a 15-times repeated one-period CDA setting. At 
the beginning of each period, subjects are endowed with green and blue assets in a 
prediction market. One of the assets generates a dividend of $0.50 and the other a div-
idend of $0.00. The dividend- paying asset is determined by drawing from a bag with 
14 green and 6 blue balls at the end of the trading period. Hence, the fundamental div-
idend value for the green asset is $0.35 and $0.15 for the blue asset, and predicted 
relative prices are $0.15/$0.35. During the period, subjects trade green and blue assets 
for cash, and subjects can buy a bundle containing one green and one blue asset from 
the experimenter or sell the bundle to the experimenter for the bundle’s dividend value 
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of $0.50 in cash. Arbitrage opportunities arise whenever the sum of bids (offers) for the 
two assets totals more (less) than the bundle value. If such an opportunity arises, the 
arbitrager exchanges the bundle for the two assets. In the treatment with the arbitrager, 
subjects are informed about its functioning in the instructions. The results of the study 
are as follows: the arbitrager is involved in most of the transactions, and transaction 
volume and volatility increase significantly; prices drop relative to the treatment with-
out arbitrager, where prices usually are above fundamentals; but relative prices are 
driven away from their predicted value, with prices of blue assets above and green as-
sets below their fundamentals; and individuals holding less diversified portfolios. 
Hence, this evidence suggests that the arbitrager supports the law of one price but not 
always aids market quality and the price discovery of single asset fundamentals.  

Grossklags and Schmidt (2006) also study arbitrage in a prediction CDA market. Dif-
fering from Rietz (2005), where the bundle involves two securities, Grossklags and 
Schmidt’s bundle involves five securities and increased complexity. The algorithmic 
arbitrager is involved in about every fifth transaction. Surprisingly, price efficiency in 
terms of the law of one price does not increase with algorithmic arbitrage. Even more 
surprising, in one treatment, the algorithmic arbitrager’s presence is not announced, and 
in that treatment, price efficiency is significantly worse than without the participation 
of the arbitrager.  

Berger et al. (2020) study latency arbitrage in a repeated CDA market for a one-period 
lived asset with induced values, hence similar to Smith (1962) but with challenges to 
price discovery. In this setting, an algorithmic “HFT” trader, which is not announced, 
basically front-runs incoming orders to book an immediate gain. The first one, labeled 
directional trading algorithm, realizes an immediate gain via the submission of two or-
ders within the queue when a subject submits a market order; for example, if two offers 
to sell are outstanding at 100 and 101 and a market buy order is submitted, the algorithm 
buys at the best offer of 100 and sells to the incoming bid at 100.9 just a point below 
the second-best offer price. The second one, labeled arbitrage algorithm, front-runs any 
incoming limit order that crosses the spread realizing an immediate gain (such as PB – 
PA in Figure 1a, but within one market) through two transactions. For example, if one 
offer to sell is outstanding at 100 and a bid at 101 is submitted to the market, the algo-
rithm buys at the best offer of 100 and sells to the incoming bid at its limit of 101, thus 
realizing an immediate gain of 1 cash unit. Berger et al. (2020) report market quality 
enhancements, including an increase in transaction volume and bid-depth of the order 
book, in the human-algorithm environments relative to the baseline market with human 
subject only.  

2.5 Manipulation 

Market manipulations have always been a concern of market participants. Putniņš 
(2012) surveys manipulative practices in real-world exchanges, the theoretical and em-
pirical literature. A great advantage of laboratory experiments on market manipulations 
compared to real-world discovery is that the experimenter can unequivocally identify 
manipulation in real-time and its effects of price distortion relative to fundamentals.  
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Leal and Hanaki (2018) address the HFT practice of market-making and the manipula-
tive practice of spoofing in a CDA market with long-lived assets (Smith et al. 1988). “ 
’Spoofing’ involves intentionally manipulating prices by placing an order to buy or sell 
a security and then canceling it shortly thereafter, at which point the spoofer consum-
mates a trade in the opposite direction of the canceled order” (Kirilenko and Lo 2013, 
p. 66). Leal and Hanaki (2018) do not concentrate their analysis on the direct effects of 
spoofing and market-making but report the effects on subjects’ beliefs of the potential 
presence of such an algorithm.8 We report their experimental design and results in the 
following subsection. 

Veiga and Vorsatz (2009, 2010) investigate the impact on price distortions from ma-
nipulation (similar to a “pump-and-dump” scheme, i.e., an attempt to boost the price of 
the stock to sell it high) performed through an algorithm in an experimental hybrid 
market. Veiga and Vorsatz (2009) set up an experimental CDA market for an asset that 
pays a high or low dividend with equal probabilities. The authors consider two treat-
ments. In the control treatment and manipulation treatment, one-third of the market 
participants are informed with certainty about the dividend value. In the manipulation 
treatment, subjects know about the presence of the algorithm but not its strategy. The 
algorithm is programmed to buy 10 shares out of 24 when the market opens, thus push-
ing up the price, and then to sell them back to the market before the price returns to its 
normal level. The authors find that successful manipulation is possible when the asset’s 
actual dividend value is low because there is a confusion between informed traders and 
manipulators. When the actual dividend value is high, the manipulator algorithm cannot 
distort prices because the competition between the informed traders ensures conver-
gence to the dividend value.  

In the follow-up study, Veiga and Vorsatz (2010) investigate manipulation in a CDA 
market with partially informed traders as in Plott and Sunder (1988). In this set-up, 
participants again trade one asset, taking three possible values with equal probabilities. 
In the first treatment, half of the participants are imperfectly informed about the asset’s 
value (no aggregate uncertainty), while others are uninformed. In the second treatment, 
all subjects are partially informed, and in the third treatment, finally, only 1/3 of the 
participants are perfectly informed, with the others staying uninformed. The authors 
report that manipulation appears to be successful only with perfectly informed insiders 
when the asset’s actual value is low and explains this result with the subjects’ risk aver-
sion. Veiga and Vorsatz’s (2009, 2010) two laboratory experiments provide an argu-
ment in favor of the regulation obliging market insiders to disclose their transactions.  

 
8   The authors report data on the hybrid markets in the appendix of the paper. The 

transaction volume is increased relative to the markets without algorithms impacting 
mispricing and slowing convergence on fundamentals 
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Other experimental studies on manipulation do not use algorithmic traders but offer 
incentives to subjects to distort market prices (Hanson et al. (2006), Comerton-Forde 
and Putniņš (2011)).9 

2.6 Announcement effect  

Today, a person committing transactions in the financial market should reasonably ex-
pect an algorithmic trader as his or her counterparty. At the same time, the impact of an 
algorithm’s presence or the possibility of its presence on humans’ actions and expecta-
tions might be nontrivial. Thus, an important question regarding investor psychology is 
whether the possibility of interacting with an algorithm has a measurable influence on 
human behavior and the market. The evidence is mixed.  

As pointed out above, Grossklags and Schmidt (2006) study a prediction market with 
an algorithmic arbitrager. The paper suggests that the announcement of the presence of 
algorithms increases market efficiency raising the rate of price convergence to the equi-
librium relative to the setting where the algorithm is present, but this presence is not 
announced. Within the experiment, three treatments are investigated: no algorithm and 
no announcement (baseline); algorithm and no announcement; algorithm and an-
nouncement. Overall, announcement leads to the increased market efficiency, but at the 
same time, the algorithm’s presence without announcement results in a decrease in the 
convergence rate in comparison to the baseline treatment. The authors explain that ar-
bitrage algorithms tend to decrease the trading opportunities for humans, which results 
in a lower number of trades and distortion of the information aggregation process. How-
ever, when the presence of the algorithms is announced, subjects adapt their behavior 
by switching to more conservative trading strategies bidding closer to the fundamentals.  

 

9 Hanson et al. (2006) study price manipulation in a prediction market in which 
manipulator subjects receive a bonus payment based on price distortions. The authors 
find that the attempts to distort the price are short-lived due to successful counteractions 
of other market participants. However, it is important to emphasize that in this setting 
everyone was informed about the manipulators’ presence, their objective function and 
the direction of the manipulation. Therefore, the authors call for further research with 
the relaxed assumptions before claiming that (prediction) markets cannot be 
manipulated. Comerton-Forde and Putniņš (2011) investigate the impact of closing 
price manipulation. One of the main findings is that market manipulations through 
aggressive buying or selling activities just before the market closing can effectively 
distort the price. They investigate the possibility of punishment of manipulators by the 
other market participants, but find that others are not always able to identify 
manipulation. In fact, despite closing price manipulation practices being illegal as they 
create an illusion of market interest and hinder the price discovery process, it seems 
complicated to actually proof and prosecute manipulations in financial markets.  
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Farjam and Kirchkamp (2018) also suggest a positive announcement effect. Their sub-
jects seem to behave more rationally following the announcement, bringing transaction 
prices closer to the fundamental value than without the announcement. The experi-
mental design involves a six- subjects CDA market with one multi-period lived asset 
(Smith et al. 1988). The study compares price deviations from the fundamental value 
across the two treatments: either subject is told that the algorithm may be present in 
their market or that the algorithm is not present. Meanwhile, no algorithm participates 
in the experiment. The authors align subjects’ expectations by asking early participants 
to describe the algorithm and then sharing the prepared wordle with the other subjects 
claiming that the algorithm is programmed based on this description.10 

Leal and Hanaki (2018) suggest no announcement effect on prices but find an effect in 
the elicited first-period beliefs. The experiment involves three treatments that differ in 
the instructions only. The treatment human-only (HO) makes no reference to algorith-
mic traders. In the instructions to the treatments spoofing (SP) and market-making 
(MM), subjects receive the information that they may interact with an algorithmic 
trader in the market, and the general strategy of the algorithms MM and SP are ex-
plained. SP is supposed to be taking advantage of human traders, while MM is supposed 
to provide more liquidity to the market. Surprisingly, the result of the experiment shows 
little difference between the two types of market. The results suggest that in MM and 
SP, relative to HO, initial average price forecasts are higher and more volatile. Initial 
orders are submitted later. Besides these effects, the market price in MM and SP devi-
ates more from the fundamental value than in HO.  

Finally, as pointed out above, Angerer et al. (2019) find no announcement effect and 
no pricing difference relative to fundamentals in the CDA market study with two per-
fectly correlated assets. The authors compare their control treatment without the an-
nouncement of potential algorithm participation with their NoBot treatment in which 
the potential participation is announced, but no algorithm participates. Different from 
the studies above, no information is disclosed on the strategy of the algorithm.  

3 Algorithms in the hands of the subject  

While many experiments sought to treat human traders independently from algorithmic 
traders, Aldrich and López Vargas (2020) and Asparouhova et al. (2020) allowed their 
subjects to choose to employ algorithmic strategies in-market experiments.  

Aldrich and López Vargas (2020) asked subjects to choose a predefined market maker 
or sniper algorithm and decide on costly improvements in latency. In their experimental 
framework, a single asset is traded on a single exchange, and traders can submit limit 
orders to the exchange indicating the direction of trades, the limit quantity, the limit 

 
10 The authors also conducted a treatment in which an algorithm participates trading on 
fundamental value but report no data of that treatment.   
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price, and the duration with which the limit orders should remain active. Trades occur 
when a trader submits a market order that matches the highest (lowest) limit price listed 
in the order book. Aldrich and López Vargas (2020) consider two market environments: 
the CDA market and the first batch auction (FBA) format. In the experiment, trader-
subjects can employ algorithms to conduct transactions on their behalf. The paper aims 
to compare the two market formats (CDA vs. FBA) in terms of a set of outcome varia-
bles, including market liquidity, traders’ behaviors, the level of transaction costs, and 
informational efficiency. The paper shows that FBA is less prone to predatory trading 
behavior than the CDA.11 In the CDA the algorithms produce permanent mispricing, 
and the authors report flash crashes in the first period.  

Asparouhova et al. (2020) allow subjects to trade manually or deploy algorithms, and 
they are assumed to be aware of the potential presence of traders employing algorithms. 
The trading environment is a CDA market with the declining fundamental value of the 
underlying asset used in Smith et al. (1988). The algorithms either act as a market-
maker or a reactionary bot. The market-maker bot provides liquidity by submitting a 
buy order (market-maker buyer) for one unit of an asset at 5 cents below the asset’s 
fundamental value or sell order (market-maker seller) for one unit of an asset at 5 cents 
above the asset’s fundamental value. The reactionary bot absorbs liquidity; it submits 
a buy order for one unit at fundamental value when a sell order arrives at 5 cents below 
the asset’s fundamental value and submits a sell order at fundamental value when there 
is a buy order submission at 5 cents above the asset’s fundamental value. Asparouhova 
et al. (2020) report that subjects utilize algorithms frequently, and roughly between 
67%-80% of trades employed algorithms. They are interested in evaluating whether 
putting algorithms in the hands of subjects reduces the extent of asset mispricing but 
find no evidence to that effect. Price bubbles occur as frequently as without algorithms 
in the market. Further, they show that subjects who use algorithms do not earn higher 
earnings than manually trading subjects, and the use of algorithms causes a higher fre-
quency of price surges in the first rounds of trading. For future research, it would be 
interesting to extend this framework to evaluate other types of algorithmic traders be-
yond market-making and reactionary algorithms.  

 
11 In a related study, Kahpko and Zoican (2020) investigate whether a speed-bump 
policy in a continuous auction environment could have a similar effect. The 
experimental treatments involve the submission of an order, the first arriving order wins 
or the winning order is chosen randomly if several orders arrive first. Orders generally 
arrive delayed. Subjects can make latency investments to decrease the arrival time. The 
authors find that subjects do invest in low-latency trading technology in the control 
treatment without speed bumps. In the experimental treatment, in which speed bumps 
artificially delay arrival times, investment in low-latency technology is not reduced if 
the speed bumps are identical to everyone. Only if speed bumps are heterogenous, 
investments in low latency technology drop by 20% relative to the control treatment. 
This result seems robust whether the time delay involved with the speed bumps is 
certain or uncertain.  
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4 Conclusion 

The nascent experimental research on the interaction between human and algorithmic 
traders in experimental markets can be organized in studies in which algorithms are in 
the researcher’s hands and those in which the researcher puts algorithms in the hands 
of the human subject.  

In the first category, the algorithm in the researcher’s hand, the reported studies have 
addressed research questions concerning the performance of algorithms and humans, 
the impact on market quality, and investor psychology. The answers to the questions 
are not unambiguous. The results suggest that algorithms (particularly the fast ones) 
frequently outperform humans in simple market settings. However, in more complex 
market situations, algorithms (particularly the fast ones) may do worse. Similarly, mar-
ket quality would usually be enhanced in human-algorithm markets relative to all-hu-
man markets, particularly with passive algorithms like arbitragers, but may be wors-
ened with manipulators. Investors’ behavior and market prices may be attracted closer 
to fundamentals when the experimenter announces a possible interaction with an algo-
rithmic trader, or no difference may be visible in the data. It seems to depend on the 
experimental design, and more data are needed to conclude.  

In the second category, an algorithm in the hand of the subjects, real-world phenomena 
like flash crashes can be reproduced in the laboratory when strategies of inexperienced 
subjects align. According to the available studies, the efficiency of the CDA market 
may be unaffected if subjects take algorithms in their hand or if they trade by submitting 
orders. Again it would be good to have more data, possibly involving other algorithms 
than market makers and snipers.  

To make a clear statement on the impacts of specific algorithms, we need replication 
studies. To better understand how hybrid markets work, all kinds of reasonable algo-
rithmic trading systems should be studied in the laboratory, including those presented 
here, like SFDAT, genetic algorithms, etc., and algorithms not presented here, like neu-
ral networks. Besides, it might be interesting to conduct some studies with financial 
professionals as human subjects to understand better whether subjects with real market 
experience respond to the presence of algorithm traders or use the algorithm bots dif-
ferently from “standard” participants in the laboratory experiments. As the one of Al-
drich and Lopez Vega (2020), market design studies that experimentally evaluate trad-
ing institutions can be important to learn to avoid flash crashes.12 

 
12 An interesting paper in that respect is the simulation study of Brewer et al. (2013). 
The authors simulate limit orders at random arrival times in the CDA market to study 
market erosion amid a large order that introduces a flash crash. They find that the 
severity of the erosion depends on the market structure. Their study includes the 
following alternative structures; minimum resting times, trading halts, and switching to 
call auction mechanism amid a flash crash. Their results suggest that the temporal 
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To conclude, experimental hybrid market studies can be informative to researchers, 
traders, and regulators, whereas evidence from real-world observation is sometimes 
guesswork or sometimes impossible to obtain. We are at the beginning.  
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Abstract. This paper presents a probabilistic extension of the well-
known cellular automaton, Game of Life. In Game of Life, cells are placed
in a grid and then watched as they evolve throughout subsequent gen-
erations, as dictated by the rules of the game. In our extension, called
ProbLife, these rules now have probabilities associated with them. In-
stead of cells being either dead or alive, they are denoted by their chance
to live. After presenting the rules of ProbLife and its underlying charac-
teristics, we show a concrete implementation in ProbLog, a probabilistic
logic programming system. We use this to generate different images, as
a form of rule-based generative art.

1 Introduction

Game of Life (or Life) [9] is a well-known cellular automaton invented by John
Conway, which takes place in a rectangular grid consisting of cells that are
either “dead” or “alive”. The grid goes through multiple generations, simulating
“evolution”, in which cells can die, survive, or be born based on their number
of living neighbours. It is often called a 0-player game: after selecting an initial
state of cells, we sit back and watch the grid evolve through time.

In this paper we present ProbLife, which extends Game of Life with a prob-
ability element and continuous cell values in the range of [0..1]. While there al-
ready exist many extensions and variations of Life (and other cellular automata)
that include probabilistic elements, each of these introduces the concept of “prob-
ability” in different ways. ProbLife distinguishes itself in two aspects: (a) rules in
ProbLife have a probability associated to them and (b) instead of being limited
to binary values, the cells can have any value in the continuous range of [0..1].

To play ProbLife, we create a practical implementation in the form of a proba-
bilistic logic program in ProbLog. This approach allows us to elegantly represent
the logic of ProbLife, in a flexible manner. As such, it can be used to quickly
prototype different rulesets and experiment with the associated probabilities.

The act of generating grids from an initial state based on a predefined set
of rules can be classified as a form of rule-based generative art [6]. While the
grids generated by standard Game of Life can only be visualised dichromatically

? This research received funding from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

Regular papers BNAIC/BeneLearn 2021

355



(typically in black and white), the cells in ProbLife, due to their continuous
nature, can be drawn using colour gradients.

In short, the contributions of this paper are:

– an overview of the Game of Life variants that include probabilities;
– the presentation of ProbLife, a probabilistic extension of Game of Life;
– a concrete implementation of ProbLife in ProbLog.

This paper is structured as follows. In Section 2, we elaborate on the specifics
of Life and its variants, with a specific focus on those with probabilistic or
continuous elements. Afterwards, we present ProbLife and its rules in Section 3,
and show a concrete ProbLog implementation in Section 4. Finally, in Section 5
we discuss ProbLife in relation to the other probabilistic variants, present some
interesting ProbLife instances we were able to find, and conclude.

2 Game of Life, extensions and variants

To play Conway’s Game of Life [9], a player creates a state of living cells in a
grid, after which they can observe the life inside evolve as defined by a set of
rules. This set consists of two rules, which both depend on the exact number of
living neighbours. The neighbourhood of a cell are those eight cells that directly
surround it. The rules of Life are as follows:

1. A living cell survives to the next generation if it has exactly two or three
living neighbours.

2. A cell is born if it was dead in the previous generation, and had exactly three
living neighbours.

In this way, the first rule specifies the “survival” criterion for a living cell, and
the second rule specifies the “birth” criterion for a dead cell to be born. An
example of these rules in action is shown in Figure 1.

(a) Start state (b) State 2 (c) State 3

Fig. 1: Example of the Game of Life rules applied to a start state.

Many extensions and variants exist for Game of Life, which can be categorised
based on how they differ from the original. The most straightforward variants
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simply alter the ruleset, such as the cellular automatons “Flock”, in which cells
can only survive with 1 or 2 neighbours, and “Day and Night”, which has four
rules for survival, and four rules for being born. Other variants introduce more
fundamental changes, such as converting Life into 3D [3], changing the size of the
neighbourhood (e.g., Larger than Life [8]), changing the grid to be non-square
[4], and replacing the rules of Life by a neural network that learned to “regrow”
certain patterns [11].

For this paper however, we focus on those variants which add probability
to the Game of Life – in any form whatsoever. For example, in [2] the authors
describe their Life extension “Probabilistic Cellular Automata, Extension of the
Game Of Life” (PCAEGOL), in which the value of a neighbouring cell can be
“erroneous”. Here, there is a certain probability of such an error occurring for
each of the eight neighbours: for example, there could be a 20% chance to count
the left neighbour as being dead, while it actually is alive. These errors are not
consistent, in the sense that if a neighbour is considered erroneous for one cell,
it might not be so for another cell. The added probability of errors leads to
the game becoming nondeterministic, where the same initial state can lead to
different outcomes.

In [10], the authors present Stochastic Game of Life (SGL). This variant adds
probability in two aspects of the game: (1) the survival rules have a probability
ps associated to them, and (2) cells are always born if they have precisely three
neighbours in the previous state, but also have a probability of pb to be born if
they have precisely two neighbours.

Some works, like that of [13], introduce a new stochastic component known
as “temperature” T , which influences the probability of the rules in function of
the density of the grid. Even further, regardless of the rules set by the player,
T can influence the life or death of a cell, acting as a way of introducing chaos
into the system.

In Life, and most other cellular automata, the value of all cells is updated
synchronously, i.e., at the same time. [5] presents an asynchronous variant, where
each cell is no longer guaranteed to be updated at each time step, but instead
only has a chance to do so. Similar to the previous variants, this leads to a
nondeterministic automaton.

Besides variants that introduce probability, there are also those variants that
introduce continuous elements. For example, SmoothLife, as introduced in [12],
transforms the rules of Life to work in a continuous grid, with a continuous
function for the neighbourhood of a cell. In [1], the authors extend Life with
continuous cell values, similar to this work. They model the game’s rules using
a continuous transition function, which also contains a temperature component
T . As T rises, the transition function becomes less precise, which in turn causes
the cell values to become increasingly fuzzy, representing “errors” in the system.

Regular papers BNAIC/BeneLearn 2021

357



3 ProbLife

In ProbLife, the value of a cell is no longer restricted to 0 (dead) or 1 (alive).
Instead, it can have any value of the continuous domain [0..1], where the value
of a cell at time t represents the probability that the cell is alive at that time.
For example, a cell value of 0.8 implies an 80% chance of living. Note that this
preserves the meaning of 0 and 1 as guaranteed dead (0% chance to live) and
guaranteed alive (100% chance to live). The value of a cell in ProbLife is defined
by a set of rules that denote the probability of a cell surviving or being born,
given its exact number of living neighbours. Such a rule, with a probability x
and a number of living neighbours n is written as follows:

pc(n) = x. (1)

with n an integer between 0 and 8, c either “s” (survive) or “b” (birth), and x a
real number between 0 and 1. For example, a rule stating that there is an 80%
chance for survival with exactly 4 neighbours is denoted by the following rule.

ps(4) = 0.8. (2)

The value of a cell at column i, row j and time t+ 1 is then defined as:

Ct+1(i, j) =

8∑

n=0

Nt(i, j, n)×
(
ps(n)× Ct(i, j) + pb(n)×

(
1− Ct(i, j)

))
. (3)

with Nt(i, j, n) the probability that the cell at (i, j) had n neighbours alive at
time t.

It is easy to see that ProbLife generalizes the original Game of Life, since we
can recover the latter by the following ruleset:

pb(3) = 1.

ps(2) = 1.

ps(3) = 1.

pe(i) = 0, for all other e ∈ {s, c} and 0 ≤ i ≤ 8

(4)

Figure 2 shows an example of ProbLife in action. Here, the probability for a
cell to live is shown in two ways: (1) the colour of the cell, where red represents a
high probability, blue represents a low probability and green represents a prob-
ability in between, and (2) the number in the cell, which corresponds directly
to its chance to live. The example uses a modified version of the standard Life
ruleset, where the survival and birth probabilities have been set as respectively
90% and 80%: ps(2) = 0.9, ps(3) = 0.9, pb(3) = 0.8. We have found this ruleset
to give good results, and will continue to use it for all other examples in this
work as well.

Due to the probabilistic nature of ProbLife, cell configurations often die out
completely after a few generations. Indeed, on average the cell values will de-
crease with every generation, until the grid is empty. While there is no way to
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1.0 1.0

1.0

1.0 1.0

(a) Start state

0.8

0.8 0.9

0.9 0.9

(b) State 2

.52 .46

.46 .35 .41

.82 .82

(c) State 3

Fig. 2: Example of ProbLife with pb(3) = 0.8, ps(2) = 0.9 and ps(3) = 0.9.

reverse the decline, there are two main ways to get around this inevitable “ex-
tinction” by reaching stabilization. The straightforward solution is to add rules
with a probability of 1 in such a way that the cells stabilize after a few genera-
tions. Alternatively, it is also possible to add a rule which causes dead cells with
exactly 0 living neighbours to become alive (e.g. pb(0) = 0.8), thereby turning
ProbLife into a so-called “strobing rule1”. In this latter case, the grid can never
be empty for more than one generation, i.e., it is not possible that every cell has
a zero probability of being alive for two consecutive states.

4 ProbLife in ProbLog

This section shows that ProbLife can be elegantly implemented in the ProbLog [7]
system, a probabilistic extension of Prolog. This allows for quick experimentation
with different rulesets as a way to easily create prototypes.

A ProbLog program consists of a set of probabilistic facts, and a set of rules.
A probabilistic fact “Pf :: f” denotes a Pf ∈ [0..1] probability for the atom f to
be true. Rules in ProbLog are similar to those in Prolog, but with the addition
of probabilities. Concretely, they are of the form

Pr :: h :− b1, . . . , bn (5)

where the head h evaluates as true with a probability of Pr if the body b1, . . . , bn
evaluates as true. Here, the body consists of multiple body atoms bi, which all
need to be true for the body to be true. More information on the syntax and
semantics of ProbLog can be found in [7]. We can now translate the rules of
ProbLife to ProbLog as follows. A ProbLife rule ps(n) = z becomes:

z :: alive(X,Y, T ) :− T > 0, Tp is T − 1, alive(X,Y, Tp),neigh(X,Y, Tp, N).

and a rule pb(n) = z is translated to:

z :: alive(X,Y, T ) :− T > 0, Tp is T − 1, not(alive(X,Y, Tp)),neigh(X,Y, Tp, N).

1 https://conwaylife.com/wiki/Strobing_rule
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where alive(X,Y, T ) is a predicate to represent a cell being alive at position
(X,Y ) at time T , and neigh(X,Y, T,N) a predicate to represent that the cell at
(X,Y ) has exactly N living neighbours at time T . To denote the set of initially
alive cells, we also introduce a predicate initAlive(X,Y ), and add a rule that a
cell is always alive at time 0 if it is part of the initial cells. For example, the
ProbLife ruleset shown in (4) is represented in ProbLog as follows:

alive(X,Y, 0) :− initAlive(X,Y ).

0.9 :: alive(X,Y, T ) :− T > 0, Tp is T − 1, not(alive(X,Y, Tp)),neigh(X,Y, Tp, 3).

0.9 :: alive(X,Y, T ) :− T > 0, Tp is T − 1, not(alive(X,Y, Tp)),neigh(X,Y, Tp, 2).

0.8 :: alive(X,Y, T ) :− T > 0, Tp is T − 1, alive(X,Y, Tp),neigh(X,Y, Tp, 3).

Finally, the grid size and the initial state of a ProbLife instance are defined
via ProbLog facts. E.g., the example shown in Fig. 2 contains the following facts:

row(0). row(1). row(2). row(3). row(4).

col(0). col(1). col(2). col(3). col(4).

initAlive(1, 1). initAlive(2, 1). initAlive(3, 3). initAlive(2, 4). initAlive(3, 4)

A full ProbLog implementation of ProbLife is available online2, together with
the code for a ProbLife editor.

5 Discussion & Conclusion

We will now briefly compare ProbLife to the other probabilistic variants de-
scribed in Section 2. The main difference with the other automatons is that,
while ProbLife introduces probability, the process of generating new states is
actually deterministic. Indeed, instead of making a choice between setting a cell
as alive or dead, we instead assign it the probability of being alive. When re-
running the same initial state, these living probabilities will always remain the
same. Using ProbLog it is also possible to generate a sample run of a ProbLife
system, i.e., one of the possible worlds. In this case the cells would be binary
again, instead of continuous, and would represent one possible outcome. E.g.,
the Life example shown in Figure 1 is a sample of the ProbLife example shown
in Figure 2. Moreover, it is possible to use ProbLife together with ProbLog’s
sampling feature to recreate the probabilistic automaton presented in [10].

A possible application of ProbLife is the modelling of uncertainty. E.g., con-
sider a state in which there is a cell for which we are only 80% sure that it is
alive. Using ProbLife, we could model the effect of this uncertainty on the rest
of the population. Another application is the propagation of an infection on a
population, using a modified version of ProbLife in which cells can be designated
as sick, healthy and/or vaccinated. Using a specific ruleset (e.g., 80% chance of
evolving in a sick cell if unvaccinated, but only 5% if vaccinated), we could model
infections between generations.

2 https://gitlab.com/EAVISE/sva/ProbLife
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As mentioned earlier, generating images based on an initial state and a set
of rules can be seen as a form of rule-based generative art. Using our ProbLog
implementation, we experimented with many different initial states and rulesets
in order to look for any interesting formations. The three most interesting ones
of these are shown in Figures 3, 4 and 5.

Fig. 3: “Unamused tree”

Fig. 4: “Reverse Butterfly”, or, “Cold Water”

To conclude, this paper presents a probabilistic extension of Game of Life,
called ProbLife. It distinguishes itself in the fact that its cells have continuous
cell values in the range of [0..1], and that it remains deterministic. Each rule
in ProbLife has a probability associated to it, meaning that it is possible for a
rule not to be applied. Instead of the state of a cell being limited to either dead
or alive, a cell in ProbLife is represented by its chance to live. We modelled a
concrete implementation of ProbLife in ProbLog, as a way to straightforwardly
experiment with different rulesets and initial states.
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Abstract. Inference and decision making (DM) are ultimate goals of the artificial-
intelligence use. Complexity of DM tasks is the main barrier of their efficient
solutions. Complex tasks are solved by dividing them among cooperating agents.
This requires a knowledge fusion at a solution stage. It always has to cope with
uncertainty. The used Bayesianism quantifies the uncertain knowledge by a prob-
ability density (pd) of modelled variables. The knowledge accumulation evolves
the posterior pd of a parameter in the parametric model of observations. Bayes’
rule updates the posterior pd. It provides a lossless compression of the knowl-
edge in the observed data. An extended Bayes’ rule enables the use of knowl-
edge coded in a forecaster of the modelled observations supplied by an agent’s
neighbour. This rule exploits a weight expressing the trust into the forecaster. The
paper offers yet-missing, algorithmic, data-based choice of this weight. It applies
Bayesian estimation while assuming an invariant trust weight. Simulated exam-
ples illustrate behaviour of the resulting algorithm. They inspect its sensitivity
to violation of the assumed credibility invariance. This prepares solutions coping
with volatile knowledge sources.

Keywords: Trust · Knowledge sharing · Forecasting · Fusion · Decision making
· Bayesianism.

1 INTRODUCTION

Complex decision-making (DM) tasks are solved by dividing them among cooperating
agents1, [7]. This requires a knowledge fusion at a solution stage, [33]. An agent locally
models its environment. It selects its actions according to its local — in information
space and time — aims. The efficiency of such an adaptive agent is enhanced (if not
enabled at all) by sharing a knowledge with its neighbours in the information space.
The neighbours are imperfect and may even act as adversaries. This makes the use
of the shared knowledge strongly dependent on the trust assigned to neighbours. The
trust quantification is actively studied in various contexts, [8,11,34], but it is far from
being matured. The paper contributes to an improvement of this state. It deals with
a specific, but well-applicable, knowledge-sharing scenario. The sharing supports an
agent estimating a parametric model by using observations and Bayes’ rule, [24]. Its

? Supported by MŠMT LTC18075 and EU-COST Action CA16228
1 They are humans, technical tools and their mixed groups. The agent is referred by “it”.
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2 M. Kárný, D. Karlı́k

neighbour irregularly offers a forecaster of the same observation. It adds the number
indicating how many data items the forecaster reflects. The agent processes them by the
extended Bayes’ rule. This rule has its origin in [15]. Its advanced, formally derived,
versions are in [14,26]. They use a trust weight assigned to the neighbour.

The vital, but yet-unsolved, choice of the trust weight is addressed here.

Layout: Sec. 2 makes the paper self-reliant by recalling the used theory. Sec. 3 solves
the addressed problem. Simulations in Sec. 4 illustrate the solution and inspect its sen-
sitivity to the adopted invariance assumption. Sec. 5 touches the case of volatile credi-
bility of the neighbour. Concluding remarks are in Sec. 6.

Notation: The text applies the next agreements:
{{x}} is a set of x’s, its nature is only revealed if need be; x is cardinality of {{x}};
:= defines by assigning; ∝ is equality up to the normalisation; t marks discrete time;
X random variables, their values and realisations are formally undistinguished;
X models are probability densities (pds2) marked by sansmath fonts as all mappings;
X functions with different arguments are different; the text prefers mnemonic labels;
g(xt, yt−1) := gt(xt, yt−1): the time index of a function g drops if it is at its argument;
pt−1(p) is the posterior pd of an unknown parameter p ∈ {{p}}, entering the parametric

model; it is conditioned on the knowledge processed up to time t− 1;
p(p|w, f t) enriches the condition of pt−1(p) by the forecaster f t with the trust weight w.

2 Preliminaries

An agent uses a parametric model mt(o|r, p). This conditional pd relates the observa-
tion o ∈ {{o}} to the regressors r ∈ {{r}} and to an unknown parameter p ∈ {{p}}. The
relation depends on time t ∈ {{t}} := {{1, 2, . . .}}. The posterior (conditional) pd pt−1(p)
quantifies the agent’s knowledge about the unknown parameter p ∈ {{p}} gained up to
time t− 1. Having data dt := (ot, rt), the pd pt−1(p) updates by Bayes’ rule, [24], to

pt(p) =
m(ot|rt, p)pt−1(p)

m(ot|rt,pt−1)
, mt(o|r,p) :=

∫

{{p}}
mt(o|r, p)p(p) dp, t ∈ {{t}}. (1)

The normalising pd mt(o|r,p) models the observation o for the given regressors r and
the knowledge about unknown parameter p ∈ {{p}} stored in the pd p(p). It is agent’s
forecasting model. A subjective prior pd p0, [29], starts the recursion (1).

In the inspected knowledge sharing, a neighbour provides to the agent its forecaster
f t(o) of the observations ot ∈ {{o}}. This non-normalised pd should reflect the situation
with the same regressors rt as those used by the agent for forecasting of ot. The number
νt :=

∫
{{o}} f t(o) do ∈ (0,∞) enhances the knowledge stored in the pd f t(o)/νt. It

declares the amount of data items used for creating the forecaster.
The neighbour forecasts using other knowledge resources than the agent. It means

other models, theories, data sets, processing ways, expert’s opinions, simulations, etc.

2 Pd means Radon-Nikodým derivative, [28], i.e. both a probability density and mass function.
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The theory we rely on, see Prop. 3 in [14], exploits the forecaster f t by the extended
Bayes’ rule. It corrects the posterior pd pt−1(p) to the pd denoted p(p|wt, f t)

p(p|wt, f t) ∝ pt−1(p) exp

[
wt

∫

{{o}}
f t(o) ln[m(o|rt, p)] do

]
, where (2)

wt ∈ [0, 1] is the agent’s trust weight assigned to the neighbour’s forecaster f t. The pd
p(p|wt, f t) is conditioned on the knowledge entering pt−1 enriched by the forecaster f t
weighted bywt. The relation (2) indeed extends Bayes’ rule as a fully trustable,wt = 1,
single, νt = 1, crisp observation ot is modelled by Kronecker’s (Dirac’s) pd

δ(o, ot) :=

{
1 if o = ot
0 otherwise and reduces (2) to (1) as p(p|wt := 1, δt)

(2)︷︸︸︷∝

pt−1(p) exp
[
1×

∫

{{o}}
δ(o, ot) ln[m(o|rt, p)] do

]
= pt−1(p)[m(ot|rt, p)]1

(1)︷︸︸︷∝ pt(p).

It is practically important that for parametric models from exponential f amily (EF,
[4]), the functional rule (2) reduces to an algebraic updating of values of a sufficient
statistic. EF consists of the parametric models of the form

mt(o|r, p) := exp 〈at(d),b(p)〉 , d := (o, r). (3)

They are instantiated by multivariate functions at,b with their values entering the scalar
product 〈·, ·〉. In thought cases, the scalar product has the simple form

〈at(d),b(p)〉 :=
∑

i∈{{i}}
ati(d)bi(p), i <∞, t ∈ {{t}}, (4)

where ati, bi are known real-valued functions.
The used posterior pd pt, conjugated to the model (3), [5], is given by the value of

the i -dimensional statistic σt = (σti)i∈{{i}} with real-valued σti. The pd reads

pt(p) := c(p|σt) :=
exp 〈σt,b(p)〉

n(σt)
, n(σ) :=

∫

{{p}}
exp 〈σ,b(p)〉 dp <∞. (5)

Updating by the extended Bayes’ rule (2) preserves the form (5). It holds

pt−1(p) = c(p|σt−1)
(2)︷︸︸︷⇒ p(p|wt, f t) = c(p|σ(wt, f t))

σi(wt, f t) = σ(t−1)i + wtai(f t, r)δ(r, rt) (6)

ai(f t, r) :=
∫

{{o}}
f t(o)ati(o, r) do, t ∈ {{t}}, i ∈ {{i}}, r ∈ {{r}}.

This important case exemplifies the influence of the trust weight wt ∈ [0, 1].
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Markov’s chain as a member of EF: Markov’s chain models the evolution of data with
a finite number of possible values. Its parametrisation takes all transition probabilities
as the unknown parameter. The next expression uses Kronecker’s δ and d = (o, r)

pot|rt := m(ot|rt, p) =
∏

d∈{{d}}
p
δ(d,dt)
o|r = exp

[ 〈a(dt),b(p)〉︷ ︸︸ ︷∑

d∈{{d}}
δ(d, dt)︸ ︷︷ ︸
ao|r(dt)

ln(po|r)︸ ︷︷ ︸
bo|r(p)

]
. (7)

This is an EF member (3), (4) with i := o|r. Its conjugated pd (5) is Dirichlet’s pd
c(p|σ)∝∏r∈{{r}}

∏
o∈{{o}} p

σo|r−1
o|r . The positive values of the statisticσ := (σo|r)o∈{{o}},r∈{{r}}

describe this pd. They enter the normalisation n(σ) (5), [13],

n(σ) =
∏

r∈{{r}}

∏
o∈{{o}} Γ(σo|r)

Γ
(∑

o∈{{o}} σo|r
) , Γ(v) :=

∫ ∞

0

zv−1 exp(−z) dz, v > 0. (8)

The agent’s forecasting model mt(o|r,p) (1), found by (8) and Γ(v + 1) = vΓ(v), [1], is

m(o|r,p) = m(o|r,σ) = σo|r∑
õ∈{{o}} σõ|r

.

For wt ∈ [0, 1], i = o|r, r, rt ∈ {{r}}, o ∈ {{o}}, the rule (6) gives the sufficient statistic

σo|r(wt, f t) = σ(t−1)o|r + wtf t(o)δ(r, rt), o ∈ {{o}}, r ∈ {{r}}.

3 Estimation of the Trust Weight

The unknown trust weight wt in (2) is a hidden variable. Non-linear stochastic filter-
ing, [10], estimates it optimally. It needs, however, the rarely-available time-evolution
model and quite complex evaluations. This makes us to use local modelling, typical for
adaptive systems. The inspected case of the invariant trust, w = wt, ∀t ∈ {{t}}, prepares
the general solution. Sec. 5 comments the volatile case.

The invariant w extends the parameter p ∈ {{p}} to unknowns (p,w) ∈ ({{p}}, [0, 1])
entering the parametric model and the knowledge processing. A joint pd

pt−1(p,w) = pt−1(p|w)βt−1(w) (9)

describes the knowledge about (p,w) after time t−1 and before t ∈ {{t}}. The factorisa-
tion in (9) is the chain rule for pds, [24]. The conditional pd pt−1(p|w) accumulates the
knowledge about the unknown p ∈ {{p}} when assigning the fixed trust weight w to the
knowledge provided by the neighbour through forecasters offered before time t. The pd
βt−1(w) expresses the agent’s belief that w is the proper trust weight for the neighbour.
The neighbour’s forecaster f t(o) enters the conditional version of (2)

p(p|w, f t) ∝ pt−1(p|w) exp
[
wζt

∫

{{o}}
f t(o) ln[m(o|rt, p)] do

]

ζt :=

{
1 if the forecaster f t is available
0 otherwise . (10)
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The introduced indicator ζt allows us to respect irregularity of processing of neigh-
bour’s forecasters without making the notation too complex. The agent’s forecasting
model, normalising (1) for the given pt−1(p|w), is

m(o|r,pt−1,w) :=
∫

{{p}}
mt(o|r, p)pt−1(p|w) dp. (11)

In (10), (11), the weight w concerns the neighbour and thus it enters the posterior pds
pt−1(p|w) but not the agent’s parametric model m(o|r, p).

The data-based updating of the belief βt−1(w) (9) into trust weights w ∈ [0, 1]
may realise after observing how much the neighbour’s knowledge has contributed to
the forecasting quality. The standard Bayes’ rule gives, cf. (11),

βt(w) ∝ m(ot|rt,pt−1,w)βt−1(w). (12)

The implementation of the recursion (10), (11), (12) is generally hard. It is simple
for the discretised trust weight, [19]. The next proposition summarises such updating.

Proposition 1 (Parameter and Trust-Weight Estimation). Let imminent trust weights
bew ∈ (wk)k∈{{k}}, {{k}} := {{1, . . . , k }}, k <∞. They condition pds

(
pt−1(p|wk)

)
k∈{{k}}

quantifying the knowledge about the unknown parameter p ∈ {{p}} of the pd m(ot|rt, p).
The knowledge includes past data collected up to and including time t − 1. It is

enriched by irregularly available neighbour’s forecasters with weights (wk)k∈{{k}}.
The values (wk)k∈{{k}} express the neighbour’s, supposedly invariant, credibility.

They enter the updating of pt−1(p|wk) by the neighbour’s forecaster f t

p(p|wk, f t) ∝ pt−1(p|wk) exp
[
wkζt

∫

{{o}}
f t(o) ln[m(o|rt, p)] do

]
, p ∈ {{p}}, k ∈ {{k}},

with ζt = 1 if f t is available and zero otherwise, cf. (10).
Let beliefs into trust weights wk be βt−1(wk), k ∈ {{k}}, see (9). Then, the updating

of the pds βt−1, pt−1 by data dt = (ot, rt) via the standard Bayes’ rule reads, cf. (11),

βt(wk) =
m(ot|rt,pt−1,wk)

m(ot|rt,pt−1,βt−1)
βt−1(wk)

m(o|r,pt−1,wk) :=
∫

{{p}}
mt(o|r, p)pt−1(p|wk) dp (13)

m(o|r,pt−1,βt−1) :=
∑

k∈{{k}}
m(o|r,pt−1,wk)βt−1(wk)

pt(p|wk) ∝ m(ot|rt, p)p(p|wk, f t).

Prop. 1 applied to EF (3) maps both Bayes’ functional recursions to algebraic han-
dling of the finite-dimensional statistic.

Proposition 2 (Estimation of Parameter and Trust Weight in Exponential Family).
Let trust weights (wk)k∈{{k}} condition conjugated pds pt−1(p|wk) = c(p|σt−1(wk)),
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(5). Let (βt−1(wk))k∈{{k}} be beliefs assigned to the trust weights. Their updating by the
forecaster f t(o), preserves the conjugated form (5) and reads

p(p|wk, f t) = c(p|σ(wk, f t)) =
exp 〈σ(wk, f t),β(p)〉

n(σ(wk, f t))
, n(σ) =

∫

{{p}}
exp 〈σ,b(p)〉 dp

σi(wk, f t) = σ(t−1)i(wk) + wkζtai(f t, r)δ(r, rt) (14)

ai(f t, r) :=
∫

{{o}}
f t(o)ai(o, r)do, r ∈ {{r}}, i ∈ {{i}}, k ∈ {{k}},

with ζt (10) respecting irregular availability of forecasters. The updating by the stan-
dard Bayes’ rule, after having data dt = (ot, rt), see (6) and (14), reads

σti(wk) = σi(wk, f t) + ai(dt), βt(wk) ∝
n(σ(wk, f t))
n(σt−1(wk))

βt−1(wk), k ∈ {{k}}. (15)

Thus, we have to store values of statistics (σ(wk),β(wk))k∈{{k}}. The increments a(f t, rt)
(14) and a(dt) = a(δt, rt) (15) are evaluated once.

Trust estimation for Markov’s chain: Specialisation of Prop. 2 and Sec. 2 imply that
Dirichlet’s pd is conjugated to the Markov’s chain (7). Its degrees of freedom and beliefs
into respective trust weights evolve, for i = o|r, as follows

σo|r(wk, f t) = σ(t−1)o|r(wk) + wkζtf t(o)δ(r, rt)
σ(t)o|r(wk) = σo|r(wk, f t) + δ((o, r), (ot, rt)) (16)

βt(wk) ∝
σ(t)ot|rt(wk)∑
o∈{{o}} σ(t)o|rt(wk)

βt−1(wk), (o, r) = d ∈ {{d}}, k ∈ {{k}},

where ζt (10) respects irregular offers of f t.

Formulae (16) have strong intuitive appeal:
I the forecaster distributes its mass over possible observations o ∈ {{o}} according to

the probabilities f t(o) it assigns them, cf. quasi-Bayes techniques, [31];
I the agent attenuates f t by the trust weight wk ∈ [0, 1] (discarding it for wk = 0);
I the beliefs to weights reflect the neighbour’s contribution to the forecasting quality.

The exploitation of the gained posterior pds depends on the DM task. For instance:
I a point estimate of the trust weight can be constructed, say, ŵt :=

∑
k∈{{k}} wkβt(wk);

IBayesian averaging may estimate parameter p ∈ {{p}}, say, via the marginal pd pt(p)
:=
∑
k∈{{k}} pt(p|wk)βt(wk) or similarly to forecast the observation ot ∈ {{o}}

without specifying a point estimate of the weight;
I the trust estimate may serve to other, neighbour-related, inference or DM tasks.

4 Illustrative Experiments

Experiments illustrate the presented theory and show the sensitivity of the found estima-
tor to the key assumption that the credibility of the neighbour’s forecasters is invariant.
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4.1 Simulation and Evaluation Conditions

The modelled environment was simulated by a discretised version of 2nd order auto-
regressive-regressive Gaussian model

yt = 1.9600yt−1 − 0.9604yt−2 + 0.0004at + 0.0004εt,

where εt was white zero-mean noise with unit variance; εt was independent of the past
values yτ−1, aτ , τ ≤ t. The dynamics corresponds with the double real pole 0.98 and
the unit static gains of actions and of the noise, [3]. Five-valued, integer, uniformly
distributed, independent actions at were used, a = 5. A realisation of 105 samples,
initiated by y0 = y1 = 1, was linearly mapped on positive values and discretised to
ten-valued integer observations ot, o = 10. The sequence (ot, at)

105

t=2 was used for the
choice of the simulated transition probability p(ot|ot−1, ot−2, at). The point estimate of
this pd from the said realisation was used. Work [25] inspired this choice. The 2nd order
Markov model was gained. The agent estimated 1st order model p(ot|ot−1, at, p) =
pot|ot−1,at , rt = (ot−1, at), (7), i.e. the realistic mismodelling error was faced.

The neighbour’s forecaster used the simulated transition probability with the in-
serted condition ot−1, ot−2, at. In the sensitivity-oriented experiments, this ideal fore-
caster was partially replaced by a randomly generated one, see below.

The trust-weight values (wk)k∈{{k}} := {{0, 0.5, 1}}, k = 3, Prop. 1, were inspected.
Prior statistics σ0 (15) had randomly and independently assigned values 1 or 2.
Evaluations used 1000 Monte Carlo (MC) runs each lasting t = 500 steps, giving:

IHistograms of beliefs βt(wk) (9) and of the estimates

ŵt :=
∑

k∈{{k}}
wkβt(wk) (17)

of weights at the simulation end. Figures with time courses show their medians.
IHistograms of forecast errors per step compared to the best available forecast ôit

provided by the simulated transition probability

∆ :=
1

t

∑

t∈{{t}}

∣∣∣|ot − ôt| − |ot − ôit|
∣∣∣. (18)

There, ot is the observation at the time t and judged ôt are the forecasts given by
m(o|r,pt−1,wk), ∀ k ∈ {{k}}, (11) and by m(o|r,pt−1,βt−1) (13).

ITables of basic statistics of the forecast errors (18) at the end of simulations. Their
median, mean, standard deviation (STD) and root mean square error (RMS) are shown.
RMS is taken as the primary indicator of quality when comparing the results.

4.2 Invariant Ideal and Bad Neighbour’s Forecasters

This part shows the behaviour of the proposed processing under met assumptions.

Ideal Neighbour’s Forecaster: The neighbour’s forecaster was the best possible one,
i.e. the simulated f t(o) := p(ot = o|ot−1, ot−2, at), o ∈ {{o}}, at realised ot−1, ot−2, at.
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(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 1: shows medians of: (a) the beliefs βt(w1)�, βt(w2) �, βt(w3) N. (b) the weight
estimate (17). It reflects 103 MC runs with the ideal neighbour’s forecaster.

Results: Fig. 1 shows a fast convergence of the beliefs. The median of βt(w3 = 1)
raised rapidly to 1 and stayed there. Thus, the weight estimate (17) converged to 1, too.

Fig. (2) shows histograms of forecast errors ∆ (18). They are presented for com-
pleteness only. The differences are better seen on statistic values shown in Tab. 1.

(a) Forecast errors of agent using w1 = 0.0. (b) Forecast errors of agent using w2 = 0.5.

(c) Forecast errors of agent using w3 = 1.0. (d) Forecast errors of the proposed way.

Fig. 2: has counts of errors ∆ (18) on the vertical axis and values of ∆ on the horizontal
axis. It reflects 103 MC runs with the ideal neighbour’s forecaster.

Discussion: The results confirm the desirable behaviour of the trust estimator. The high
convergence rate is plausible. As predictable, the best quality is obtained for the fixed
full weight assigned to the ideal forecaster. The proposed way is only slightly worse.
The poorer performance is the cost for the lack of the knowledge of the proper weight.

Bad Neighbour’s Forecaster: In this case, the neighbour’s forecaster was chosen as
useless as it was selected randomly without any relation to the simulated environment.
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Table 1: Forecast errors ∆ (18) with the ideal neighbour’s forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.076 2.079 0.167 2.086
Agent using w2 = 0.5 2.038 2.035 0.165 2.042
Agent using w3 = 1.0 1.992 1.996 0.159 2.002
Proposed way 1.997 1.998 0.161 2.005

Results: Fig. 3 shows that the proposed way behaves as desirable. The medians of be-
liefs into non-zero weights go quickly to 0. The point estimate ŵ (17) goes also to 0.

(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 3: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the bad neighbour’s forecaster.

Histograms of forecast errors are poorly informative and they are left out. Their
statistics are in Tab. 2. The best result is gained for the fixed zero weight ignoring the
bad forecaster. The proposed way is close to it. It needed some data to recognise that
the neighbour’s forecaster is useless.

Table 2: Forecast errors ∆ (18) with the bad neighbour’s forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.069 2.076 0.164 2.083
Agent using w2 = 0.5 2.096 2.094 0.167 2.101
Agent using w3 = 1.0 2.118 2.116 0.165 2.122
Proposed way 2.080 2.081 0.165 2.088

Fig. 4 complements the picture by presenting histograms of beliefs and the weight
estimates (17) at the ends of simulation runs. They show quite small variations.

Discussion: The results confirm the expected desirable behaviour. Similarly as with
the ideally forecasting neighbour, the poor forecasting was quickly recognised. As pre-
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(a) Histogram of belief β(w1). (b) Histogram of belief β(w2).

(c) Histogram of belief β(w3). (d) Histogram of the weight estimate.

Fig. 4: shows counts of values on the vertical axis, the final values of β t and ŵ t on
the horizontal axes. It reflects 103 MC runs with the bad neighbour’s forecaster.

dictable, the best quality is obtained for the fixed zero weight assigned to the bad fore-
caster. The proposed way is only slightly worse. It pays for the lack of the knowledge.

4.3 Neighbour’s Forecasters of Varying Reliability

Randomly Failing Forecaster: In this experiment, the neighbour’s forecaster consists
of ideal forecasters in one half of randomly chosen time moments and of meaningless
forecasters in the remaining half. The distribution of these choices were uniform. It is
tempting to expect that the proper weight given to the forecaster will be around 0.5.
Results: Fig. 5 shows a small initial rise of the median of the belief βt(w3). Since
t = 25, it decreases to 0, which reached around t = 400. The median of the belief
βt(w2) behaves similarly. It leads to the weight estimates decreasing to 0.

(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 5: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the randomly failing neighbour’s forecaster.
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(a) Forecast errors of agent using w1 = 0.0. (b) Forecast errors of agent using w2 = 0.5.

(c) Forecast errors of agent using w3 = 1.0. (d) Forecast errors of the proposed way.

Fig. 6: shows counts of errors∆ (18) on the vertical axis and the values of∆ on the hor-
izontal axis. It reflects 103 MC runs with the randomly failing neighbour’s forecaster.

Fig. 6 presents forecast errors. The only visible difference in Fig. 6 seems to be in
Fig. 6d exhibiting a smaller amount of outliers. This might be a random effect so that
statistics in Tab. 3 are more informative. Fig. 7 shows beliefs in the respective weights
at the ends of simulation runs.

Table 3: Forecast errors ∆ (18) with the randomly failing neighbour’s forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.068 2.074 0.170 2.081
Agent using w2 = 0.5 2.086 2.094 0.181 2.102
Agent using w3 = 1.0 2.116 2.119 0.173 2.126
Proposed way 2.072 2.076 0.173 2.083

Discussion: Against the expectation, the ignoring of unreliable neighbour’s forecaster
is the optimal policy. The weight w1 = 0.0 gives the best result. The proposed way
converges to it giving the second best results.

Improving Forecaster: In this experiment, the forecaster begins with a bad quality and
slowly throughout the simulation it is improving towards ideal reliability. Again, it is
tempting to expect that the weight estimate ŵt will converge to one.

Results: Fig. 8 shows a quite volatile evolution of beliefs. They oscillate before reaching
(probably) stabilised values. The oscillations project into the weight estimate (17).

Tab. 4 summarises the forecast errors. It favourises to neglect the offered forecaster,
w1 = 0.0. The proposed way follows this and it is again the second best.
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(a) Histogram of belief β(w1). (b) Histogram of belief β(w2).

(c) Histogram of belief β(w3). (d) Histogram of the weight estimate.

Fig. 7: shows counts of values on the vertical axis, the final values of β t and ŵ t on
the horizontal axes. It reflects 103 MC runs with the randomly failing forecaster.

(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 8: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the improving neighbour’s forecaster.
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Table 4: Forecast errors ∆ (18) with the improving forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.078 2.081 0.171 2.088
Agent using w2 = 0.5 2.080 2.088 0.172 2.095
Agent using w3 = 1.0 2.088 2.097 0.166 2.104
Proposed way 2.072 2.084 0.169 2.091

(a) Histogram of belief β(w1). (b) Histogram of belief β(w2).

(c) Histogram of belief β(w3). (d) Histogram of the weight estimate.

Fig. 9: shows counts of values on the vertical axis, the final values of β t and ŵ t on
the horizontal axes. It reflects 103 MC runs with the improving neighbour’s forecaster.

Fig. 9 confirms volatility of results in this scenario. It shows quite varying beliefs at
the end of respective simulations.

Discussion: The results discard the over-simplified expectation formulated above. The
estimation dynamics and the forecaster-quality changes influence the results in a quite
complex way. This confirms the need to relax the invariance assumption, see Sec. 5.

Deteriorating Forecaster: In this experiment, the neighbour’s forecaster started as the
ideal one and gradually deteriorated into the bad forecaster. The weight estimate (17)
was expected to rise rapidly to 1 and then to decline to 0.

Results: Fig. 10 confirms the expectation for the initial phase but the weight estimate
does not track the deterioration and stay close to 1 until the simulation end.
Tab. 5 evaluates the forecast errors and shows that the best results are gained when using
fully the neighbour’s forecaster all the time. The proposed way follows this pattern.
Discussion: The experiment confirmed that over-simplified expectations are violated
when the estimation dynamics and the neighbour’s forecaster with a varying reliability
are combined. This makes the further progress outlined in Sec. 5 inevitable.
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(a) Medians of beliefs in particular weights. (b) Median of the weight estimates.

Fig. 10: shows medians of: (a) βt(w1) �, βt(w2) �, βt(w3) N. (b) the weight estimate
(17). It reflects 103 MC runs with the deteriorating neighbour’s forecaster.

Table 5: Forecast errors ∆ (18) with the deteriorating forecaster.
Forecaster Median Mean STD RMS
Agent using w1 = 0.0 2.076 2.081 0.173 2.088
Agent using w2 = 0.5 2.043 2.046 0.168 2.053
Agent using w3 = 1.0 1.999 2.006 0.163 2.013
Proposed way 2.002 2.009 0.161 2.015

5 Towards Handling Volatile Credibility

The assumed invariance of the estimated parameter fits to the assumed invariant trust
weight. Adaptive systems [3] have a long tradition and experience how to cope with a
slowly varying estimated parameter. Various types of forgetting (age-weighting) were
proposed [22] and used even in connection with a trust handling [32].

The forgetting was recognised as a sort of flattening the evaluated posterior pds
[16,17,18,23]. Thus, it can be directly applied both to p and w estimation, possibly
using the idea of partial forgetting [6]. There are well-established rule of thumbs for the
choice of forgetting factor. In critical cases, it may extend the estimated parameter, but
it increases the computational complexity.

Possible abrupt changes of the estimated quantities were counteracted by adding
a detector of such changes [9]. Recently, the problem was successfully and efficiently
addressed by applying minimum expected relative principle [12]. Its tailoring to the
discussed problem will be elaborated and published elsewhere.

6 Conclusions

Done: The paper contributes to a trustable knowledge sharing in a specific but widely
applicable scenario. In it, a neighbour offers its forecaster of the observations handled
by the supported agent. It complements the recent knowledge-sharing scenario [14] by
the feasible estimation of the trust weight with which the neighbour’s forecaster should
be used. It primarily deals with the invariant weight quantifying the neighbour’s credi-
bility. The case fits the assumption that the parameter estimated by the agent is invari-
ant. The performed, partially presented, experiments illustrate that the results are not
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extremely sensitive to this assumption. The proposed solution, presented experiments
and the discussion in Sec. 5 prepare general solutions for slowly as well as abruptly
varying credibility of the neighbour’s forecaster.
A comment on related works: The used knowledge-sharing way, complemented by the
above trust learning, has unique inter-related features: I it combines pds operating on
partially overlapping domains, i.e. the agent and neighbour process the knowledge quite
freely; I the roles of the agent and the neighbour may swap, i.e. their mutual trust
may even substantially differ. Such a support of agents cooperating without a mediator
allows an unlimited scalability of the network interacting adaptive agents.
Future work: The need for the cooperation respecting credibility of the shared knowl-
edge and the positive experience with the presented results make worthwhile to:
X perform extensive experiments delimiting the applicability range of the proposed

technique, cf. no free lunch theorem, [35];
X apply the technique to important particular cases, say selected according to [11,34];
X elaborate the general solution to linear-in-unknown-parameter Gaussian model,

[24], which is an important EF member suitable for modelling of dynamic envi-
ronments with continuous-valued observations [27];

X extend the technique to other models like mixtures of EF members [20,21] requiring
an approximate recursive estimation, [2];

X tailor the technique to other knowledge-sharing scenarios, up to an algorithm com-
parison [30], requiring an estimation of the trust weight [8];

X complete solutions coping with the volatile trustability.

You are invited to contribute to this important research. We are ready to cooperate
and DK will share the relevant experimental software with you.
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18. Kulhavý, R., Zarrop, M.B.: On a general concept of forgetting. Int. J. of Control 58(4), 905–
924 (1993)

19. Lainiotis, D.: Partitioned estimation algorithms, I: Nonlinear estimation. Inf. Sci. 7, 203–235
(1974)

20. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley Series in Probab. & Stat., Wiley,
N.Y. (2000)

21. McNicholas, P.: Mixture model-based classification. CRC Press, Boca Raton, N.Y. (2017)
22. Milek, J., Kraus, F.: Time-varying stabilized forgetting for recursive least squares identifica-
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Abstract. In this paper, we propose an inference-based technique to remove re-
dundancy from natural language (NL) descriptions of Web Ontology Language
(OWL) entities. The existing ontology verbalization approaches generate NL text
segments that are closer to their counterpart statements in the ontology. Some
of these approaches also perform grouping and aggregating of the text segments,
aiming at a more fluent and comprehensive representation. However, we observed
that the human-understandability of such descriptions is affected by the presence
of repetitions and redundancies, and our studies show that such issues can be re-
moved easily at the semantic level than at the NL level. We propose a novel tech-
nique called semantic-level refinement (or simply, semantic-refinement) for this
purpose. Our approach aims at transforming the knowledge that is represented as
a combination of less expressive (and not specific) logic-based expressions into
the ones with high expressivity and specificity. This technique utilizes a prede-
fined set of rules which are applied repeatedly on the restrictions associated with
the individuals (and the concepts) to obtain a refined set of restrictions, guaran-
teed to be semantically equivalent to the original representation. Such refined sets
of restrictions can then be verbalized to get concise descriptions of the ontology
entities. Our experiments on ontologies from two different domains show that
the proposed approach could significantly improve the readability of the NL texts
when compared to the texts generated without a semantic-level refinement.

Keywords: Ontology Verbalization · Redundancy removal · Rule-based approach.

1 Introduction

Artificial Intelligence (AI) community widely uses ontologies for knowledge repre-
sentation and reasoning. For example, the Gene Ontology3 is now a very prominent
resource in AI-powered Bioinformatics and Genomics. Another example is SNOMED
CT4, which is now fully formalized in OWL (Web Ontology Language) and widely
used for electronic health records related applications. It is observed recently, that mod-
eling knowledge in the form of ontologies helps to broaden the scope of cognitive AI
and explainable AI (Peroni et al. (2008); Sarker et al. (2020)). However, the domain
knowledge in the form of an ontology is inherently characterized by complex logical
axioms, making the formalized knowledge not accessible to non-ontology communi-
ties (Dentler and Cornet (2015); E. Venugopal and Kumar (2020)). This had resulted
in a large number of natural language (NL) verbalization tools for OWL ontologies

3 http://geneontology.org/ 4 https://www.snomed.org/snomed-ct/
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such as NaturalOWL (Androutsopoulos et al. (2014)) and SWAT Tools (Third et al.
(2011)). However, the existing approaches in this direction mainly strive for one-to-
one translation of logical constructs into the corresponding NL fragments. Such NL
translations generally contain redundancies, as a domain concept could be expressed
in several different ways in an ontology using the various constructs allowed in the
ontology language—and, it is not guaranteed that one would always use the best com-
bination to formalize the knowledge. In this paper, we explore a systematic approach
that removes redundancies at the logic level—preserving semantic correctness—called
semantic-refinement. And, it is found to be complementing the ontology verbalization
application by generating concise NL sentences.

Motivating Example. Consider the following axioms from People & Pets ontology5:

(1) Cat_Owner v Person u Owner u ∃hasPet.Animal u ∃hasPet.Cat
(2) Cat_Owner(sam) (3) Cat v Animal

The controlled natural language (CNL) descriptions for the individual sam, generated
using standard OWL verbalizers, are as follows. From now on, we refer ‘description’
as the NL description of an entity (individual or concept) generated from the ontology.

– A cat-owner is a person. A cat-owner is an owner. A cat-owner has as pet an animal.
A cat-owner has a cat as pet. Sam is a cat-owner. All cats are animals.
or (with grouping and aggregation)

– A cat-owner is a person and an owner . A cat-owner is all of the following: some-
thing that has pet an animal, and something that has a cat as pet; Example: sam.
All cats are animals.

As can be easily noted, these descriptions have redundant information, and attempt-
ing verbatim translation of each description logical (DL) construct has resulted in this
situation. There are different types of redundancies one can observe here. The obvious
type is the repetition of linguistically similar texts; e.g., “a cat-owner is an owner”. The
other type includes those generic restrictions which can be logically inferred from more
specific restrictions; e.g., having said “A cat-owner has a cat as pet”, it is not necessary
to say “A cat-owner has as pet an animal.” This paper deals with removing redundancies
of the latter kind.

Contributions. In this paper, we propose a technique called semantic-level refinement
(or simply semantic-refinement) that helps in removing the redundant (portion of the)
restrictions and forms a more comprehensive description of an ontology entity. We par-
ticularly focus on generating descriptions from SHIQ DL ontologies. Our proposed
approach generates descriptions of individuals and concepts by first representing the
associated restrictions (knowledge) using a set of DL constructs that have high expres-
sivity and high specificity than using a set that contains less expressive and generic
expressions. If we revisit our previous example, we expect our approach to generate a
text similar to “sam is an owner having at least one cat as pet”; such that the redun-
dant portion of the text “has as pet an animal” is removed (since it clearly follows from

5 http://www.cs.man.ac.uk/∼horrocks/ISWC2003/Tutorial/people+pets.owl.rdf
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“having at least one cat as pet”). Due to page limitation, detailed proofs for the seman-
tic correctness of the approach are made available in an extended version of the paper
which we refer as longer version6.

2 Related Work

Controlled Natural Languages. Over the last two decades, several CNLs such as At-
tempto Controlled English (ACE) by Kaljurand and Fuchs (2007), Rabbit by Hart et al.
(2007), and Sydney OWL Syntax (SOS) by Cregan et al. (2007), have been specifically
designed or have been adapted for ontology language OWL. All these languages are
meant to make the interactions with formal ontological statements easier and faster for
users who are unfamiliar with formal notations. Unlike the languages that were intro-
duced to represent OWL in controlled English, proposed by Hewlett et al. (2005); Jarrar
et al. (2006); Androutsopoulos et al. (2014), the aforementioned CNLs are designed to
have formal language semantics and bidirectional mapping between NL fragments and
OWL constructs. Even though these formal language semantics and bidirectional map-
ping enable a formal check to determine if the resulting NL expressions are unambigu-
ous, they can result in generating a collection of unordered sentences that are difficult to
comprehend. To use these CNLs as a means for ontology authoring and for knowledge
validation purposes, the verbalized texts need to be properly organized. Stevens et al.
(2011) have performed a detailed comparison of the systems that do such text organi-
zation. Among such systems, SWAT (Semantic Web Authoring) tools. are one of the
recent and prominent tools which use standard techniques from computational linguis-
tics to make the verbalized text more readable. They have tried to give better clarity
to the generated text by grouping, aggregation, and elision. Third et al. (2011) have
pointed out that the NL verbalization tools such as SWAT have given much importance
to the linguistic fluency of the verbalized sentences than removing redundancies from
their logical forms, and hence have deficiencies in interpreting the ontology contents.
Redundancy Removal. According to Alani et al. (2006), the works related to refin-
ing ontologies have focused only on ad-hoc application settings; not focusing primarily
on preserving the semantics of the axioms. A notion for removing redundancies from
ontologies without affecting the overall semantics, similar to what we propose in this
paper, was proposed first by Grimm and Wissmann (2011). However, they have looked
at redundancy in ontologies primarily from an ontology engineering and knowledge
evolution point of view and were based on the notions introduced by Liberatore (2005)
about redundant clauses in propositional logic formulas. Later, Third (2012) proposed
a notion for removing redundancies in the context of ontology verbalization. In their
work, the authors have established the fact that omitting “obvious axioms” while ver-
balization leads to a better reading experience for a human. By “obvious axioms” the
author means those axioms whose semantics are in some sense obvious for an average
human reader. For example, phrases such as “junior school” explicitly convey the mean-
ing that a junior school is a school. In our work, we go further and establish that more
inference-based redundancy removal could still be performed rather than just removing
the morphological variants of the entity names, for greatly improving the quality and
6 https://orbilu.uni.lu/retrieve/83875/90647/test.pdf
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understandability of a verbalized text. Recently, Dentler and Cornet (2015) proposed
four redundancy detection rules and the respective resolution methods, especially for
SNOMED CT. However, there are no further efforts exist in generalizing such rules.

3 Preliminaries and Defintions

We assume that the readers are familiar with the semantics of SHIQ DL ontolo-
gies (Horrocks et al. (2000)). SHIQ DL is an extension of the well-known logic
ALC (Schmidt-Schau and Smolka (1991)) with added support for role hierarchies,
inverse roles, transitive roles, and qualifying number restrictions.
Running Example. In Fig. 1, we introduce a synthetic ontology called academic (ACAD)
ontology which we follow throughout this paper as an example ontology.

Fig. 1: TBox (Terminologies) and ABox (Assersions) of ACAD ontology

Label-set. The label-set of an individual is the set which contains all the class expres-
sions and (existential, universal and cardinality) restrictions satisfied by that individual.
A list of all label-sets from ACAD ontology is given in Table 1. The scope of the fol-
lowing formal definition of label-set is limited to SHIQ DL.

Definition 1. Formally, the label-set of an individual x (represented as LO(x)) is de-
fined as: LO(x) = {ci | O |= ci(x)} where ci is of the following form: ci = A | ∃R.C |
∀R.C | ≤ nR.C | ≥ nR.C. Here, A is an atomic concept, C is a class expression
and R is a role name in ontologyO, and m and n are positive integers. C can be of the
form: C = A | C1 u C2 | C1 t C2 | ∃R.C1 | ∀R.C1| ≤ nR.C1 | ≥ nR.C1, where C1

and C2 are also class expressions.

In the above definition, the cis are free from disjunctions. If there exist a disjunc-
tive clause satisfied by an individual, then the satisfiablility of each expression in that
disjunctive clause should be checked and all such satisfiable expressions have to be in-
cluded as conjuncts in the label-set. Clearly, then, the conjunction of all the elements in
the label-set of an individual can be entailed by the ontology. That is,O |=

(
uni=1ci

)
(x).

Here, the variable C will not be recursively expanded further to generate a large num-
ber of complex redundant expressions in the label-set. While this gives you a reasonable
idea of how label-sets are generated, a more detailed account is presented in the longer
version of the paper. Furthermore, the label-set of a concept can be defined as equiva-
lent to the label-set of an individual that belongs to only that concept. Such a label-set
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could be obtained easily by introducing a synthetic individual as the member of the
concept and finding its label-set.

Table 1: Label-sets from ACAD ontology (intentionally omitted > class from the label-sets)

LO(tom) = { Student, IITStudent, IIT_MS_Student, ∃enrolledIn.IITProgramme,
≤1hasAdvisor.TeachingStaff, ∀hasAdvisor.TeachingStaff,
∃hasAdvisor.Professor }

LO(sam) = { Student, IITStudent, IITPhdStudent, ∃isEnrolledIn.IITProgramme,
≥ 2hasAdvisor.TeachingStaff, ≤ 1hasAdvisor.Professor,
∀hasAdvisor.TeachingStaff, ∃hasAdvisor.Professor }

LO(bob) = { Professor, TeachingStaff }
LO(alice) = { AssistantProf, TeachingStaff }
LO(roy) = { Professor, TeachingStaff }

4 Proposed Verbalization Approach

Our verbalization process consists of three phases as shown in Fig. 2. The first phase
takes an ontology as input and generates label-sets. In the second phase, we process
these label-sets to a more refined form using our semantic-refinement technique—the
main highlight of this paper. To understand the degree of reduction performed

Fig. 2: Phases involved in the proposed
verbalization method

on a label-set, we assign a redundancy-score
to the label-set while performing the reduc-
tion. Finally, we convert the restrictions in
the refined label-sets into NL texts. In this
section, we would first discuss the ratio-
nale for our refinement technique, and then
we formally define the notion of semantic-
refinement.

Consider the label-sets of the individuals from ACAD ontology given in Table 1.
A label-set would give us all the restrictions (logical expressions) that are satisfied by
an individual. We can effectively verbalize all or part of these restrictions to frame a
meaningful definition for that individual. For example, a well formed description for
the instance tom that can be generated from its label-set is of the form: “Tom is a
student who is enrolled in an IIT Programme, has one professor as advisor, and all
his advisors are teaching staffs.” Here, not all labels in the label-set were considered
while generating the description. Some of the generic labels (mainly role restrictions)
in the label-set if verbalized directly may generate confusing descriptions, and hence
they should be reduced or combined with other restrictions (if possible) to get a more
specific (so-called refined) restriction. For example, if left unrefined, the restrictions
∀hasAdvisor.TeachingStaff and ∀hasAdvisor.> may give rise to the descrip-
tion: “all advisors are someone, and all advisors are teaching staffs”, which may create
ambiguity issues to a human reader. It is observed that to generate an unambiguous and
a short description from a label-set, we have to identify redundant labels and see if they
can be combined with the non-redundant labels to get a (highly expressive and more
specific) refined form.
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The naive method to perform the aforementioned tasks is by considering all combi-
nations of labels and see if they can be reduced to a stricter form of logical expression.
However, we could easily carryout this exhaustive process by considering labels of
specific restriction types in a pre-defined order. For example, all the existential role re-
strictions could be considered prior to the universal role restrictions. Such a systematic
process along with an ordered list of inference rules (called refinement-rules), that al-
ways generate stricter (more specific) forms of a given set of restriction, will ensure a
fast refinement of the label-sets. Since we do this refinement of labels at the logical-level
by considering their semantics, we call the refinement process as semantic-refinement of
label-sets. The refined form of the label-set is called the semantically-refined label-set.

In addition to removing redundant labels in a label-set the semantic-refinement
would also help in avoiding ambiguous verbalization of interim logical expressions. For
example, the label: ∀hasAdvisor.Professor can appear in the label-set of an indi-
vidual of IITStudent due to the axiom: IITStudent v ∀hasAdvisor.Professor.
Linguistically, this label (along with the axiom) can be interpreted in two ways: either
as All advisors of IIT students are Professors or, semantically, it can be interpreted as
Either all advisors of IIT students are Professors or (vacuously-true case) they do not
have an advisor. Clearly, considering the latter description, even though it is the seman-
tically correct interpretation, may confuse a reader—especially the case when he could
infer from other axioms that the vacuously-true case would not arise at all.

For identifying the cases where combinations of conditions involving qualifiers
and/or number restrictions occur and to succinctly represent them, we introduce the
following new constructors that have higher expressivity than the regular existential
and universal restrictions.

– Non-vacuous role restriction: =R.C
=R.CI = {x ∈ ∆I |∃y.〈x, y〉 ∈ RI ∧ y ∈ CI∧ ∀z.〈x, z〉 ∈ RI =⇒ z ∈ CI}

– Exactly-one role restriction: ∃=1R.C
∃=1R.C

I = {x ∈ ∆I |(∃y1.〈x, y1〉 ∈ RI ∧ y1 ∈ CI∧ ∃y2.〈x, y2〉 ∈ RI ∧ y2 ∈
CI) =⇒ y1 = y2}

– Exactly-n role restriction: ∃=nR.C, general case of exactly-one role restriction.

In our semantic refinement process, like any rule-based approach, the order in which
the inferencing rules are applied is also important as the applicability of one rule may
depend on the other. We observed that there is a notion of strictness associated with
role restrictions which can be effectively utilized for ordering the rules, such that the
redundant label selection and the application of the rules can be done simultaneously.
The notion of strictness can be looked at as: if a role restriction R1 is implied by an-
other role restriction R2 (i.e., R2 =⇒ R1), then R1 can be said to be a stricter version
of R2. For instance, =R.U can be said as the stricter form of ∃R.U and ∀R.U . Sim-
ilarly, ∃=nR.U is a stricter form of ≤ nR.U and ≥ nR.U . Since we intend to find
stricter forms of role-restrictions, the obvious way is to apply rules corresponding to
less strict restriction types prior to those of stricter restriction types. In general, the
more strict-restrictions you have in the label-set more refined your label-set is. We can
easily capture this notion by finding how often we apply the rules that do this refine-
ment. To achieve this, we associate a pre-determined weight to each rule such that on
applying a rule the overall redundancy-score of the label-set will reduce depending on
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the weight of the rule. In other words, the objective of the semantic-refinement is to
find the set which has the least redundancy score but yet guaranteeing the semantic-
equivalence. The metric used for assigning the redundancy-score is detailed in the next
section. The semantic-refinement of a label-set can be formally defined as:

Definition 2. Given a label-set LO semantically-refined label-set can be defined as the
set LO′ such that ∀ x ∈ LO, ∃ y ∈ LO′ | y |= x (semantic equivalence) and in addition
the set should have the least redundancy-score.

Table 2: Details of rule sets 1-5.

Rule No. Restriction 1 Restriction 2 Condition Refined form

Concept Refinement rule
1a Concept names, whose (equality) definitions are already

included in the label-set, can be removed.

Superclass Refinement rule
2a U V U v V U

Existential Role Refinement rule
3a ∃R.U ∃S.V U v V & R v S ∃R.U

Universal Role Refinement rules
4a ∀R.U ∀S.V U v V & S v R ∀R.U , ∀S.U
4b ∀R.U ∀R.V V v U ∀R.V

III & IV Combination rules
5a ∃R.U ∀R.U =R.U
5b ∀R.U ∃S.V U v V & S v R =R.U , =S.U
5c ∀R.U ∃S.V V v U & S v R =R.U , ∃S.V

5 Semantic-Refinement of Label-sets

We propose seven sets of rules for refining a label-set. Each of these rule sets contain
carefully chosen rules which are repeatedly applied on the selected restrictions in the
label-set until no more refinement is possible. More details of the algorithm follows.
Proposed Refinement Rules. The details of the first five sets of rules are given in
Table 2. Each of the rule sets are named based on the type of restriction they handle.
For example, the first rule set is called Concept Refinement rule since it refines the
atomic concepts in the label-set.

– Concept Refinement Rule (Rule 1a). To apply this rule, we consider all the concept
names that are present in the label-sets whose definitions (i.e., the set of restrictions
which defines the concept) already included in the label-set. If the set of restrictions
defining a concept completely exists in the label-set, then that concept name could
be treated as a redundant information and shall be removed.

– Superclass Refinement Rule (Rule 2a). The label-set of an individual contains all
the concept names which it belongs to. Some of the concepts in these label-sets are
hierarchically related (in class - super-class relationship) in the ontology, result-
ing in redundant labels. For example, consider the label-set LO(tom) in Table 1,
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it contains the concepts IIT_MS_Student and IITStudent. Since it can be in-
ferred from the concept IIT_MS_Student that tom is also a IITStudent, we
can say that IITStudent is a redundant information (label) in the label-set. We
remove such redundant labels by preserving only the most-specific concept. If the
most specific concept had been already removed by Rule 1a, the next most specific
concept name would be preserved in the label-set using this rule.

– Existential Role Refinement rule (Rule 3a). We can select two labels of the form:
∃R.U and ∃S.V , from the label-set, as candidates for applying this rule, if U v V
and R v S, in the ontology. According to the existential role refinement rule,
candidate labels are semantically equivalent to stating only a single restriction of
the form ∃R.U (which we call as the refined form of the labels). In general, all
the rules that we cover in this paper are defined such that given a refined form
and the condition which have been used for refinement, the non-refined forms of
the restriction(s) could be traced back. That means, the refinement is done without
affecting the semantics/meaning of the restrictions. The formal proofs of all the
rules could be found at the longer version of the paper.

– Universal Role Refinement rules (Rules 4a & 4b). This rule set contains two rules
that refine universal role restrictions.

– III & IV Combination rules (Rules 5a, 5b & 5c). For applying the rules in this rule
set, we select combinations of existential and universal role restrictions from the
label-set. The rules help in refining such combinations to a reduced form.

Table 3: Details of rule sets 6 and 7.

Rule No. Restriction 1 Restriction 2 Condition Refined form

Qualified Number Restriction Refinement rules

6a ≥ nR.U ≥ mS.V U v V & R v S & n ≥ m ≥ nR.U
6b ∃R.U ≥ nS.V V v U & S v R & n ≥ 1 ≥ nS.V
6c ∃R.U ≤ nR.V U v V & n = 1 ∃=1R.U,∃=1R.V

6d ≥ nR.U ≤ nS.V R v S & U v V ∃=nR.U,∃=nS.V

Exactly-n Role Refinement rules

7a ∃R.U ∃=1S.V U v V & R v S ∃=1R.U,∃=1S.V

7b =R.U ∃=1S.V U v V & R v S ∃=1R.U,∃=1S.V,=R.U
7c ≥ mR.V ∃=nR.U U v V & m ≥ n ∃=nR.U,≥ (m− n)R.(V u ¬U)

The details of the next set of rule sets are given in Table 3.

– Qualified Number Restriction Refinement rules. In this set there are four rules. Here
we mainly try to refine qualified number restriction restrictions (of the form ≤
nR.U or≥ mS.V ) to stricter version of the same form or to a exactly-n restrictions.

– Exactly-n Role Restriction rules. In this rule set, we reduce the exactly-n role re-
strictions which are generated using the preceding rule-sets.

Algorithm for Semantic-Refinement. As we mentioned before, semantic-refinement
helps in refining restrictions in a label-set to their stricter forms by combining them
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using a set of rules. The rules are applied sequentially from 1a to 7c. While applying
these rules, the reduced restrictions may be removed provisionally to avoid using them
in the imminent iterations. We are not removing them permanently, as we may need to
use such reduced restrictions with the non-reduced ones until we are sure that none of
the forthcoming rules may use such a restriction for the reduction anymore. We mark
such restrictions as PRs (Provisionally Reduced ones) so that at a later stage we can
remove them permanently from the label-set.

Algorithm-1 describes the steps that have to be followed for applying the rules. This
algorithm works by taking pairs of restrictions from the label-set and looking for the
applicability of the rules. If a rule is applicable, the restrictions will be checked for
the following set of conditions to decide whether to resume the refinement or not. The
below-mentioned conditions are followed to ensure a quick refinement. The rationales
for considering these three conditions are detailed in the longer version of the paper.

– Condition-1: No need to further reduce two provisionally reduced (PR) restric-
tions.

– Condition-2: If a rule combines two restrictions (R1 and R2) and generates either
R1 or R2, then that R1 or R2 should not be marked as a PR.

– Condition-3: If the restrictions of a particular form are not used in successive rule-
sets, the PR restrictions of such forms can be removed at an early stage.
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For illustration, let us consider the label-set of the individual sam. Fig 3 shows
the refinement steps and the rules in the rule sets used for the refinement. LO(sam) is
represented vertically. In the figure, the arrows represent the application of rules. The
rule numbers are shown in italics. The refinement of two restrictions may sometimes
result in more than one restriction. For representing such cases, the arrows are followed
by brace brackets ({...}) showing the resultant restrictions.

Initially, the algorithm marks all the labels in the label-set as not PRs. Then the
algorithm looks for the applicability of Rule 1a. In the figure, LO(sam) contains the la-
bels IITStudent and IITPhdStudent whose definitions (in the form of restrictions)
are already present in the label-set. Therefore, on applying Rule 1a, they have to be
removed from the label-set.

In the algorithm, lines 5-31 consider the rest of the rule-set one at a time and look
for possible application of rules on pairs of restrictions in the label-set. In our example
label-set, since no rules in the rule sets 2, 3, and 4 were applicable, we move to the next
applicable rule set (i.e., Rule-set 5). The algorithm would then apply Rule 5c on two of
the restrictions as shown in the figure and refine them to the two restrictions given in
the brackets. Application of a rule will be done only if the restrictions in the pair are not
marked as PR which is checked using the MARKED_AS_PR method. The if condition
in line-8 of the algorithm will take care of this. After the application of a rule (using the
method APPLY_RULE), the details of the reduced restrictions will be stored in the set
variable REF . Based on Condition-2, appropriate changes are made on the contents of
REF (lines 14-20). Once all the possible rules in a particular rule set are applied, the
reduced restrictions will be marked as PRs (lines 24). Once the algorithm considered
all pairs of labels and checked them for the applicability of all the rules in the current
rule-set, Condition-3 will be checked for possible permanent removal of the PRs. The
entire process will be repeated for all the succeeding rule-sets.

LO(sam) Original label-set
Student

IITStudent

IITPhdStudent

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
∀hasAdvisor.TeachingStaff

Rule 1a

Rule 5c

Rule 6c

Resultant label-set
Student

{}
{}
∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
∀hasAdvisor.TeachingStaff

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
∀hasAdvisor.TeachingStaff

Resultant label-set
Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
{∃hasAdvisor.Professor
=hasAdvisor.TeachingStaff}√ ∀hasAdvisor.TeachingStaff

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff
≤ 1 hasAdvisor.Professor
∃hasAdvisor.Professor
=hasAdvisor.TeachingStaff

Resultant label-set
Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff√ ≤ 1 hasAdvisor.Professor√ ∃hasAdvisor.Professor
{∃=1hasAdvisor.Professor}
=hasAdvisor.TeachingStaff

Student

∃isEnrolledIn.IITProgramme
≥ 2 hasAdvisor.TeachingStaff√ ∃hasAdvisor.Professor
∃=1hasAdvisor.Professor

=hasAdvisor.TeachingStaff

Resultant label-set
Student

∃isEnrolledIn.IITProgramme√ ≥ 2 hasAdvisor.TeachingStaff√ ∃hasAdvisor.Professor
=hasAdvisor.TeachingStaff
{≥1hasAdvisor.(TeachingStaff
u¬Professor),
∃=1hasAdvisor.Professor}

Rule 7c

Step-1

Step-2

Step-3

Step-4

Fig. 3: Steps for the semantic-refinement of LO(sam). Arrows represent the application of rules.

Coming back to our example label-set, after the application of Rule 5c, one of the
reduced restrictions is marked as PR (represented using

√
), while the other restriction is

not marked as PR due to Condition-2. On changing the rule-set, since no other rules in
Rule-set 5 were applicable, the one which is marked as PR can be permanently removed
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since Condition-3 is satisfied. In the forthcoming iterations of the for loop (line 5), rules
in the rule-set 6 and 7 are applied in a similar fashion. In the last iteration, we will get
the most refined set of labels, along with a set of restrictions that are marked as PRs.
The restrictions which are marked as PRs are removed to get the refined label-set.

Redundancy score for Label-sets. We introduce the redundancy-score to quantify the
degree of refinement that we perform on a label-set. Intuitively, this score is intended
to capture the amount of redundancy in the NL description that is generated from a
label set. This measure is defined in terms of the number of labels in the label set
as it plays a role in determining the redundancy and is also based on the refinement
rules that we apply while performing the reduction. Initially, the label-set will have a
redundancy score of "1" where each label would equally contribute (that is, 1/n where
n is the number of labels in the label-set) to this score. While applying a rule, the scores
(old scores) of the labels that match the antecedents of the rule are redistributed to the
new labels (generated as per the consequents of the rule) after multiplying with the
weight of the rule. The appropriate weight of the rule is inversely proportional to the
rule number as rules are arranged in the increasing order of the amount of redundancy
they remove. Therefore, the weight of the rule Rulej (denoted as wj) is 1/j. Suppose
Rulej applies to the labels: {L1, ..., Lr}, and produces labels: {R1, ..., Rs}, then each
Ri where (1 ≤ i ≤ s) is assigned a score as follows. For example, E.g., if oldScore of
L1 is 1/8 and that of L2 is 1/8, then on applying the rule: L1 u L2 → R1 u R2, the new
score of R1 would be (2/8 * 1/2)*(1/2) = 1/16 and that of R2 is again 1/16.

newScore(Ri) =
wj ×

∑r
k=1 oldScore(Lk)

s
(1)

Those label-sets whose redundancy-score remain as "1" even after applying the
semantic-refinement algorithm are treated as non-redundant label-sets. Therefore, we
have to change the redundancy-score of such label-sets to "0".

Natural Language Descriptions from the Refined Label-sets. In this paper, we have
considered a template similar to the following regular expression for generating descrip-
tions of individuals and concepts, (“is”)

(
(“a”) C (“,” | “and”)?

)+ (
RR (“,” | “and”)?

)+
In this regex, C represents the concept name in the label-set, and RR denotes the role

restriction in the label-set. The role restrictions are treated in parts. We first tokenize the
role names in the constraints. Tokenizing includes word-segmentation and processing of
camel-case, underscores, spaces, punctuations, etc. Then, we identify and tag the verbs
and nouns in the segmented phase — as R-verb, R-noun respectively — using NLTK7.
We then incorporate these segmented words in a constraint-specific template, to form
a RR. For instance, the restriction ∃hasAdvisor.Professor is verbalized to “has at least
1 professor as advisor”, using the template: <R-verb> at least <n><C> as <R-noun>
(where C corresponds to the concept present in the restriction). The constraint-specific
templates corresponding to the restrictions are listed in Table-4.

6 Empirical Evaluation

We have done the empirical study to address the following two questions: Q1: Does the
semantic-refinement help in improving the understandability of the verbalized knowl-
7 Python Natural Language Tool Kit: http://www.nltk.org/
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Table 4: Constraint-specific templates of the possible restrictions in a refined label-set.

Restriction | Constraint-specific template
∃R.C <R-verb> at least one <C> as <R-noun>
∀R.C <R-verb> only <C> as < R-noun >
≥nR.C <R-verb> at least <n><C> as <R-noun>
≤mR.C <R-verb> at most <m><C> as <R-noun>
=R.C <R-verb> at least one <C> & only <C> as <R-noun>
∃=nR.C <R-verb> exactly <n><C> as <R-noun>

edge? Q2: Is the semantic refinement helpful in validating the correctness of ontology
axioms? For answering these questions, we present the domain experts with two repre-
sentations of the same knowledge: one is from the label-sets having redundancy score
"1", and the other from the refined label-sets (that is, with redundancy score < 1). We
call the former as the ones from the baseline approach and the latter as those from the
proposed approach. The descriptions generated using the baseline approach are similar
to the texts generated using an existing ontology verbalizer. Table 5 shows the examples
of the descriptions generated using both approaches.

Table 5: Examples of the descriptions of individuals and concepts from PD, HarryPotter (HP) and
Geographical Entity (GEO) ontologies, generated using the proposed and baseline approaches

Proposed approach Baseline approach (with redundancy score =1) Ontology
Bird cherry Oat Aphid: is a biotic-disorder, having at
least one pest-insect and all its factors are pest-insects. (Redun-
dancy score = 0.340)

Bird cherry Oat Aphid: is a disorder, bio-disorder, pest dam-
age and insect damage. It is all the following: has as factor only pest-
insect, has as factor only pest, has as factor only organism and has as
factor something.

PD

Mite Damage: is a pest damage, having at least one mite pest
and all its factors are mite pests. (Redundancy score = 0.324)

Mite Damage: is a disorder, a biotic-disorder and a pest damage. It
is all the following: has as factor only organism, has as factor only pest,
has as factor only mite pest, has as factor at least one thing.

PD

Hermione Granger: is a Hogwarts Student, a muggle, a
gryffindor, having exactly one cat as pet. (Red. score = 0.425)

Hermione Granger: is a Hogwarts student, a student, a human,
a muggle, a gryffindor. It is all the following: has a pet, has as pet a
cat, has as pet only creature, has at least one creature, has at most one
creature, as pet.

HP

Hogwarts Student: is a Student, is a Gryffindor or Huf-
flepuff or Ravenclaw or Slytherin, and having exactly one pet.
(Redundancy score = 0.350)

Hogwarts Student: is a student, a human, is a Gryffindor or Huf-
flepuff or Ravenclaw or Slytherin. It is all the following: has a pet, has
as pet only creatures, has at least one creature, has at most one creature.

HP

Aggregate of sovereign states: is not a gov. orga-
nization, is aggregate of only sovereign states and is aggregate
of at least two sovereign states. (Red. score = 0.324)

Aggregate of sovereign states: is not a gov. organization
and not a sovereign state. It is all the following: is aggregate of only
governmental organization, is aggregate of at least two governmental
organizations, is aggregate of only sovereign states and aggregate of at
least two sovereign states.

GEO

Florida: is a gov. organization and a major administrative
subdivision, is related to at least one nation as a part, is related
to exactly one sovereign state as a member, and is a subordinate
authority of at least one sovereign state. (Red. score = 0.204)

Florida: is a major administrative subdivision, an organization, a
gov. organization, a subnational entity. It is all the following: is a part of
at least one nation, is a subordinate authority of at least one sovereign
state, is a member of at least one sovereign state and have at most one
member of relationship with sovereign state.

GEO

For Q1, the domain experts were asked to rate the degree of understanding of the de-
scriptions in the scale: (a) Poor; (b) Medium; (c) Good. And, for Q2, to measure the use-
fulness of the generated descriptions for validating the domain knowledge, the domain
experts were told to choose one from the options: (a) Valid (b) Invalid (c) Don’t know
(d) Cannot be determined. If they cannot distinguish a given sentence to be “Valid”
or “Invalid” because of their lack of knowledge, then they are instructed to choose the
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third option “Don’t Know”. Option (d) is to be selected if the expert finds it difficult to
reach a conclusion on the validity of the sentence–which means, the description is either
ambiguous or confusing. We have used two online available ontologies for generating
descriptions: (1) Plant Disease (PD) ontology, and (2) Data structures and Algorithms
(DSA) ontology. These ontologies can be downloaded from our website8. The PD ontol-
ogy has 546 individuals, 105 concepts, and 15 object properties, and the DSA ontology
has 333 individuals, 53 concepts, 19 object properties, and 11 datatype properties.

Experimental setup. After generating descriptions from the aforementioned ontolo-
gies, since the manual evaluation of all the generated descriptions is difficult, a small
number of descriptions were utilized for the study. We have selected a representative set
(and a heterogeneous set) of descriptions by grouping all the descriptions based on their
label-sets and then randomly choosing one description from each group. From PD on-
tology, 31 descriptions of individuals and 10 descriptions of concepts were considered
for evaluation. Similarly, from DSA ontology, 14 descriptions of individuals and 17 de-
scriptions of concepts were chosen. Then, experts from the two domains were asked
to review the verbalized descriptions. To avoid bias, the reviewers were not informed
about the approach followed for generating the description, and the descriptions were
randomly presented via a google form. In addition, to finding the inter-rater agreement
among the experts, we have also recorded the confidence score of each reviewer for a
given question such that in the case of a conflict we make a decision based on their
scores. Seven experts from the PD domain and fourteen experts of DSA were involved
in the study.

6.1 Results and Discussions

Fig 4-7 show the summary of the ratings given by the domain experts.

Q1: The degree of understanding of a description is identified by examining the ratings
(i.e., poor, medium, or good) given by the domain experts. The domain experts were
asked to choose ‘poor’or ‘medium’as the level of understanding if there is any ambi-
guity in the description. To confine the reasons for ambiguity to the fidelity to OWL
constructs alone, possible (manual) grammatical error corrections have been done on
the generated text—as we were not using any sophisticated NL generation techniques.
Grammatical errors such as subject-verb agreement errors, verb tense errors, verb form
errors, singular/plural noun ending errors, and sentence structure errors were corrected
uniformly (and in an unbiased way) for both the approaches. Fig 4 and Fig 5 show the
summary of the responses (in percentage) which we received for the descriptions of PD
ontology and for the descriptions of DSA ontology, respectively. In both cases, since
the Fleiss’ kappa scores were in the substantial agreement range, the overall ratings
are calculated by considering the majority responses. For PD ontology, 32 out of the
41 descriptions generated using the proposed approach were rated as ‘good’, whereas,
for those generated using the baseline approach, only 6 out of 41 texts were rated as
‘good’. For DSA ontology, 23 out of 31 descriptions generated by the proposed ap-
proach were ‘good’, only 12 descriptions generated using the baseline approach were

8 https://sites.google.com/site/ontoworks/ontologies (all ontologies used are available here)
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rated as ‘good’. These results highlight the significance of the semantic-refinement pro-
cess in domain knowledge understanding.

Fig. 4: Summary of the ratings obtained for
the descriptions from the PD ontology

Fig. 5: Summary of the ratings obtained for
the descriptions from the DSA ontology

Fig. 6: Summary to determine the useful-
ness of the generated descriptions in vali-
dating the PD ontology

Fig. 7: Summary to determine the useful-
ness of the generated descriptions in vali-
dating the DSA ontology

Q2: Fig 6 and 7 show the statistics to determine the usefulness of the generated de-
scriptions in validating the correctness of two domain ontologies. Usefulness of the
generated descriptions in validating the correctness of an ontology is obtained by look-
ing at the number of descriptions which are marked as ‘Cannot be determined’. The
three options: ‘Valid’, ‘Invalid’and ‘Don’t know’, imply that the text is useful in get-
ting into a conclusion, whereas the option ‘Cannot be determined’ indicates that there
is some problem in the representation. From Fig 6 and Fig 7, in case of the proposed
approach, only 7 out of 41 descriptions from PD ontology and 4 out of 31 descriptions
from DSA ontology were not useful in determining the quality of the ontology, whereas
in case of the baseline approach, approximately 50 percentage of the descriptions were
not helpful. This clearly indicates that, verbalization after semantic-refinement is highly
effective in applications such as ontology validation.
Discussion and future work. In this paper, we have formally defined the notion of
redundancies in a label-set and a technique to systematically reduce the redundancies.
However, the notion of redundancy is, to some extent, subjective. That is, depending on
the readers’ domain knowledge, the level of redundancy in the text varies. In the pro-
cess of semantic-refinement, we remove the generic information from the label-set with
an assumption that the human readers would be familiar with the explicit relationships
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between the domain entities. In that sense, a reader with poor domain knowledge may
miss out on generic concept information due to the refinement process. This would be
easily visible when the concept hierarchies are reduced to the specific ones alone. One
possible way to overcome this problem is by including relevant (but, not all) concept
names, that were previously omitted in the semantic-refinement process, in the refined
label-set. E.g., in Table 5, we can further generalize the description of the concept mite
damage, by including additional generic concept details, as “Mite Damage is a pest
damage and a biotic-disorder, having at least one mite pest and all its factors are mite
pests.” Since only a generic concept name is included in addition to all the refined con-
cepts, the meaning of the description is not affected. More investigation and empirical
studies related to this could be done as a future endeavor. Another interesting method
(which is not addressed in this paper) to improve the description of individuals is by
considering the property assertions along with the label-sets while generating descrip-
tions. Considering property relationships/assertions is important because validation of
an ontology also involves verifying the truthfulness of the property assertions in it.

7 Conclusion

A novel approach for generating natural language descriptions of ontology entities is
presented in the paper. The generated descriptions were not merely verbatim transla-
tions of logical axioms of the ontology. Instead, they were generated from a refined set
of logical restrictions satisfied by individuals/concepts under consideration. We have
proposed seven sets of refinement rules and an algorithm for this refinement process.
We have observed that the proposed method indeed gives us short, precise, and compre-
hensive descriptions of individuals and concepts. Our time-budgeted empirical studies
based on two ontologies have shown that the redundancy-free description of the do-
main knowledge is helpful in understanding the formalized knowledge more effectively
and is also useful for validating them, typically for the humans who are experts of the
domain under consideration.
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Abstract. We propose two simple and fast methods to optimize a black-
box function while exploiting an inexpensive predictive model, which gen-
erates a deterministic predicted value at any input point in the search
space. In contrast to prior work on multi-fidelity optimization, our setup
assumes that there is only one predictor whose accuracy level is unknown.
We also assume that querying the predictor is essentially free compared
to the actual objective function, thus no cost is assigned to it. We show
that our methods generally outperform the existing multi-fidelity ap-
proaches for this scenario, while requiring remarkably less computational
time.

Keywords: Bayesian optimization · Predicted data · Multi-fidelity op-
timization.

1 Introduction

In this paper, we study a problem that is motivated by the design of experiments
that are based on Bayesian optimization. In this setting, there is a range of
input parameters, which could be various processing conditions or ratios of input
chemicals, and there is a desired objective, such as maximizing some desired
property of the resulting product or improving its yield.

Bayesian optimization has emerged recently as one of the leading methods
to address this type of problems across natural sciences [3, 8, 12, 28] expanding
beyond its traditional applications [6, 27, 32]. It considers a function f : X →
R that maps some input domain X to objective values. At each step of the
optimization, the method selects some point x ∈ X and requests the value of
f(x). Once this value is provided, the process is repeated.

The problem with using this approach for real-world scientific experiments
is that in this setting, evaluating f is a very costly operation. For example, it
could involve using very expensive input chemicals, it could require many hours
of work from a human to set up the experiment, and the results may take days
or weeks to arrive. Therefore it is crucial that the optimization process makes
as few queries to f as possible.

On the other hand, real-world scientists do not treat their experiments like
black-box functions that need to be optimized. There is often a wealth of domain

? This work was supported by The Leverhulme Trust
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knowledge available such as theoretical results or simulators that are able to
predict the outcome of any particular experiment. However, these predictions
can be fairly coarse, with no formal guarantee on their accuracy, and they may
give completely incorrect answers for some portions of the domain.

In this paper, we encode this as a predictor function p : X → R, which makes
a prediction about the value of f for each point in the domain. We assume that
f is expensive to evaluate, but that p can be evaluated essentially for free. We
seek to use the potentially low quality predictions made by p to accelerate the
optimization of f .

In this work we assume that the predictor is deterministic, so querying the
same point multiple times yields no extra information. The predictor may also
make systemic errors: if the predictor makes a poor quality prediction for a
particular point x, then it may well also make poor quality predictions for the
points surrounding x. So, if one is in a region where the predictor gives poor
predictions, then there may be no easy way to extract information about f , and
so the main challenge is to discard these poor quality predictions while making
use of the good quality predictions where they arise.

Our contribution. We propose two simple methods for integrating the pre-
dictor into Bayesian optimization. The first, which we call the exclusion radius
method, adds predicted data at the start of the optimization process, and then
iteratively deletes it as real data is obtained. The second, which we call discrep-
ancy prediction, also adds predicted data at the start of the process, and then
as more information about f is obtained, it attempts to correct the errors in the
predicted data by learning a model of the difference between p and f .

We present experimental results for each of these methods. We test the meth-
ods on standard benchmarks for Bayesian optimization, and our goal was to test
the methods on predictors of varying accuracies, where the accuracy of a pre-
dictor is defined as the mean squared error between p and f (see Equation (3)).
Thus, predictors that make larger errors on average are less accurate.

To carry out these experiments, we needed to to build predictors at a spec-
ified accuracy level for a given benchmark function. In Section 3 we present a
method to build a deterministic smooth predictor for a given function and a
given accuracy level. Figure 1 shows the results of this method the Michalewicz
benchmark function, where it can be seen that the predictors give information
about f , but with local errors that increase as the error level increases.

We then benchmark our methods against standard Bayesian optimization
(which ignores the predictor), and against a standard multi-fidelity approach
that uses the predictor as a lower-fidelity model. Our results show that the
exclusion radius method is competitive in all scenarios, while the discrepancy
prediction method is less consistent, but it can work well for benchmarks with
lower levels of error. Our results also show that our methods have a particular
advantage early on in the optimization process, where in many cases they are
able to quickly find points that have reasonably low regret. We also find that
our methods are significantly faster than the multi-fidelity approach.
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Related work. Prior work has considered methods for warm-starting [17,26,31]
Bayesian optimization. The warm starting approach uses results from optimiza-
tion tasks which have already been solved on previous datasets to introduce
information into the optimization process, and therefore potentially exploiting
similarities between the previous datasets and the current one. For example
Feurer et al. and Kim et al. [4, 17] initialize Bayesian optimization by fitting
the initial surrogate model with optimum solutions found for the previous tasks,
before running the current task. Alternatively the objective functions learned in
the previous tasks, fold, can be exploited to infer information about the current
objective, f , by iteratively learning the difference between f and fold [4,17]. This
can be contrasted with our scenario, where we have no prior knowledge about
f , and no prior runs on related optimization problems, but we instead have the
potentially poor quality predictions made by p.

Multi-fidelity optimization methods have been developed to deal with sce-
narios where the optimization process has access to lower fidelity models which
approximate the actual objective function, and which can be evaluated at re-
duced cost [5, 11, 15, 16, 24, 25, 29]. In this setting it is often assumed that these
models are hierarchically ordered by their fidelity with respect to the actual ob-
jective, such that as one moves up the hierarchy the cost of evaluating the models
decreases, but with the drawback of obtaining lower fidelity information about
the function that is being optimized. The main goal of multi-fidelity optimiza-
tion is to reach an optimal trade-off between cost and fidelity, thus minimizing
the overall cost. The fidelity level of the model to sample and the next input
point where to evaluate the model are selected simultaneously by maximizing
specifically designed acquisition functions [25,33].

The scenario we consider in this paper is slightly different, but related. As
our motivation arises from experimental work in natural sciences, and due to
the extremely high costs involved in those experiments, we assume that the
cost of evaluating f is extremely large compared to the cost of evaluating p,
meaning that obtaining predicted data is essentially free. So whereas existing
work in multi-fidelity optimization often carefully balances the costs of obtaining
predicted data as opposed to obtaining real data [18, 25], in our set up this is
meaningless, as there is essentially no cost to obtaining as much predicted data
as is needed at the start of the optimization process. We also make no formal
assumptions about the quality of the data produced by p, because in our setting it
does not make sense to do so. While a scientist may have a theory that predicts
the outcome of an experiment, the only way to validate the accuracy of that
theory would be to run experiments. But that would be self-defeating, as it is
those expensive experiments that we would like to avoid in the first place.

2 Our Methods

In this paper we study an optimization problem defined by a continuous domain
X and a black-box function f : X → R over that domain, where the goal is to
find a point x ∈ X that maximizes or minimizes f .
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Algorithm 1: Standard Bayesian Optimization

1 initialize D0

2 for n← 0, 1, ... do
3 Update the statistical model M
4 Select xn+1 by optimizing the acquisition function a:
5 xn+1 = arg max

x∈χ
a(x|Dn,M)

6 Query the objective function f to obtain yn+1

7 Augment data Dn+1 = {Dn, (xn+1,yn+1)}
8 if stopping condition is reached then
9 break

10 end

11 end

Bayesian optimization. Bayesian optimization (BO) is a global optimization
method developed to address black-box optimization problems, and is shown
in Algorithm 1. BO models f with a probabilistic surrogate model, M, which
describes the probability distribution over all possible functions, conditioned over
a training data set.

The most common choice for M is a Gaussian process (GP) [32], which
assumes that f follows a multivariate Gaussian distribution:

f(x) ∼ N (m(x), k(x, x′)), (1)

where x ∈ X is an input point in the search space, m(x) is the expected value
of the objective function, i.e. m(x) = E[f(x)], while k(x, x′) is the covariance
function, and it represents the uncertainty over the estimation of Equation (1).

The posterior distribution of the GP is used to calculate the acquisition
function a(x), an inexpensive utility function which is maximized in order to
find the best candidate x∗ ∈ X to sample. Then, the new data {(x∗, f(x∗)} is
added into the training set to improve the accuracy of the surrogate model.

Common choices for the acquisition function are expected improvement [14,
21], upper confidence bound, or entropy search [9]. In our methods we use ex-
pected improvement, which is defined as: EI(x) = E

[
max

(
f best − f(x), 0

)]
,

where f best is the best value of f found so far. In other words the expected im-
provement measures how much progress we expect to make towards the actual
optimum by evaluating the objective function at a point x.

Predictors. In this paper, we assume that the true objective function f : X →
R is expensive to evaluate, but comes equipped with a potentially low quality
but inexpensive predictive model p : X → R, which we will call the predictor.
We do not make any formal assumption on the predictor nor on the process in
which it is generated: it may be implemented using a theoretical model, through
computational simulations, or it could be a machine learning model.

The quality of the predictor at any given point can be quantified by the
discrepancy, δ : X → R, which we define as

δ(x) = f(x)− p(x). (2)
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Our goal is to use the outputs generated by the predictor to speed up the process
of Bayesian optimization.

Algorithm 2: The exclusion radius method.

Input: The initial exclusion radius r, a predictor p, and a number of real
observations Nobs

1 Initialize the starting sets of real and predicted points respectively as R0 = ∅,
P0 = {(xj , p(xj)}j=1,··· ,N and set the initial data-set D0 = R0 ∪ P0

2 for i← 0, 1, ... do
3 Update the surrogate model M using the whole data-set Di.
4 Select a new point xi+1 by optimizing the acquisition function a:

xi+1 = arg max
x∈X

a(x,M)

5 Query f to obtain yi+1 = f(xi+1)
6 Create a new real data set Ri+1 = Ri ∪ {(xi+1,yi+1)}
7 Find the predicted points in a ball around xi+1:

Bi+1 = {(x, y) ∈ Pi : ‖x− xi+1‖2 ≤ r}
8 Exclude those points by setting Pi+1 = Pi \ Bi+1

9 Set Di+1 = Ri+1 ∪ Pi+1

10 if number real observations = Nobs then
11 break
12 end

13 end

The exclusion radius method. Our first method is called the exclusion radius
method, and it is shown in Algorithm 2. The idea is to sample a large number
of points from the predictor and use these to initialize Bayesian optimization.
Then we run Bayesian optimization as normal, but in each iteration, when f(x)
is sampled at a point x ∈ X , we remove all predicted points that are within a
given radius of x from the model.

There are two main advantages of this approach. Firstly, by initializing the
model with predicted points, we give the model a warm-start, and thus our
initial queries to f will be informed by the data from the predictor. Secondly,
by removing points that are close to real data, we are able to discard potentially
inaccurate predicted data when more accurate data from f has been obtained.

Formally, in each iteration i, the method maintains two sets of data. The
set Ri denotes the set of real data, and it contains pairs (x, f(x)). The set Pi
denotes the set of predicted data, and it contains pairs (x, p(x)). At the start of
the process R0 is empty, since we have not made any queries to f , and P0 is
initialized with a set of initial predicted points, which we will choose randomly
in our experiments. In each step, Bayesian optimization proposes a new point
xi ∈ X to be sampled. The new data (xi, f(xi)) is added to Ri, and then all
predicted points that are close to xi are deleted from Pi. Specifically, all predicted
points within distance r from xi are deleted from Pi. Thus, the set of points to
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delete is given by B = {(x, y) ∈ P0 : ‖x− xi‖2 ≤ r}. The radius r is a parameter
of the algorithm.

Algorithm 3: The discrepancy prediction method.

Input: predictor p, number of real observations Nobs

1 Initialize the R0, P0, and C0 as mentined in the text, and set S0 = R0 ∪ P0

2 for i← 0, 1, ... do
3 Update the surrogate model M using the data in Si.
4 Select a new point xi+1 by optimizing the acquisition function a:

xi+1 = arg max
x∈D

a(x,M)

5 Query f to obtain yi+1 = f(xi+1)
6 Create a new real data set Ri+1 = Ri ∪ {(xi+1,yi+1)}
7 Set Ci+1 = Ci ∪ {(xi+1, f(xi+1)− p(xi+1))}, and then retrain Mδ on Ci+1

8 Create Pi+1 = {(x, p(x) + δ̂(x)) : x is a point in P0}
9 Set Si+1 = Ri+1 ∪ Pi+1

10 if number real observations = Nobs then
11 break
12 end

13 end

Discrepancy prediction. Our second method is called the discrepancy predic-
tion method, and is shown in Algorithm 3. This method maintains an estimation
of the discrepancy of a point, as defined in Equation (2). This will be modelled
by a Gaussian process that will be trained during the course of the Bayesian
optimization. Hence, this method uses two Gaussian processes: the model M
that is used as part of Bayesian optimization, and a model Mδ that is used to
predict the discrepancy.

As we proceed with Bayesian optimization, we will maintain a set Ci which
will contain data on the discrepancy of all points that we have sampled from f .
That is, every time we sample f(x) we add (x, f(x)− p(x)) to Ci. Then we train

Mδ using Ci, and we define δ̂ : D → R to be the expected value δ(x) of each
point x ∈ D as predicted by Mδ.

Like the exclusion radius method, we split the data into real points Ri, and
predicted points Pi. Unlike that method, we will not delete any predicted points.
Instead, in each iteration we update the values using the new discrepancy pre-
diction. Formally, to do this update we create the set Pi so that it contains
(x, p(x) + δ̂(x)) for each predicted point x, where δ̂(xp) is the expected discrep-

ancy, inferred from the values of δ̂ given by Mδ.
We initialize this method using a mix of predicted points and real points

(with the split being 45 predicted points and 5 real points in our experiments).
This allows us to train an initial discrepancy predictor, and then make an initial
adjustment of the predicted data before the optimization process begins. So
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Methods for Integrating Predicted Data into Bayesian Optimization 7

formally, if we initialize with k real points and l predicted points, then we set
R0 = {(xi, f(xi)) : i = 1, 2, . . . , k} where each xi is chosen uniformly from the
domain D, and we initialize C0 = {(xi, f(xi)− p(xi)) : i = 1, 2, . . . , k} for those

same points. Then we train Mδ on C0, and we set P0 = {(xi, p(x) + δ̂(x)) : i =
1, 2, . . . , l} as the initial set of predicted points.

3 Creating Predictors

The functions. In our experimental results, we will test our methods on five
standard benchmark functions: Ackley, Griewank, Michalewicz [13], Rastrigin
[1] and Styblinski-Tang [30]. The analytical form of these functions as well as
their global minima and the search domain over which they are optimized are
summarized in Table 1.

Name Formula Minimum Search domain

Ackley −20 exp


−0.2

√√√√0.5

2∑

i=1

x2i




− exp

[
0.5

2∑

i=1

cos(2πxi)

]
+ e+ 20

f(0, 0) = 0 −4 ≤ xi ≤ 4

Griewank 1 +
1

4000

2∑

i=1

x2i −
2∏

i=1

cos

(
xi√
i

)
f(0, 0) = 0 −10 ≤ xi ≤ 10

Michalewicz −∑2
i=1 sin(xi) sin20

(
i x2i
π

)
f(2.20, 1.57) = −1.801 0 ≤ xi ≤ π

Rastrigin 20 +

2∑

i=1

[
x2i − 10 cos(2πxi)

]
f(0, 0) = 0 −5.12 ≤ xi ≤ 5.12

Styblinski-
Tang

1

2

2∑

i=1

(
x4i − 16x2i + 5xi

)
f(−2.0935,−2.0935) ' −78.33 −5 ≤ xi ≤ 5

Table 1. The benchmark functions that we use

While these benchmarks are standard, they do not come with any pre-defined
predictor functions, so in order to benchmark our methods we must build the
predictors ourselves. In particular, we will build predictors with the following
properties:

– The predictor will be deterministic.
– The predictor will be smooth.
– The accuracy of the predictor will be proportional to a given error parameter
N , which will allow us to build predictors at any given accuracy level.

To achieve this we will use the following high-level procedure.

1. Select a number of points from the domain.
2. Assign each point an offset of f(x) +N or f(x)−N uniformly at random.
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3. Use these points and values to train a Gaussian process over the entire
domain.

4. Use the posterior mean of the GP as the predictor.

In this way we obtain a predictor that is a deterministic smooth function over
the entire domain, and whose predictions are influenced by the +N and −N
values at the chosen points. Note that this does not imply that all points get
predicted values of f(x) + N or f(x) −N : these values are simply the training
inputs to the GP, and it is the posterior mean of that GP that gives the actual
predicted values.

In the rest of the section we describe this procedure in full detail.

Creating the predictors. We begin by selecting a set of points from the space
A ⊆ X , which will be the set of points used to train the GP. The set A is chosen
according to a Latin hypercube sampling [19] that is overlaid on the space. Latin
hypercube sampling is a method for generating a near-random samples from a
multivariate distribution. Compared to random sampling, it is able to reduce the
number of samples necessary to approach the real distribution of the sampled
function [20]. We then randomly perturb each point in A, which further reduces
the regularity of the point set. Using Latin hypercube sampling to generate the
initializing points introduces randomness in the sampling of the input points,
while still covering the whole search space. In full detail, our technique is as
follows.

1. First we generate an initial set of 400 input points A ⊂ X ′, according to a
Latin hypercube sampling [19] where X ′ ⊃ X is obtained by extending the
original search space by 10% in each dimension.

2. To further increase the variability between different predictors we create a
second set of points A′ in which each point in A is translated by a random
offset. To do this we take each point (x, y) ∈ A and we construct the point
(x+ α, y + β), where α and β are distributed according to N (0, 0.2).

3. Each point x ∈ A′ is randomly assigned a value v(x) of either f(x) + N or
f(x)−N with the probability of either choice being 0.5.

4. The set of points {(x, v(x) : x ∈ A′} are fitted using a Gaussian process with
squared exponential kernel, GP (m(x), k(x, x′)). The posterior mean of the
GP, m(x), is our predictor p which returns an expected value p(x) for each
point x ∈ X .

In Step 2, we extend the domain beyond the original search space to ensure that
the predictor gives reasonable answers on the boundary of the domain. Without
this, the GP will have high variance on the boundary, leading to poorer quality
predictions on the boundary relative to the rest of the space.

Creating predictors for benchmarking. The method that we have just
outlined generates a wide variety of predictors, but these predictors have a large
range of accuracies even when the error parameter N is fixed. Moreover, different
benchmark functions react differently to increases in the error parameter: some
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Methods for Integrating Predicted Data into Bayesian Optimization 9

see a large increase in the error of the predictor, while some see a smaller increase.
The end result is that we cannot use N itself to define a error level that holds
across all benchmarks.

We will address this by building sets of predictors that have a particular level
of error. We use the following as a measure of accuracy

Ê =

√∑M
i=1 [f(xi)− p(xi)]2

M
, (3)

which is the mean squared error between f and p averaged over a set of M points.
For our setup, we sampled Ê according to a grid containing M = 30000 points.
However, Ê is not normalized across different benchmark functions. To address
this we define ∆f to be the difference between the maximum and minimum
values of f : ∆f = max

x∈X
[f(x)] − min

x∈X
[f(x)], and we define the accuracy of a

predictor to be acc(p) = Ê/∆f .
We then fix three target error levels for our benchmarks: we choose accura-

cies of 0.05, 0.10, and 0.15, which we refer to as low, medium, and high error,
respectively. To generate predictors with these accuracies, for each benchmark
function we performed a binary search over values of N : for each value we gen-
erated 100 predictors, and then adjusted upwards or downwards depending on
whether the average accuracy was too high or to low relative to the target ac-
curacy. Then, once an appropriate value of N was found, there was still a wide
range of accuracies in the generated predictors, so we excluded all predictors
that were further than 5% of the target accuracy. We ensured that, in all cases,
there were at least 20 generated predictors left in the benchmarking set. The
resulting predictors and error levels are shown in Figure 1.

4 Experimental Setup

In this section we describe our overall experimental setup, and the setup for each
of the methods. A summary of our parameters can be found in Tables 2 and 3
in Appendix A.

We benchmark our methods against the standard Bayesian optimization
method that does not use the predictor at all, and against a standard multi-
fidelity approach that treats the predictor as a lower fidelity model.

For a fair comparison we run both our methods and multi-fidelity until the
objective function f was queried a fixed number of times, so that all the methods
could exploit an equal amount of real data. In all experiments, we set this number
to 80 real queries.

For standard Bayesian optimization, and our two methods, this means that
the number of steps is fixed, since those methods query one real point in each
iteration, while for the multi-fidelity approach the number of iterations was un-
bounded, since any iteration that queried the predictor was not counted, though
in practice we stopped the method after 1000 total iterations had been com-
pleted.
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Fig. 1. Top: the error parameters used to generate predictors for each function. N has
been divided by ∆f to partially normalize across the benchmark. Bottom: example of
predictors at the three error levels for the Michalewicz function.
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We measure the quality of each method according to the regret of the optimal
point xopt found by the method, which is defined as R(xopt) = f(xopt) − fopt.
For the exclusion radius and discrepancy prediction methods we take xopt to
be the point that minimizes the mean of the surrogate model M, while for the
multi-fidelity method we take xopt to be the point that minimizes the mean of
the high-fidelity surrogate model.

Standard Bayesian optimization. The standard Bayesian optimization method
is initialized with five random points, and is otherwise unaltered.

Exclusion radius. We initialize the exclusion radius method with zero real
points and 50 predicted points. For this method we test a range of different
values for the radius parameter r. Each benchmark has a different sized domain,
so absolute values of r cannot be compared across different benchmark functions.
For this reason, we select values of r relative to the size of the search space.
Since each benchmark function has a square shaped search space (see Table 1),
we use l to denote the side-length of this square, and we choose values of r so
that r/l = {0.05, 0.1, 0.15, 0.2, 0.3}, meaning that we test settings of r that
correspond to 5%, 10%, 15%, 20%, and 30% of the size of the search space.

In addition to this, we also test the case where r/l = 0, which corresponds to
a zero radius, meaning that no points will be deleted during the optimization.
This will allow us to compare the exclusion radius and the discrepancy prediction
techniques against a baseline method that does not delete points.

Discrepancy prediction. The discrepancy prediction method is initialized
with 45 predicted points and 5 randomly selected real points. Unlike the exclu-
sion radius method, discrepancy prediction needs no other parameters. Both the
exclusion radius and the discrepancy prediction methods were implemented on
top of the package for Bayesian optimization GPyOpt [2].

The multi-fidelity method. The multi-fidelity method assumes that there
is a hierarchy of lower-fidelity approximations of f that can be queried during
the optimization. Each lower-fidelity approximation has an associated cost, with
the idea that higher cost approximations give more accurate data, with f itself
having the highest cost of all.

We benchmark against the most commonly used multi-fidelity approach [7,
10, 23, 25, 29] which assumes an autoregressive relationship between the lower
fidelity models, and which uses one Gaussian process as surrogate model. This
benchmark method uses a cost-sensitive version of the information gain acqui-
sition function, as proposed by Swersky et al. and by Marco et al., which has
been shown to be more efficient for multi fidelity optimization compared to ex-
pected improvement. We use an implementation provided by the python package
Emukit [22].

Since we only have a single predictor, we apply the method to a hierarchy of
two functions, with the real function f being the high-fidelity function, and the
predictor p serving the low fidelity function. The acquisition function requires
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that we assign costs to the two functions. So although our setup assumes that
the predictor is essentially free to query, we were required to fix costs in order
to apply the multi-fidelity method. We were unable to generate results for the
“true” cost of f , which would correspond to setting the cost of f to be much
higher than the cost of p, as this caused the method to almost exclusively query p,
and the stopping condition of 80 real observations was not reached in a reasonable
amount of time. Instead we set p to have cost 1, and we tested two values for
the cost of f : 2 and 10.

The multi-fidelity method was initialized by using 5 random real points for
the high-fidelity function, and 50 random points for the low-fidelity function.

5 Results

The results of our experiments are shown in Figure 2, which shows the results
on a logarithmic scale, and they are also shown on a linear scale in Figure 5 in
Appendix B. Both the exclusion radius and the discrepancy prediction methods
outperform standard Bayesian optimization, especially during the early stages
of the optimization process. This is particularly clear in the linear-scale charts.
However in the logarithmic scale it can be seen that multi-fidelity methods even-
tually catch up once we are very close to an optimal point.

We also consider as a measure of performance the number of real observations
needed to get within 5% of the optimal value. This percentage is quoted relative
to the average value of the benchmark function: we define f̂ to be the average
value of f , computed by sampling 10000 points according to a grid design, and

then we set our target as 0.05 ·
(
f̂ − fopt

)
. The plot in Figure 3 shows the first

real observation at which each method achieves a regret that is better than this
value. This data is also available in tabular form in Tables 4, 5, and 6 in the
appendix.

Analysis. For the exclusion radius method, it can be seen that as the error level
of the predictor increases, the optimal values for r/l also increase, indicating that
a higher number of predicted points need to be discarded in higher error regimes.

Generally optimum values for the exclusion radius are between 0 and 0.15 · l
in the low error regime, between 0.05 · l and 0.2 · l in the medium error regime,
and between 0.1 · l and 0.2 · l in the high error regime. In reality the level of
error of the predictors is not known a priori, but the results shown in Figure 3
indicate that the choice r/l = 0.1 is suitable for all the three regimes.

Surprisingly, our benchmark test of setting the exclusion radius to r/l = 0,
meaning that no points were deleted, was competitive, though not optimal, in
the low and medium error regimes. However, the method performs very poorly
in the high error regime. Hence, deleting points does have a positive effect on
convergence speed.

The results also show that, for low and medium error predictors, the discrep-
ancy prediction method is competitive with the exclusion radius technique on
four out of the five benchmark functions, with only the Styblinski-Tang function
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Fig. 2. Experimental results for all methods on all benchmarks. The curves for standard
BO, discrepancy prediction, and the multi-fidelity Bayesian optimization experiments
start at observation 5 as they are all initialized with 5 real points. The curves for the
exclusion radius methods start from 0 as no real points are used for the initialization.
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showing poorer convergence in the earlier stages of optimization. In the high
error regime the method is less consistent.

To sum up, on our benchmark functions, if one has some idea about the error
level of the predictor, then the parameter r can be fine-tuned to achieve excellent
results. If the error level of the predictor is unknown, then either the exclusion
radius method with r/l = 0.1, or the parameter-free discrepancy prediction
method can be used, to achieve generally good results.
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Fig. 3. The number of real observations needed to get within 5% of the optimal value.

Computation time. We also found that our methods were substantially faster
in computation time when compared to the multi-fidelity approach. Figure 4
shows the wall clock time that was taken for each method to reach 80 real
observations. The multi-fidelity approach can be seen to be substantially slower,
and we found that this was for two reasons: the multi-fidelity approach uses more
iterations, and each iteration takes substantially more time.

6 Conclusion

We have proposed two algorithms to accelerate Bayesian optimization by ex-
ploiting predicted knowledge. Both methods are conceptually simple and they
are competitive with state of the art methods like multi-fidelity optimization,
while requiring remarkably less computational time.

Experimentally, we found that a reasonable choice for the exclusion radius is
r/l = 0.1, which is suitable for all the error levels that we considered. The dis-
crepancy prediction method is overall less performant than the exclusion method,
especially in the high error regime, but it has the advantage of not depending
on any hyper-parameter.
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Fig. 4. Total computational time in seconds for each method.
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A Experimental Parameters

Method # Real # Pred. Â/∆f r/l Cost

Standard 5 0 — — —

Exclusion radius 0 50 0.05, 0.1, 0.15,
0.2

0, 0.05, 0.1,
0.15, 0.2, 0.3

—

Discrepancy prediction 5 45 0.05, 0.1, 0.15,
0.2

— —

Multi-fidelity 5 50 0.05, 0.1, 0.15,
0.2

— 2, 10

Table 2. Experimental setup for each method. # Real and # Pred. denote the number
of real and predicted points used to initialize the method. Â/∆f denotes the predictor
accuracies that were tested. r/l gives the values of the radius parameter for the exclu-
sion radius technique, while cost denotes the costs that were tested for the multi-fidelity
technique.

Function
Error parameters (N) Exclusion radius (r)
5% 10% 15% 0% 5% 10% 15% 20% 30%

Ackley 0.83 2.8 3.75 0 0.4 0.8 1.2 1.6 2.4

Griewank 0.12 0.31 0.48 0 1.0 2.0 3.0 4.0 6.0

Michalewicz 0.07 0.3 0.8 0 0.16 0.31 0.47 0.63 0.94

Rastrigin 2.23 6.22 14.22 0 0.51 1.02 1.54 2.05 3.07

Styblinski-Tang 50.18 158.91 234.18 0 0.5 1.0 1.5 2.0 3.0

Table 3. Absolute values of the set up parameters for the exclusion radius method
and for each benchmark functions.
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B Regrets Versus Real Observations on a Linear Scale
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Fig. 5. This shows the curves from Figure 2 on a linear scale.
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C Convergence to a 5% target

Low Error

Function r/l Exc. radius Standard Discr. MF cost 2 MF cost 10

Ackley 0 7 24 12 12 12
0.05 7
0.1 7
0.15 7
0.2 6
0.3 7

Griewank 0 1 11 7 21 14
0.05 1
0.1 1
0.15 1
0.2 1
0.3 1

Michalewicz 0 17 46 21 35 46
0.05 17
0.1 25
0.15 25
0.2 21
0.3 29

Rastrigin 0 14 63 22 52 36
0.05 18
0.1 14
0.15 20
0.2 18
0.3 27

Styblinski-Tang 0 8 25 13 11 8
0.05 8
0.1 8
0.15 6
0.2 7
0.3 16

Table 4. Number of steps needed to get within 5% of the optimal point for low error
predictors.
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Medium Error

Function r/l Exc. radius Standard Discr. MF cost 2 MF cost 10

Ackley 0 11 24 14 15 12
0.05 8
0.1 8
0.15 8
0.2 7
0.3 8

Griewank 0 4 11 8 21 16
0.05 3
0.1 2
0.15 2
0.2 3
0.3 3

Michalewicz 0 9 46 15 28 29
0.05 7
0.1 11
0.15 9
0.2 11
0.3 14

Rastrigin 0 17 63 23 47 38
0.05 14
0.1 19
0.15 16
0.2 17
0.3 23

Styblinski-Tang 0 34 25 17 13 12
0.05 17
0.1 12
0.15 10
0.2 13
0.3 18

Table 5. Number of steps needed to get within 5% of the optimal point for medium
error predictors.
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High Error

Function r/l Exc. radius Standard Discr. MF cost 2 MF cost 10

Ackley 0 28 24 19 16 17
0.05 14
0.1 12
0.15 11
0.2 12
0.3 12

Griewank 0 8 11 10 19 18
0.05 4
0.1 4
0.15 4
0.2 4
0.3 4

Michalewicz 0 22 46 32 35 35
0.05 24
0.1 21
0.15 23
0.2 23
0.3 22

Rastrigin 0 53 63 40 49 71
0.05 23
0.1 24
0.15 25
0.2 29
0.3 41

Styblinski-Tang 0 - 25 18 18 18
0.05 22
0.1 14
0.15 13
0.2 14
0.3 19

Table 6. Number of steps needed to get within 5% of the optimal point for high error
predictors.
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Abstract. Both argumentation and trust concern multi-lateral uncertainties, while
argumentation owns the ability to enhance trust in many ways. In the field of trust
service where the trustee administers financial assets on behalf of principals, trust
is an indispensable element. Often, the trustees withhold the investment plans
and of which the decision-making process from their principals such that these
services lack of transparency documentation, traceability, and inclusive decision-
making mechanisms. In this paper, we integrate formal argumentation within a
blockchain framework. Both argumentation and blockchain have distinctive fea-
tures that complement each other. They together make the decision-making of the
trustees transparent and traceable in order to gain trust and confidence in prin-
cipals. We introduce three possible architectures and we evaluate and compare
them considering different technical, financial, and legal aspects. Specifically, we
discuss the role of argumentation in building trust between trustees and their prin-
cipals.

Keywords: trust services · argumentation · negotiation · blockchain · smart con-
tracts · artificial intelligence

1 Introduction

Trust service is concerned as persons or organization that acts on behalf of another
person or persons to deal with the tasks involves finances, i.e., managing the assets,
where trust from trustors plays a crucial role in entering into the contractual relations
with trustee. Fund management, as a strand of trust services, is meant that the fund
managers, i.e., trustees, are in the position of a fiduciary and put their principals’ interest
ahead of their own to construct a portfolio of securities (e.g., stock, bonds, mutual funds,
etc.), with a duty to preserve good faith and trust. In general, fund management mainly
has a two-stage procedure. At the first stage fund managers are supposed to perform an
evaluation of the selected securities on account of their expertise. At a second stage, the
transactions based on the first stage are executed. As a matter of course, trust problem
will emerge in both stages. On the one hand, the seeds of distrust of such fiduciary may
be planted from the difference between the principal’s and the fund managers’ expertise,
as well as the reservation and lack of documentation of the decision-making process of
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investment plans. The legislators have already taken this problem into account, they
can (and does5) declare the principal’s right to check the fiduciary’s relevant activities
in order to give weight to this duty by its intended controllability. On the other hand,
weather the transactions are executed as planed is also the original of distrust.

In this study, we propose an integrated framework that incorporates formal argu-
mentation within a blockchain environment for making the decision-making processes
of fund management transparent and traceable. As suggested by both academics and
industries, smart contracts within blockchain technology can also be engaged in the
core activities in the securities market [24,61], proven by the surge of Decentralized
Finance (DeFi) [68]. The involvement of smart contracts and blockchain can address
the second concern, i.e., make the transactions transparent and auditable. Nevertheless,
blockchain for transactions alone does not address the first trust problem, it is actu-
ally used only to trace the output of such a decision-making process. The principals
still don’t have access to why the given transaction happened and whether it happened
indeed in his best interest. To this sense, trust can be understood as a relational at-
tribute between a social actor and /or institutions [8], and trust is also a technique for
dealing with uncertainty regarding other parties’ actions and communications [31]. We
argue that formal argumentation and trust share a common function: they both deal
with changes and uncertainties in complex social environment [45]. We aim to show
that formal argumentation is suited for modelling the decision-making process of fund
management, which is multi-lateral interaction and reasoning based on incomplete and
inconsistent information to help explain why a claim or a decision is made. In the fund
management case, information incorporating the different fund managers’ opinions is
provided by different conflict-resolution techniques: argumentation is used to decide
whether to buy, sell or hold securities, and negotiation to determine the quantities and
investment timing, and thus to provide explanations. By integrating argumentation with
blockchain, a reasoning system put in place for making these decisions could be fea-
tured with auditability, transparency, traceability and explainability, which all serve to
enhance reliability and trust—in such an industry which is named after it.

Our proposal is a framework integrating different methodologies based on different
considerations:

(i) First we consider the ecosystem of the trust services, the fund management (at the
securities market) to see the roles of the parties and their relation, especially that of
the fund managers. This is what we start with in Section 2 as a motivation.

(ii) The technical environment for the solution we propose is blockchain and smart-
contracts given that their application in the trading itself on the securities market
is rising [24,51]. The expertise of the fund managers and their decision based on
that triggers the transaction, that is, the smart contract’s execution. The interface
giving external input needed for the smart contract’s execution—for some reason,
for instance, the human expertise’s irreplaceability—is called (blockchain) oracle.
The blockchain systems and their reliance on oracles involve some considerations

5 For instance, the 6:315. § of the Hungarian Civil Code (Act V of 2013) says: The principal
and the beneficiary shall have the right to check the fiduciary’s activities relating to asset
management.

Regular papers BNAIC/BeneLearn 2021

419



Enhancing Trust in Trust Services: IHiBO 3

the understanding of which is needed for the proper involvement of the method-
ologies we propose, thus we introduce shortly what oracles are in the blockchain
environment and how they are supposed to work in Section 3.

(iii) In order to optimize the involved expertise of investing the principal’s money, we
count with more than one fund managers. These fund managers might, of course,
have different opinions about selling or buying, what, when and how much. How-
ever, at the end of the day, they need one decision: the smart contract needs one
input. To optimize this decision-making process, its traceability in the computa-
tional environment and its integration into the blockchain environment, we propose
using formal argumentation and negotiation in the multi-agent systems setup. To
have this paper self-contained, we introduce these methodologies and discuss their
relevance and applicability in the current process in Section 4.

(iv) Integrating formal argumentation and multi-agent negotiation for creating the proper
external input triggering the transaction’s smart contract leads us to the framework
we call Intelligent Human-input-based Blockchain Oracle (IHiBO). We consider
three possible architectures in the blockchain framework, for each we have a differ-
ent way to integrate argumentation and negotiation in the set of blockchain frame-
work, evaluate and compare them regarding different technical and legal aspects
in Section 5, we don’t only consider traceability, verifiability, execution overhead
costs and possible failure, but also the trade secret, and privacy issues related to
each architecture.

Afterwards, we give the discussion, and not only the related works but also the
consideration of our contribution and future perspectives.

2 Motivation

In this section, we generally talk about the procedure of fund management (at the se-
curities market) and the roles of the parties and their relation, in order to show that the
decision-making process can be suited into argumentation modeling.

Fund managers play an important role in the investment and financial world, they
provide investors with peace of mind, knowing their money is in the hands of an expert
[11]. However, the reality is not always as one wished, investors tend to know but they
don’t, in reality, where their money goes, why, and how much is the real profit. In
portfolio management, the core duties of fund managers under AIFMD6 and UCITSD7

is to perform portfolio management and risk management on behalf of their investors.
The fund can be managed by one person, by two people as co-managers, or by a team of
three or more people. Fund managers primarily research and determine the best stocks,
bonds, or other securities to fit the strategy of the fund, then buy and sell them. Since
the fund managers are responsible for the success of the fund, they must also research

6 Directive 2011/61/EU of the European Parliament and of the Council of 8 June 2011 on Alter-
native Investment Fund Managers (AIFMD.http://data.europa.eu/eli/dir/2011/61/oj)

7 Directive 2009/65/EC of the European Parliament and of the Council of 13 July 2009 on the co-
ordination of laws, regulations and administrative provisions relating to undertakings for col-
lective investment in transferable securities (UCITS). http://data.europa.eu/eli/dir/2009/65/oj
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companies, and study the financial industry and the economy. Keeping up to date on
trends in the industry helps the fund managers make key decisions that are consistent
with the fund’s goals [15]. The main characteristic of investing in a fund is trusting the
investment management decisions to the professionals.

The process of portfolio management on the manager side is formally defined as
follows [16][17]: Portfolio management is a dynamic decision process, whereby a busi-
ness’s list of active new product (and development) projects is constantly up-dated and
revised. In this process, new projects are evaluated, selected and prioritized; existing
projects may be killed or de-prioritized. The portfolio decision process is character-
ized by uncertain and changing information, dynamic opportunities, multiple goals and
strategic considerations, multiple decision-makers and locations. The portfolio deci-
sion process encompasses or overlaps a number of decision-making processes within
the business, making Go/Kill decisions on individual projects on an on-going basis, and
developing a new product strategy for the business.

A possible simplified process of fund investment management includes the follow-
ing activities. Firstly, the investors pool their money together. Then fund managers
gather information and conduct investment research, prepare the specific plan for the
investment portfolio. According to their research and the final decision of investment
plan, fund managers invest securities on behalf of their clients (investors). The invest-
ment generates returns and the returns would be passed down to investors.

3 Formal Argumentation and Negotiation

In section 2, we show that fund managers conduct the securities transactions directly,
such behavior creates a sense of insecurity in clients, how and why the fund managers
make the investment plans and actions need to be explained and modeled. In the second
move of fund management described in Fig.1, various managers might have different
investment plans based on their own expertise and research that may conflict with each
other. We present the solution proposals in this section to resolve the conflicts by formal
argumentation and negotiation.

Formal argumentation or computational argumentation in artificial intelligence (AI)
is a formalism for representing and reasoning with incomplete and inconsistent informa-
tion. A wide variety of reasoning and dialogical activities can be captured by argumenta-
tion models in a formal and still quite intuitive way, allowing the integrationof different
concrete techniques and the development of applications that humans can trust. Dung’s
work in 1995 illustrates an argumentation system consisting of a set of arguments and
the relation (attacks) between them [21]. Argumentation semantics are defined later by
Baroni and Giacomin for gathering acceptable arguments lying on different criterias [7],
in a way that somehow emulates the way humans tackle such a complex task [1,5,50].
Formal argumentation also can be used for modeling the dynamic interactions among
agents which is particularly at stake in a multi-agent context: the system evolves as the
agents put forward new arguments or retract arguments and relations [10,19,36]. There
are lots of variants of Dung’s original framework, extending the theory with preference
[2,30], support [14,71,72], probabilities [27,35], etc. In this section, we use agent ab-
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stract argumentation which is introduced in one of the authors’ latest work [70], and
autonomous negotiation for dealing with conflicting information raised by agents.

3.1 Agent Argumentation

We generalize argumentation frameworks studied by Dung (1995), which are directed
graphs, where the nodes are arguments, and the arrows correspond to the attack relation.

Definition 1 (Argumentation framework [20]). An argumentation framework (AF) is
a pair 〈A ,→〉 where A is a set called arguments, and→⊆A ×A is a binary relation
over A called attack. For a set S ⊆A and an argument a ∈A , we say that S attacks
a if there exists b ∈ S such that b attacks a, a attacks S if there exists b ∈ S such that a
attacks b, a− = {b ∈A |b attacks a}, S−out = {a ∈A \S| a attacks S }.

Dung’s admissibility-based semantics is based on the concept of defense. A set of
arguments defends another argument if they attack all its attackers.

Definition 2 (Admissible [20]). Let 〈A ,→〉 be an AF. E ⊆A is conflict-free iff there
are no arguments a and b in E such that a attacks b. E ⊆ A defends c iff for all
arguments b attacking c, there is an argument a in E such that a attacks b. E ⊆ A is
admissible iff it is conflict-free and defends all its elements.

For their principle-based analysis, Baroni and Giacomin define semantics as a function
from argumentation frameworks to sets of subsets of arguments.

Definition 3 (Dung semantics [7]). A Dung semantics is a function σ that associates
with an argumentation framework AF = 〈A ,→〉, a set of subsets of A , the elements of
σ(AF) are called extensions.

Dung distinguishes several definitions of extension.

Definition 4 (Extensions [20]). Let 〈A ,→〉 be an AF. E ⊆A is a complete extension
iff it is admissible and it contains all arguments it defends, i.e., E = {a|E defends a}.
E ⊆ A is a grounded extension iff it is the smallest (for set inclusion) complete ex-
tension. E ⊆ A is a preferred extension iff it is a largest (for set inclusion) complete
extension. E ⊆A is a stable extension iff it is conflict-free and it attacks each argument
which does not belong to E.

Each kind of extension may be seen as an acceptability semantics that formally rules
the argument evaluation process. In this article, we use σ ∈{c,g, p,s} to represent Dung
semantics {complete, grounded, preferred, stable}.

An agent argumentation framework extends an argumentation framework with a set
of agents and a relation associating arguments with agents. Note that an argument can
belong to one agent or multiple agents.

Definition 5 (Agent argumentation framework [72]). An agent argumentation frame-
work (AAF) is a 4-tuple 〈A ,→,S ,<〉 where A is a set of arguments,→⊆A ×A is
a binary relation over A called attack, S is a set of agents or sources, <⊆ A ×S
is a binary relation associating arguments with agents. Aα = {a ∈ A |a < α} for all
arguments that belong to agent α , Sa = {α|a < α} for all agents that have argument
a.
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Social agent semantics [70] For the decision making of fund management, we use
so-called social semantics, which is based on a reduction to preference-based argumen-
tation by for each argument counting the number of agents that have the argument.
It thus interprets agent argumentation as a kind of voting, as studied in social choice
theory or judgment aggregation, this is also closed to fund management.

We first give the definition of a preference-based argumentation framework.

Definition 6 (Preference-based argumentation framework [30]). A preference-based
argumentation framework (PAF) is a 3-tuple 〈A ,→,�〉 where A is a set of arguments,
→⊆A ×A is a binary attack relation, � is a partial order (irreflexive and transitive)
over A , called preference relation.

There are two different reductions of preference being first introduced[3], after
which there are two more reductions [63]. We refer to those papers for an explanation
and motivation, while users should select one reduction according to their particular ap-
plication, one can refer to the principle-based approach to distinguish these reductions
[63,70].

Definition 7 (Reductions of PAF to AF (PR)). Given an PAF = 〈A ,→,�〉:

– PR1(PAF) = 〈A ,→′〉, where→′ = {a→′ b|a→ b,b � a}.
– PR2(PAF)= 〈A ,→′〉, where→′= {(a→′ b|a→ b,b� a or b→ a, not a→ b,a�

b}.
– PR3(PAF) = 〈A ,→′〉, where→′ = {(a→′ b|(a→ b,b � a or a→ b, not b→ a}.
– PR4(PAF) = 〈A ,→′〉, where→′= {a→′ b|a→ b,b� a, or b→ a, not a→ b,a�

b, or a→ b, not b→ a}.

In social agent semantics, an argument is preferred to another argument if it belongs
to more agents. The reduction from AAF to PAF is used as an intermediary step for
social agent semantics.

Definition 8 (Social Reductions of AAF to PAF (SAP)). Given an AAF = 〈A ,→
,S ,<〉, SAP(AAF) = 〈A ,→,�〉 with �= {a� b||Sa|> |Sb|}.

Definition 9 (Social Reductions of AAF to AF (SR)). Given an AAF = 〈A ,→,S ,<
〉, SRi(AAF) = PRi(SAP(AAF)), PRi is one of the four reductions of PAF to AF, where
the semantics δ (AAF) = σ(SRi(AAF)) = σ(PRi(SAP(AAF))) for i ∈ {1,2,3,4}.

3.2 Autonomous Agents and Negotiation

A software agent is a software that acts on behalf of another actor (often a human user)
to perform a task or achieve a given goal [69]. Agents are designed to be bound to
individual perspectives [58]. This makes agents good candidates to represent the sub-
jectivity and nuances of different expert opinions. Multi-agent systems [66] provide a
distributed platform capable of implementing intelligence in decentralized ecosystems
such as blockchain-based systems where agents are capable, using well-established
conflict-resolution mechanisms (e.g. negotiation), of helping the different stakeholders
finding agreements that satisfy their often conflicting interests.
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In his influential book, Dean Pruitt provides one of negotiation’s most widely ac-
cepted definitions: ”Negotiation is the process by which a joint decision is made by
two or more parties. The parties first verbalize contradictory demands and then move
towards agreement by a process of concession making or search for new alternatives”
[52]. The problem being negotiated, or the topic under discussion (e.g. car purchase)
can be usually divided into issues (also called attributes). Some negotiations involve
only single issue (e.g. car price) whereas others involve multiple issues (e.g. price and
delivery time). Negotiators may not only disagree on the value assigned to each issue,
the priority given to each issue can differ from one negotiator to another and hence this
can be a source of both divergence and convergence [54]. Automated negotiation is one
taking place among autonomous agents [28]. Autonomous negotiation has a protocol.
The latter is the set of rules that governs the interactions during a negotiation session
(also called a thread). Whereas the negotiation protocol defines what is the set of possi-
ble actions that can be taken during a negotiation session, an agent has a decision model
[23,40] that allows the agent to (i) evaluate the value of an offer received from the op-
ponent (e.g., using a utility function), (ii) decide whether it is acceptable (also called
acceptance condition [6]), and (iii) determine what to do next (known as the negotia-
tion strategy [23]). Automated negotiation has been applied to solve conflicts and reach
agreements in several domains including cloud and service provisioning [41], smart
grid and power distribution [62], and trading and stock market [67].

3.3 Conflict Resolution

The process of portfolio management fits well with argumentation theory in artifi-
cial intelligence. The decision can be seen as being based on arguments and counter-
arguments. Argumentation, as the result, can be useful for deriving decisions and ex-
plaining a choice already made. Managers provide their arguments from their own re-
search to identify promising stocks with different level of accuracy and thereby make
different portfolio choices which are likely to be incomplete and inconsistent.

The fictitious simple example (the real life cases would be much more complex)
is as follows. Manager α and β hold the arguments a: To buy the stocks, since the
company just donated to charities that is beneficial to good commercial reputation,
while another manager γ at the same time is against to buy the stocks, he holds the
arguments b1 and b2, b1 is To sell the stocks, since there is evidence that the leader is
under accusations of charity fraud, and b2 is To sell the stocks, since the company has
poor sales performance. However, manager α brings out the argument c1 The official
has clarified the accusations collapsed, and β brings c2 The company is going to adopt
a new technology which will bring huge benefit.

Based on the above, we can build an agent argumentation framework on the left side
of Fig.1, AAF = 〈A ,→,S ,<〉 where A = {a,b1,b2,c1,c2}, →= {(b1,a), (b2,a),
(c1,b1), (c2,b2),(a,b1),(a,b2)}, S = {α,β ,γ}, <= {(a,α), (a,β ), (b1,γ), (b2,γ)
,(c1,α) ,(c2,β )}. Since |Sa| it the most preferrred, we get the corresponding PAF
where a � b1,b2,c1,c2, and giving the four reductions from PAF to AF, we have the
only AF on the right side (without the preference below) of Fig.1. Then we can cal-
culate the only acceptable set {a,c1,c2}. The set tells the final decision is to buy the
stocks. One thing needs to be noticed: argumentation does not always provide a definite
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outcome. Depending on the decision making process, different protocols can be spec-
ified in advance for such cases: e.g. to roll back or to assign weights to the arguments
and the relation among them (so that these cannot be always equal).

a

b1 b2

c1 c2

γ

α β

a

b1 b2

c1 c2

a� b1,b2,c1,c2

Fig. 1. Social reduction

Fig. 2. Negotiation Sequence to Decide The Quantities and The Price

After deciding to sell the stocks, the next problem is the numbers of stocks to sell
and the sell timing. Here the computational automated negotiation comes into play. To
illustrate how it works, we give an example of the negotiation sequence based on the
on the quantities of stocks to sell. The negotiation process is based on the alternating
offer protocol [55]. Agents can bid new offers to the opponent (O f f er() function).
When receiving an offer, and agent can accept it using accept() function or reject it and
propose a counter-offer (with the CounterO f f er() function). In the example, we have
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a manager A, i.e., agent A, and manager B, i.e., agent B. Agent A proposes to sell 1000
stocks at the price of 151$, while agent B counteroffers to sell 1200 stocks at the price
of 145$, then agent A proposes to sell 1150 stocks at the price of 148$. The final offer
given by A is accepted by both parties which means they come to an agreement.

4 Blockchain in Financial Agreements and Architectures

The tamper-resistant property of DLTs enables a favourable environment for storing
information that can be later audited. For the fund management use case we are deal-
ing with, we refer to a generic smart contract based operation of security transaction,
implemented using different kinds of the systems/technologies. In this subsection, we
outline the potential of distributed ledger technologies (DLTs) to revolutionize financial
agreements and a particular instance of how fund managers trade securities on behalf
of their clients on blockchain platform.

4.1 Distributed Ledger Technologies

There is a growing body of work generated on the design and utilization principles for
blockchain and DLTs [33]. The underlying premise of blockchain and its various appli-
cations is the elimination of untrustworthy third parties such that the users themselves
are the authority of maintaining the ledgers which are immutable. The immutability of
blockchains also enhances the distributed trust since it is nearly impossible to tamper
any transactions stored in blockchains and all the historical transactions are auditable
and traceable [73]. In the case of the blockchain, the ledger is organized into chrono-
logically ordered blocks where each block is sequentially linked to the previous one
[42]. When the majority of network nodes execute the exact same protocol, such as in
the Bitcoin network, the blockchain is cryptographically guaranteed to be tamper-proof
and unforgeable. A feature that some DLTs enable is the possibility to execute smart
contracts, firstly introduced by the Ethereum blockchain [13], which is reshaping the
conventional commercial industries [32,73,74]. Smart contracts consist of instructions
that, once deployed on the ledger, cannot be altered and thus allowing the outcome of
their execution to be always the same for anyone who runs it (i.e. the DLT network
nodes). Usually, the possible instructions of a smart contract are embedded in the DLT
protocol and their execution can only involve data coming from other smart contracts or
from the user’s inputs, e.g. smart contracts cannot fetch a webpage on the Internet. This
“closure” ensures the execution of smart contracts to be more resistant to attacks with a
higher degree of certainty, thus making the whole system more secure [73]. However, it
also leads to a very restricted use case where DLTs are actually closed networks like a
computer with no Internet connection. This obviously limits the possible usage of these
technologies, since the vast majority of the possible smart contract applications would
require real-time information from the network external world.

In order for smart contracts to operate in the real world, data must flow in both direc-
tions and thus the high demand for applications gave birth to blockcahin oracles. These
third-party systems act as a bridge that connects the DLT network and the “outside”
world, providing the ability to retrieve, verify and digest the data into smart contracts.
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Oracles can be implemented as: (i) software, by far the most widely used, they interact
with the information needed from online sources; (ii) hardware, retrieve data from the
physical world directly through scanners sensors; (iii) human, interacting with individ-
uals. In all cases their off-chain execution is either centralized, i.e. coming from a single
source, or decentralized, consensus-based multitude of sources [9].

4.2 Decentralized Finance

Both scholars and industries have examined the commercial implications of DLTs and
smart contracts, for instance, the financial services of tokenized securities settlement
and clearing[29]. The advent of DLTs has the potential to restructure this paradigm by
breaking the stigma, only apparently immutable, of centrality and of central counter-
parties (CCPs) [51]. Decentralized Financial Market Infrastructures (dFMI) [24] are
consortium entities whose members are comprised of the main participants in a mar-
ket, organized in a peer-to-peer model, which is governed by dFMI participants them-
selves rather than a central intermediary. In some applications smart contracts can take
on a role similar to that previously played CCPs, e.g. acting as a margin calculating
agent and taking on the task of transferring collateral. Although in a different way, the
smart contract can be used to resolve disputes in the event of non-compliance with pay-
ment [39]. Alternatively, smart contracts can support the central counterparty, which
can maintain the business model by leveraging the blockchain to calculate and update
collateral as well as manage funds, thus relying on financial cryptography. A concrete
application of DLTs for the trading of securities by fund managers is Lianjiaorong, a
blockchain AssetBacked securitization platform, built by the Bank of Communications
in China [47]. The blockchain is maintained by original stock holders, trust companies,
investors, rating agencies, accountants, lawyers, regulators and it links funds and assets
on the ledger, realizing the credit penetration of the securities business system.

4.3 Blockchain Architectures

In this subsection we deal with the operation that is the outcome of the negotiation and
argumentation processes seen above, i.e. the decision, that is given as input to a smart
contract, e.g., buy a stock. We refer to this smart contract as the “TransactionSC”. In the
following, we compare three different architectures that can take form in our blockchain
framework, for reaching the decision to give as input to the TransactionSC (Figure 3).
We take as reference Table 1 for comparing the three architectures.

1. Centralized Oracle The first architecture we consider is the simplest one, where
argumentation and negotiation phases do not involve any blockchain process, neither a
smart contract execution. These are executed in a “centralized” environment, e.g. a web
platform or an internal firm application. Each decision coming after the negotiation will
be given as input to the TransactionSC by a single service in this environment, that
provides the role of an oracle.

A discriminating factor in choosing one architecture over another is where the in-
formation needed for execution is stored. In the case of this architecture, i.e. using a
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Fig. 3. IHiBO with three architectures

classical centralised oracle, the complete execution of the conflict resolution would be
scarcely verifiable, because only the results would be stored on the blockchain. It would
also be highly susceptible to a single point of failure.

2. Smart Contract Argumentation and Negotiation In the second architecture, ar-
gumentation and negotiation are directly implemented as smart contracts, and thus are
executed following the blockchain protocol. It means that the human experts, through
their agent software, directly interact with the blockchain for giving in input the data
for constructing the argumentation graph and then for enacting the negotiation functions
that are expressed as smart contract instructions.

The argumentation graph (and all the data needed for execution too) is necessary for
the execution of the whole process, so it is constantly updated. This information only
needs to be stored on the ledger in the case of this architecture. The disadvantages of
storing large amounts of data on-chain are many, mainly, the high transaction cost [32]
and the almost impractical deployment latency [75]. However, the advantage of this
architecture is that trade execution would be fully tracked and verifiable, as execution
would be done completely through smart contracts in the blockchain.

3. Decentralized Oracle Finally, the third architecture we consider consists of a net-
work of agents that execute a distributed software independently of the blockchain pro-
tocol and that limit the execution of the smart contract instructions to only a few steps,
necessary to be trustworthy. The implementation of such network consists in the so
called “layer two” solution [25], where the same principle of decentralization of DLTs
is applied. Indeed, an instance of such layer two solution would be the use of a sec-
ond DLT with different features in respect to the “main” one [56] where to write the
negotiation outcome, e.g. consensus mechanism, or faster operations execution.

A good compromise between the two architectures would be the use of this archi-
tecture, i.e. a decentralised oracle, over the others to perform the argumentation, nego-
tiation and interaction with TransactionSC. The data needed to execute these processes,
such as the argumentation graph, would be stored in a lower cost secondary DLT or
other layer two technology that preserves the immutability of the data. The execution
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of the negotiation could take place outside the chain and then be “committed” [25] on
the main chain using a hash function to be immutable and therefore verifiable. It would
not be susceptible to a single point of failure and the cost of execution overhead would
be favourable compared to the second architecture.

Table 1. Comparison between the three architectures considered.
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Architecture 1
Centralized � × × � × × ��

Architecture 2
Smart Contract × �� � × �� �� ×

Architecture 3
Decentralized � � � × �� �� �

5 Intelligent Human-input-based Blockchain Oracle (IHiBO)

In this section, we propose IHiBO, that leverages blockchain and smart contracts frame-
work, which provides a favourable environment with their salient properties, i.e., au-
ditability, traceability and transparency. IHiBO can deal with the potentially inconsis-
tent information input by human experts: we explained how the system may manage the
information by argumentation and negotiation considering three possible architectures.

5.1 Combining Formal Argumentation and Negotiation with the Blockchain
Framework for Transparency

Argumentation has the ability to provide various ways for explaining why a claim or a
decision is made. In this section, the IHiBO we propose might have particular relevance
in cases where the decision making process about what data should be fed in the smart
contract needs to be transparent: for fund management, the investors don’t know what
exactly happens to their money, and especially why, so the question whether the fund
managers do fulfill their legal and ethical commitment of acting in the best interest of
the investor might remain unanswered.

In general, the transparency that can be gained due to the proposed intelligent oracle
architecture could be highly valuable in any trust services. The concept of the fiduciary
is based on—as the name of these services show—trust: it requires being bound both
legally and ethically to operate and use its expertise in the investor’s best interests on the
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fiduciary’s side, and it requires trust on the investor’s side to believe in that the fiduciary
has done and will do so. This trust can be, to some extent, replaced by intelligent, de-
centralized solutions providing full transparency of, for instance, fund management: not
only the transactions can be fully traced but the expert opinion input and the decision
mechanism too. By implementing argumentation and negotiation phases through ora-
cles into smart contract or make them on a side-chain can generate more transparency
for investors: investors can know how the final decision is made at the end of reasoning.
This could be highly relevant for the investor practicing his right to check the fiduciary’s
activities in the case of an asset management contract. From Explainable AI perspec-
tive, Architecture 2 and Architecture 3 offer an explanation to how a specific decisions
has been made.

5.2 Legal Considerations

Next to the technical and financial aspects, legal considerations should also be taken into
account when comparing the different architectures. While our motivation is to provide
transparency regarding the decision-making process to the principal to gain some in-
sights whether the work of the fiduciary indeed happens according to his best interest,
the transparency one should gain with using DLTs is subject to serious limitations.

On one hand, the the principal’s right to check is not limitless, it concerns strictly
the processes of managing his assets, but more importantly, given the characteristics
of DLTs, a(n unwantedly) broader audience would be involved in the disclosure of
information if one chose not the appropriate architecture, threatening trade secrets and
involving privacy problems.

On the other hand, once the application of DLTs become widespread in the secu-
rities market, mandatory disclosure rules motivated by anti-tax avoidance should be
aligned with the new technology [61]. Indeed, DLT-based automated disclosure may
lead to the release of information that is too fast, limiting the ability of investors to prop-
erly speculating. Thus, mandatory disclosure requirements would still be necessary, but
the enforcement of such provisions and detection of violations redesigned using DLTs
and smart contract would have to deal with the necessity of stakeholders.

Architecture 3 seems to be the best option from these point of view too: in con-
trast to the public, permissionless verification that DLTs usually employ while smart
contracts are executed, layer two solutions usually move this process off-chain. This
definitely poses security issues compared to a protocol executed completely on-chain,
however there are currently some viable solutions proposed that address this issue [24].
For instance, an application might be the use of a permissioned sidechain. In this case,
information that would clash with trade secrets and privacy would be stored on that per-
missioned chain and maintained by the participants who have been nominated for this,
e.g. joint data controllers as permissioned blockchain operators [37]. Through the use
of commitments on the main chain [25], i.e., the permissionless one, the necessary steps
for verification are implemented, and once the fiduciaries operating the sidechain reveal
part of the information to the principals, the latter can verify its validity on-chain [56].
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5.3 IHiBO Direction

We argue that a layer two solution, the decentralized oracle solution in Architecture 3,
provides the proper mid ground in terms of cost of execution, for latency and fees, and
verifiability of the complete process. Indeed, there might be use cases where some data
should not be disclosed, and an argumentation and negotiation architecture based on
a full execution on smart contracts would not allow it. In the other extreme case, for
a centralized oracle, the entire process behind a decision made could be concealed or
its log could be altered. In a decentralized oracle architecture the complete execution
could be logged off-chain and then committed on-chain, making it impossible to alter
the logs, while not disclosing these entirely [25]. Members of the management body8

shall have adequate access to information and documents which are needed to oversee
and monitor management decision-making9. In our second and third architectures, each
execution of all the smart contracts can be audited, validated and maintained by every
participants, thus reduce the time and fee of extra work of surveillance, which will in
turn reduce potential corruption or conflicts of interests.

6 Discussion

IHiBO can develop the degree of trust in several ways. As argued by Walton, it seems
to be more generally acknowledged now that we do have to rely on experts, and that
such sources of evidence should be given at least some weight in deciding what to do
in practical matters [65]. In our case study, managers play the role of experts and the
professional certificate of them as well as their past creditable experience could be part
of the backup of trustworthiness of the source information, and we calculate the weight
of the arguments in the parallel of voting theory, i.e. to count the number of supporting
managers. Formal argumentation systems have been computationally implemented that
can be used to model arguments from expert opinion and to evaluate them when they
are nested within related arguments in a larger body of evidence. One such system is
ASPIC+ [49]. ASPIC+ is based on a Dung-style abstract argumentation framework that
determines the success of argument attacks and that compares conflicts in arguments at
the points where they conflict [21]. Our adoption of agent argumentation is also origi-
nated from Dung’s framework, while we extend it with the role of agents and associated
relation with arguments. Such that together with blockchain technology, investors are
in a clear position to audit the source of arguments, and the way they communicated.

Another way to gain and restore trust from investors is to make the resources and
decision-making process explicit, our case can be considered as a good example of
the use of argumentation for favouring trust. Being skillful and sophisticated could be

8 Art. 4(8) MiFID II: ’management body’ means the body or bodies of an investment firm,
market operator or data reporting services provider, which are appointed in accordance with
national law, which oversee and monitor management decision-making and include persons
who effectively direct the business of the entity.

9 DIRECTIVE 2014/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 15 May 2014 on markets in financial instruments and amending Directive 2002/92/EC and
Directive 2011/61/EU

Regular papers BNAIC/BeneLearn 2021

431



Enhancing Trust in Trust Services: IHiBO 15

not enough for the requirement of managers. Especially when they are in corporation,
other problems may arise to obtaining trust, like reliability and agency problems. For
instance, problems arising from managers’ unwillingness and lack of incentives to act
in the principal’s best interests, rather than from a lack of expertise. In our case design,
investors have the advantages to audit the resources of the information, thus such risks
could be mitigated.

Falcone and Castelfranchi relate trust explicitly to the goals of agents, and consider
trust to be concerned with whether another agent can and will perform an action that
will enable the first agent to achieve its goals [22]. In the case of fund management,
fund managers are sharing the same goal——gain interests for the investors. In the
study case, agents must coordinate and communicate with their own information to
reach an agreement. In this scenario, the requirement to reach trust is to ensure and
audit the trustworthiness of a source of information within an argument which is then
to be decided to be accepted or not. We ensure the trustworthiness of the information
by counting the values or the numbers of support from agent to arguments to ensure the
resources based on somehow voting theory.

On the other hand, the adoption of blockchain and DLT has been under considera-
tion for several years both from economic and legal aspects [26,51]. However, most of
them only consider the transaction process, i.e. how to use these technologies for clear-
ing and settlement, and some propose to use smart contracts to conduct the functions
of CCP or central securities depository (CSD) 10 [44]. In our work, we pay attention
to the pre-trading phase, where the investment decisions made by the trust services
are extremely crucial to investors. As discussed above, the decision-making process is
traceable and immutable on blockchain. As a result, the entire reasoning decision and
transaction process are transparent and investors can gain maximum confidence and
thus trust for the trust services.

7 Related work

Our methodology is a hybrid of decision-making based on formal argumentation, au-
tonomous negotiation, blockchain, smart contracts, and oracles, all of these are serving
for the trust service, thus, we need to look at the related work from multiple perspec-
tives. To the best of our knowledge, there is no mature work on adopting argumentation
in the financial world. The only work we can find is to use argumentation as a con-
vincing tool in order to gain the stakeholders’ support and trust; it also mentions that
argumentation is a communicative interaction which conducts the claims as proposi-
tions, e.g. “You should invest in Treasury Bonds” [46].

There is influential work on argumentation and trust has been done. First of all,
trust in information sources has been used in argumentative reasoning. This is also true
with respect to the exchange of arguments in social interaction. When people argue
with other parties, trying to make their arguments accepted to reach a final agreement,

10 CSDs operate the infrastructure that enables the securities settlement, allow the registration
and safekeeping of securities, allow the settlement of securities in exchange for cash, track
how many securities have been issued and by whom, track each change in the ownership of
these securities
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they also evaluate the arguments proposed by the opponents in the discussion. In the
earlier work on argumentation theory, people only focus on the relation among argu-
ments, i.e. the arguments are considered to be accepted or not depending on the attacks
against them [53]. Neither the information sources nor their trustworthiness degree are
considered. In recent years, the area has seen a number of proposals [38,48,57,60,64]
to introduce the trust component in the evaluation process of arguments. Argumenta-
tion also has been used to reason about trust evaluations. Trust is a process of critical
judgement rather than a blind altitude where argumentation can come into play as a
powerful tool to reason about trust, making sure such trust is well-built. In their earlier
work, Parsons et al suggest argumentation might play a role which tracks the origin of
information used in reasoning, thus it can provide provenance in trust [48]. Later the
same authors develop a general system of argumentation that can represent trust infor-
mation, and be used in combination with a trust network, using the trustworthiness of
the information sources as a measure of the probability that information is true [59].

In the IHiBO architecture, we use the oracles requiring input which involves human
intervention. Human oracles are rarely applied [18]. The rare existing ones are applied
in applications with binary inputs, i.e., they only take input by one of two possibilities,
typically ”yes” or ”no” [43]. This greatly narrows the scope of questions the answer
to which we could rely on human experts. There can be cases where the missing input
is not binary, but contains further and different types of data, while the generation of
input of some smart contracts requires in particular human subjective judgment. The
advantage of human assessment is also apparent in situations where contractual perfor-
mance must be evaluated holistically, rather than by simple measurement of specific
parameters.

8 Conclusion and Future Perspectives

The main contribution of this paper is proposing an integrated framework which incor-
porates formal argumentation and negotiation within a blockchain. These techniques
have distinctive features that complement each other. They together make the decision-
making processes of fund management transparent and traceable. As a result, our method-
ology enhances trust from principals to trust services, especially the famous form of
trust, i.e., knowledge-based trust [34], which is grounded when knowing the other (fund
management) sufficiently well so that the behavior of managers can be understood and
predicted more accurately. Our motivation came from trust services, so we explained
our idea in a fund management scenario, but our proposal is not bound to this domain.

One follow-up possible work is to provide and adapt to a high level of adaptability
in the decisions of the fund management. For instance, to define different investment
scenarios according to the investors’ preferences, attitude (aggressive or moderate) and
the financial environment (e.g. bull or bear market), including the possibility to forecast
the status of the financial market for the next investment period, in order to select the
ones which will bring the biggest interests. Besides, we plan to explore the combination
of negotiation and argumentation. For instance, here we adopt a simplified example on
fund investment, the real life relying on existing works proposing argumentation-based
negotiation is a useful next step since exchanging justified information among agents
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gives them enough knowledge to try and reach a common understanding much faster
[12].

Another possible work could be to investigate the integration of consensus mecha-
nisms for a layer two solution to the dispute resolution phase, in order to narrow the gap
between blockchain and argumentation as well as negotiation, since there is no special-
ized blockchain yet that has a protocol that integrates reasoning. For instance, if there
is a blockchain based on Proof of Stake (instead of Proof of Work), validators need to
vote to validate a transaction based on a reasoning process where each validator has a
different set of knowledge data.

Lastly, we also plan to rely on the recent advances of the domain of Explainable AI
[4] to explore how we can make the decision-making process presented in this paper
explainable for different types of users (experts, non-experts, etc.) and for different
purposes (e.g. transparency, debugging, etc.).
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12. Luı́s Brito, Paulo Novais, and José Neves. The logic behind negotiation: from pre-argument
reasoning to argument-based negotiation. In Intelligent agent software engineering, pages
137–159. IGI Global, 2003.

13. Vitalik Buterin et al. Ethereum white paper, 2013.
14. Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of arguments

in bipolar argumentation frameworks. In European Conference on Symbolic and Quantita-
tive Approaches to Reasoning and Uncertainty, pages 378–389. Springer, 2005.

15. James Chen. Fund manager, 2021.
16. Robert G Cooper, Scott J Edgett, and Elko J Kleinschmidt. Portfolio management in new

product development: Lessons from the leaders—i. Research-Technology Management,
40(5):16–28, 1997.

17. Robert Gravlin Cooper. Winning at new products. Addison-Wesley Reading, MA, 1986.
18. Matija Damjan. The interface between blockchain and the real world. Ragion pratica, pages

379–406, 2018.
19. Sylvie Doutre and Jean-Guy Mailly. Constraints and changes: A survey of abstract argumen-

tation dynamics. Argument & Computation, 9(3):223–248, 2018.
20. Phan M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic

reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357,
1995.

21. Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial intelligence, 77(2):321–
357, 1995.

22. Rino Falcone and Cristiano Castelfranchi. Social trust: A cognitive approach. In Trust and
deception in virtual societies, pages 55–90. Springer, 2001.

23. Peyman Faratin, Carles Sierra, and Nick R Jennings. Negotiation decision functions for
autonomous agents. Robotics and Autonomous Systems, 24(3-4):159–182, 1998.

24. Sara Feenan, Daniel Heller, Alexander Lipton, Massimo Morini, Rhomaios Ram, Robert
Sams, Tim Swanson, Stanley Yong, and Diana Barrero Zalles. Decentralized financial market
infrastructures. The Journal of FinTech, Forthcoming, 2020.

25. Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Ger-
vais. Sok: Layer-two blockchain protocols. In International Conference on Financial Cryp-
tography and Data Security, pages 201–226. Springer, 2020.

26. Sebastiaan Niels Hooghiemstra. Distributed ledger technology (‘dlt’) and its impact (on the
regulation of) european investment funds. Available at SSRN 3735886, 2020.

27. Anthony Hunter and Matthias Thimm. Probabilistic reasoning with abstract argumentation
frameworks. Journal of Artificial Intelligence Research, 59:565–611, 2017.

28. Nicholas R Jennings, Peyman Faratin, Alessio R Lomuscio, Simon Parsons, Carles Sierra,
and Michael Wooldridge. Automated negotiation: prospects, methods and challenges. Inter-
national Journal of Group Decision and Negotiation, 10(2):199–215, 2001.

29. Johannes Rude Jensen, Victor von Wachter, and Omri Ross. An introduction to decentralized
finance (defi). Complex Systems Informatics and Modeling Quarterly, (26):46–54, 2021.

30. Souhila Kaci and Leendert van der Torre. Preference-based argumentation: Arguments sup-
porting multiple values. International Journal of Approximate Reasoning, 48(3):730–751,
2008.

Regular papers BNAIC/BeneLearn 2021

435



Enhancing Trust in Trust Services: IHiBO 19

31. Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Argumentation and trust. In
Agreement Technologies, pages 441–451. Springer, 2013.

32. Yeşem Kurt Peker, Xavier Rodriguez, James Ericsson, Suk Jin Lee, and Alfredo J Perez.
A cost analysis of internet of things sensor data storage on blockchain via smart contracts.
Electronics, 9(2):244, 2020.

33. Olga Labazova. Towards a framework for evaluation of blockchain implementations. 2019.
34. Roy J Lewicki and Barbara Benedict Bunker. Developing and maintaining trust in working

relationships.|| in rm kramer and tr tyler (eds.), trust in organizations: Frontiers of theory and
research, 1996.

35. Hengfei Li, Nir Oren, and Timothy J Norman. Probabilistic argumentation frameworks. In
International Workshop on Theorie and Applications of Formal Argumentation, pages 1–16.
Springer, 2011.

36. Beishui Liao, Li Jin, and Robert C Koons. Dynamics of argumentation systems: A division-
based method. Artificial Intelligence, 175(11):1790–1814, 2011.

37. Tom Lyons, L Courcelas, and K Timsit. Blockchain and the gdpr. In The European Union
Blockchain Observatory and Forum, 2018.

38. Paul-Amaury Matt, Maxime Morge, and Francesca Toni. Combining statistics and arguments
to compute trust. In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1-Volume 1, pages 209–216. Citeseer, 2010.

39. Massimo Morini. Managing derivatives on a blockchain. a financial market professional
implementation. A Financial Market Professional Implementation (May 5, 2017), 2017.

40. A Najjar. Multi-agent negotiation for qoe-aware cloud elasticity management. PhD thesis,
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Abstract. Social robots are designed to directly interact with users,
to collaborate with them and to act in a human-centred environment,
with different degrees of automation. In order to encourage acceptability
and trust, they are structured as so to leverage the human tendency to
anthropomorphise what they interact with. It follows that some machines
are able to simulate the feeling of genuine emotions or empathy, to appear
needy of help, to pretend to have an own personality and – more in
general – to induce the user to think that they are something more than
mere objects. Thus, it may be argued that such interaction could lead to
forms of manipulation that fall within the remit of a deceptive dynamic.
Such a phenomenon is still much debated by the scientific community and
raises significant concerns regarding long-term ethical and psychological
repercussions on the users.
This paper investigates which tools we have and which ones we may
need to tackle the theme of deception in social robotics. Therefore, both
ethical and legal perspectives are reconstructed, with the attempt to try
to distinguish their respective scope and to emphasise their fruitful in-
tegration in addressing these issues. Finally, the possible relevance of
fundamental human rights in human-robot interaction dynamics is dis-
cussed, due to their ability to reconcile ethical demands with the binding
feature of legal norms.

Keywords: HRI · Deception · Human Dignity · Ethics · Law

1 Introduction

The so called “Fourth Revolution” [24] is leading to the development of new
technological devices, increasingly interactive and pervasive in many areas of our
lives. We are assisting to the migration of robots from factories to our homes,
involved in many tasks - ranging from education to health, from entertainment to
the care of the most fragile ones - [12]. This explains the growing focus on social
robotics. In fact, social robots are characterised by a software, which allows them
– based on the level of technological advancement – to perceive the environment,
to interpret both structured and not structured data, to process them and to
extrapolate primitive and derivative pieces of information [27]. Therefore, they
are able to directly interact with the users, collaborating with them on a daily
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base and performing multiple tasks with different degree of automation. Some of
them are also able to develop social competences, create social bonds and learn
to appropriately use natural signals – like indicating, gazing, winking – [14].

Consolidate scientific literature demonstrates that facilitating acceptability
and trust in social robots plays a central role in order for them to pursue the
given tasks and to behave efficiently in a human-centered environment [84][72].
Therefore, they are designed and programmed so as to lever the human tendency
to attribute anthropomorphic characteristics to what they relate to, repeatedly
over time [89].

This might lead to a new form of manipulation, based on deception. Although
the theme of ”deception in social robotics” is becoming a reason for multidis-
ciplinary debate, there is still no unequivocal definition of this concept when
used to define a dynamic of human-machine interaction. For the purposes of this
analysis we will consider the cases in which the characteristics of the robot may
alter the user’s perception of the capabilities it has or does not have. In fact,
in spite of the pleasant design, the ability to move and act like living beings, to
simulate pertinent conversation and to emulate feelings and emotions, robots are
just objects [5]. They are not capable to set autonomously a goal and even the
most sophisticated functionality is - at least for the moment - the result of the
way they have been programmed by a human expert. Such a deceptive dynamic,
although not favoured with dishonest intents, may be potentially risky for the
physical, economical and psychological integrity of people involved and for the
authenticity of their will. Moreover, it should be underlined that the speed of
development of these technologies far exceeds the speed with which we are able
to investigate negative outcomes. On one hand, possible side-effects - especially
on the ethical, psychological and sociological level - have already been theo-
rised. On the other hand, not all of them can be already precisely measurable
or unequivocally proved, for we cannot have a long-term picture of the expected
consequences yet. To this end, both the ethical and the legal perspectives play
a central role. However, the respective scopes of intervention must be identified,
in order to guarantee the efficacy of their impact on the theme of deception in
social robotics.

This paper aims to investigate the effectiveness of ethics and the law as
tools of analysis and to suggest the relevance of fundamental human rights – in
particular human dignity – as a valid option to tackle this theme. In fact, they
have the advantage to be efficiently used in a multidisciplinary debate, increasing
the opportunities to find a common solution for similar cases [79] and to suggest
a transparent frame of regulation. This would be functional to guarantee that
new technologies (i) are projected so as to respect the centrality of human being,
(ii) can be efficiently tested in the real world and (iii) are commercialised in a
specifically developed market [59].

To this end, Section 2 recollects some relevant literature about the theme
of deception in the human-robot interaction context, in order to give a general
understanding of the phenomenon. Section 3 briefly presents some scenarios in
which deception - theorised as in the previous section - can occur. The attention
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will be focused on two categories of users, children Subsection 3.1 and fragile
people Subsection 3.2, trying to highlight which concerns may rise from such a
dynamic. Section 4 evaluates ethics and the law as possible tools to address this
theme. In particular, some of their strengths and weaknesses will be separately
analysed in Subsections 4.1 and 4.2. Therefore, Section 5 suggests that human
dignity may play a more effective role as balancing principle with a view to
risk-benefit examination of social robotics and the deceptive phenomenon.

2 Main forms of deception in human-robot interaction

The ability of a machine to deceive the human counterpart has been considered
the qualifying criterion for the very notion of AI. This is due to the well-known
”Turing Test”, according to which a machine would have been considered as
“intelligent” if it was able to induce a person – placed in a different room – to
believe to be chatting with another human being, rather than with a robot [47].
However, there is still not a univocal understanding and evaluation of what is
meant for deception in the context of human-robot interaction. This is due to
the fact that simulation mechanisms depend closely on the nature of the robot,
its functionality, the tasks it has to perform, the object of the interaction [71].

In order to better analyse the phenomenon, it is useful to introduce a pre-
liminary tripartition: (i) external state deception, (ii) superficial state deception,
(iii) hidden state deception [13].

The first one takes place (i) when the robot lies about something regarding
the external world. It could be considered problematic, when it aims to mislead
the user, but it can also imply a pro-social function. In fact, social conventions
can require “white lies” for several reasons, such as to carry on the conversation,
to be polite, to avoid uncomfortable situations or to encounter one’s favour.
This is possible using hyperbole or pleasantries, improvising not really known
pieces of information and managing expectations [87]. Implementing machines
with such features means favouring their integration into the human environment
and overcoming the prejudices in which they may incur [38].

More challenging is the case of robots which (ii) simulate to possess capa-
bilities and emotional dimensions actually lacking. With regards to this aspect,
there are different opinions among the experts. According to the most extreme
position any robotic cue that emulates a typically human one is deceitful [86].
This on the base of both technical and philosophical assumptions. On one hand,
the behaviour of a device is evaluated as nothing more than the result of the way
it was projected by the programmer [23], being neither aware nor autonomously
settled. On the other hand – following the same argumentative line – anything
is able to manipulate reality should be considered ethically wrong, for it harms
the “duty to see the world as it is” [77]. A more lenient position traces back to
the category of deception only those actions that induce the user to perceive the
machine as something more than a very sophisticated piece of equipment [31],
closer to a living being [76]. Such a function is conveyed not only by gestures or
movements, but even more so by the simulation of emotional capabilities [49],
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the emulation of feelings of pain, suffer, attachment, care [39]. This is certainly
functional for the collaboration between the user and the artefact. Nonetheless,
it can also affect subconscious social dynamics, interfering with the formation
and expression of the individual’s will. Moreover, it is important to underline
that such characteristics have more incisiveness on lonely and needy people, the
same ones that should be better protected against manipulative mechanisms, for
more vulnerable.

The third form of deception occurs when the robot (iii) takes advantage of
emulative signals in order to hide capabilities it has. This can lead to harmful con-
sequences for people’s privacy and data managing. For example, it was demon-
strated that children and the elderly are more likely to confide to a “friendly”
robot even things that they would not have revealed otherwise. This because
they are persuaded that the machine can keep the secret and because they are
unaware of how it can process those confidences in order to target their desires
and preferences [68]. In fact, in order to improve both engagement and quality of
the interaction, social devices can record actions, words and even emotions [48].
Furthermore, an individual could believe that when the robot is not in the view
it cannot record what the person is doing [40], ignoring the presence of sensors
that make him/her lives in a sort of “Big Brother” [56]. The lack of full under-
standing of the effective functionality of the machine could undermine the value
of the consent – no more considerable as “informed” – given to the interaction
[83]. At the same time, it is not objectively demonstrable that an increase in
the information provided will always lead to a greater awareness in the use of
the device. In fact, human-robot interaction involves multiple factors, many of
which are strictly related to a subjective psychological dimension [8].

Taking into consideration the above-mentioned classification of the main
forms of deception in the human-robot context, it is relevant to analyse some
concrete scenarios in which such a dynamic may occur. Thus, potential long-term
consequences may be analysed, so as to distinguish beneficial and harmful ef-
fects. This evaluation is fundamental, in light of the necessity of a human-centred
development of AI systems.

3 Possible deceptive scenarios

It was assumed that social robots leverage the natural human tendency to an-
thropomorphising inanimate things (section 1). Indeed, Freud defined humans as
“symbolic animals” [9], who tend to create and modify the way in which reality
appears to them. Therefore, someone could argue that the individuals involved
in the interaction have their own responsibility in the process of deception. In
such a view, the machine’s deceitful behave would appear as less relevant.

Nevertheless, it is important to introduce a fundamental distinction between
two terms: (1) anthropomorphism and (2) anthropomorphisation. While the first
one refers to the human propensity to attribute human-like features to robots
[34], the second one implies the deliberate choice of designing such characteristics
by developers [53]. It follows that, even if the attribution of anthropomorphic
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traits to the machine had not the precise aim to deceive – or to do so with a
malicious intent – the programmers would have had the competence to foresee
this effect and to correct its potentially harmful drift [70]. In fact, fully rational
people are subjected to such a dynamic too [8]. It could be objected that we are
not facing real deception. In fact, there are other circumstances in which people
are entertained through an illusion and still maintain the ability to distinguish it
from reality, without negative consequences. Those who support this idea make
the example of a magic show [11]. As the spectators know that the magician does
not actually cut the partner into two parts - and are amused instead of scared
-, in the same way robots’ users could know that the machine is simulating
emotions and attachment, without really experiencing them.

Though, the characteristics which influence humans in anthropomorphising
these devices are concretely present by design. For this reason, it was underlined
that the difference between a mere toy - for instance - and a robot is the same
as between the action of pretending and that of believing [81]. An example is
the one of robots deliberately structured so as to seem clumsy, in need of help,
or to make mistakes in pursuing the given task. This design choice is due to
the fact that error is typically considered as human-like, while efficiency and
perfection of execution are usually linked to what is artificial [64]. Thus, the
creation of an empathic bond is elicited. Likewise, it was demonstrated that a
similar effect can be produced by implementing the machine with a ‘cheating’
functionality [73]. The result is maximised if the robot repeatedly deceives the
user, for it encourages the perception of an autonomous will in the device [46]. On
the contrary, if the cheating behaviour is carried out only once, it is more likely
considered as a problem of malfunction. This underlines that, in the context of
a human-social robot interaction, efficiency in operation is expendable in favour
of the possibility of living a human-like experience.

Therefore, evoking a social behavior from the user is the result of a deliberate
choice, not just an accident due to the nature of the subject of the interaction.
On the contrary, human nature and inclination has been accurately investigated
so as to make it easier to cause a particular belief and attitude towards the
technical device.

When the interaction involves subjects that are more vulnerable due to their
age of health condition, the effects of continued exposure to similar mechanisms
deserve to be analyzed more in detail. Consequently, plausible scenarios of robots
with children and with fragile people will be presented below.

3.1 Children-robot interaction

The illusion that machines can be engaged in an appropriate conversation, feel
empathy and establish a real friendship can lead to entrusting them with tasks
that go far beyond their actual functionalities. In order to better understand
this passage, we can try to image a children’s play scenario. The robot can
be trained to prevent or to react to standard/common hypothesis of harmful
events. However, it has very little changes to recognise a child pretending to fall
– because of the nature of the play – from one who has actually been hit. Again,
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a child who uses a common tool – such as a pen or scissors – does not always use
it appropriately and the machine may not be able to distinguish – or distinguish
promptly – the suitable use from the harmful one [70].

With regard to childhood, then, there is a heated debate about the possible
uses of social robots. Some studies show that these devices have a positive effect
in the treatment of children with autism [67][17][37]. However, it may be the
case that what was presented as a solution at the very beginning may turn to be
the problem at the end. Due to the mechanical, precisely planned nature of the
machine a long-term/semi-exclusive interaction with people tending to isolation
could increase this practice. In fact, the machine represents a ‘safe reference’,
which does not pose opposition and promptly meets the unidirectional needs of
the child [15].

The most detrimental effect of such a deprivation of significant human rela-
tionships could be appreciated in babies. In this case, we can refer to indirect
evidence only, for it is not admissible to conduct experimentation with newborns.
Old researches highlight that those who were deprived of a ‘personalised’, atten-
tive, empathic care or of warmth, human contact let themselves die or developed
serious physical and psychological problems [54][10].

Even if we do not consider babies, but older children, a long-term interaction
with robotic caregivers, instead of human ones, could imply criticality. First of
all, they will become used to predictable and schematic responses to given inputs,
possibly developing difficulties in managing real emotions – like disappointment,
frustration, dissatisfaction –. This could compromise their capacity to empathy
themselves, for they would lack of the experience of real relationships, based on
compromise, mutual-adaptation, in which it is impossible to be always listened,
pleased and pandered in selfish needs [82].

Nevertheless, it cannot be ignored that some applications of AI devices with
young people have also positive aspects. This is the example of Nao or Pepper,
which can help children manage painful medical procedures or not be completely
excluded from the school context due to a long hospital stay [57]. It follows
that to accurately ponder the kind, time and dynamic of the interaction can
be fundamental in order to distinguish empowering uses of social robots from
detrimental ones.

Moreover, it was demonstrated that, when the robot simulates gratitude or a
more intimate interaction with a specific child because of the amount of attention
he/she turned on it, the child was encouraged to increase this behaviour [41]. In
fact, the more the user interacts with the machine the more the result will be
satisfactory and calibrated on the personality and the habits of the human being
[36]. In addition, the overexposure to technological devices has been proven to
release dopamine and its sudden deprivation or decrease can provoke anxiety,
restlessness, anger . So described, the pattern is close to the one established in
case of any form of addiction - both behavioural and substance ones –.

In the case of robots that engage the user at an emotional level, these effects
can be summed to those of psychological attachment and affective dependence.
Though, such a long-term result should be deepened with specific studies.
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Indeed, it should be underlined that new technologies have an impact on how
we act in the world, being able to modify the way we perceive and concept reality
. This is even more the case for the youngest ones, who have not completed their
psychological and cognitive development path yet.

3.2 Social robots and fragile people

Social robots can be used even in the treatment of people with mental or physical
disability and the elderly. In these scenarios, the device can have the role of a
caregiver, a companion or even a therapeutic tool. It is easily understandable
that the machine’s deceptive features have different effects on the base of the
task it has to perform.

An example is Paro [62], a device resembling a seal pup which displays pos-
itive responsiveness and beneficial impact on the health and mental status of
the user when cuddled [61]. The choice to emulate this specific animal is not
by chance. It is certainly not a typical pet – such as a cat or a dog – and this
decreases human’s expectations with regard to the way it responds to the in-
teraction [30][66]. Thus, its technology is able to influence people’s emotions,
although it is not very sophisticated. Another case is the one of a robotic doll,
specifically programmed to induce individuals affected by dementia to create an
emotional bond towards the machine [43], engaging them at a conversational
level. A similar dynamic was analysed in the project Rehabibotics, involving
people with serious cognitive difficulties. The robot was projected so as to pro-
voke empathic responses in order to favour the interaction. Therefore, it could
record likes and dislikes of the patients, emotional and mental states, in order to
predict them and track the progress of the disease. Anyway, the machine showed
some errors in this procedure, which could not be corrected by individuals’ feed-
back, for dementia made them not always – or not reliably – aware of their own
inner states [74].

In particular for what fragile and old people are concerned, exacerbation
of isolation end dehumanisation [69] are the main risks that need to be care-
fully considered, for they can lead to the objectification of human beings, whose
autonomy and self-determination could be challenged [55].

Moreover, the report written by the Rathenau Institute for the Council of
Europe highlights a possible infringement of fundamental rights - in particular
human dignity – by the long-term exposure to a continued human-robot inter-
action for the elderly. This rises the necessity of a reflection with regard to a
plausible right to meaningful human contact [20].

It follows that – as we have briefly tried to demonstrate here – social robotics
is a varied field, which lends itself to many possible applications. Therefore, the
challenge that new technologies poses to social sciences is to identify interven-
tion tools capable of protecting the integrity of the human beings involved in
the interaction, taking into account possible material – but also immaterial –
damages [1]. To this end, both legal and ethical approaches should be analysed.
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4 Ethics and the law: possible tools of analysis

Assessing the theme of deception in social robotics, philosophical and legal per-
spectives will be taken into account in this discussion. In fact, both of them
could be relevant to discuss possible harmful repercussions on the individuals
involved and to intervene in order to limit or remove them.

Certainly, they are not the only two tools considered in the investigation of
new technologies. However, law and ethics are very often presented as opposing
disciplines and the role that they can have in the evaluation and regulation of
robotics and AI are often based on conceptual and theoretical misunderstand-
ings. Therefore, identifying general characteristics of each of the two fields is
essential to understand how and to what extent they can effectively contribute
to the debate.

4.1 The not-universality and not-univocality of ethical statements

By definition, ethics is a branch of philosophy which guides people’s behavior
in the world and in the relations that they establish one another [25]. For this
reason, someone says that whenever there is a debate regarding which conduct
or risk is best to take, it has to be ethical oriented [75].

This very approach has been largely adopted even with regards to new tech-
nologies [2][26]. However, this discipline has no external oversight nor even stan-
dards protocol for enforcing its guidelines [51]. Moreover, it is far from being
really universal, contrary to what it is commonly claimed. The term ‘ethics’,
without any other specification, includes different theoretical frameworks of ref-
erence and not all of them can be considered conform to every legal system.
An example can be the concept of development formulated by transhumanists.
Taking into consideration the European context, it appears simplistic and po-
tentially dangerous for the integrity of the users. In fact, it aims to subvert the
very concept of “humanity”, in favour of a limitless trust in the power of science
[78]. Even more radical is the post-humanist refusal to adopt an anthropocentric
perspective [28]. The base of this idea is the belief that human nature would be
something to be overcome in order to realise “singularity” [80]. With a view of
consistency with Member States’ Constitutions and international treaties, the
bio-conservative understanding of human nature seems the most appropriate to
address the issues posed by robotics and AI. It is considered as universally recog-
nized to everyone in reason of their own existence, not modular or subjected to
renunciation [42]. However, not even in a similar prospective all the alternatives
may be equally suitable. This is the case of utilitarian argumentation. It aims
to legitimate deception in human-robot interaction in reason of the beneficial
effects that it allows to pursue, without taking into account the wider range of
interests and rights involved and the correlate effects [6].

This is possible for ethics purports to investigate all areas of what is ratio-
nally knowable, without being held to strictly comply with acquired concepts and
axioms – contrary to what concerns the legal analysis –. Therefore, its assump-
tions and guidelines have been accused of ambiguity and not being obligatory
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[85] [50]. Therefore, the variety of existing ethics, the need of a careful ex ante
evaluation of the conformity with the legal framework behind it and the lack of
enforcement rise the need to identify precise, enforceable parameters for facing
the challenges posed by social robots arises. To this end, the role of the law can
be crucial.

4.2 The binding and complete nature of the legal system

The main elements that distinguish the legal discipline from philosophy are:
methodology, object of investigation and the limits they have to handle. In fact,
legal argumentation cannot operate in a vacuum, for it takes place in a proper,
self-referred system and lawyers are bound externally by fundamental principles,
typically affirmed in Constitutions.

It could be argued that even not every legal norm is equally enforceable all
over the world. Nevertheless, it is likewise true that, considering a given field
of application, legal dispositions are binding all the people involved in it or, at
least, those previously determined and indicated [65]. This confers homogeneity
of solutions and treatments.

However, reasons of major complaints about the law as a tool for the reg-
ulation of new technologies are: (i) the long time needed for its formulation
and concrete application, (ii) the difficult individuation of the proper time for
an intervention, (iii) the rigidity of its statements. The processes of discussion,
decision and entry into force of a new legislation are often considered inconceiv-
able with the speed of scientific evolution [52]. The regulation could intervene
too late, thus loosing its incisiveness and failing the aim to prevent the spread of
potentially harmful devices. At the same time, even the choice regarding “when
to regulate” has a decisive impact. In fact, acting too early could damage the
very phase of experimentation, stopping a process which might need to be only
corrected. Same observations could be done even with regards to already op-
erative rules. If they are proved ineffective or inadequate, their modification or
replacement is seen as laborious and not timely enough not to damage scientific
research [35].

Such considerations are based on two basic misunderstandings. First of all,
the fact that legal strict statements always undermine innovation, development
and competitiveness. Actually, it is the uncertainty in regulation that, by defi-
nition, produces that very effect [4]. Furthermore, a relevant false belief is that
emerging technologies – and, in particular, examples of embodied-AIs – would
highlight legal gaps, so as to require the formulation of specific norms. On the
contrary, the law constitutes a system that is complete per se, for it does not
consist in the black-letter-law only. It regards norms, but even legal doctrine and
judicial applications [63].

Therefore, legal interpretation can help find solutions to specific cases, with-
out the need for specific rules [22]. This would be possible: (i) through the ap-
plication of rules governing similar cases or similar matters (analogia legis), (ii)
through the interpretation of the legislator’s will, by means of the general princi-
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ples of the legal system (analogia iuris), (iii) through elastic concepts, applicable
in many different cases (general clauses, i.g. good faith).

This does not exempt from the possibility to question the adequacy of ex-
isting norms. Therefore, any chance to revise the actual legislation to correct
undesirable, inefficient or even sub-efficient outcomes should be seized. It follows
that the right question legal experts should try to answer is not if the law can
play its part in the regulation of social robotics and AI, but how it can do that.
In this view, the priority should be to guarantee both scientific progress and an
efficient protection for human beings.

To this end, the attention could be focused on fundamental human rights,
which are not proper of a specific ideology but, at the same time, have the
advantage to be precise and not ambiguous, without the necessity of a narrow
detailed definition [19].

5 Overcoming the dichotomous approach: the role of
Human Dignity

So far we have described an articulate interweaving of plausible but not com-
pletely self-sufficient solutions. Therefore, it could be useful to introduce another
perspective through which to address the theme of deception in social robotics
and its possible implications: human dignity.

The doctrinal debate about the very nature of this concept is still open. More
precisely, it is accused of vagueness, for it is often theorised as indemonstrable,
imperative, inexpressible [21].

However - in spite of the lack of a specific definition - it has been considered
as the “foundation of freedom, justice, and peace in the world” [3] by the United
Nations General Assembly. In fact, human dignity is proper of each one of use,
just because we all belong to the humankind and it constitutes the core of what
it means to be “human” [16]. This is reflected in terms of rights and duties, but
even much more so in terms of the perception individuals have of themselves,
their environment, the others and of the way they can act and relate to this
ecosystem. This aspect is crucial in addressing new technologies which, due to a
daily bases interaction, can influence our intentions, awareness and the way we
process, categorise and evaluate information, concepts, relations [7].

Its relevance and authority as a value is unquestionable. In fact, it plays a
central role among fundamental rights, for it is the one which summarises all the
others [88]. Moreover, its respect is not limited because of age, gender, religion,
nationality, political convictions or any other subjective factor [60].

Concurrently, it is deeply rooted in the European tradition also for what lies
outside the purely philosophical reflection, for it represents a legal concept. In
fact, human dignity is considered the central principle of modern democracies
[58]. It is recognised in many national norms and Constitutions around the world
and it has become soon the very essence of both the European Court of Justice
and of the European Court of Human Rights [58], as much as of EU treaties –
especially the European Charter of Fundamental Human Rights – and of eminent
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judgments in the Courts of Justice. With regard to this latter aspect, two of
the most emblematic judicial cases are the German “Peep-Show-Fall” [18] and
the French “Jeux de nains” [32]. In both of them, the Courts highlighted that
every human being carries a fragment of the universal principle of dignity. As
a consequence, diminishing one own value implies to reduce the one of all the
affiliates. In such a view, human dignity may be used as an external limit to the
exercise of other rights, including the right to self-determination. Historically, it
has held this function other times, becoming the decisive instrument to prohibit
- among others - slavery, torture, inhumane and degrading treatment, death
penalty.

Therefore, it could represent an objective and external criterion, able to col-
lect both the instances of philosophical speculation with regards to ethics and
the non-dismissible and binding character of legal principles [33]. Thus, it would
be functional in order to evaluate which types of technologies deserve to be
favoured - for their correspondence to the reference values - and which ones to
stem. This would be a starting point to guarantee that the technological devel-
opment respects the centrality of human beings. In fact, human dignity can be
used for: (i) testing the desirability of robotics applications ex ante, (ii) iden-
tifying – even in a case-by-case perspective – which principles should prevail,
(iii) orienting innovation towards devices that allows to promote such values,
(iv) allowing that they can be efficiently tested in the real world - not just in a
laboratory - [44][45].

Furthermore, even admitting that this concept still have a certain level of
abstraction, for what the regulation of social robotics is concerned this is not
a negative aspect. It could have two functions: (i) guaranteeing flexibility and
(ii) shaping mandatory norms. In fact, flexibility allows this principle to adapt
more efficiently to the manifold variety of existing technologies and their unceas-
ing innovation and development. At the same time, the already demonstrated
effectiveness as a legal principle is essential for making it a rigorous, binding
regulatory tool, not modulable on the base of the ethical framework taken into
account [33].

6 Discussion and final remarks

This paper assessed the theme of deception in social robotics, underlining the
need to identify an objective criterion to balance the demand for acceptability - to
foster innovation - and the necessity to protect users’ material and psychological
integrity.

To such an end, the traditional juxtaposition between ethical and legal per-
spectives was presented, so as to underline their structural differences – mainly
in terms of methodology and scope –. This is intended to clarify that none of
them should be removed from the debate on the protection of new technologies’
users. Nevertheless, they should play a different role in pursuing such a goal.

Ethics may be inspirational from a political or economic point of view. It can
promote the introduction of a new or reformed legislation, the implementation of
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companies’ policies, the development of new awareness campaigns in the public
[33]. Moreover, ethical principles are, in many cases, useful to overcome legal
theories’ limitations or to better understand and to convey the ratio on the base
of legal reasoning [33]. Hence, they can live in a functional relationship with the
law and help overcoming the strict boundaries of its formalities. Nonetheless,
they should always be seen as an instrument to reach a goal, not the goal itself.

For its part, the law has the merit of being a complete, binding and enforce-
able system, deeply rooted in fundamental principles. Thus, it can be useful to
inspire the design of socially competent devices and to evaluate their effects not
only on the rights of the users, but also on those of all the members of society.

Given the peculiarities and variety of the theme here analysed, this paper
suggests the possibility to rely on a third option: fundamental human rights. In
particular, human dignity could be used as the external criterion through which
to approach the regulation.

The reason why human dignity - among fundamental rights - should have
such a role lies on the fact that it is recognised as the right upon which all the
others are grounded [29]. Moreover, if on one hand all of them are, by defini-
tion, inalienable, universal and interdependent, on the other some of them can
be limited. This is the case of exceptional and urgent circumstances, in order
to safeguard a specific right - or group of right - which has to be considered
temporarily prevalent. In addition, some of them can be subjected to forms of
“inherent” limitations, once again closely linked to contingent circumstances.
This is the case, among others, of the right to personal freedom that can be lim-
ited if an individual is detained in prison because convicted of a crime. Among
the fundamental rights that have to be guaranteed at all times and no matter
what, with regards to the theme of this discussion, human dignity is the one
that should prevail. Furthermore, as it was briefly underline in Section 5, it has
already been effectively used at a regulatory and jurisprudential level as a tool
to limit competing rights, even the principle of self-determination.

Indeed, despite the claims of conceptual vagueness, it is legally binding, com-
mon to everyone because of their belonging to humankind, adaptable but not
dismissible. Such a flexibility could be essential in order to face the challenges
that deception in social robotics can – and will – pose. In fact, this theme is
still controversial in the engineering and robotic field, as it emerges form the
scenarios of interaction here presented. Nowadays the ability of a social robot
to deceive – inducing the user to create an emotional and subconscious bond
with the machine – is considered “central to AI as the circuits and software
that make it run” [53]. However, (i) the qualification of such a dynamic and
(ii) the scope for action to protect peopled involved are still reasons for debate.
Actually, such technologies are already part of our reality, although they are
not yet so widespread as to allow neither a sufficiently well-stocked collection
of concrete cases, nor an in-depth investigation of their long-term effects. This
makes difficult for philosophers and legal scholars to have an univocal percep-
tion of the issues raised from this kind of technology and to face them in an
effective and appropriate way. For this very reason, it is crucial to promote an
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integrated, multidisciplinary approach, able to take into consideration both the
specificity of the social robotics field and the importance of a human-centered
technological development. The aim of this discussion, in fact, is not to condemn
the implementation of machines with social features tout court, but to suggest
the need to draw a line between beneficial and risky contexts, as much as the one
to investigate whether and to what extent to enhance robotic deceptive behavior
towards the user.

This cannot be done in the logic of maximising the utility and minimising
disutility only - like an utilitarian perspective seems to advocate -. In the design,
development and use of a technological application, the respect for human beings
and for the totality of their rights and values should be considered before the
mere positive consequences of adopting such a device. Said otherwise, the price to
be paid for a beneficial outcome cannot be the sacrifice of any human principle,
value, right.

To this end, human dignity can be not just a parameter that can be harmed
or a core element that need to be protected or guaranteed, but rather a concrete
governance instrument.

In light of the above, further investigation of this principle is needed, to
better define the issues that machines’ manipulation and deception can cause in
the various contexts in which they are used. Thus, it could be possible to define
more concretely and precisely the impact assessment of human dignity in the
regulation of new technologies.
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21. Fabre-Magnan, M.: La dignité en droit: un axiome. Revue interdisciplinaire
d’études juridiques 58(1), 1–30 (2007)

22. FH Easterbrook, C., the Law of the Horse: The university of chicago legal forum
(1996)

23. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the
emergence of communication in robots. Current biology 17(6), 514–519 (2007)

24. Floridi, L.: The fourth revolution: How the infosphere is reshaping human reality.
OUP Oxford (2014)

25. Floridi, L.: Soft ethics and the governance of the digital. Philosophy & Technology
31(1), 1–8 (2018)

26. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V.,
Luetge, C., Madelin, R., Pagallo, U., Rossi, F., et al.: Ai4people—an ethical frame-
work for a good ai society: opportunities, risks, principles, and recommendations.
Minds and Machines 28(4), 689–707 (2018)

27. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots.
Robotics and autonomous systems 42(3-4), 143–166 (2003)

Regular papers BNAIC/BeneLearn 2021

452



Social robotics and deception: beyond the ethical approach 15

28. Fukuyama, F.: Our posthuman future: Consequences of the biotechnology revolu-
tion. Farrar, Straus and Giroux (2003)

29. Gilabert, P.: Human dignity and human rights. Oxford University Press, USA
(2019)

30. de Graaf, M.M.A., Allouch, S.B.: The influence of prior expectations of a robot’s
lifelikeness on users’ intentions to treat a zoomorphic robot as a companion. Inter-
national Journal of Social Robotics 9(1), 17–32 (2017)

31. Grodzinsky, F.S., Miller, K.W., Wolf, M.J.: Developing automated deceptions and
the impact on trust. Philosophy & Technology 28(1), 91–105 (2015)

32. Gros, M.: Il principio di precauzione dinnanzi al giudice amministrativo francese.
Il principio di precauzione dinnanzi al giudice amministrativo francese pp. 709–758
(2013)

33. Harris, I., Jennings, R.C., Pullinger, D., Rogerson, S., Duquenoy, P.: Ethical as-
sessment of new technologies: a meta-methodology. Journal of Information, Com-
munication and Ethics in Society (2011)

34. Hegel, F., Krach, S., Kircher, T., Wrede, B., Sagerer, G.: Understanding social
robots: A user study on anthropomorphism. In: RO-MAN 2008-The 17th IEEE
International Symposium on Robot and Human Interactive Communication. pp.
574–579. IEEE (2008)

35. Holder, C., Khurana, V., Harrison, F., Jacobs, L.: Robotics and law: Key legal and
regulatory implications of the robotics age (part i of ii). Computer law & security
review 32(3), 383–402 (2016)

36. Howard, A., Tapus, A., Kajitani, I.: Socially assistive robots [from the guest edi-
tors]. IEEE Robotics & Automation Magazine 26(2), 10–110 (2019)

37. Huijnen, C., Lexis, M., De Witte, L.: Robots as new tools in therapy and education
for children with autism. International Journal of Neurorehabilitation 4(4), 1–4
(2017)

38. Isaac, A., Bridewell, W.: Why robots need to deceive (and how). Robot ethics 2,
157–172 (2017)

39. Johnson, D.G., Verdicchio, M.: Why robots should not be treated like animals.
Ethics and Information Technology 20(4), 291–301 (2018)

40. Kaminski, M.E., Rueben, M., Smart, W.D., Grimm, C.M.: Averting robot eyes.
Md. L. Rev. 76, 983 (2016)

41. Kanda, T., Sato, R., Saiwaki, N., Ishiguro, H.: A two-month field trial in an el-
ementary school for long-term human–robot interaction. IEEE Transactions on
robotics 23(5), 962–971 (2007)

42. Kass, L.R.: Ageless bodies, happy souls: biotechnology and the pursuit of perfec-
tion. The New Atlantis 1, 9–28 (2003)

43. Kitwood, T.M.: Dementia reconsidered: The person comes first. Open university
press (1997)

44. Koops, B.J.: Concerning ‘humans’ and ‘human’rights. human enhancement from
the perspective of fundamental rights. In: Engineering the Human, pp. 165–182.
Springer (2013)

45. Kritikos, M.: Artificial intelligence ante portas: Legal & ethical reflections. Euro-
pean Parliamentary Research Service (2019)

46. Lee, K.M., Peng, W., Jin, S.A., Yan, C.: Can robots manifest personality?: An
empirical test of personality recognition, social responses, and social presence in
human–robot interaction. Journal of communication 56(4), 754–772 (2006)

47. Machinery, C.: Computing machinery and intelligence-am turing. Mind 59(236),
433 (1950)

Regular papers BNAIC/BeneLearn 2021

453



16 R. Carli
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Abstract. Transfer learning can speed up training in machine learning,
and is regularly used in classification tasks. It reuses prior knowledge
from other tasks to pre-train networks for new tasks. In reinforcement
learning, learning actions for a behavior policy that can be applied to
new environments is still a challenge, especially for tasks that involve
much planning. Sokoban is a challenging puzzle game. It has been used
widely as a benchmark in planning-based reinforcement learning. In this
paper, we show how prior knowledge improves learning in Sokoban tasks.
We find that reusing feature representations learned previously can ac-
celerate learning new, more complex, instances. In effect, we show how
curriculum learning, from simple to complex tasks, works in Sokoban.
Furthermore, feature representations learned in simpler instances are
more general, and thus lead to positive transfers towards more com-
plex tasks, but not vice versa. We have also studied which part of the
knowledge is most important for transfer to succeed, and identify which
layers should be used for pre-training.4

Keywords: Reinforcement learning · Transfer learning · Sokoban.

1 Introduction

Humans are good at reusing prior knowledge when facing new problems. As
a consequence, we learn new tasks quickly, a skill of great interest in machine
learning. In the human brain, information received by our sensors is first trans-
formed into different forms, and different types of transformed information are
stored in different areas of our brain. When another problem arrives later on, we
retrieve useful information and adjust it to better suit solving this new problem.
The knowledge stored in artifical neural networks is also re-usable and trans-
ferable [31]. In supervised learning, pre-trained networks are commonly applied

4 Codes we used for this work can be found at
https://github.com/yangzhao-666/TLCLS
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Fig. 1: An example instance of Sokoban.

in computer vision [17,25] and natural language processing [3,9]. Feature repre-
sentations learned from images or words overlap to some extent, which makes
such feature representations reusable and transferable. In reinforcement learning
(RL), transfer learning is relatively new, although with the spread of deep neu-
ral networks, reusing pre-trained models becomes possible in RL as well [1,7].
Transfer learning works well in RL for recognition tasks, but tasks that rely
heavily on planning are harder.

In this paper, we study transfer learning of behavior in Sokoban, a popular
RL game in which planning is important [10,12]. It has already been proved
that Sokoban is PSPACE-complete [8] and NP-hard problem [10]. An example
instance from [22] is shown in Fig. 1. The goal of Sokoban is to control a ware-
house worker that pushes all boxes onto targets. Sokoban is a challenging game
where one wrong move can lead to a dead end (after a box has been pushed, it can
not be pulled, and we cannot undo an inadvertent push). This non-reversibility
is known to make games harder for AI agents [5]. Learning to solve Sokoban
tasks is a challenge, especially in the multi-box scenario. For humans, if we have
learned the basics of Sokoban (what is a box, what can an agent do), and if we
are faced with a new, more complex instance, then we immediately focus on the
new challenges in the instance, rather than re-learning the basics again. This
building on prior knowledge saves time in the problem-solving process.

We investigate if we can achieve this kind of pretraining/fine-tuning learning
in an RL agent. Our main hypothesis is that feature representations learned in
Sokoban instances can be reused to improve solving other instances, and that
features learned in simpler instances are more general and better transferable.
We test this hypothesis by means of different experiments, in which parts of the
neural network that has previously been trained on one type of instances (e.g.
one box one target) are taken over (unchanged) to a new type of instances (e.g.
two boxes two targets), whereas the remaining part of the network is trained
on these new instances from scratch. The overall idea is that we see successful
transfer if the preserved knowledge (in terms of network layers) leads to a faster
learning process on the new problem type.
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Transfer Learning and Curriculum Learning in Sokoban 3

The main contributions of this paper are as follows: First, we show that fea-
ture representations learned in simple Sokoban instances can accelerate learning
in more complex instances, indicating that curriculum learning can be used in
Sokoban. Second, feature representations of simpler instances are more general
and reusable than features learned in more complex instances. Third, our re-
sults confirm that in RL lower layers learn more general features. Interestingly,
in some cases the best performance is achieved when more specific features are
transfered, when source task and target task are similar enough to support these
more specific features. Fourth, we found negative transfer from a simple super-
vised learning task, which tells us that choice and design of the source tasks are
crucial. Fifth, we show that transferring top-fully-connected layers will not only
be unhelpful but also harmful to the learning. We also used popular visualiza-
tion techniques to explore potential reasons for successful transfers, which we
explain in detail. Our code and test environments will be made available after
blind review.

The paper is structured as follows: we first briefly review related work on
transfer learning and Sokoban in the next section; then the environment and
methods we are using are described in Section 3; Section 4 shows the experimen-
tal settings and results; in the last section, we conclude our work and discuss
some potential future directions.

2 Related Work

De la Cruz et al. [6] studied the reuse of feature representations between two
similar games: Breakout and Pong, using Deep Q Network(DQN). They used
a 3-layer convolutional network. Weights learned in one game were transferred
to improve learning the other game; results showed positive transfer of features
between the different games. Pong and Breakout do not require planning; in our
experiments, in Sokoban, we study how a curriculum of simpler instances can
benefit the learning of complex instances. Spector et al. [26] used self-transfer in
a DQN grid-world task to identify which parts should be transferred and which
parts should be fixed, showing significant benefit of knowledge transfer.

Sokoban is a planning task that has been used as a benchmark for model-
based reinforcement learning [22,16]. It It has also been used in model-free
RL [14,15], achieving performance competitive with model-based methods. The
efficiency of AlphaZero-style curriculum learning has been shown by solving hard
single Sokoban instances [11,12]. Previous works were aimed at solving single
Sokoban instances; our paper focuses on the transferability of learned knowl-
edge among different instances.

This transferability of learned feature representations was first studied in im-
age classification problems [31]. It was shown that bottom layers in Convolutional
Neural Networks(CNNs) extract more general features while ones extracted from
back layers are more specific. In this paper, we verify this idea under RL settings.

Reinforcement learning [27,21] aims to reinforce behaviors of the learning
agent by rewarding signals obtained from interactions with the environment. It
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has reached super-human performance in games such as Go [24], StarCraft [29,20],
as well as Atari games [2] and robotic tasks. In this paper we follow the conven-
tional MDP notation for RL [27].

Transfer learning reuses prior knowledge to improve the learning efficiency or
performance in new tasks [30,28]. In reinforcement learning, higher-level knowl-
edge such as macro actions, skills and lower-level knowledge such as reward
functions, policies could be transferred. Transferring learned knowledge could
take different approaches, such as reward shaping [4], learning from demonstra-
tion [19] and policy reuse [13].

3 Experimental Setup

The environment used in the paper is the Gym environment for Sokoban [23];
for the agent algorithms we follow Weber et al. [22]. Examples are shown in
Fig. 2. The game is solved by controlling the agent (green sprite) to push all
boxes (yellow squares) onto corresponding targets(red squares). There’s no hint
about which boxes should on which targets, and boxes can only be pushed;
some actions are irreversible, and can leave the game in an unsolvable state. The
difficulty of the game can be increased easily by putting more boxes as well as
targets into generated rooms. The agent can go up, down, left, and right. The
agent gets a final reward of 10 by pushing all boxes on targets. Pushing a box
on a target will result a reward of 1 and a penalty of -1 for pushing a box off a
target. We also give a small penalty of 0.1 for each step the agent takes.

We perform three types of experiments: (1) related tasks (source and target
tasks are both RL tasks, while source tasks are to solve n-boxes Sokoban in-
stances and target tasks are to solve m-boxes Sokoban instances, where n 6= m),
(2) different tasks (source tasks are supervised learning(SL) tasks and target
tasks are reinforcement learning(RL) tasks), and (3) different texture appear-
ance(source and target tasks are both RL tasks, while source tasks are to solve
original Sokoban instances and target tasks are to solve Sokoban instances with
different texture appearance). The agent was first pre-trained on source tasks
and then fine-tuned on target tasks. RL tasks are to solve 100 randomly gen-
erated n-boxes Sokoban instances. SL tasks are to recognize the location of the
agent in Sokoban instances.

Fig. 2: Examples of Sokoban instances, increasing in difficulty from 1 box and 1
target to 3 boxes and 3 targets
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Transfer Learning and Curriculum Learning in Sokoban 5

The overall statistics of the maps are shown in Fig. 3. As the number of
objectives increases, the number of steps for the optimal solution also increases,
and so does the difficulty of solving the game.

Fig. 3: Distribution of optimal solutions in different Sokoban instances.

3.1 Neural Network Architecture

The neural network we employ is taken from the DeepMind baseline [22] directly
without hyper-parameter tuning. The model consists of 3 convolutional (Conv)
layers with kernel size 8 × 8, 4 × 4, 3 × 3, strides of 4, 2, 1, and number of
output channels 32, 64, 64. This is followed by a fully connected (FC) hidden
layer with 512 units. The outputs of this FC layer will be fed into two heads: one
for outputting the policy logits and one for outputting the state value. This is
one of the most commonly-used architectures in RL, we selected it also in order
to show what can be achieved with popular architecture. Details of architecture
and hyper parameters we employ are found in Table 1.

Table 1: Hyper-parameters of the neural network and training.

learning rate 7 · 10−4

discount factor 0.99

entropy coefficient 0.1

value loss coefficient 0.5

eps in RMSprop 10−5

alpha in RMSprop 0.99

rollout storage size 5

No. of environments for collecting trajectories 30
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Fig. 4: Three different transfer approaches, red layers are fixed while green layers
are trainable. They correspond k = 1, 2, 3 from left to right respectively.

3.2 Transfer Approach

The main idea of our transfer approach is to reuse feature representations from
source tasks learned by the Conv layers in new unseen target tasks. As de-
tailed in the last sub-section, our model consists of 3 Conv layers and 2 FC
layers. The feature representations were transferred to new tasks by copying
the weights of the first k Conv layers trained in source tasks (where there are
ns boxes/targets) to initialize the new learning model in target tasks (where
there are nt boxes/targets). Then we froze these weights (they were no longer
trainable) and retrained the remaining part of the model. In our experiments,
k ∈ {1, 2, 3}, ns ∈ {1, 2, 3}, nt ∈ {1, 2, 3}. Please refer to Fig. 4 for an explanation
of this approach. Different squares represent different layers of our neural net-
work. The first 3 layers are Conv layers and the last two are FC layers. Reds are
weights taken from pre-trained model and fixed, greens are weights reinitialized
and trainable.

Solved ratios were used for evaluating agents, and evaluation executes every
1,000 environment steps. 20 randomly selected test instances were performed by
the current learning agent. We say the transfer is positive when the performance
with the transfer is better than without (training from scratch), and negative
when the performance with the transfer is worse than without.

4 Experiments

We designed experiments with different source, target tasks and k, in order
to verify the hypotheses we proposed. We experimented with Sokoban instances
with 1, 2, and 3 boxes. All experiments were run for 1 million environment steps.
We use abbreviations for each experiment. For instance, s1t1k1 means source
tasks are 1-box instances, target tasks are 1-box instances and we transfer and
fix the 1(first) layer. Exceptions are sPt1k1 and s1t1fc game2. sPt1k1 stands
for the source task is a supervised learning prediction task, and target task is the
RL task over 1-box instances while we only keep the first layer. s1t1fc game2
is that the source and target tasks are both RL tasks over 1-box instances,
but we transfer fully connected layers to instances with different appearance.
The neural networks were trained using Advantage Actor Critic(A2C), a single
threaded variant of A3C [18]. All experiments were performed 5 times with
different random seeds, and figures were drawn using averaged results with 0.95
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Transfer Learning and Curriculum Learning in Sokoban 7

confidence interval. Heavy fluctuations were caused by irreversible actions, one
irreversible action during the game could make the whole game unsolvable.

4.1 Transfer Among Related Tasks

Related tasks are tasks where the only difference between source and task is the
difficulties of instances, i.e. the number of boxes and targets. (Recall that both
source and task are trained on 100 different map-layouts, in all experiments.)

Fig. 5 and Fig. 6 show results for training on 1-box, 2-boxes, 3-boxes in-
stances with reusing features learned in different tasks, and we fix k = 3. All
results showed that transferring feature representations learned in single-box
instances is positive. Performance of agents (s1t1k3, s1t2k3, s1t3k3) who are us-
ing features learned from single-box instances always outperform other agents,
including agents training from scratch and using features learned from other
instances. The transfer, however, is not ’bi-directional’, feature representations
learned in multiple-box instances could not be successfully transferred to the
learning in single-box instances. Their performance (s2t1k3, s3t1k3) converged
to a relatively low solved ratio, which indicates that transferred features are not
suitable for single-box instances. Just as humans learn more general knowledge
in simpler cases, our agents also showed that the knowledge learned from single-
box instances is more general and transferable than ones learned in multiple-box
instances.

To further enhance performances of transferring features learned in single-
box instances, we tried different k. We expected that the performance will be the
best when k = 1 since the first layer learn the most general features. However,
the results in Fig. 7 instead show that not k = 1 but k = 2 (s1t2k2, s1t3k2)

Fig. 5: Performance of transferring feature representations learned in 1-box, 2-
boxes, 3-boxes instances to learning in 1-box with k = 3. ns = 1, 2, 3, nt = 1,
k = 3. Pre-training on 1-box instances is much better than pre-training on 2 or
3 box instances when training new 1-box instances.
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8 Z. Yang et al.

Fig. 6: Performance of transferring feature representations learned in 1-box, 2-
boxes, 3-boxes instances to learning in 2-boxes (left) and 3-boxes (right) with
k = 3. ns = 1, 2, 3, nt = 2, 3, k = 3.

perform the best. Similar to [6], features learned in the first 2 layers are still
general enough for transfer; in addition, the difference between source tasks and
target tasks is not as large as expected, and features learned between different
instances are more overlapping than expected.

It is also interesting to see the influence of how many layers are fixed on the
success of the transfer. In particular, we want to know whether a smaller k could
change the negative transfer from multiple-box instances to single-box instances
into positive. (We believe features from multiple and single-box instances are
overlapping to some extent.) Results are shown in Fig. 8. We see that indeed the
first layer (s2t1k1, s3t1k1) did learn enough general features from multiple-boxes
instances to solve the single-box instances. Although agents with features only
learned by the first layer could converge to decent performance in the end, the
transfer is still negative. An interesting point is that k = 3 (s2t1k3) performs
better than k = 2 (s2t1k2) when source tasks are 2-boxes instances. Note that
k = 2 (s3t1k2) performs better than k = 3 (s3t1k3) when source tasks are 2-boxes
instances. There are more overlapping features between the 2-boxes instances
and single instances.

4.2 Transfer Among Different Tasks (SL/RL)

Feature representations learned from previous tasks can either be helpful or
harmful. In the previous subsection we saw some positive transfer to related
Sokoban tasks, in this subsection we study if transfer between supervised and
reinforcement learning tasks works. We follow prior work, Anderson et al. [1]
showed that features can be transfered from hand-crafted supervised learn-
ing(SL) tasks to reinforcement learning(RL). Their model was first trained to
predict state dynamics of the environment, and then pre-trained hidden layers
were helpful to accelerate solving RL tasks.

For transfer to different (randomly chosen) instances in Sokoban, we also
formed a supervised task, which was to train a prediction model to recognize

Regular papers BNAIC/BeneLearn 2021

463



Transfer Learning and Curriculum Learning in Sokoban 9

Fig. 7: Performance of transferring feature representations learned in 1-box in-
stances to learning in 2-boxes (left) and 3-boxes (right) with different k. ns = 1,
nt = 2, 3, k = 1, 2, 3.

Fig. 8: Performance of transferring feature representations learned in 2-boxes
(left) and 3-boxes (right) instances to learning in 1-box instances with different
k. ns = 2, 3, nt = 1, k = 1, 2, 3.

the location of the agent, shown in Fig. 9a. When humans are solving Sokoban,
we first need to know where the agent is before we draw up a plan. If we already
know the location of objectives, the solving process could be faster. After the
prediction model could correctly recognize where the agent is, we took feature
representations of the trained model and plug them into a new agent. The first
layer of learned features is fixed, and we only train the remaining part. Fig. 9b
shows the performance of transferring and training from scratch. We find nega-
tive transfer for (sPt1k1): the performance is much worse compare with training
from scratch.

4.3 Transfer To Different Appearance

Experiments we described in previous subsections were all trying to transfer
Conv layers which learned feature representations. In the next experiment, we
try to make the agent utilize another part of the learned model, which are back
FC layers of the whole model. The source and target tasks were both single-
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(a) (b)

Fig. 9: (a): How SL tasks work. Input states and neural network will learn to
predict locations of the agent. (b): Performance of training from scratch and
training with transferred feature representations from SL tasks.

box instances, but the target tasks were instances with different appearances.
Fig. 10b is an example. The maps used for two groups of tasks were the same,
the only difference was how they look like, the appearance was changed, with
different textures, and we call it Game2. Fig. 10a shows the transfer approach.
We took FC layers trained in source tasks and fixed them, and retrained the
remaining Conv layers. Since maps were the same, solutions of the instances
were the same. When Conv layers learn new feature representations successfully,
instances are solved then.

Fig. 11a shows the performance. One would expect that transferred FC lay-
ers(s1t1fc game2) are faster because the agent only needs to learn new feature
representations. However, the experiments did not show this result. Apparently,
when the whole model is trained jointly, it has more flexibility to be trained into
the final shape; when the last part of the model is fixed, the learning of the first
part will be trying to cater for the last part in order to solve the problem, which
made the learning slower.

4.4 Visualizing Agent Detection

In order to better understand what the network learned, we provide a visualiza-
tion. We follow Yosinski et al. who showed that convolutional neural networks
can detect latent objectives without explicit labels [31]. We visualized a fea-
ture map of a trained neural network on 1-box RL tasks. Fig. 11b shows the
latent ’agent detector’ for Sokoban. The neural network automatically learned
to detect the agent without giving any labels or information. Left rows are pixel
inputs, right rows are outputs of one specific feature map. Yellow-green units are
detected agents. We note that although the network was trained in single-box
instances, it still performed quite well in multiple-box instances, which is a po-
tential reason for the successful transfer. The agent’s abilities that were learned
in source tasks are useful in target tasks.
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(a) (b)

Fig. 10: (a): Transfer approach for transfer to Game2. FC layers are taken from
previously training and fixed, only conv layers will be retrained. (b): An example
instance in Game2. We changed appearances in Game2 with different textures
of objectives.

(a) (b)

Fig. 11: (a): Training on Game2 using transferred FC layers. Its performance is
worse than training from scratch. (b): The agent detector. Outputs of the twenty
third feature map of the first convolutional layer, which is an agent detector
learned from 1-box instances, and it’s still usable in multiple-boxes scenarios.

5 Conclusion and Future Work

Our experiments showed that in a reinforcement learning setting the agent in
Sokoban can learn four characteristics that are similar to humans. (1) Fea-
ture representations learned previously can accelerate the new learning in other
Sokoban instances. Knowledge learned in previous related tasks could be reused
to accelerate new learning, transfer learning is occurring, creating an implicit
learning curriculum. (2) Feature representations learned in single-box instances
are more general, and are more effective for learning in multiple-boxes instances,
but not vice versa. Knowledge learned in simpler tasks is more general and
more effective, even in more complex tasks. Further experiments showed neg-
ative learning, that confirms these results. (3) Feature representations learned
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in unrelated supervised learning tasks can hurt fine-tuning performance. If the
learned knowledge is required to be helpful in new coming tasks, it’s better to
learn from similar tasks, otherwise the choice of tasks needs to be careful. (4)
Fixing the top-fully-connected layers and retraining the bottom convolutional
layers slows down learning and hurts performance. We conclude that learning
should have explicit order, less flexibility will not only be unhelpful but also hurt
the learning process and the performance.

Our experiments showed that with a simple 5-layer convolutions/fully con-
nected network (based on DeepMind’s baseline [22]), transfer learning and cur-
riculum learning of behavior to occur in Sokoban. This is surprising, since
Sokoban is a planning-heavy problem, for which one would expect more elaborate
network architectures to be necessary. Reusing pre-trained feature representa-
tions in RL fields is not well studied, and to the best of our knowledge, these
are the first results show transfer learning and curriculum learning with such
a simple network in such a planning-heavy behavioral task. In the future, we
would like to see more utilization of pre-trained feature representations and of
the enire pre-trained model in RL. We believe that reusing pre-trained model
can significantly improve data-efficient reinforcement learning.
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Abstract. Learning to solve sparse-reward reinforcement learning prob-
lems is difficult, due to the lack of guidance towards the goal. But in
some problems, prior knowledge can be used to augment the learning
process. Reward shaping is a way to incorporate prior knowledge into
the original reward function in order to speed up the learning. While
previous work has investigated the use of expert knowledge to generate
potential functions, in this work, we study whether we can use a search
algorithm(A*) to automatically generate a potential function for reward
shaping in Sokoban, a well-known planning task. The results showed that
learning with shaped reward function is faster than learning from scratch.
Our results also indicate that distance functions could be a suitable po-
tential function for Sokoban. This work demonstrates the possibility of
solving multiple instances with the help of reward shaping and results can
be compressed into a single policy, which can be seen as the first phase
towards training a general policy that is able to solve unseen instances.4

Keywords: Reinforcement Learning · Potential-based Reward Shaping
· Sokoban.

1 Introduction

Sokoban is a well-known puzzle game that is often used as a benchmark for
evaluating reinforcement learning (RL) agents [8,10]. It is a sparse reward task
and also suffers from dead-ends: one bad action can render the whole instance
unsolvable. Sokoban is deceptively simple, RL agents struggle to learn a behavior
policy, unless they used planning as part of their learning effort. A simple exam-
ple from [17] is shown in Fig. 1. Although this example has only three boxes, it
might already be challenging to solve for humans.

Human problem solving used heuristics, rules of thumb that are based on
experience, that work most of the time, but not always. Heuristics usually in-
crease our ability to solve problems greatly. Reward shaping [5,13] is proposed

4 Codes we used for this work can be found at
https://github.com/yangzhao-666/PbRSS
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Fig. 1: An example of 3-boxes Sokoban instance.

for incorporating prior (heuristic) knowledge to accelerate learning in RL. It re-
shapes the original reward function by adding another reward function which
is formed by prior knowledge in order to get an easy-learned reward function,
that is often also more dense. Examples of prior knowledge are heuristics from
context structures, demonstrations from experts, etc.

In this paper, we show that reward shaping can be applied to sparse reward
tasks for faster learning. More accurately, we choose the distance function (au-
tomatically provided by the A* search algorithm) as the potential function, and
subsequently performed potential-based reward shaping in Sokoban. Our results
demonstrate that learning with shaped reward functions outperforms learning
from scratch by a large margin. Neural networks are able to generalize to unseen
tasks but require much training data, our reward shaping can be seen as the
first step towards the final goal that aims to train an agent which is able to
solve multiple unseen new Sokoban instances. With reward shaping, the ability
of solving multiple instances is compressed into a single behavior policy without
extensive training.

The paper is structured as follows: first we briefly describe related work in
section 2; then details about our method are provided in section 3; followed
by experimental design and results; lastly, we discuss limitations and potential
future works of this paper, then draw conclusions in section 5.

2 Related Work

Reinforcement learning (RL) algorithms are used to solve decision making prob-
lems which could be formed into Markov Decision Process (MDPs), and they
train policies by interacting with environments [14,19]. Recently, RL achieves
super human performance in the board game Go [18], Atari games [1] and
StarCraft [20]. In this section, we will briefly describe related work about both
potential-based reward shaping and Sokoban.
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2.1 Reward Shaping

Reward shaping offers a way to add useful information to the reward function
of the original MDP. By reshaping, the original sparse reward function will be
denser and is more easily-learned. The heuristics can come from different sources,
such as demonstrations either from human or another RL agent [2,11], or expert’s
guidance, etc.

The optimal policy is determined by the reward function, small transforma-
tions of the reward function might cause intractable problems [15]. Ng. et al.
proved that by following the potential-based reward shaping, the optimal policy
will be invariant [13]. The original reward function R is augmented by another
reward function F , shown in Eq. 1 and if and only if F is the subtraction be-
tween a function φ of the next state s′ and the current state s then the optimal
policy will keep unchanged. The function φ is called potential function. Exam-
ples of good potential function could be Manhattan distance in navigation tasks
or pre-trained state value functions, etc.

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′)

= R(s, a, s′) + φ(s′)− φ(s)
(1)

Brys et al. extracted potential function from demonstrations by checking if
agent’s state-action pairs are in demonstrations or not and apply it to Cart Pole
and Mario [2]. Hussein et al. trained a neural network from demonstrations as the
potential function and added it to the original reward function of DQN in grid
navigation tasks[12]. Grzes provided more insights and analysis for potential-
based reward shaping and extended it to multi-agent RL scenario [7]. While most
previous methods have focused on extracting potential functions from expert
demonstrations, we investigate whether potential functions can also be extracted
from a search. In our case, we use the distance function which is provided by the
A* search algorithm as the potential function.

2.2 Sokoban

Sokoban is a challenging puzzle game and has been proved to be PSPACE-
complete [3] and NP-hard [4] problem. It also plays an important role in bench-
marking RL agents. Many models are proposed to solve Sokoban. Both model-
based methods [9,10,21], as well as model-free methods can reach competitive
performance [8]. Curriculum learning has been used to solve a difficult Sokoban
instance [6]. The works mentioned above try to solve Sokoban using special-
designed models, while we are focusing on using general reward shaping tech-
niques to speed up the learning.

Fine-tuning pre-trained models is helpful in accelerating learning in Sokoban [22].
Reward shaping was applied to a single simple Sokoban instance by interacting
with human experts in [16] to speed up the learning. In our work, we demon-
strate potential-based reward shaping over many Sokoban instances range from
1-box to 3-boxes, where no human expert involved.
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3 Methods

In this section, we will explain the methods and techniques that we used. We
report the problem model, the heuristic that was used in A*, and details about
the reward shaping.

3.1 Reinforcement Learning

MDP is short for Markov Decision Process, and it models decision making prob-
lems into a 4-tuple, 〈S,A,R(s, a, s′), P (s, a, s′)〉. In our paper, we follow the
MDP notation proposed in [19]. S is a set of states s called the state space, it
will be different states in Sokoban instance in our case. A is a set of actions
a called the action space, in our case it will contain all actions that the agent
can take (no operation, going up/down/left/right). R(s, a, s′) is a reward func-
tion that determines immediate rewards that the agent will get after performs
an action a which leads the agent from the current state s to the next state
s′. P (s, a, s′) is the probability that action a leads the agent from the current
state s to the next state s′. Reinforcement learning methods solve MDP using
data(s, a, s′, R(s, a, s′)) collected by interacting with the environment to train a
policy aims to maximize the accumulated reward shown in Eq. 2,

R =

∞∑

t=0

γtrt (2)

where γ ∈ [0, 1] is the discount factor and rt is the immediate reward the agent
gets in time step t.

We use the RL algorithm A2C to train the agent to learn to solve Sokoban.
The policy is represented by a neural network and the architecture of the neural
network we are using for experiments is the same as the architecture used in [22],
which consists of 3 convolutional layers and 2 fully-connected layers. All hyper-
parameters of A2C are also kept the same as described in [22]. More details can
be found in the Appendix B.

3.2 A* Heuristics

A* is a heuristic search algorithm, it extends the Dijkstra’s algorithm by adding
heuristics. The heuristic we used in our case is the overall Manhattan distance
between untargeted boxes and goals5, formula shown in Eq 3.

h(s) =
∑

b∈B,t∈T

(|xb − xt|+ |yb − yt|) (3)

, where (xb, yb) is the location of boxes while (xt, yt) is the location of targets,
h is the heuristic for the current state s. B is all boxes which are not on targets

5 The implementation we are using is from https://github.com/KnightofLuna/

sokoban-solver
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yet and T is all targets where there are no boxes on. If a Sokoban instance is
solvable, A* will return the solution otherwise it will return nothing. As such, it
could also be used to check the solvability of a Sokoban instance.

3.3 Reward Shaping

Values of potential functions of states should be higher if states are ’better’ and
vice versa. For this reason the minus of the distance function is used as the
potential function in our case. The distance function will take the current state
as input, and output how many steps the agent needs to take towards the goal
state.

The shaped reward function will be(shown in Eq. 4):

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′)

= R(s, a, s′) + φ(s′)− φ(s)

= R(s, a, s′)− d(s′) + d(s)

(4)

where R′ is the new shaped reward while R is the original extrinsic reward
provided by the environment. s is the current state while s′ is the next state,
and a is the action that leads s to s′. φ is the potential function and d(s) is the
distance function from the current state s to the goal state. In our case, we use
the A* search algorithm6 to provide the distance information.

In Sokoban, some actions can lead to unsolvable situations. An example is
shown in Fig. 2. A box is pushed into the corner and it is not possible to pull it
back. The instance has become completely unsolvable. Then a natural question
is what distance we should assign to states which are unsolvable. The algorithm,
however, can still get some rewards by learning sub-optimal policies, such as
pushing one of the boxes onto one of the targets. In order not to break the sub-
optimal policy invariance, we don’t shape the reward function and just keep the
original reward function after the instance has become unsolvable. To conclude,
our shaped reward function is shown in Eq. 5. It is important to note, when
in the step that leads the agent to an unsolvable situation, we make d(s′) one
step further than d(s), which will be d(s) − 1. Although d(s′) does not exist,
it is reached by taking one step further from its predecessor state s. We found
this strategy performs better than other methods we tried such as giving a large
penalty or not giving any penalty, etc.

F (s, a, s′) =





(φ(s)− 1)− φ(s) = −1 if s is solvable and s′ is unsolvable

0 if both s′ and s are unsolvable

φ(s′)− φ(s) = −d(s′) + d(s) otherwise

(5)

6 https://en.wikipedia.org/wiki/A*_search_algorithm
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Fig. 2: How an unsolvable situation happens.

4 Experiments

The agent is evaluated every 1,000 environment steps on 20 randomly selected
instances. We use 100 * 1-box instances, 100 * 2-boxes instances and 60 * 3-boxes
instances(since more boxes are more expensive, we use 60 instead of 100). The
results shown are averaged over 5 runs with different random seeds.

Fig. 3: The shortest path of different Sokoban instances, dash lines are means.
Top: solutions of 1-box instances, and the mean of solutions is 6.52. Mid: solu-
tions of 2-boxes instances, and the mean of solutions is 12.14. Bottom: solutions
of 3-boxes instances, and the mean of solutions is 11.62.
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The length of the shortest path of an instance could indicate the difficulty of
the instance. Fig. 3 shows the distribution of shortest paths of instances we are
using; as expected the more boxes, the longer the shortest path.

The learning results on 1-box instances is shown in Fig. 4. Even without
reward shaping, the agent can quickly learn to master given instances within
60k environment steps. From the top subplot in Fig. 3 we see that, solutions of
1-box instances are mostly shorter than 10. This also indicates that RL is able
to solve simple sparse-reward problems. By adding reward shaping, the agent is
about four times faster than learning from scratch. Both learning with reward
shaping and learning from scratch are able to solve given instances within the
given steps.

Learning on 2-box and 3-box instances is more difficult than learning on
1-box instances. Solutions of multiple-box instances are generally longer than
solutions of single-box instances. Reinforcement learning from scratch almost
learns nothing on 2-box and 3-box instances. In Fig.5, we can see that learning
with reward shaping performs better by a large margin, the agent is able to solve
given instances within 50k environment steps, while learning from scratch only
reaches a solved ratio of around 0.2. This again demonstrates that RL is not
good at solving sparse-reward problems.

Fig. 4: Learning over 100 * 1-box instances.

5 Discussion and Conclusion

In this work, we showed that the distance function can be used as potential
function in potential-based reward shaping to further speed up the learning in
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Fig. 5: Learning over 100 * 2-boxes instances(left) and 60 * 3-boxes in-
stances(right).

Sokoban. Meanwhile, the distance function can also be used as potential function
in grid-world navigation tasks, since grid-world navigation tasks can be treated
as special types of Sokoban where there are no needs for pushing boxes but only
moving the agent to the target. Our experiments showed that abilities of solving
multiple instances can be quickly learned and compressed into a single behavior
policy, which can be seen as the first step towards training a general policy which
is able to solve unseen Sokoban instances quickly. For instance, if the agent is
exposed to a Sokoban generator for training and the goal is to train the agent to
be able to solve new unseen instances. Then learning with reward shaping will
be way faster than learning from scratch to reach this ’final’ goal.

A limitation of our approach is that since we are using search algorithms to
provide the distance function, scalability is limited. For more difficult instances,
search algorithms can not find solutions within a reasonable time, and the re-
ward shaping we did in this work will not be usable. In the future, it would be
interesting to work on scalable heuristic functions to use as potential functions
in Sokoban. On the other hand, as we mentioned, our methods can be firstly
used to train a baseline agent quickly, thus a interesting future work can also
be to find possibility to reuse or transfer the trained neural networks for further
training or tasks.
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A Environment

The environment we are using is from the implementation [17] with slight modifi-
cation. The rewards of the environment shown in the Tab. 1. Solving the instance
by pushing all boxes onto targets returns 10.0; pushing one box onto a target
gets 1.0 and pushing it off gets -1.0; in order to incentivize the agent solve the
instance quickly, an -0.1 is given for each step the agent makes.

Table 1: Rewards in the environment.

actions reward

push all boxes on targets 10.0

push one box onto target 1.0

push one box onto target -1.0

each step -0.1

B Neural Network Details

The model we are using contains three convolutional layers with kernel size 8x8,
4x4, 3x3, strides of 4, 2, 1, and number of output channels 32, 64, 64. Then
followed by a fully connected layer with 512 units. In the end, the outputs are
fed into two heads: outputting the policy logits and the state value. ReLU is used
as the activation function after each layer and RMSprop is the optimizer we used.
The input is pixel image gets from the environment directly, which is 3x80x80.

Table 2: Hyper-parameters of the neural network and training.

learning rate 7 · 10−4

gamma 0.99

entropy coef 0.1

value loss coef 0.5

eps 10−5

alpha 0.99

rollout storage size 5

No. of environments for collecting trajectories 30

C Overall Training Loop
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Algorithm 1: Overall RL training loop

Initialization: policy π, number of training steps N , environment env

s ← env.reset();
while n < N do

a ← π(s);
s′, r, ← env.step(a);
/* calculate the potential value under different situations. */

if s and s′ are solvable then
f ← −d(s′) + d(s) ; /* f is the potential value. */

else if s is solvable and s′ is not solvable then
f ← −d(s)− 1;

else if s, s′ are not solvable then
f ← 0;

r′ ← r + f ; /* Reshape the reward. */

execute A2C update on π using the shaped reward r′;
n← n+ 1;

end
return π ;
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Abstract. How can we distinguish commercial from editorial content
in news, or more specifically, differentiate between advertorials and reg-
ular news articles? An advertorial is a commercial message written and
formatted as an article, making it harder for readers to recognize these
as advertising, despite the use of disclaimers. In our research we aim to
differentiate the two using a machine learning model, and a lexicon de-
rived from it. This was accomplished by scraping 1.000 articles and 1.000
advertorials from four different Dutch news sources and classifying these
based on textual features. With this setup our most successful machine
learning model had an accuracy of just over 90%. To generate addi-
tional insights into differences between news and advertorial language,
we also analyzed model coefficients and explored the corpus through co-
occurrence networks and t-SNE graphs.

Keywords: advertorials · NLP · t-SNE · co-occurrence networks

1 Introduction

In journalism it is best practice to clearly distinguish between editorial and
sponsored commercial content. This is referred to as the ‘separation of church
and state’ in media [2]. However, some forms of advertising have made this
separation less clear to readers and therefore threaten this principle.

An example of this is the advertorial, which is commercial content in the
form of an article. Advertorials are an example of what marketers call ‘native
advertising’. In fact, advertorials are so much like articles, that despite using
disclaimers and different layouts most readers don’t notice the difference. In a
study conducted by the university of Georgia only 8% of readers recognized
advertorials as commercial content [16]. As a result of this, advertorials have
made the separation of church and state in the news less clear.

That’s why this research aims to differentiate articles and advertorials using
machine learning. We would like to answer two research questions. Firstly, to
what extent can we differentiate commercial and editorial content by a using
machine learning model, and a lexicon derived from this? Secondly, can we use
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AI and machine learning to better understand the difference between commercial
and editorial language?

It’s important to note that the separation of commercial and editorial content
is hotly debated in journalism and the society at large. Yet, to our knowledge
a machine learning based perspective to identify advertorials and commercial
messaging was not part of this debate yet. By doing this we not only hope to
answer our research questions, but also showcase how machine learning can be a
solution in the debate surrounding the usage of advertorials. This research has
been carried out in the context of the Reverb Channel program [12], a data driven
exploration of our networked news culture that aims to reverse the sometimes
questionable role of AI in digital media, by using it to investigate topics such as
framing, polarization and ideology spaces.3

The remainder of this paper is structured as follows. Section 2 provides more
background and related work. Section 3 explains the process of acquiring our
data, followed by sections on our classification approach, and on our exploratory
co-occurrence network based approach to increase the insight into how language
differs across advertorials and news. Section 6 concludes the paper.

2 Background and Related Work

Even though we are not aware of any other research to leverage machine learning
to distinguish advertorials from editorial content, the discussion around the usage
of advertorials and commercial content in general is broader than this research
alone, and has been debated widely in journalism and marketing. In this section
we discuss some of this background context.

2.1 The change of journalism’s business model in the digital age.

The rise of the internet has had a lot of effect on journalism. It opened up a
whole new channel for news content, but it also it negatively impacted circu-
lation and advertising revenue for traditional news channels. For example, US
weekend circulation of newspapers declined from 59.4 million (2000) to est. 25.8
million (2020), revenue from advertising declined from 48.7 billion (2000) to
est. 8.8 billion (2020), whilst revenue from circulation remained relatively stable
(10.5 (2000) to 11.1 (2020)), and the share of advertising revenue increased from
17% (2011) to 39% (2020) [10]. So despite drastic drops in circulation, compa-
nies were able to protect circulation income, but advertising revenues dropped
dramatically. These developments altered the business model of journalism sig-
nificantly, and drove publishers to find new sources of advertising revenue, such
increased usage of advertorials and other forms of sponsored content.

2.2 Disguise, deception and disclosure in advertorials.

As discussed, whilst in journalism the distinction between editorial and spon-
sored commercial content is a key principle, this is challenged by advertorials in

3 https://www.aced.site/en/programmes/reverb-channel
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practice as readers have a hard time differentiating these from editorial content,
despite the use of labels and disclaimers [2].

Advertorials can be both deceptive and effective. As a classical example, in
1989 the R.J Reynolds Tobacco Company had settled charges with the FTC on
that it had made false and misleading claims in an advertorial on health effects
of smoking, titled ‘Of cigarettes and science’. Wilkinson et al. subsequently ran a
test and over a quarter of participants thought the article was editorial content,
not commercial [15].

In another study by Kim et al., the use of an advertorial over a standard ad-
vertisement increased the relevance of and attention to the message, and message
and elaboration and recall. It made no difference whether the advertorials were
labeled as such, and over two thirds of subjects exposed to labeled advertorials
were not able to recall whether these advertorials were labeled or not [7].

As mentioned in the introduction, in another study by the University of
Georgia only 8% of readers recognized advertorials as commercial content [16].
In their study, the use of disclaimers did have a positive impact on recognizing the
text as commercial, with best effects for placement of disclaimers in the middle or
the bottom, and explicit use of words such as ‘advertizing’ and ’sponsored’. Also
Krouwer et al. found that small changes, such as the location of a disclaimer,
significantly impacts the recognizability for readers [8]. Apart from readers not
noticing labeling, advertorials often violate guidelines for labeling, formatting
and content [1].

To provide perhaps a somewhat more positive view on advertorials, in a
survey by Reijmersdal et al. of subscribers of Dutch magazines, when asked
explicitly only 12% of respondents thought advertorials are deceptive [11].

The more established newspapers and magazines will make more of a serious
effort to make it known that certain content is sponsored, and writers producing
advertorials are kept separate from the editorial teams. But is that sufficient, also
when taking the proliferation of new digital media titles and the ongoing pressure
to increase advertizing revenues into account, and norms are shifting towards
further integration between editorial and commercial teams and objectives [3]?

The results above may vary but in our opinion this is clearly not sufficient.
The ability to disguise content, willingly or unwillingly, and the probability that
advertorials are not recognized as such even if properly labelled is significant.
Marketers call it native advertizing for a reason.

The risk of mistaking commercial content for objective editorial content is
somewhat obvious, but note there can be an opposite detrimental effect as well.
For instance, Iversen at al. observed that exposure to native political ads reduced
the public’s trust in political news [5].

2.3 The usage of lexicons in classifying text

As mentioned, we aim to create a classification model and lexicon that distin-
guishes editorial from commercial language. Whilst text classification models are
used abundantly in NLP research, we are also looking to distribute our artifacts
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to journalists and other non-technical audiences. In domains such as social sci-
ence lexicons are often used, for common tasks such as sentiment analysis [13]
or more specific tasks, such as detecting moral foundations in ethical reason-
ing [4, 14]. Lexicons can be handcrafted or created through linguistic analysis,
and typically include keywords that indicate a particular class, potentially in-
cluding a weight.

We were not able to identify prior work that uses machine learning, hand-
crafted or trained lexicons to differentiate advertorials from editorial content. A
different, yet relevant related work is the study by Zhou, who uses genre analysis
to characterize the general structure and linguistic characteristics of advertorials,
using mostly manual analysis and interpretation [17].

3 Data Acquisition

In order to make a model that answers the research questions mentioned earlier
we have created a data set with advertorials and regular news articles. The
Reverb Channel corpus contains millions of articles [12], but no advertorials,
hence we had to acquire our own data for this research. In this section we explain
this process and showcase the data set that we acquired. For full details we refer
to [6].

3.1 Scraping the data

The data for this research had to be scraped directly from news sources using
web crawlers. For our research we used Python and the BeautifulSoup library.
With this set up we made a URL-scraper and a web-scraper for every news
source. We first collected the URLs from the pages we wanted to scrape data
from and thereafter use those URLs to collect all the data we needed with the
web-scraper. We also carried out additional cleaning and transformation, such
as removal of all commas, translation of any HTML to flat text where needed,
and lowercasing of all text.4

3.2 Resulting data set

The data set that we acquired with this method has 2000 entries in total, about
half of these entries are advertorials (see Figure 1). These entries are roughly
equally distributed over four different news sources. These news sources are
(online-only news) Nu.nl, (politically conservative) Telegraaf, (politically pro-
gressive) NRC, and (business publication) De Ondernemer. By including these
four different news sources with roughly equal number of documents in the data
set we strive to create an unbiased data set that is representative of the Dutch
media landscape as a whole.

4 Source code, the lexicon and other deliverables can be found at https://github.

com/TimoKats/research_distinguishing_commercial_and_editorial_content
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Fig. 1: Metadata from the acquired data set

4 Distinguishing Advertorials from Regular Articles with
Classification Models

With this corpus we developed classification models and a corresponding lexicon,
which also gave us some first insights into differences between the language used
in advertorials versus news.

4.1 Experimental set up

In terms of cleaning the data, we first removed potential leakers. Leaking vari-
ables in our model refer to words that trigger the model whilst being unique
to our data set and media covered, for example sponsor names and disclaimers.
To further lower the risk of leakage, we excluded the title and focused on the
main text. Furthermore, we experimented with regular bag of words (BoW) as
well as TFIDF weighted BoW, the removal of stop words and the number of
features. Obviously, we could have easily obtained classifiers with near perfect
performance, for instance by including disclaimer texts, but we were primarily
interested in models that could distinguish commercial from editorial language.

For modeling, we selected a diverse set of classification methods to experiment
with: SVM (default with rbf kernel), linearSVC, decision tree, random forest,
k-NN, SGD and naive bayes. We restricted ourselves to these more classical
methods as opposed to deep learning methods such as BERT, given that our data
sets are relatively small, and interpretability of the results is key, for instance
to iteratively identify leakers and get more insights into the difference between
text types.

To simplify the approach, we aim to find the best performing model (incl.
parameter optimization) through narrowing down the search as the experiment
progresses, taking the best performing preliminary results and continuing to
optimize it. A limitation of such an approach is that the estimate of final accuracy
may be somewhat optimistic given the sequential nature of the experiments
(manual overfitting), but a full multidimensional experimental set up was too
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representation learning model accuracy f1 score auc

bag of words svm 0.85±0.04 0.85±0.05 0.93±0.04

bag of words linearSVC 0.84±0.05 0.84±0.06 0.9±0.05

bag of words decisionTree 0.78±0.08 0.78±0.08 0.79±0.07

bag of words randomForest 0.88±0.06 0.89±0.07 0.94±0.05

bag of words k-NN 0.57±0.14 0.63±0.12 0.58±0.16

bag of words SGD 0.87±0.07 0.86±0.08 0.93±0.05

bag of words naiveBayes 0.76±0.11 0.77±0.09 0.76±0.11

tfidf svm 0.89±0.05 0.89±0.05 0.94±0.04

tfidf linearSVC 0.91±0.05 0.91±0.05 0.95±0.03

tfidf decisionTree 0.78±0.07 0.79±0.07 0.8±0.07

tfidf randomForest 0.88±0.07 0.89±0.06 0.94±0.05

tfidf k-NN 0.51±0.03 0.64±0.02 0.51±0.05

tfidf SGD 0.9±0.05 0.9±0.06 0.95±0.04

tfidf naiveBayes 0.76±0.09 0.76±0.08 0.76±0.1

Table 1: Cross-validation accuracy with removal of stop words

computationally expensive, and the scarcity of advertorials limited the use of an
additional hold out test set. This could be addressed in future work.

For SVM, SGD and linearSVC we increased the maximum amount of iter-
ations to 5000 and for decision tree and random forest we set the max depth
to “none”. In terms of evaluation we ran 10-fold cross validation to test vari-
ous algorithms and parameters, as well as a cross domain test set up where one
medium is used as the test set, and models are trained on the other media. The
metrics that we evaluate our results with are accuracy, f1 score and AUC.

4.2 Results

In a first set of experiments we benchmark the performance of all algorithms
across regular and TF-IDF weighted BoW representations. Table 1 shows the
results, with stop words removed; the results with stop words included were
very similar. TF-IDF typically outperformed regular BoW so the remainder of
the experiments was carried out with TF-IDF, with stop word filtering.

The results of the cross domain testing experiment can be found in Table 2.
The best results were obtained with SVM, linearSVC, random forest and SGD,
closely followed by decision trees and naive bayes, and k-NN scored poorly, prob-
ably due to high dimensionality. Top scoring results were close, but SVM scored
best, so we decided to continue the experiments with this method. In terms
of media, NRC scored best, followed by Nu.nl and Telegraaf, and Ondernemer
scoring substantially worse, which may be due to the fact that in the business
to business domains editorial and commercial content is more similar.

We also ran a structured experiment where we gradually increased the num-
ber of features that made clear that at 5000 features performance more or less
stabilizes (results omitted for brevity), and we ran a series of tests to study the
impact of tweaking the various SVM parameters (Table 3).
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SVM Linear Decision Random k-NN SGD Naive
SVC Tree Forest Bayes

Nu.nl 0.84 0.84 0.72 0.83 0.52 0.84 0.72 0.76± 0.12

NRC 0.93 0.95 0.75 0.82 0.52 0.95 0.81 0.82± 0.15

Ondernemer 0.76 0.68 0.54 0.55 0.51 0.65 0.56 0.61± 0.09

Telegraaf 0.85 0.84 0.66 0.84 0.46 0.83 0.73 0.74± 0.14

0.85 0.83 0.67 0.76 0.5 0.82 0.71
±0.06 ±0.10 ±0.08 ±0.12 ±0.02 ±0.11 ±0.09

Table 2: Cross-domain testing results (test set in rows, trained on other media,
metric is accuracy)

To further validate the cross domain results, we also trained and tested mod-
els with data from just one medium each, and created t-SNE graphs (Figure 2,
along with the corresponding accuracies). t-SNE graphs [9] are a way to repre-
sent multi-dimensional data (in our case a 5000 dimensions) in a two-dimensional
scatter plot. For our experiment, we ran the t-SNE graph with a perplexity of
30, a maximum number of iterations of 1000 and a random state of 2. In other
words, apart from the random state only the default parameter values.
Using this method we can visualize how well the classes can be separated based
on the available data, making it possible to visualize the separation of church
and state in our experiment. The ranking of various media are consistent with
the cross domain results, with NRC displaying the clearest separation and On-
dernemer the worst.

After completing the experimental process explained earlier we found that
the model explained in Table 4 gave us the best results (all other parameters
are defaults). So we used this model to derive a lexicon by training a model on
all data and using this model’s feature terms and weights. This is useful, even
though it serves the same purpose as our model, because it can be published
without publishing the data as well, which we are not able to do because of
copyright issues, and it can be consumed more easily by a broad non technical
audience such as journalists and social scientists. 5

Using a linear kernel means that the separating hyperplane is defined in the
original input space, hence we can interpret the weights of the model as term
weights in a lexicon. Users can make very simple use of the lexicon, just by
counting the occurrence of negative and positive words (with zero as threshold)
or approximate the original model closer, for example by calculating a score
by multiplying frequency of the terms with the term weights and summing the
results. Figure 3 shows the distribution of the scores for the full corpus, cal-
culated with the latter approach. One can clearly see two more or less normal
distributions representing the advertorials and regular articles.

Inspection of these feature coefficients also provides further insight into dif-
ferences in language use between classes. In Figure 4 we have listed the features

5 The lexicon is published at https://github.com/TimoKats/research_

distinguishing_commercial_and_editorial_content
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kernel decision function accuracy f1 score roc auc

linear ovo 0.9029±0.0559 0.9003±0.0581 0.9495±0.0341

linear ovr 0.9029±0.0559 0.9003±0.0581 0.9495±0.0341

poly ovo 0.8094±0.0774 0.7755±0.1016 0.9167±0.0412

poly ovr 0.8094±0.0774 0.7755±0.1016 0.9167±0.0412

rbf ovo 0.8999±0.0579 0.8989±0.0583 0.9438±0.0393

rbf ovr 0.8999±0.0579 0.8989±0.0583 0.9438±0.0393

sigmoid ovo 0.9009±0.0563 0.8986±0.0585 0.9498±0.0339

sigmoid ovr 0.9009±0.0563 0.8986±0.0585 0.9498±0.0339

Table 3: The effect of tweaking the parameters with svm

Fig. 2: t-SNE plots for NRC (95%), Nu.nl (92%), Telegraaf (91%) and Onderne-
mer (85%)

learning model features text representation kernel max iter accuracy

svm 5000 tf-idf linear 5000 0.9029±0.0559

Table 4: Settings from the final model.
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Distinguishing Commercial from Editorial Content in News 9

Fig. 3: The distribution of the predicted scores from the entries using the lexicon.

Fig. 4: Coefficients with highest absolute values for regular articles (left) and
advertorials (right)

with the highest absolute values for regular articles and advertorials. As can
be seen, the difference isn’t just a matter of topics (f.i. ‘cabinet’, ‘minister’ for
news, ‘investing’, ‘enterprise’, ‘technology’, ‘innovation’ for advertorials), but
also a matter of how these topics are being talked about. In regular articles, in-
dications of time (days, months etc) and attribution (‘writes’, ‘says’, ‘appeared’)
score high, whereas high scoring features for advertorials include adjectives such
as ‘free’, ‘healthy’ and ‘sustainable’, perhaps highlighting the benefits of prod-
ucts and services. Coefficients for the full 5000 features can be downloaded with
the lexicon, and we also investigated by training models on media separately to
understand differences between publications.

5 Exploring the Corpus with Co-occurrence Networks

Results such as feature importance already provided us with some insights into
how language differs between advertorials and regular articles, but to delve
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Fig. 5: Overview of the co-occurence network. Complete version can be found at:
timokats.github.io/network/

deeper in a more exploratory fashion we have also created co-occurrence net-
works (see Figure 5).

The nodes in this network are the terms from the lexicon, blue nodes are
the editorial terms and the red nodes are the commercial terms (negative and
positive coefficients). The size of the node is related to its degree. The edges
represent the connection between two terms in the data set. We calculated this
based on how often the two terms appear in the same sentence as a percentage.
So for example, in our data set every time the term ‘artificial’ appears in a
sentence, 75% of the time that sentence also has the word ‘intelligence’. Thus,
there’s a directed edge from ‘artificial’ to ‘intelligence’. For visualization we show
all nodes with edges exceeding a minimum threshold, or likewise this could be
seen as an undirected graph where the weight is the lowest value for the two
terms.

By exploring the co-occurrence network certain things about both our re-
sults and data become apparent. First, the fact that some of our data centers
around subjects that were very prevalent in 2020 (like the US elections and the
covid-19 pandemic), resulting in a time frame bias towards 2020, because in fu-
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Fig. 6: Commercial and editorial sub graphs.

ture implementations of our model and/or lexicon these subjects may be less
prevalent.

Second, it has also given us more insight into the structure of commercial
language and how it’s different from editorial language. For example, commercial
language in our network has two large clusters (one related to goods and one re-
lated services). These clusters are linked by the terms ‘nieuw’ (new) and ‘nieuwe’
(new). For our editorial clusters we for example found a cluster related to covid
symptoms, which showcases the time frame bias mentioned earlier. Through us-
ing a co-occurrence graph we can find patterns/clusters like these and gain more
insight into our data and results. An overview of some important findings in our
graph can be found in Figure 6.

6 Conclusion

This research aims to differentiate commercial and editorial content, and more
specifically, advertorials from regular articles, and our main research questions
are the following. To what extent can we differentiate advertorials and articles
by using machine learning? And can we use machine learning and a data driven
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approach to better understand the difference between commercial and editorial
language?

We answered the first question by developing a range of models for various
media, and deriving a lexicon from it. The best models perform with over 90 per
cent accuracy, and as mentioned this is an optimistic estimate and performance
clearly varies by medium and set up. Further insight is provided by highlighting
the differences of performance across media, with business-to-business medium
Ondernemer scoring lowest, which could make sense given similarities in jargon.
Feature importance analysis and co-occurrence graphs provided further insight
into differences in language, both from a topic perspective, as well as how these
topics were being spoken about.

Our research has some known limitations. In particular the size of the data
set (of just 2000 entries) could be increased in future work, including a wider
set of media and longer time frames. A key challenge here to overcome is that
that particularly advertorials are not always available for extended periods of
time. It may also be interesting to expand the scope to other major languages
and other forms of native advertising. We also plan to engage with the general
public, journalists as well as marketers, using the results of this research to raise
awareness and trigger debate and discussion.

Despite some of it’s limitations we think our research can serve as an example
to put the problem on the agenda, provide insight into it, and illustrate the
potential of using machine learning for differentiating commercial and editorial
content. Moreover, it also showcases how machine learning and AI can be a
solution, not just a problem, in society and the modern digital media landscape.
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Abstract. Exploration is crucial for learning in sparse reward environ-
ments such as continuous 2D Navigation or Communicative Navigation.
The increased difficulty of multi-over single-agent tasks stems mainly
from the increased number of entities requiring coordination and coop-
eration between each other. To improve cooperation during the explo-
ration phase, we introduce an adaption of the Count-Based method that
works centralized, containing all agents’ information instead of decen-
tralized. Moreover, we tune a hash function (SimHash) to reduce the
high-dimensionality of the continuous navigation environment. With our
method, we were able to cut down training time by at least half.

Keywords: Multi-Agent Reinforcement Learning · Exploration · 2D-
Navigation

1 Introduction

Learning can be associated with exploration and exploitation. Exploration refers
to gaining new information and focusing on long-term gains. Exploitation utilizes
current information to maximize short-term benefits. Efficacious exploration is
crucial, especially in environments with sparse reward settings. The agents in
these environments, with random exploration, barely achieve the tasks and re-
ceive learning signals, which is known as the sparse reward problem.

Agent

Landmark

Listener

Landmark

Speaker

Fig. 1: Multi-agent environments with
sparse reward settings: (a) 2-Agent Nav-
igation, (b) Communicative Navigation.

Figure 1 shows two 2D navigation
environments with two agents and
sparse reward settings. In the 2-Agent
Navigation task, agents need to co-
operate to cover both landmarks si-
multaneously. For the Communicative
Navigation task, the speaker guides
the listener towards the target land-
mark by uttering a communication
signal. In both tasks, agents receive
a learning signal only when the land-
mark is covered.
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The most common approach to deal with a sparse reward is by introducing an
intrinsic reward as a bonus to encourage the agents to explore. For single-agent
environments, this has been done extensively [21,26,27]. Since intrinsic reward
methods work well in single-agent problems, we are interested in their perfor-
mance in the multi-agent domain. Multi-agent reinforcement learning (MARL)
has intrigued the interest of many researchers in recent years because many
real-world applications are naturally modeled as multi-agent learning problems,
such as team sport [11], multi-robot control [33], and autonomous vehicles [25].
Contrary to a single agent, cooperation is required to explore an environment
efficiently with multiple agents.

To encourage the cooperation between agents, Jaques et al. [8] and Wang et al.
[35] strengthen team coordination and communication by encouraging agents to
choose actions with more social impact. Compared to their methods that focus on
cooperation, we present an exploration method that encourages agents to explore
the environment and collaborate with teammates simultaneously. Inspired by
the centralized training method [14], we adopt a single-agent intrinsic reward
method, Count-Based to Multi-Agent Count-Based (MACB), which considers
the information of all the agents for counting. The idea behind the Count-Based
method is that agents that can visit more different states in a limited time have a
higher chance to find an optimal policy. By counting the occurrences of the joint
observations and actions of all agents, the MACB method encourages the agent
to visit the states that are new for itself and new for its teammates and therefore
achieves simultaneous exploration for both environment and cooperation.

However, all joint observations and actions may only occur once because of the
continuous state and action space, making it impossible to determine which state
is relatively novel based on counting methods. To solve this problem, we consider
using a hash function (SimHash) [32] to map similar state-action pairs to the
same hash code before counting.

We evaluate our method with 2-Agent Navigation and Communicative Navi-
gation, which are fully observable and partially observable, respectively. Our
results show that the MACB method can help the agents receive the learning
signals faster and therefore decrease the number of training episodes that the
agents need to master the task by at least half. We also show that our method
is easy to implement with existing multi-agent learning algorithms.

2 Related work

For simple RL problems, like MountainCar or CartPole, the basic exploration
strategies guarantee finding the optimal decision [12,36]. The ε-greedy method
[16,34] uses a probability of ε to randomly select an action for exploration and a
probability of (1− ε) to choose an optimal action. Instead of choosing a random
action with a certain probability, the noise-based methods [36] add random noise
to action or parameter space directly [4,24]. Random exploration is easy to apply,
but it is the least efficient strategy [15,33].

2
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Intrinsic reward strategies are commonly used in hard to explore environments
where the agents barely receive learning signals. The intrinsic reward strategies
provide bonus rewards as learning signals to the agents through other crite-
ria and therefore boost the progress of learning. Some studies [2,23,28] use the
prediction error of different feature spaces to encourage the agents to visit the
uncertain parts of the environment. Variational Information Maximizing Ex-
ploration (VIME) [6,17] encourages the agents to visit the states, minimizing
the uncertainty of the environment dynamics distribution. Count-based meth-
ods such as MBIE [29] and MBIE-EB [30] encourage the agent to discover novel
states using the state and action count.

Computer scientists took some more RL-related inspiration from the field of
psychology [37] by introducing intrinsic rewards in order to encourage cooper-
ative exploration in multi-agent problems. In Jaques et al. [8], the agents are
encouraged to select the action which can influence the behavior of the other
agents the most. The influence is calculated by how much the selected action
can change the distribution over other agents’ next actions. In Wang et al. [35],
the agent is encouraged to visit the states where that influence the transition
distribution of other agents the most. Iqbal et al. [7] use a hierarchical policy
where the top-level agent chooses the best among five intrinsic reward functions,
and the low-level agents follow this bonus to learn.

In the environments with continuous state and action space, some extensions
of the Count-Based method in order to solve the high-dimensional state and
action space problem include [1,20], where they propose using a density model
to generate pseudo-counts and Tang et al. [32], where they use a hash function
to decrease the dimensionality. Instead of the hash function, they also propose a
learned hash model (an autoencoder [9,19]) to extract features from the state and
reduce the dimensionality. Besides autoencoders, a convolutional neural network
that can recognize the pattern of high-resolution images to solve classification
tasks can also be used to extract the features [10].

3 Background

We consider an extension of MDP [31] called Markov Games (MGs) [13] to
model the MARL problems. For an N agent RL problem, MGs are defined by a
set of states S for all agents, sets of actions A1, ..., AN and sets of observations
O1, ..., ON for each agents. The state transition function P (st+1|st, xt) considers
actions from all the agents xt = (at1, ..., a

t
N ) and the state st is the concatenation

of the observations of all the agents st = (ot1, ..., o
t
N ). We consider the cooperative

tasks where all the agents receive the same reward rt = R(st, xt). Agents aim to

maximize the expected reward R =
∑T
t=0(γtrt), where γ controls the effect that

future rewards have on current decisions.

Centralized Critic Algorithm (MADDPG). The centralized critic tech-
nique is used to solve the non-stationarity problem in MARL [5,22]. The prob-
lem is that all individual policies continuously change during training, making it
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impossible to explain the rewards received by each agent with their policies. The
multi-agent deep deterministic policy gradient (MADDPG) [14] algorithm uti-
lizes the information from other agents when training the action-value function
(centralized critic) but only uses the local information when choosing actions
(decentralized actor). Since each agent knows the information of other agents
with a centralized critic, it can explain the changes of rewards caused by other
agents. Specifically, each agent i has its own centralized action-value function
Qi(st, xt|θQi) which considers the states and actions from all the agents and
aims to minimize the loss function:

L(θQi) = Est,xt,rt,st+1 [(Qi(st, xt|θQi)− yt)2], (1)

where

yt = rt + γQ̄i(st+1, µ̄1(ot+1
1 ), ..., µ̄N (ot+1

N )). (2)

The Q̄µi is a copy of Qµi that slowly updates towards the critic. Each agent has
its own actor µi(oi), which only considers its local observations oi. The gradient
of the policies is given as:

5θµi J(θµi) = Es∼pµ,x∼µ[5aiQi(s, a1, ..., ai, ..., aN )|ai=µi(oi) 5θµi µi(oi)]. (3)

Count-Based Exploration. The MADDPG method adds random action noise
to achieve exploration. When an environment has a sparse reward setting, ran-
dom exploration is the least efficient strategy and may cause the agents to re-
peatedly explore areas they have been before.

Instead of requiring the agents to complete a task, intrinsic reward methods
give a bonus to the agents based on other criteria, such as visiting new states
or gathering effective information. When training the policy, a new reward r′t is
used to update the action-value function. It includes an extrinsic reward rt from
the environment and an intrinsic reward r+t [36]:

r′t = rt + βr+t (4)

where β is the bonus coefficient that balances exploration and exploitation. The
Count-Based exploration strategy uses the state-action count to encourage the
agent to visit new state-action. At the time t, the bonus r+t equals the inverse
square root count of the state-action pairs:

r+t (st, xt) =
1√

n(st, xt)
(5)

where n(st, xt) is the number of times this state-action pair has occurred before.
With the inverse count bonus, the agent is encouraged to visit the less-visited
states. The count is stored in a tabular C.

4
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4 Method

4.1 Multi-Agent Count-Based

The simplest way to adapt Count-Based to the multi-agent domain is assigning
each agent i its own count table Ci that uses its local information n(oi, ai) for
counting. However, the agent may only focus on individual exploration by using
the local information and neglect the search for different ways of cooperation
with its teammates.

Inspired by the centralized training method, we propose a Multi-Agent Count-
Based (MACB) strategy, which takes the joint observations and actions of all
the agents n(o1, ..., oN , a1, ..., aN ) for counting and all the agents share a count
table C. The joint observations unify all agents information in one central place,
allowing cooperation by simultaneously exploring the environment. Sharing a
count table can keep the exploration progress of all agents consistent, which
helps them achieve the same learning process with the same amount of training.

However, if the environment is with continuous state and action space, all the
joint observations and actions will only appear one time. The Count-Based
method becomes meaningless if we cannot tell which joint is less visited. This
further causes higher storage memory and searching time problems with the
count table.

4.2 SimHash Function

Learning from [32], we utilize the SimHash [3] function to discretize a concate-
nated state-action pair s||x into a k length hash code in the form of {−1, 0, 1}k,
and use the hash code for counting. The main idea is to map similar state-action
pairs into the same hash code. The SimHash function φ(s||x) discretizes the
state-action by the angular distance:

φ(s||x) = sgn(A · s||x) ∈ {−1, 0, 1}k, (6)

whereA is a k×D matrix with i.i.d. entries sampled from a Gaussian distribution,
where D is the size of the state-action s||x and k is the length of the hash code
which controls the granularity. To demonstrate how the SimHash function maps
similar states into the same code, we randomly draw 2000 points in range (−1, 1)
and show the grouping results based on their position with k = 8, 16, 32. Figure
2 shows how the SimHash function groups 2-dimensional points angularly. With
a larger k, the hash code is longer, and fewer state-action pairs map to the same
code. If the hash code is too short, useful information can be lost, which can
affect the learning process negatively. Therefore, a suitable k needs to be chosen
for optimal results.

After decreasing the scale of state-action pairs using the SimHash function, we
can use the corresponding hash code in the MACB strategy. The intrinsic reward

5
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(a) 2000 points (b) k = 8 (c) k = 16 (d) k = 32

Fig. 2: Using a SimHash function to group 2000 points with k = 8, 16, 32. Points
mapped to the same hash code are grouped in the same color.

is calculated by:

r+t (st, xt) =
1√

n(φ(st||xt))
(7)

The pseudo-code of MACB with the SimHash function is shown in Algorithm
1. We update the count of a joint state-action pair in table C after collecting
a transition and calculate the new reward after sampling a random transition.
The MACB strategy may fail if we update the count after sampling a transition
because this transition can be sampled multiple times during training, which will
cause the count to increase too quickly, and the intrinsic bonus will vanish after
the first few episodes. In addition, the intrinsic reward should not be included
in the replay buffer because identical transitions in the replay buffer will have
different rewards, leading to inaccuracies as earlier transitions will not have the
corresponding rewards for the current situation.

Algorithm 1: Multi-Agent Count-based (MACB)

Initialize multi-agent learning algorithm (e.g. MADDPG)
Initialize an empty hash tables C where the new key initialize with value 0
Initialize hyper-parameters β for trade-off and k for hash code granularity
Initialize matrix A ∈ IRk×D with i.i.d. entries sample from a normal distribution
for episode = 1 to M do

for t = 0 to T do
Collect transition (st, xt, rt, st+1) and store in the replay buffers
Compute hash code using SimHash function
φ(st||xt) = sgn(A · st||xt) ∈ {−1, 1}k

Update the count in the table C, n(φ(st||xt)) = n(φ(st||xt)) + 1
for agent i = 1 to N do

Sample a minibatch of transitions (sj , xj , rj , sj+1) from replay buffers
Compute hash code of each state-action pair φ(sj ||xj)
Calculate the new reward r′j = rj + βr+j where r+j = 1√

n(φ(sj ||xj))
Update critic and actor using the new reward r′j

end

end

end

6
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5 Experiments

We evaluate MACB in 2 different cooperative multi-agent tasks, 2-Agent Nav-
igation and Communicative Navigation [18], as shown in Figure 1. Both of the
environments are 2-dimensional with a continuous state and action space. 2-
Agent Navigation is fully observable, which means that the agent can see all
relevant information that it needs to make a decision. Communicative Naviga-
tion is a partially observed environment, where only the speaker knows which
landmark is the target, and the listener has to decipher it based on the speaker’s
signal.

In both tasks, we set 20 timesteps for each episode. After an episode of training,
we run ten more episodes without random action noise for evaluation. All the re-
sults are smoothed and averaged over three random seeds with a 75% confidence
interval. Our code can be found in Github 1 and we include the hyper-parameters
for the learning algorithm in Appendix A.

5.1 Performance in the fully observed environment

Figure 3a shows the average success rate of MADDPG with and without MACB
on the partially observed 2-Agent Navigation task. Without the help of MACB,
MADDPG learns gradually over episodes and fully grasps the problem at around
4×104 episodes. All 3 MACB variants accelerate learning and reach success rate
convergence earlier (2 at 2 × 104 and 1 at 3 × 104 episodes). However, if we
continue training after convergence, the success rate gradually decreases, which
can be addressed by using Early Stopping.

(a) Success rate (b) Number of collisions

Fig. 3: (a) The success rate in the 2-Agent Navigation problem with and without
MACB exploration. (b) The number of collisions of DDPG and MADDPG with
and without the MACB method. The MACB method can promote the learning
process and decrease the number of collisions.

Since the environment is already fully observable, the performance of local
[MACB(oi, ai)] vs global [MACB(s, x)] information does not differ much. More-
over, contrary to [32], state-action pair counting improves performance in our

1 https://github.com/JianingWang99/CentralizedCountBased
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experiments. The probable reason for this difference is that [32] applied it in a
single-agent environment.

We compare the accumulated number of collisions between DDPG and MAD-
DPG with and without MACB in Figure 3b. According to [14], the MADDPG
agents only have half of the number of collisions than DDPG agents, but our
result shows that the number of collisions of the MADDPG is more than that of
DDPG. However, after applying the MACB strategies, the accumulated number
of collisions vastly decreases. These results indicate that the MACB exploration
can help the agents find the optimal cooperation strategies within fewer episodes,
and in turn, the total number of collisions decreases.

5.2 Performance in the partially observed environment

Fig. 4: The success rate of MADDPG
and MACB strategies in the Commu-
nicative Navigation with sparse and dis-
tance reward settings.

Figure 4 shows the success rate of
MACB strategies in the partially ob-
served environment with 2 different
reward settings. With sparse rewards,
the MADDPG agents learn slowly
and only surpasses a 40% success rate
after 4 × 104 episodes of training.
While with the help of MACB(oi, ai)
the success rate increases to around
70% at 4 × 104 episodes, the agents
with MACB(s, x) can reach 100% suc-
cess rate with only 1.5×104 episodes.
Both MACB strategies have the same
β (0.8) and k (512). This underlines
the positive effect of centralization in
partially observed environments.

In the sparse reward setting, the agent requires more time before receiving a
steady learning signal. Distance rewards seem to mitigate this and enabling
instantaneous learning. We can see that the MACB method can reduce the
number of episodes that the agents require to receive learning signals. And once
the agent starts learning, the success rate increases faster than the agent in the
dense reward environment.

5.3 Trade-off between exploration and exploitation

Table 1 concludes the average success rate and the count-1 percentage (sr, c-1)
after 4 × 104 episodes of training with different combinations of β and k. The
Count-1 percentage reflects how many state-action pairs only appear one time in
the count table. We evaluate using the Communicative Navigation environment.

Without the help of MACB, the MADDPG agents reach a 47% success rate.
With the help of MACB, most of the time, the success rate is higher than 47%
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with different hyper-parameters. When k is 32, the success rate just increases
a little with different β values. The results indicate that a hash code will lose
important and relevant information if k is too small, making it slower to learn
the task. We also see that the count-1 percentage increases as k , and when k
is 512, the count-1 percentage converges to 100%, and the success rates surpass
75% in most of the cases.

When tuning k, we can increase the value of k until its count-1 percentage
converges at 100%. When k is too big, the hash function may lose its meaning
and the search time and storage memory becomes high. With a larger value of
k, the agents need to explore more state-action pairs and require a larger β. In
addition, we control β smaller than 1 because we do not want the exploration
bonus to overwhelm the extrinsic reward, as it would lead to the agents only
exploring and never exploiting.

Table 1: The table concludes the success rate (sr) and count-1 percentage (c-1)
of the MACB with MADDPG in the Communicative Navigation with different
ratios of exploration (β) and length of hash code (k).

β 0.0 0.05 0.2 0.4 0.8
k sr, c-1 sr, c-1 sr, c-1 sr, c-1 sr, c-1

- 47% , - - - - -
32 - 59%, 67% 60%, 68% 56%, 71% 53%, 74%
64 - 72%, 91% 60%, 91% 34%,91% 72%, 94%
256 - 25%, 99% 82%, 99% 43%,99% 81%, 99%
512 - 75%,100% 48%,100% 75%,100% 100%,100%

6 Conclusion

Our work has succeeded in improving the exploration in multi-agent environ-
ments with a sparse reward setting, specifically: 2-Agent Navigation and Com-
municative Navigation (see Figure 1). By centralizing the count table of our
Count-Based method, we have improved cooperation between agents. Moreover,
we have successfully reduced the high-dimensionality of the continuous environ-
ment without losing training-relevant information by applying SimHash. After
tuning its two parameters β and k, we were able to accelerate learning dra-
matically. For future work, there are two interesting paths to pursue. First, it
remains to be seen what other multi-agent tasks our extensions work well on and
how they perform in settings with more than just two agents. Second, solving
the same task solely from an image input. SimHash requires knowledge about
the entities’ position, so an auto-encoder extracting them would be required.
Alternatively, one could utilize a density model to predict the pseudo-counts of
state-action pairs instead of using a table to record the counts directly.
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A Appendix

A.1 Training Details

The networks for actors and critics are with two hidden layers with the size of
400 and 300. The activation function for both actor and critic is ReLU. After
collecting 100 transitions, we begin updating the network parameters at each
time step. An episode consists of 20 time steps. After an episode of training, we
evaluate the algorithms with 10 more episodes without exploration action noises.
All the results are averaged over 3 random seeds. The hyper-parameters used in
the experiments are summarized in Table 2.

Table 2: Hyper-parameters used in experiments
Hyper-parameter Value

Buffer size 106

Batch size 100
Time-step per Episode 20

Learning rate for optimizer 0.001
γ 0.99
τ 0.005
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Regular Decision Processes for Grid Worlds

Nicky Lenaers and Martijn van Otterlo

Open University, The Netherlands

Abstract. Markov decision processes are typically used for sequential
decision making under uncertainty. For many aspects however, ranging
from constrained or safe specifications to various kinds of temporal (non-
Markovian) dependencies in task and reward structures, extensions are
needed. To that end, in recent years interest has grown into combina-
tions of reinforcement learning and temporal logic, that is, combinations
of flexible behavior learning methods with robust verification and guar-
antees. In this paper we describe an experimental investigation of the
recently introduced regular decision processes that support both non-
Markovian reward functions as well as transition functions. In particu-
lar, we provide a tool chain for regular decision processes, algorithmic
extensions relating to online, incremental learning, an empirical evalua-
tion of model-free and model-based solution algorithms, and applications
in regular, but non-Markovian, grid worlds.

Keywords: sequential decisions · safe reinforcement learning · non-
Markovian dynamics · regular decision process · linear temporal logic

1 Introduction

Sequential decision making under uncertainty, often simply denoted by its core
algorithmic subfield reinforcement learning (RL) [36, 39, 34], has been showing a
huge amount of progress the last decades. Among the recent breakthroughs is the
progression of DeepMind’s RL methods solving the board game Go [32], chess,
Atari computer games, the real-time strategy game StarCraft II, and lately chip
design [26]. The algorithms employ combinations of (Monte Carlo) planning and
value function approximation using deep neural networks.

Underlying typical RL systems is the Markov decision process (MDP) [30]
in which states carry all necessary information to choose (optimal) actions. The
Markov property dictates that given the present, the future is independent of the
past. To scale to more complex problems, one can exploit structure in the space
of state(-action) spaces, or policies or value functions, to utilize abstractions
and approximations, for example as value function approximation, state space
abstractions [37], and hierarchical decompositions, cf. [36]. Many current deep
RL algorithms too assume the environment behaves as an MDP [38].

To scale to larger problems, the Markov property is no longer adequate, and
one may require dependence on a history of events and observations. For exam-
ple, consider a robotic waiter working in a restaurant. It needs to deliver food and
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beverages to tables, but only after it has been requested by guests, and at the
end the guests need to pay the price of the items delivered earlier. However, keep-
ing a history of every possible event that ever occurred soon becomes practically
infeasible. One well-known class of non-Markov MDP extensions is the partially
observable MDP [33] in which the current state can be represented as a prob-
ability distribution over (latent) state features, denoted a belief state. Despite
the existence of effective POMDP algorithms, many in robotics domains, the
general class of POMDPs is computationally much more complex than MDPs,
it is not easy to decide what the belief state should include exactly, and how
much history should be included, and updating and interpreting the belief states
is non-trivial.

A prominent RL direction [23] is to model dependence on the arbitrary past
explicitly resulting in non-Markovian variants of MDPs. Inspired by seminal work
[3] the idea is to utilize modern logical languages such as linear temporal logic [29]
to represent goals and reward functions over past traces, and to employ formal
computer science techniques (e.g. automata, verification and model-checking)
in decision making. A core idea here is to compile a temporal specification of a
reward function into an automaton that monitors the fulfillment of the temporal
formula. Monitors allow for compiling the original non-Markov problem back into
the MDP framework such that all existing algorithms, including deep RL, can be
employed. This fruitful marriage of RL and formal verification combines flexible
behavior learning algorithms with formal performance guarantees.

One motivation for employing temporal logic in RL comes from the ability
to elegantly specify complex reward structures as in the waiter example, where
earnings depend on an ordered series of events in the history. Another, more
general, motivation is the need to constrain RL behaviors using (declarative)
knowledge about which behaviors are desired or considered safe [15], for exam-
ple to teach an autonomous car how to drive while still obeying traffic rules.
Transparent safety of learned behaviors is often part of a general desire for AI
systems to behave responsibly and explainable [28, 24, 19].

In this paper we empirically investigate algorithmic variations in one of the
most recently introduced models, regular decision processes (RDP) [6], in which
reward functions and transition functions can be specified using temporal logic.
We employ RDPs specifically for grid worlds, which are archetypical problem
scenarios in RL and allow for focused experimentation with new representations
and algorithms. More specifically, our contributions are i) a novel tool chain
implementing RDPs, utilizing exisiting algorithms and tools for RL and model
checking, ii) an empirical investigation of the recently introduced RDPs in grid
worlds, iii) algorithmic RL extensions to learn RDP behaviors based on Monte
Carlo value estimation and incremental (online) compilation of RDPs, and iv)
initial steps towards an (empirical) investigation of the trade-offs between tem-
poral logical specifications and the complexity of learning. The paper is organized
as follows: we first provide all necessary background in the next section, after
which we discuss our approach in Section 3, then we continue with an extensive
experimental evaluation in Section 4 and we conclude in Section 5.
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2 Background

Here we will formalize MDPs and basic solution algorithms, after which we
introduce non-Markov reward functions and their corresponding temporal logic
formalizations. Furthermore we introduce the general compilation of logical spec-
ifications into automata functioning as monitors that can be combined with the
original MDP into extended MDPs, which can be solved using off-the-shelf so-
lution methods. In addition, we describe automata-based shaping techniques to
deal with the resulting sparse MDPs. Last we introduce RDPs, which support
non-Markovian aspects in both reward and transition functions.

2.1 Markov Decision Processes

An MDP M is a tuple M = 〈S,A, T,R〉, where S is the set of states, A the set
of actions, T : S × A × S → [0, 1] the transition function yielding a transition
probability and R : S×A×S → R the real-valued reward function. Actions only
applicable in state s are denoted a ∈ A(S). A policy maps to each state s ∈ S
an action a ∈ A and is denoted π. Additionally, a discount factor γ ∈ [0, 1] is
used to discount rewards obtained in the future.

As said, MDPs adhere to the Markov Property : given the present (st), the
future (st+1) is independent on the past (st−1). In other words, everything that
is needed to learn from the past is embedded in the present state st. The Markov
Property holds for all states s ∈ S and is formally expressed as:

p(st+1|st) = p(st+1|s1, s2, . . . , st)

A labelling function L : S → 2P , where P is a finite set of atomic propositions
and S the set of states enables a state representation using features.

Solving an MDP comprises computing an optimal policy. A policy is opti-
mal iff it maximizes the expected discounted sum of rewards for every state
s ∈ S. Methods for solving decision making problems are generally divided into
model-based and model-free methods [34]. Model-based methods, generally called
dynamic programming (DP), can employ the full model (T and R) to plan op-
timal sequences of actions. Model-free methods, generally called reinforcement
learning (RL), do not have knowledge of the model and require sampling, i.e.
trial-and-error learning and use that experience to find optimal policies.

Dynamic Programming (DP) methods such as value and policy iteration find
optimal policies typically by employing a value function that expresses for each
state how good is it for the agent to be in that particular state, and it represents
the (expected) discounted future reward that can be obtained from that state,
by employing a particular policy. The equation used to calculate a state value is
known as the Bellman Equation, which formalizes how a state’s value, denoted
υ(s), is evaluated in terms of expected returns, expressing a relationship between
the value of a state and the values of its successor states. DP algorithms use it
iteratively to update the value of all states until convergence to the optimal value
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function υ∗(s) using the following Bellman Optimality Equation:

υ∗(s) = max
a∈A

∑

s′∈S
T (s′|s, a) [R(s, a, s′) + γ υ∗(s′)]

An optimal action a for s is computed using υ∗(s), T and R.
Where DP methods are concerned with computing a value function, RL tries

to learn value functions using returns obtained from interaction with the MDP.
In order to find a policy in absence of a model, one needs the state-action value
for each action a ∈ A in state s ∈ S, denoted q(s, a), in order to determine
the best policy. A straightforward extension of the previous update rule results

in q∗(s, a) =
∑
s′∈S T (s′|s, a)

[
R(s, a, s′) + γ max

a′∈A
q∗(s′, a′)

]
. One-step RL algo-

rithms employ it to update action-values after each step in the environment and
select their actions based on π∗(s) = arg maxa q(s, a).

In addition to bootstrapping methods above, where values of states (and ac-
tions) are computed using other values, one can employ more unbiased estimation
methods for model-free RL such as Monte Carlo estimation (MC) in which a
value is estimated based on the average return of full sample traces in the MDP,
cf. [34]. In Section 3 we employ MC as our model-free RL algorithm for RDPs.

2.2 Non-Markovian Decision Processes

If rewards depend on more than just the current state, we end up with Non-
Markovian Reward Decision Processes (NMRDPs) [3], a subset of Non-Markovian
Decision Processes (NMDPs). Temporal logic can be used to specify the condi-
tions under which reward is obtained. As with MDPs, the states of an NMRDP
can be enhanced by labelling function L : S → 2P and propositions P , where
each state s ∈ S is a valuation over P , thus s ∈ 2P .

Formally, an NMRDP is denoted as the tuple M = 〈S,A, T, R̄〉, where S,
A and T are as in an MDP, and R̄ is defined as R̄ : (S × A)∗ → R. In
words, the reward is specified as a real-valued function over finite state-action
sequences, or traces, where a trace captures the history of states and is denoted
h = 〈s0, . . . , sk〉. Because the reward is now dependent on the full history, it no
longer fits to define state or state-action values as before. Instead, a temporally
extended reward function for a given trace h and reward formulae ϕ is [4]:

R̄(h) =
∑

1 ≤ i ≤ n : h |= ϕi

ri (1)

where the set of pairs {(ϕi, ri)ni=1} is assumed to be specified for R̄. That is,
an agent receives reward ri at state s ∈ S of trace h that satisfies temporal
formula ϕi. The value of a trace h is in turn defined as the accumulation of
rewards obtained during trace traversal, possibly discounted by discount factor
γ [4]. The value of such a trace can now formally be defined as follows:

υ(h) =

|h|∑

k=1

γk−1 R̄(〈h(1), h(2), . . . , h(k)〉)
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where discount factor γ ∈ [0, 1] as usual and h(k) denotes the pair (sk−1, ak).
Because NMRDPs define the value of traces instead of individual states, a policy
no longer maps states to actions as before. Instead, a policy for an NMRDP is
a mapping from histories to actions. The value of a policy in terms of expected
return thus becomes the expected discounted sum of rewards over a possibly
infinite amount of traces. The distribution over traces is defined by the initial
state s0, the transition function T and policy π. The expected value of infinite
traces can formally be defined as υπ(s) = Eh ∼M,π,s0υ(h).

2.3 Temporal Logic, Automata and Product MDPs

Temporal logic to express non-Markovian aspects has a history [3, 29] containing,
e.g., Linear Temporal Logic [29] (LTL). It uses the standard Boolean connectives
of propositional logic, i.e. ∧, ∨ and ¬, with the addition of temporal connectives
G (always), F (eventually), X (next) and U (until). More recent variations re-
strict to finite traces: Linear Temporal Logic over Finite Traces, denoted LTLf ,
and Linear Dynamic Logic over Finite Traces which allows for regular expressiv-
ity [12]. Using LDLf , goals can be as expressive as regular expressions while at
the same time providing a more attractive specification syntax. Formally, LDLf

formulae φ can be built using an atomic property tt for the logical true, a propo-
sitional formula ϕ and a path expression ρ, which is a regular expression over
propositional formulae φ. In addition to regular expression constructs, ρ uses a
test construct ϕ?, indicating to only continue evaluation when ϕ evaluates to
true. The LDLf formalism, as presented by [12], is expressed in Equations (2)
and (3).

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | 〈%〉ϕ (2)

% ::= φ | ϕ? | %1 + %2 | %1; %2 | %∗ (3)

Intuitively, one may interpret LDLf formula 〈%〉ϕ as stating that, from the cur-
rent step in the trace, there exists at least one (cf. ∃) execution path that
satisfies regular expression % such that the last step in the trace satisfies ϕ.
Conversely, [%]ϕ states that, from the current step in the trace, all (cf. ∀)
execution paths satisfying regular expression % are such that the last step in
that execution path satisfies ϕ. For example, to formalize the property of a
robotic waiter to always serve guests after they have placed an order, the for-
mula [true∗](order → 〈true∗; served〉)end can be used.

Temporal formulae specified using LDLf can be compiled into Deterministic
Finite Automata (DFA) [4]. Formally, a DFA for formula ϕ is denoted Aϕ =
〈2P , Q, δ, F, q0〉, where 2P is the input alphabet containing all truth assignments
to propositions in P , Q is the state space, δ the transition function, F the set of
accepting states and q0 the initial state.

Core properties that can be expressed in LDLf are safety and liveness [12].
A safety property is used to indicate that something bad should never happen,
or something good always holds, and can be expressed as [true∗]〈c∗〉end , where c
indicates the good condition and the asterisk (*) indicates c holds at every step
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(a) Safety (b) Liveness

h1

h2

1 1

2

2

(c) Grid World

Fig. 1: (left) Automata for LDLf formulae: a) [true∗]〈c∗〉end , b)
〈true∗; c; true∗〉end (right) A grid world modeled as an RDP

up until and including the last step of the trace. That is, until the end of the trace,
c holds. Conversely, a liveness property indicates that some condition should be
met before the end of the trace and can be expressed as 〈true∗; c; true∗〉end ,
where c is the condition to be met. In words, eventually before the end of the
trace, c holds. Figures 1a and 1b visualize this.
Solving an NMRDP M = 〈S,A, T, {(ϕi, ri)mi=1}〉, with temporal formulae ϕi and
ri the corresponding rewards, is tackled by formulating the extended MDP M ′

as M ′ = 〈S′, A, T ′, R′〉 that is equivalent to M in the sense that states can be
mapped in such a way that the mapping yields identical transition probabilities
for T and T ′. Each formula ϕi is compiled into an equivalent automaton, as in
Figures 1a and 1b, and the cross-product between the original NMRDP M and
these automata is computed, resulting in the extended MDP M ′. Some straight-
forward choices should still be made about discounting to prevent infinite reward
exploitation and whether rewards belonging to a formula ϕ can be obtained only
once or multiple times. We omit formal details of this standard construction (but
cf. [4, 21]) and refer here to an example later in this paper: Figure 5 shows a grid
world MDP where a red square needs to be avoided, something which is spec-
ified using the LDLf formula ϕ ≡ [true∗]〈(¬xis1 ∧ ¬yis2)∗〉end , and where the
extended MDP depicted in Figure 9 is the result of the cross product between
the automaton representing ϕ, the grid world MDP, and the automaton repre-
senting an additional formula expressing a reward of +50 when reaching the top
right corner. Note that the extended model is again an MDP where typical RL
and DP algorithms can be employed.

2.4 Regular Decision Processes: Non-Markovian Dynamics

The concept of an NMRDP can be extended to a decision process in which
not only the reward function, but the transition function too can depend on
the arbitrary past, and where both are represented using a logic like LDLf As
described in Section 2.3, these, in turn, can be compiled into automata, which
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allows for rewards and transitions to be monitored, and compiled into product
models yielding an MDP. Such non-Markovian transitions were introduced in
regular decision processes (RDP) [6], which is a fully observable, probabilistic,
non-Markovian, sequential decision making model, where successor states and
rewards can be stochastic functions of the entire history. Just like before, RDP
states are endowed with a labeling function over a set of predicates.

An RDP M is defined as the tuple M = 〈P, S,A,TrL, RL, s0〉, where P is
the set of propositions that induces state-space S with initial state s0, A the
set of actions, TrL the transition function and RL the reward function, where
both TrL and RL are now non-Markovian. Transition function TrL is defined
by a finite set T of quadruples of the form (ϕ, a, P ′, π(P ′)), where ϕ is an LDLf

formula over P , a ∈ A an action, P ′ ⊆ P the set of propositions p ∈ P that are
affected by a when ϕ holds and π(P ′) the distribution over proposition in P ′

that describe the post-action distribution. The reward function RL is specified
using a finite set R of pairs (ϕ, r), where ϕ is an LDLf formula over propositions
in P and r ∈ R a real-valued reward. It is assumed that for the quadruples in
T , the value of variables not in P ′ are not affected by action a [6]. If the set
{(ϕi, a, P ′i , πi(P ′)) | i ∈ Ia} defines all quadruples for a, then all formulae ϕi
must be mutually exclusive such that ϕi ∧ ϕj is inconsistent for i 6= j. In other
words, no two formulae ϕi and ϕj can hold at once if both apply to action a
and ϕi and ϕj are not identical. In addition, let s′|P ′ denote the restriction of
s′ to properties in P ′. Then, TrL is defined as TrL((s0, . . . , sk), a, s′) = π(s′|P ′)
if quadruple (ϕ, a, P ′, π(P ′)) exists such that s0, . . . , sk |= ϕ and sk and s′ agree
on all variables in P \P ′. That is, given trace s0, . . . , sk, action a and quadruple
(ϕ, a, P ′, π(P ′)) with formula ϕ that is satisfied by s0, . . . , sk, s′ is a possible
next state if it assigns the same value to all propositions not in P ′. If this is the
case, then the transition probability equals the probability π assigns to s′|P ′ . In
all other cases, TrL((s0, . . . , sk), a, s′) = 0.

As an illustration, consider Figure 1c, outlining a 3 × 3 grid world with the
upper-left state s11 being the initial state and the upper-right state s31 being a
terminal state. Let us define a transition that intuitively states that, when an
agent goes east in the bottom-left state s13 and ends up in the bottom-center
state s23, immediately followed by going east again in s23, the probability of end-
ing up in the bottom-right state s33 is set to 0.1, denoted π(s33|{xis2, xis3}) =
0.1. Otherwise, Tr(s23, e, s33) = 1. In other words, the transition from s23 to
s33 depends on the transition from s13 to s23. In addition, the propositions af-
fected by this transition are defined by P ′ such that P ′ ⊆ P = {xis2, xis3}.
All other propositions are not affected by said transition. Both transitions can
be captured by LDLf formula ϕ1 and ϕ2 as ϕ1 = 〈true∗;¬xis1 ∨ ¬yis3;xis2 ∧
yis3〉end and ϕ2 = 〈true∗;xis1 ∧ yis3;xis2 ∧ yis3〉end . Given ϕ1 and ϕ2, we
can define a quadruple for e that uses ϕ1 or ϕ2 respectively as (ϕ1, {xis3 ∧
yis3}, 1) and (ϕ2, e, {xis3 ∧ yis3}, 0.1). For brevity, we assume these are the
only quadruples for e, conforming to exhaustiveness and mutual exclusion [6].
Then, let us define two traces h1 and h2 that each reach s33 differently as
h1 = 〈s11, s12, s13, s23, s33〉 and h2 = 〈s11, s12, s22, s23, s33〉. Then, using the
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8 N. Lenaers, M. van Otterlo

aforementioned quadruple for e, the affected propositions P ′ and the definition
of TrL, i.e. TrL((s0, . . . , sk), a, s′) = π(s′|P ′), the transition functions on h1 and
h2 from s23 to s33 can be calculated as TrL(h1, e, s33) = π(s33|{xis2, xis3}) = 1
and TrL(h2, e, s33) = π(s33|{xis2, xis3}) = 0.1.

Solving an RDP involves the well known construction of an extended MDP as
a product of all automata monitoring the satisfaction of (transition and reward)
LDLf formulae combined with the initial RDP state space [4, 12], resulting in an
MDP that can again be solved by off-the-shelf algorithms. Note that, because
of the combinatorial nature of this construction, the extended MDP does not
necessarily scale well. The equivalence between the RDP and the constructed
MDP entails that optimal policies found in the constructed MDP can be mapped
back to the RDP, thus yielding optimal policies for the initial RDP.

The product models employed in non-Markovian decision process solutions
grow quickly with the number of formulas, see the example in Section 2.3. The
result of non-Markovian dependencies is that paths to receiving rewards can
become long, and complicate typical bootstrapping RL methods and exploration.
One general solution for MDPs is reward shaping [27] (RS): giving intermediate
rewards to speed up learning, with the restriction that the extra rewards do not
alter the optimal policy. So-called potential-based RS replaces the original reward
function R : S × A × S → R by an alternative reward function R′(s, a, s′) +
F (s, a, s′) → R, where F (s, a, s′) is a shaping reward function. In turn, this
function can be applied to potential-based RS of the form F (s, a, s′)→ γΦ(s′)−
Φ(s) for some Φ : S → R. The way in which RS is applied inherently depends on
the representation of the reward function. For NMRDPs an opportunity arises
to utilize the structure of the DFA representing a reward function [10]. Every
step in the extended MDP can be given a reward proportional to the distance in
that DFA to an accepting state (i.e. when the original reward would be given).

2.5 Related Work

The typical MDP context is well studied and there is an abundance of algorithms
and representations [36, 39, 30, 34]. Endowing MDPs with non-Markovian goal
and reward functions has a history with seminal work on model-based settings
[3, 35] and more recently several subclasses are considered (e.g. probabilistic
vs. deterministic) [4, 5]. The most recent addition to the field are the general
regular decision processes [6] we employ here. One aim of all these methods
is to scale MDPs to more complex problems. However, another main reason
to utilize temporal logics for reward specifications is that it opens up many
new possibilities for reward function engineering, resulting in more intuitive and
technically useful ways to specify tasks and goals. A more general view, based
on automata as transducers [9] improves on the technical part by merging the
non-Markovian parts into a single structure.

The use of temporal logics [29, 12] in model-free RL settings is a recent trend
[23], and comes with additional requirements since the model of the environ-
ment is unknown. Many ideas here come from constrained or safe [15] forms of
RL, where the policy space is restricted either before learning, or during action
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selection, based on a notion what are (un)desired actions. Safety issues have
obvious connections with model checking [16] and some recent RL approaches
instantiate that connection for safe RL [2, 13]. Very recently, several approaches
have appeared combining formal temporal logic with RL [22, 4, 10, 7, 11, 9]. Some
focus more on the representational devices such as reward machines [7], some
study additional mechanisms such as shaping to aid in the more complex learn-
ing process [27], and others introduce variants such as geometric LTL to capture
a different semantics of goals [25]. Overall, variations exist in different logics,
different underlying automata (e.g. DFA vs Mealy) and inference algorithms,
and different RL algorithms to solve the resulting extended MDPs.

The meaning of ”model-free” has variations here, since one can can assume
that nothing is known, or that at least the reward formula is (which is quite
believable when we want an agent to adhere to certain rules or restrictions). In
the latter case one can use the monitor automata states as extra state informa-
tion and apply any form of deep function approximation [18]. In general, reward
and transition functions may need to be learned from traces for fully general
RL systems. In the temporal logic settings we describe, this typically amounts
to automaton induction algorithms that can work on examples of traces (posi-
tive or negative) in deterministic or even probabilistic settings, which contains
notoriously hard settings, but some promising work is emerging [8, 20, 14]. In
the context of RDPs, initial work with a Mealy machine representation shows
promise [1]. In addition, temporal logic allows for declarative and intuitive mod-
els, hence in terms of explainability in RL many possibilities are left, and only
some work is just emerging [19].

3 Approach and Software Design

In this paper we develop a new tool chain for the recently introduced RDPs and
experiment with algorithmic variations, specifically applied to grid worlds (cf.
[21]). Figure 2 graphically shows a simplified high-level overview of how decision
processes, temporal logic and model checking intertwine. Currently no software
tool can conveniently model, visualize and solve all RDPs, which motivates our
particular approach. Secondly, RDPs are introduced very recently and not much
empirical evidence has been gathered so far [1, 10]. Also the familiar grid worlds
in general are underrepresented in the temporal logical RL community despite
their abundance in basic RL research, and despite their ability to quickly show
insight into models. In general we follow the main paths through Figure 2, where
rectangles, diamonds and circles represent formalisms (or models), processes and
artifacts, respectively. On the left we see temporal logics such as LTLf / LDLf

used to define non-Markov decision models, as we have seen in the previous sec-
tions, where we also described how these can be compiled into (extended) MDPs,
which can then be solved by traditional MDP algorithms. Note that NMDPs are
not solely dependent on temporal logic, but require other input such as a state
space definition. In the lower-most flow, temporal formulae can be used to define
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Temp. Logic NMDP

NMRDP

RDP

MDP

RL / DP

Properties

Model
Checking Policy

input compile input

define input output

output
input

LTLf

LDLf

input

output

Fig. 2: Conceptual/Tool chains

system properties that can be verified using model checking 1. Finally, experi-
mental learning algorithms can be combined with formal verification methods
to produce a policy.

Our prototype integrates existing software tools. First, an integration is made
with FLLOAT [6], a tool that allows to construct automata from LTLf and
LDLf formulae. Because the prototype is a TypeScript (TS) web application, and
FLLOAT is built with Python, a small web server is put in place to communicate
with FLLOAT. Communication then occurs by making HTTP requests from the
prototype through a Browser HTTP Layer to the FLLOAT application through
a Server API Layer. In addition, an integration with a browser-based Graphviz
extension called Viz.js2 was made. It allows for visualization of automata within
the prototype. Input to the software prototype is defined in terms of TS variables,
stored in a single TS file an presented during execution at runtime.

3.1 Compilation: from RDP to MDP

A core component in our approach is the conversion of NMDPs to MDPs for
both off-line, i.e. before learning, and on-line, i.e. during learning, use cases.
Intuitively, one can think of the off-line case as a model-based control problem,
where the reward function and transition function are fully known to the agent.
However, in contrast to other work, we compute the extended MDP incremen-
tally. On the other hand, the on-line case can be thought of as a model-free
control problem where the agent has to interact with the environment to learn
an optimal behavior. Also here the algorithm constructs the extended MDP in-
crementally, but now only in the areas of the state-action space that are actually

1 In the current paper there is no room to highlight it, but model-checkers such as
Storm (https://www.stormchecker.org/) can be employed for shaping and shielding
purposes (and more) in this tool chain, cf. [21]).

2 https://github.com/mdaines/viz.js
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Algorithm 1: NMDP to MDP (off-line)

input : NMDP M = 〈S,A, T,R〉 with LDLf reward automata QR
i and LDLf

transition automata QT
j , with Qk ← QR

i ∪QT
j for convenience

output: Extended MDP M ′ = 〈S′, A′, T ′, R′〉
1 t← 0; s′t ← s′0 ← (q1,0, q2,0, . . . , qk,0, s0); A′ ← A; S, T,R← ∅
2 while s′t /∈ S′ do
3 st ← τ(s′t)
4 for a ∈ A(st) do
5 st+1 ← T (L(st), a)
6 for qk,t ∈ Qk,t do
7 qk,t+1 ← transition(qk,t,L(st+1))
8 s′t+1 ← (q1,t+1, q2,t+1, . . . , qk,t+1, st+1)
9 S′ ← S′ ∪ {s′t+1}

10 T ′(s′t, a, s
′
t+1)← T (L(st), a,L(st+1))

11 R′(s′t, a, s
′
t+1)← sum accept(QR

i,t+1)
12 s′t ← s′t+1

13 return M ′

experienced by the agent in the interaction with the environment. In addition,
in this model-free setting it is assumed that the agent has access to only the
states of the automata tracking the formulae, just like in other works (e.g. [18]).
Throughout the algorithms, automata for rewards are indicated by QRi and au-
tomata for transitions are indicated by QTj and their union is denoted Qk.

The compilation of an NMDP can exploit knowledge of the known dynam-
ics/reward model. Algorithm 1 outlines our algorithm, generalized to NMDPs.
It incrementally builds an extended MDP off-line by incorporating all LDLf

automata such that only reachable states are generated. Here, off-line means the
compilation is done before solving the final MDP. The transition function in Al-
gorithm 1 on Line 10 abstracts away the different transition dynamics between
NMRDPs and RDPs by using labelling function L, making it applicable to both
models. Furthermore, the state space generated by Algorithm 1 is minimal be-
cause it only generates states that are reachable, and thus solution algorithms
do not waste time on irrelevant states. The resulting MDP can be solved using
e.g. value iteration, cf. [21].

Because in the model-free setting the reward function and transition dynam-
ics are not known a priori, compilation cannot occur in a similar fashion as
in Algorithm 1. We employ a different, online, incremental approach in Algo-
rithm 2. Similar to the off-line algorithm it incrementally builds the extended
MDP, only here the automata QRi for rewards and automata QTj for transitions
are not known to the agent. Hence, Qk is not defined as input like it is for Algo-
rithm 1. Furthermore, the extended MDP is not fully defined in terms of dynam-
ics of transitions and rewards. This, in turn, requires an environment capable
of handling LDLf automata for rewards and transitions. In addition to Algo-
rithm 2, a step function first gets the current state st from the environment using
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Algorithm 2: NMDP to MDP (on-line)

input : Environment env with n-step limit per episode, exploration factor ε,
discount factor γ and max episodes

output: Policy π
1 st ← s0 ← env.reset(); Q(s, a)← arbitrary() for all s ∈ S, a ∈ A(s);

π ← arbitrary()
2 repeat
3 ep = generate episode(n,A(st), π, ε)
4 T ← |ep|
5 G← 0
6 foreach step of ep, t = T − 1, T − 2, . . . , 0 do
7 G← γG+ rt+1

8 Q(st, at)← G
9 π(st)← arg max

a
(Q(st, a))

10 until max episodes;
11 return π

st ← env.snapshot(). In addition, all automata are retrieved through Qk,t ←
env.get automata states(). Then, for each qk,t ∈ Qk,t, both the original state
and all automata states transition to their subsequent states through st+1 ←
env.transition(st, a) and qk,t+1 ← transition(qi,t,L(st+1)) respectively. Au-
tomata are then updated through env.set automaton state(Qk, qk,t+1) the re-
flect the state transition. Finally, when Qk,t has been iterated over, i.e. all au-
tomata have transitioned, a next state is generated by s′t+1 ← (q1,t+1, q2,t+1, . . . , qk,t+1, st+1),
i.e. the MDP state is extended with each monitor state. In addition, the re-
wards for all automata currently in an accepting state are summed by r ←
sum accept(Qk,t+1 \QTi,t+1). Indeed, the better part of Algorithm 2 aligns with
first-visit MC [34], except that the underlying problem definition is assumed to
be non-Markovian and hence compiled on-line from NMDP to MDP.

Similar to Algorithm 1, Algorithm 2 generate only reachable states and is
therefore minimal. This is due to the transition function of automata being
defined as qk,t+1 ← transition(qi,t,L(st+1)), where a transition cannot occur if
the target state is unreachable. Due to the nature of RL, the implicitly extended
MDP contains only states actually encountered by an agent through interaction
with the environment. Note that, as opposed to Algorithm 1, Algorithm 2 does
not contain all information on the history of states per se. Due to the trial-and-
error nature of MC, some states might remain unobserved after Algorithm 2 has
completed. Therefore, an optimal policy π∗ is only guaranteed in the limit.

4 Experiments

Our experimental evaluation focuses on RDPs for grid worlds, utilizing a model-
free online MC algorithm. Our experimental evaluation focuses on RDPs for
grid worlds, utilizing a model-free online MC algorithm. Overall, the goal is to
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Fig. 3: Experiment 1 - Goals for on-line compilation with RL

empirically assess various aspects of RL for RDPs, with a focus on the relation
between RDP elements and final learning performance in the resulting extended
MDP. For more experiments, (also model-based , value iteration), cf. [21]. In
this section we target four different empirical questions: R1: How does learning
performance relate to goal sparsity/complexity?, R2: How can shaping help for
complex goals?, R3: What are the implications of safety properties on learning
performance?, and R4: What is the relation between learning performance and
non-Markovian dynamics?

4.1 Experiment 1: Goal Sparsity

This experiment aims at relating goal sparsity to the performance fist-visit MC.
Here, goal sparsity describes the accumulated minimum length of traces hi ac-
cepted by LDLf formulae ϕi. The idea is to increase the grid world size, while
keeping reward formulae constant, such that the traces increase in length due to
an increase in the size of the state space. To illustrate this, temporal formulae
encoding liveness properties are used such that the number of steps to satisfy a
formula increases with the grid world size. The minimum length of a trace hi is
measured in terms of the minimum number of states contained in hi for it to be
accepted. The quantitative measurement is defined by the relative frequency of
values within 10% of the maximum value. This range is deemed acceptable for
a solution as it follows from the value used for ε, being ε = 0.1, that generates
exploration noise. Data is gathered over 50 runs, where each run consists of 1000
episodes with a maximum of 50 steps per episode. Furthermore, γ = 1. In order
to consistently increase the goal sparsity when the grid world size is increased,
the agent always starts in state s11 and an episode is terminated when the agent
reaches s13, after which a new episode is initiated until the maximum number
of episodes is reached. Figure 3 outlines three goals, each rewarded +1000, with
Figure 3a being the least sparse where goal state are adjacent, Figure 3b be-
ing somewhat sparse where goal states require the agent to travel through the
center of the grid and Figure 3c being the most sparse where the agent is re-
quired to go reach the far-right state and then go back to its initial state again.
The goals encoded in LDLf as 〈true∗;xis2 ∧ yis3; true∗;xis3 ∧ yis3; true∗〉end ,
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Fig. 4: Rel. freq. within 10% of max. value

〈true∗;xis1∧yis3; true∗;xis2∧yis2; true∗;xis3∧yis3; true∗〉end and 〈true∗;xis3∧
yis3; true∗;xis1 ∧ yis1; true∗〉end respectively.

Figure 4 outlines the results for this experiment. It shows that the latter two
goals quickly become harder to solve in this setting, as there is a steep decline in
optimal behaviour between grid world sizes 3×3 and 4×4. In addition, the graph
shows that for the more sparse goals the chance of finding optimal behaviour
under the conditions outlined for this setting for a grid world of 7× 7 becomes
nil. Thus, the observed data indicates there is a relation between goal sparsity
and the performance of first-visit MC.

4.2 Experiment 2: Reward Shaping

Recall that for Experiment 1, sparser goals quickly become harder to solve.
Therefore, this experiment aims to apply RS to an RDP construction from Sec-
tion 3 so as to identify whether the performance of MC can be improved when
using a potential function from Section 2.4. In addition, Algorithm 2 will be
used for on-line compilation in a model-free setting. A preliminary experiment
showed that for a 5 × 5 grid world, in which 〈true∗;xis1 ∧ yis5; true∗;xis3 ∧
yis3; true∗;xis5 ∧ yis5; true∗〉end is used, an optimal policy is rarely found [21].
Therefore, this experiment outlines the effect of applying a potential function for
RS. For this experiment, a 5× 5 grid world is used, transitions are deterministic
and MC is applied as the RL learning algorithm. The reward for the goal is set
to +1000. Figure 5a outlines a possible optimal trace for the given goal. The
quantitative measurements are defined by the averaged returns per episode and
the size of the extended MDP. A total of 50 runs with each 1000 episodes and
a maximum of 50 steps per episode is used. Parameters are defined as γ = 1
and ε = 0.1. The agent always starts an episode in state s11 and an episode is
terminated when the agent reaches s51, after which a new episode is initiated
until the maximum number of episodes is reaches.

Regular papers BNAIC/BeneLearn 2021

520



Regular Decision Processes for Grid Worlds 15

1 2

(a) Shaping experiment

1 2

(b) Unsafe

1 2

(c) Safe

Fig. 5: (a) Possible optimal trace for reward shaping experiment, (b)-(c) Possible
optimal traces for safety experiment

Figure 6 plots the results for this experiment. From Figure 6a it can be ob-
served that a shaped reward takes somewhat longer to learn, but the averaged
return is significantly higher for the 5× 5 grid world. More specifically, the aver-
aged return for unshaped rewards shows that unshaped rewards are, on average,
not received, as the trend remains just below zero. Finally, Figure 6b outlines
that shaped rewards reach far more states when compared to unshaped rewards.
Given the observation that unshaped rewards are, on average, not received, all
states reachable only after a goal is satisfied are very rarely explored for unshaped
rewards. Hence, the size of the extended MDP is significantly smaller.

As an intuitive evaluation of the observed results, recall the 5×5 grid world as
outlined in Figure 5a. Finding a trace that follows the critical path for the given
goal without a potential function is then inherently hard. Consider, for example,
the trace outlined by Figure 5a. This trace contains 16 consecutive steps, where
the agent may stray from the path at each one of these steps with a probability
ε. Even if the agent reaches the end of the trace in the case of unshaped rewards,
the back-propagation of the reward value may be insignificant when it updates
the state-action value of state s11, as the agent only gets rewarded for the trace
when it finally reaches terminal state s51. In turn, on average, the agent might
only obtain the unshaped reward relatively rarely, leaving most of the states
that account for the latter part of the trace uncharted. Note that, as discussed,
this result is accounted for in Figure 6b. Conversely, a shaped reward encourages
the agent to better follow the critical path, in turn increasing the probability
of satisfying the reward formula by its trace and thus increasing the number of
explored states in the extended MDP generated by Algorithm 2. In general, it
can be observed that shaped rewards make learning perform better, while at the
same time increasing the size of the (encountered) state space and the number
of steps required in optimal traces.

When reward shaping is applied, a significant increase in MC performance
can be observed from Figure 7 for a 5×5 grid world. Where the unshaped reward
decreases rapidly between 3×3 and 4×4 grid world, the shaped reward decreases
significantly less over the course of the increasing grid world sizes.
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(a) avg. return (b) ext. MDP size

Fig. 6: MC performance for unshaped vs. shaped rewards.

Fig. 7: Rel. freq. within 10% of max. value for unshaped and shaped rewards

4.3 Experiment 3: Safety

The goal of this experiment is to empirically measure the effects of safety prop-
erties on the performance of learning. Here, a preemptive shield [2] is applied
such that the agent is provided a list of safe actions upon action selection. More-
over, on-line compilation as outlined in Algorithm 2 is applied. Next, a 3 × 3
grid world is used and modeled as an RDP in which first-visit MC is applied
as an RL learning algorithm. Transitions are deterministic to reduce experiment
complexity. The quantitative measurement is defined by the performance of the
learning algorithm. A total of 50 runs is performed, each of which consists of
1000 episodes and a maximum of 50 steps per episode. Furthermore, γ = 1 and
ε = 0.1. The agent always starts in state s11 and an episode always terminates
when the agent reaches state s31. Goal 〈true∗;xis1 ∧ yis3; true∗〉end is specified
for which the agent is rewarded +50 for reaching state s13, i.e. the bottom-left
state. A step cost of −1 is rewarded with each step the agent takes in the envi-
ronment. An additional safety property [true∗]〈(¬xis1 ∧ ¬yis2)∗〉end is specified
in LDLf where the agent should never visit unsafe state s21. Figure 5 outlines
possible optimal traces for unsafe and safe situations in Figure 5b and Figure 5c
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(a) avg. return (b) ext. MDP size

Fig. 8: MC performance for safety

respectively. Note that terminal states, i.e. the top-right states in both Figures 5b
and 5c, are marked solid black and that unsafe states, i.e. the center-left states
in both Figures 5b and 5c are marked solid red.

First, in order to verify no unsafe condition is met, Figure 9 outlines the
extended MDP for this experiment. Because of a technical index mapping, an
unsafe state would have a label that starts with (1, 2, . . .), corresponding to un-
safe state s12. As can be observed, there is no state s′ ∈ S′ of extended MDP
M ′ for which τ(s′) → s21. In other words, the unsafe state is never encoun-
tered. Therefore, safety property [true∗]〈(¬xis1 ∧ ¬yis2)∗〉end is never violated.
Furthermore, Figure 8 plots the results for this experiment. Let us reconsider
the results from Figure 8a and Figure 8b. It can be observed that, when learn-
ing performance is decreased, the size of the state space has become smaller.
However, the intuition is that, when less states are to be explored, performance
is generally increased. It appears, then, that RL performance is not necessarily
dictated by the size of the state space. To account for what does impact the
decreased learning performance, let us reconsider the experiment setup. Where
state s13 in Figure 5b can be reached from two states, i.e. s12 and s23, the same
state can only be reached from a single state s23 in Figure 5c. This observation
leads to the conjecture that RL performance is related to the accessibility of
states required to satisfy goal formulae. That is, when states have less paths by
which they can be reached, RL performance decreases.

4.4 Experiment 4: Non-Markovian Transitions

This experiment focuses on non-Markovian transition models. Here, on-line com-
pilation using Algorithm 2 will be used in a model-free setting, with first-visit
MC. The quantitative measurements are defined by the averaged returns per
episode, the averaged number of steps per episode and the size of the extended
MDP. The experiment consists of 50 runs, each 1000 episodes with a maximum of
50 steps per episode. Furthermore, γ = 1 and ε = 0.1. The grid world is defined
by a 5×2 rectangle. The agent always starts an episode in state s11 and state s51

is defined as a terminal state. There is a single goal 〈true∗;xis3 ∧ yis1; true∗〉end
rewarded when reaching s41 of +10, with the addition of a step cost encoded in
LDLf valued as −1.
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Fig. 9: Product MDP for safety experiment

The first set of 50 runs uses non-deterministic transitions. That is, in every
state of the grid world the agent has a 0.8 probability of ending up in the next
state and a 0.2 probability of remaining in its current state. For example, when
in s21 and taking action s, there is a 0.8 probability that we end up in s22 and a
0.2 probability to remain in s21. The transition from s31 for action e is defined
by 〈true∗;xis3 ∧ yis1〉end and will be different for the regular transition defined
below. A possible optimal trace is visually displayed in Figure 10a.

The second set of 50 runs uses regular transitions. Now, when the agent
reaches s31, a transition 〈true∗;xis2 ∧ yis1;xis3 ∧ yis1〉end is defined that de-
pends on whether the agent came from state 21 or not. In case the previous
state was s21, the transition of action e in s31 is defined as a 0.1 probability of
ending up in s41 and a 0.9 probability of remaining in s31. Otherwise, the same
transition probabilities used for the non-deterministic transitions apply, i.e. a 0.8
probability of ending up in s41 and a 0.2 probability of remaining in s31. Here,
the transition in s31 is regularly defined and depends on a history of states. A
possible optimal trace for regular transitions is given in Figure 10b.

From Figure 11, we observe that regular non-deterministic transitions, when
compared to non-regular ones, induce a harder problem for a model-free setting,
while the size of the state space is only increased by one additional state that
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1 2

(a) Non-deterministic

1 2

(b) Regular

Fig. 10: Possible optimal traces for transition complexity variations

(a) avg. return (b) ext. MDP size

Fig. 11: MC performance for transition complexity variations

keeps track of whether or not s21 has been visited. In other words, a small
increase in size can evidently generate a significantly harder problem.

5 Conclusions and Future Work

We have introduced a new tool chain to compute with regular decision processes,
and experimented with novel algorithmic variations with the aim to gain insight
in how complexity of temporal logic formulas relates to the complexity of learning
algorithms such as MC RL for the resulting extended MDPs. We have shown that
by increasing the world size for similar built formulas problems get harder (R1)),
but also that reward shaping on the automata representing those formulas can
really help learning, and exploration (R2). The safety experiments (R3) have
shown less states do not necessarily result in easier learning tasks, and the non-
Markov transitions experiments (R4) showed that these only caused a small
increase in state space size, but did complicate learning a lot more.

Our overall conclusions of the experiments point to our main future work
direction. It seems that there are complex relations between i) the complexity
and properties of the temporal formulae defining the non-Markovian aspects, ii)
the resulting size and connection structure of the extended MDP, and iii) the
learning performance of online RL algorithms for the extended MDP. Much more
work is needed to evaluate a temporal specification for a particular problem,
and assess its influence on the complexity of learning the original task in the
presence of the new rule. For MDPs there is much work on measures relating to
e.g. homomorphism and abstraction [36, 37] and work is starting to emerge to
gain more insight in the logical side [31] but their interaction needs study.
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Other future work should focus on representations and applications. For the
first, there is much to be gained by utilizing existing formal methods, for ex-
ample the use of transducers and Mealy machines [9] trading off the size of the
state space with compositional modeling. Equally important is to focus more
on utilizing model checking tools [2, 16]. Application-wise, there are plenty of
opportunities to utilize the methods in this paper, for example to constrain RL
dialogue agents, in medical domains with logically represented medical guidance
and regulations, or to implement coaching strategies in RL coaching agents [17].
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Abstract. Neuromorphic computing is a promising new computational
paradigm that may provide energy-lean solutions to algorithmic chal-
lenges such as graph problems. In particular, the class of distributed al-
gorithms may benefit from translation to spiking neural networks. This
work presents such a translation of a distributed approximation algo-
rithm for the minimum dominating set problem, as described by Kuhn
and Wattenhofer (2005), to a spiking neural network. This translation
shows that neuromorphic architectures can be used to implement dis-
tributed algorithms. Subcomponents of this implementation, such as the
calculation of the minimum or maximum of two numbers and degree of
a node, can be reused as foundational building blocks for other (graph)
algorithms. This work illustrates how leveraging neural properties for the
translation of traditional algorithms relies on novel insights, thereby con-
tributing to a growing body of knowledge on neuromorphic applications
for scientific computing.

Keywords: Neuromorphic Computing, Spiking Neural Network, Dis-
tributed Computing, Minimum Dominating Set, Graph Algorithms

1 Introduction

Neuromorphic Computing is a relatively young field that concerns itself with
emulating the brain and bringing advantages that are inherent to its structure
into computational devices and programs. These advantages include parallel ar-
chitecture, co-location of memory and computation, and high energy efficiency
[14]. Moving away from the traditional von Neumann-architecture is an avenue
from which various areas of research and development could benefit. In partic-
ular, the use of neuromorphic architectures has prompted the development of
new methods and algorithms for scientific computing [16].

? equal contribution
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The basic architecture and computational model underlying neuromorphic
hardware [4, 2] is the spiking neural network (SNN). SNNs offer a great poten-
tial in finding solutions to graph problems. The translation process of graph
algorithms to SNNs is relatively new, and there is still much knowledge to be
gained about the optimal conversion and optimisation. The structure of SNNs
(neurons and synapses) is similar to that of graphs (vertices and edges), allowing
any graph to be represented by a spiking neural network. Thus, one possible ap-
proach is to use the inherent structure of the graph to solve various problems by
letting the vertices communicate with spikes and spike timing (message-passing).
Recent work that takes this approach is the partial translation of an algorithm for
the max network flow problem to neuromorphic hardware [2], implementation of
a SAT solver [21], and an exploration of neuromorphic algorithms for the longest
shortest path and minimum spanning tree [9]. Another approach for the usage
of SNNs for graph problems is to view every neuron as a computational unit.
Manually programming and designing the network may be unconventional, yet
this approach enables increased control in tailoring of SNNs for various (graph)
problems. For example, Aimone et al. present a conversion method for the class
of dynamic programs [1].

However, there are more classes of algorithms that may benefit from neu-
romorphic architectures, especially the class of distributed algorithms. This is
because distributed computing traditionally requires multiple CPUs, whereas
the neurons in an SNN can function as a population of computational units
within one device.

(a) Dominating set (b) Minimum Dominating Set

Fig. 1: Examples of a dominating set and a minimum dominating set of a graph
(shown in purple).

To demonstrate the potential of programming SNNs for distributed graph
algorithms, we show a conversion of a distributed approximation algorithm for
the minimum dominating set (MDS) graph problem. Kuhn and Wattenhofer
[11] have constructed a distributed and constant-time approximation algorithm
for the MDS problem. The MDS of a graph is a smallest subset of the ver-
tices in G, such that for every vertex it either is in the dominating set, or one
of its direct neighbours is (see fig. 1). The Kuhn-Wattenhofer algorithm is a
parallelised greedy algorithm and achieves an expected approximation ratio of
O(k∆(2/k)log∆) in O(k2) rounds where k is an arbitrary parameter that denotes
the number of iterations of the approximation algorithm and ∆ is the maximum
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degree in graph G. Because of its distributive nature and constant-time complex-
ity, we have found the algorithm fit to be effectively implemented in a spiking
neural network. Thus, we present a spiking neural network implementation of
the Kuhn-Wattenhofer approximation algorithm for the minimum dominating
set problem, in order to show the potential of programming SNNs.

2 Preliminaries

2.1 Graph Definitions

A graph G = (V,E) with edges (u, v) ∈ E, consists of vertices V = (v1, ..., vn)
and edges E = (e1, ..., em), where n and m represent the number of vertices and
edges in graph G respectively. The degree δi represents the number of connected

vertices for an arbitrary vertex vi with i ∈ [1, n]. Alternatively, δ
(1)
i and δ

(2)
i

denote the maximum degree in a one- and two-step neighbourhood of the vertex
vi respectively. ∆ denotes the maximum degree in the graph G.

2.2 Minimum Dominating Set

The functional minimum dominating set problem is defined as follows:

Minimum Dominating Set
Input: Undirected graph G = (V,E).
Output: Subset D in which D ⊆ V if v ∈ V is in D or adjacent to D,
and no subset of D is a dominating set of G.

The minimum dominating set problem has historical roots in the k-queens prob-
lem and is related to the set cover problem.The set cover problem can be con-
sidered equivalent to MDS under L-reduction [7]. The MDS problem is one of
the first graph problems shown to be NP-hard [5]. The best logarithmic approx-
imations of the MDS are achieved by hybrid algorithms that make use of greedy
algorithms and LP-rounding [13]. For a recent overview of the performance of
various approximation algorithms for the MDS problem, we refer to [13]. Poten-
tial applications for algorithms that solve the minimum dominating set problem
include the clustering of wireless devices in a network [8] and automatic text
summarisation [20].

2.3 Neural Model

Here we define a spiking neural network as a finite directed graph with vertices
and edges, where the vertices are neurons and the edges function as synapses.
We make use of the leaky-integrate-and-fire (LIF) neural model, which is com-
monly used in neuromorphic hardware. A LIF-neuron is defined by its initial
voltage (Vinit), the activation threshold (thr), the amplitude of the spike that
occurs when threshold is met (amp), the leakage constant (m) which decreases
the voltage over time, and the reset voltage to which the neuron returns after
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spiking (Vreset). Neurons can either be deterministic or stochastic, which deter-
mines their spiking behaviour. A deterministic neuron spikes when its voltage
has reached its threshold. A stochastic neuron however, will spike according to
some probability distribution p. Neurons are connected by synapses, which are
defined by the pre- and post-synaptic neuron that they connect, the weight (w)
of their connection, and the time delay (d) of the signal. Spiking neural net-
works can take input from various sources, for example, the programmed Vinit
of a neuron, or from neurons that are programmed to spike at a certain time.
The graphical notation for spiking neural networks in this paper is defined in
fig. 2 and is based on the notation presented in [2].

Fig. 2: Notation for the graphical representation of spiking neural networks. If
the values are set to default values, they are omitted from the shown graph.

2.4 Kuhn-Wattenhofer algorithm

The Kuhn-Wattenhofer algorithm consists of two parts. It commences by solving
the LP -relaxation of the problem (in alg. 2), and then uses the solution, the α-
approximation (x(α)) of LPMDS , to approximate the integer program (in alg. 1).
Using distributed randomised selection, a solution xDS for the integer program
(IPMDS) is found, where xDS consists of a binary list indicating which vertices
are in the dominating set that approximates the minimum dominating set.

The approximation of LPMDS (alg. 2) contains the main functionality of
the Kuhn-Wattenhofer algorithm, as it returns the approximation of the related
linear programming solution LPMDS . It is a distributed greedy algorithm, where
each vertex vi dynamically calculates the α-approximation xi for the solution to
LPMDS . To that end, each vertex also has a variable colour, which is initially
white and turned grey if the vertex is considered covered. Each vertex also has
a variable dynamic degree δ̃(vi), which is equal to the number of vertices in
the closed neighbourhood (that includes the vertex itself) that are white. As
initially all vertices are white, the dynamic degree is initialised to the number of
vertices in its closed neighbourhood (δi + 1). The algorithm contains two nested
loops. For every iteration, the vertices with a dynamic degree δ̃(vi) above the
threshold, raise xi. Next, the dynamic degree δ̃(vi) is updated according to the
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Algorithm 1: Kuhn-Wattenhofer - LPMDS → IPMDS

input : feasible solution xα for LPMDS

output: IPMDS-solution xDS (dom. set)

1 calculate δ
(2)
i // Each step is computed for all vertices vi ∈ V simultaneously.

2 pi := min{1, xαi · ln(δ
(2)
i + 1)}

3 xDS,i :=

{
1 with probability pi

0 otherwise

4 send xDS,i to all neighbours
5 if xDS,j = 0 for all j ∈ Ni then
6 xDS,i := 1
7 end

neighbouring colour values, which are then updated according to the x values of
neighbouring vertices vi.

These two algorithms work under the assumption that all vertices have knowl-
edge of the maximum degree ∆. There is a third algorithm available in [11], which
describes an adaptation of the LPMDS approximation in which this knowledge
is not assumed. However, for the scope of this research, only the first two algo-
rithms are implemented. For a more detailed explanation of the workings of the
Kuhn-Wattenhofer algorithm, proofs, and the third algorithm, we refer to the
original paper [11].

Algorithm 2: Kuhn-Wattenhofer - LPMDS approximation

1 xi := 0;

2 δ̃(vi) := δi + 1
3 for l := k-1 to 0 by -1 do
4 for m := k-1 to 0 by -1 do

5 if δ̃(vi) ≥ (∆+ 1)l/k then
6 xi := max{xi, 1

(∆+1)m/k }
7 end
8 Send colouri to all neighbours

9 δ̃(vi) :=| {j ∈ Ni | colourj = ’white’} |
10 Send xi to all neighbours
11 if Σj∈Ni

xj ≥ 1 then
12 colouri := ’gray’
13 end

14 end

15 end
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3 Spiking Implementation

In this section, we present the spiking implementation of the Kuhn-Wattenhofer
algorithm and the details of the various functions that enable the calculation.
The original algorithm can be viewed in section 2.4. The spiking implementation
consists of multiple spiking neural networks, that each handle specific calcula-
tions and implement different functionalities. Some of these functions are called
multiple times, such as the calculation of the degree of the neurons. Program-
ming the SNN is achieved by setting and defining the variables of the neurons,
such as their thresholds, delays and spiking amplitude, and the weights of the
synapses. The values are defined by e.g. information acquired from the input
graph structure, and several networks take the measured resulting voltage of
another network as input.

3.1 LP-relaxation

The spiking implementation of the LP -relaxation (alg. 1) consists of six spiking
networks. The first function, spiking degree, calculates the degree of each neu-
ron. This is done by creating neurons for all vertices and bidirectional synapses
for all edges. All neurons spike once, and the resulting voltage of each neuron
then represents the degree of that neuron. Then, spiking max degree, calculates
the maximum value of each neurons neighbourhood. The constructed network
of this function can be seen in fig. 3b. It is implemented by creating an out
and in-neuron for each neuron, where for each edge, a synapse is created be-
tween the out-neuron and the in-neuron. The out-neurons spike once, with a
delay equal to their value. The in-neurons have a threshold equal to their degree
and no leakage, which ensures that they spike when the last spike has arrived.
The spike-timing of the out-neuron therefore represents the maximum value of
the neighbourhood. This is then converted to a voltage-representation using a
separate count neuron, which adds one to its voltage until the in-neuron fires.

Afterwards, spiking multiplication, calculates an element-wise multiplica-
tion of two arrays. This is implemented using one synapse per element, where
the initial spike amplitude represents the first value and the synaptic weight
represents the second value. The voltage of the post-synaptic neurons then rep-
resents the result of the multiplication. Then, the spiking minimum network
calculates the element-wise minimum of an element in an array and 1. The
constructed network of this function can be seen in fig. 3a. The minimum is
calculated using the following function: ((1 > value) · value) + ((value > 1) · 1).
The neuron first handles the first condition (1 > value) by receiving an input
spike of amplitude 1 and having a threshold equal to the provided value. The
neuron second handles the second condition (value > 1) by receiving an input
spike of amplitude equal to the value and having a threshold of 1. Both neurons
are connected to a final neuron minimum, with a synaptic weight equal to value
for the first neuron and 1 for the second. The voltage of this last neuron then
represents the minimum value.
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(a) Spiking min: Network for calculating
the minimum of 1 and the incoming value.

(b) Spiking max degree: Network for calcu-
lating the maximum degree of a neurons
neighbourhood.

(c) Spiking max: Network for calculating the maximum of two values.

Fig. 3: Various spiking neural networks used as modules in the spiking implemen-
tation of the Kuhn-Wattenhofer algorithm.

The fifth function, spiking sampling, samples according to the given prob-
abilities. This is implemented by creating a stochastic neuron for every vertex,
which spikes with the given probabilities. The spike represents whether a neuron
is considered in the dominating set or not.

And lastly, the spiking summation network checks for all neurons whether
one of their neighbours is in DS, and adds the neuron vi to DS if this is not
the case. This is accomplished by creating neurons for all vertices, and bidi-
rectional synapses for all edges. Each dominating set vertex is represented as a
programmed neuron that is constantly spiking. All other vertices are represented
as LIF-neurons with a threshold of 1 and a constant input voltage of 1, which
initiates them to spike constantly. The weight of the synapse is negative (-1)
if the presynaptic neuron is in the dominating set, and 0 otherwise. This way,
the LIF-neurons that have a neighbour in the dominating set will be inhibited,
while the programmed neurons always keep spiking. The spikes thus represent
whether a vertex is considered to be in the dominating set or not.

3.2 Approximating LPMDS

The spiking implementation of the LPMDS approximation (alg. 2) consists of
three different spiking networks, of which one is the network utilised in the LP -
relaxation to calculate the degree. The second is the spiking update function,
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which is depicted in fig. 4 and consists of three main steps. The first step is the
updating of the x-values. The check dd neuron checks if the first if-statement is
met, by setting its threshold to (∆+ 1)(l/k) and setting the initial voltage to the
old dynamic degree (δ̃(vi)) values. If this neuron spikes, the x-value is updated.
The calculation of the new x-value is done using the spiking max function,
which will be described below. The computed x-values are contained in the x
neurons and sent to the check color neuron. This neuron checks if the second
if-statement is met. If this neuron fires, a silencer neuron is activated, which
turns the color neuron grey by inhibiting it. The dynamic degree is updated by
adding the outputs of these color neurons. Because the dynamic degree needs
to be updated before the color neurons are updated, we read out the dynamic
degree after step 2 of the simulation. The x and color values are saved after
three more simulation steps. As indicated in the figure, all of these neurons are
created once for every vertex in the input graph.

Fig. 4: Graphical representation of the update function in the approximation of
LPMDS. The input values to this function are the previous values of x, color
and δ̃(vi) (dynamic degree). These are used in the model as initial voltage Vi,
amplitude and input current. The output consists of the voltage levels of the x,
color and δ̃(vi) neurons, which are used in the LP-relaxation.

The spiking max network used in the update function calculates the maxi-
mum of two values. The network is depicted in fig. 3c. The maximum is calculated
using the following formula: ((a > b)·a)+((b > a)·b), and is thus implemented in
a similar manner as the spiking minimum network. One addition is made to en-
sure a correct computation if both values are equal. In that case, the maximum
neuron spikes and is reset to 0. The equality neuron checks if the inputs are
equal and sets the maximum neuron to the first value.

These functions contain some commonly used principles, such as the imple-
mentation of if-else statements using the threshold value of the neurons. For an
example, see the descriptions of the spiking minimum and spiking maximum
functions.

However, there are a few functions that have not been converted to the
SNN, such as the calculation of the natural logarithm. An attempt was made to
perform this calculation with a Taylor approximation in an SNN, but this lead
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to the need of more standard Python or package functions. Future work may
allow for a complete conversion.

3.3 Neuromorphic Implementation

The translation of the Kuhn-Wattenhofer algorithm has been implemented in
the SNN Simulator [19], which simulates a spiking neural network. Additionally,
the functions for the calculation of the degree of a neuron and the maximum
of two numbers have been implemented in the LAVA framework by Intel [6]. In
future work, these functions may be ran on the Intel Loihi neuromorphic chip.
Code and documentation can be found at [3].

4 Complexity Analysis

In this section we compare the complexity of our implementation with that of
the Kuhn-Wattenhofer algorithm.

Traditional computational complexity analysis observes time complexity in
terms of the number of operations that are performed and space complexity as
amount of utilised memory. As the Kuhn-Wattenhofer algorithm is a distributed
algorithm, our complexity analysis of their algorithm follows the measures as
defined by Kshemkalyani and Singhal [10]. According to this metric, time and
space complexity are computed both per vertex and system-wide. Additionally,
the message complexity is computed in terms of message size, number of mes-
sages and number of communication rounds.

Because of their novel structure, spiking neural networks require new mea-
sures of complexity for their neuromorphic computation [12]. For SNNs, the
time complexity can be measured as time to convergence, the space complexity
as network size, and energy complexity as the total number of spikes, according
to Kwisthout and Donselaar [12]. Because our unconventional implementation
makes use of voltage-based computation, a hybrid complexity analysis is per-
formed. The creation of the network is not performed by the network itself,
therefore we also separate the network generation from the simulation of the
network in this analysis.

4.1 Space Complexity

Space complexity is defined as the amount of memory that is needed for a com-
putation, apart from the input [17]. However, for spiking neural networks it is
defined as network size [12]. For this project, we report on both. As we also make
use of non-spiking functions, providing the standard space complexity may pro-
vide a more accurate picture. If implemented on neuromorphic hardware, the
separation between these two measurements may be more relevant, as a choice
can be made to make use of an oracle to compute certain functions at times.
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Space Complexity of the Spiking Neural Network The space complexity
analysis has indicated that O(n2) space is needed for the generation of the spik-
ing networks of both the LP -relaxation (alg. 1) and the LPMDS-approximation
(alg. 2). The complexity of the SNN implementation depends on the creation
of neurons (n) and synapses (n2). The execution of the SNNs does not take
up any space in addition to their creation, as the execution only changes volt-
age values within the network. Thus, execution has a space complexity of O(1).
The complete program, including SNN generation, execution, and any necessary
non-spiking function has a space complexity of O(n2) as well.

Space Complexity of the Kuhn-Wattenhofer Algorithm Per vertex, the
space complexity of both Kuhn-Wattenhofer algorithms is O(1), because each
vertex stores the dynamic degree (δ̃(vi)), color and α-approximation (xi) which
requires 3 memory slots per vertex. resulting in a system-wide space complexity
of O(n). The space complexity of the messages is defined by the message size of
O(log(n)) and the amount of messages of O(n2).

4.2 Time Complexity

The time complexity of an algorithm is traditionally computed as the amount
of atomic computational steps needed in relation to the size of the input. In our
case, the input consists of a graph and the maximum degree of the graph. This
means that we will express the time complexity as a function of vertices in the
input graph.

Since we are building and running a discrete time spiking neural network,
we have only calculated the time complexity for the building of the network in
the way described above. For the execution of the discrete SNN, we assumed
that every time step has a constant time complexity, which is reasonable, if the
network is run on neuromorphic hardware. Therefore, the amount of steps the
networks have to run determine their time complexity. The time to convergence,
as suggested by Kwisthout and Donselaar [12], may be more appropriate for
decision problems than for the goals of this research.

Time Complexity of the Spiking Neural Network The time complexity of
generating the SNNs used in the LP -relaxation is O(n2). The main contributor
in this time complexity is the calculation of the δi and ∆, which both require
synapses between neurons (in both directions) for every edge in graph G. The
generation of the SNNs used in the LPMDS-approximation has a time complexity
of O(k2 · n2). The bottleneck in this generation is formed by the two for-loops
and the update function that they contain, in which the dynamic degree δ̃(vi)
is calculated, which requires bidirectional edges.

The execution of LP -relaxation has a time complexity of O(n), which is due
to the calculation of δ(1) and δ(2), which require ∆ time steps. The upper bound
and worst case scenario of ∆, the maximum degree of all neurons, here is O(n).
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Spiking Minimum Dominating Set Approximation 11

Execution of the LPMDS approximation has a time complexity of O(k2), due to
the two for-loops. The final time complexity of the execution is thus O(n+ k2).

The complete program, including SNN generation, execution, and any nec-
essary non-spiking function, has a time complexity of O(k2 · n2) due to the
construction of the SNNs.

Time complexity of the Kuhn-Wattenhofer algorithm Per vertex, the
time complexity of the LP -relaxation is O(n). Computation of δ(2) and xDS
are the main contributors to this complexity. Per vertex, the time complexity of
LPMDS approximation is O(k2 ·n), due to the two for-loops and the computation
of the dynamic degree within them. The time complexity of the messages is
defined by the number of communication rounds of O(k2). Note that Kuhn and
Wattenhofer only mention the message time complexity of O(k2) in their paper,
constituting to their claim of a constant-time algorithm. However, we argue that
because the system-wide time complexity is not constant in time, this claim is
invalid.

4.3 Energy Complexity

Energy complexity is an uncommon, widely debated and yet undefined com-
plexity measure for traditional computation paradigms. It can be analysed as a
weighted time complexity [15], but it can also be derived from the IO complexity
[18].

The advantages of neuromorphic computing are primarily reflected by the rel-
atively low energy consumption in comparison with von Neumann architectures.
This has motivated the introduction of energy as a new complexity measure,
next to time and space complexity [12]. Whereas the energy complexity of a
traditional system is usually directly related to its time and space complexity,
this is not per se the case for neuromorphic systems. Depending on the type of
encoding (voltage, rate or temporal), the spiking behaviour of an SNN allows
for sparser information representation. Assuming a binary encoding, the time
between two spikes can be interpreted as a number, which only requires energy
when the neurons fire. This means that the size of the number (voltage) does
not impact the energy complexity of the representation in such an SNN.

The energy complexity in spiking neural networks is measured by the number
of spikes, which assumes that they are discrete events of the same value, indepen-
dent of actual spike amplitude [12]. Under the assumption that spikes are discrete
singular events that can happen once per time step, energy ≤ time · space. Be-
cause we do not use a fully spike-based algorithm, but also inspect voltages at
times to output and programmed neurons, the assumption that every spike has
an energy complexity of O(1), does not hold. Therefore, we analyse energy both
in terms of discrete spikes, and the synaptic currents to give a more exact pic-
ture of the energy usage. Both measures of energy are experimentally measured,
while the synaptic current is also theoretically computed in terms of the size of
the input.
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Energy Complexity of the Spiking Neural Network The creation of the
SNNs costs energy, given that the SNN consists of neurons with a non-zero initial
voltage. This initialisation energy has a complexity of O(k2 · n2). The biggest
contributor here is the creation of the network of the update function, wherein
n neurons are created that check the δ̃(vi), with initial voltage bound by n. The
dependency on k is achieved since the update function initialises a network and
is called k2 times.

The execution of the SNNs has an energy complexity of O(k2 · n2). This
is based on the notion that in a fully connected graph, spikes can travel from
all neurons to all other neurons, resulting in an energy complexity of O(n2).
As the LPMDS-approximation performs the update function inside two nested
for-loops, the complexity of this algorithm is increased by a factor O(k2).

The energy complexity in terms of spikes in the networks is dependent on
O(k2 · n + n2). This stems from the fact that we have n spiking neurons in
the LPMDS-approximation, but also n spiking neurons in the function in which
Delta is calculated, with time complexity O(n).

For the non-spiking functions, we use their time complexity as an approxima-
tion method for their energy complexity, where we assume that at each time-step
only one computation takes place and all computations cost equal amounts of
energy. Under that assumption, the complexity of the complete program, includ-
ing SNN generation, execution and any necessary non-spiking functions, remains
O(k2 · n2).

Energy Complexity of the Kuhn-Wattenhofer Algorithm The energy
analysis for the energy used by the Kuhn-Wattenhofer algorithms, for which
we again assume that time complexity is a bound for the energy consump-
tion, yields O(n) and O(k2 · n) respectively for LP -relaxation and the LPMDS-
approximation. For the energy complexity of the messages, we have used the
same assumption, yielding a complexity of O(k2).

5 Discussion

We have shown that the distributed algorithm for finding an approximation
of the minimum dominating set as presented by Kuhn and Wattenhofer [11]
can be successfully implemented in a programmed spiking neural network. This
work serves as an example for the porting of distributed algorithms to spiking
neural networks and provides subnetworks that can be modularly used in other
algorithms.

Complexity analysis shows that the SNN implementation fares worse in terms
of time and energy complexity. However, regarding space complexity, the SNN
implementation compares favourably to Kuhn and Wattenhofer. The time and
energy costs of the initialisation of the spiking neural networks is largely re-
sponsible for these seemingly contradicting findings. It is to be noted that Kuhn
and Wattenhofer do not take the initialisation of the message-passing system
into account. Including the complexity induced by the initialisation in the time
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complexity of Kuhn and Wattenhofer, results in a complexity of O(k2 · n+ n2).
The theoretical time complexity of the algorithm is thus lower compared to the
time complexity of the SNN implementation of O(k2 · n2).

Making use of the inherent distributiveness of neural networks may contribute
to the field of distributed computing, as the network can be seen as a population
of computational units within one device. Neuromorphic architectures may in
the future be used in distributed computing applications such as wireless (sensor)
networks.

Future research may look into reducing the complexity further to render the
time-, space- and energy complexities of the presented SNN implementation on
par with the Kuhn-Wattenhofer algorithm. This may be achieved by making full
use of the inherent properties of neuromorphic architectures. Another avenue is
to efficiently integrate all subnetworks (functions) into one connected network.
While the modularity of our implementation is advantageous in that its modules
can easily be reused in various kinds of graphs algorithms, particular problems
may benefit from one well-tailored network that is not divisible into modules.
Lastly, the spiking neural network may be run on neuromorphic hardware

6 Conclusion

This work presents a novel neuromorphic implementation of the distributed min-
imum dominating set approximation algorithm by Kuhn and Wattenhofer. By
programming the network and utilising voltage-based computation within neu-
rons, the LP -relaxation and LPMDS-approximation algorithms as presented by
Kuhn and Wattenhofer have been successfully reproduced. The spiking neu-
ral networks are simulated in the SNN Simulator [19]. Several spiking neural
networks that have been developed in the translation process can function as
building blocks for spiking neural network implementations of other (graph) al-
gorithms.

Measuring the time, space and energy complexity of the spiking implemen-
tation, we find that it is comparable to the original algorithm. However, the
initialisation of the network takes up significant time and energy. As the com-
plexity of the original Kuhn-Wattenhofer algorithm does not take the initialisa-
tion of the message-passing structure into account, we conclude that the spiking
implementation does not fare significantly worse.

In conclusion, this work demonstrates that programming a spiking neural
network is an avenue worth pursuing for scientific computing applications. Fur-
thermore, it shows how leveraging neural properties in the domain of designing
spiking implementations of graph problems, prospers on novel insights. There-
fore, our work contributes to the scientific body of knowledge of neuromorphic
implementations in the field of distributed computing.
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Abstract. Free space estimation is an important problem for autonomous robot
navigation. Traditional camera-based approaches rely on pixel-wise ground truth
annotations to train a segmentation model. To cover the wide variety of environ-
ments and lighting conditions encountered on roads, training supervised models
requires large datasets. This makes the annotation cost prohibitively high. In this
work, we propose a novel approach for obtaining free space estimates from im-
ages taken with a single road-facing camera. We rely on a technique that gen-
erates weak free space labels without any supervision, which are then used as
ground truth to train a segmentation model for free space estimation. We study
the impact of different data augmentation techniques on the performances of free
space predictions, and propose to use a recursive training strategy. Our results are
benchmarked using the Cityscapes dataset and improve over comparable pub-
lished work across all evaluation metrics. Our best model reaches 83.64% IoU
(+2.3%), 91.75% Precision (+2.4%) and 91.29% Recall (+0.4%). These re-
sults correspond to 88.8% of the IoU, 94.3% of the Precision and 93.1% of the
Recall obtained by an equivalent fully-supervised baseline, while using no ground
truth annotation. Our code and models are freely available online.

Keywords: Weak supervision · Free space estimation · Data augmentation · Re-
cursive training

? This work is supported by the Fonds National de la Recherche, Luxembourg (MASSIVE
Project). The authors also thank Foyer Assurances Luxembourg for their support.

Regular papers BNAIC/BeneLearn 2021

543



2 Robinet F. et al.

1 Introduction

Perception is the first step towards autonomous robot navigation. To be able to safely
act in the world, a robot needs to perceive its environment and identify traversable free
space. In the context of autonomous driving, free space is usually defined as road areas
that are not occupied by either static objects such as traffic signs and road dividers, or by
dynamic entities such pedestrians and cars [18]. Since collision-free planning requires
a fine-grained understanding of the environment around the vehicle, we attempt to label
each pixel of a front-facing camera as traversable or not.

This work focuses on systems that use a single road-facing camera. Monocular free
space segmentation has traditionally been approached using supervised segmentation
techniques. Although effective, these techniques require vast amounts of pixel-wise
annotated frames. Studies have shown that such pixel-level ground truth is significantly
more expensive to craft than image-level labels or bounding boxes [27]. In addition to
the large labor costs entailed by labeling each frame [7], such approaches are held back
by the wide variety of environments and lighting conditions that are present at runtime
and need to be captured in training data. This need for ever larger annotated datasets
makes supervised learning unsuitable for solving this problem. Instead, we tackle it in
a different way: relying on a method that generates weak, noisy, free space annotations
without any supervision [42], we train a neural network to generalize past the label
noise using data augmentation and recursive training.

Our contributions can be summarized as follows: (1) we study the impact of data
augmentation on weakly-supervised free space segmentation, (2) we propose a recur-
sive training scheme that uses a progressively refined ground truth, (3) we establish
a new state-of-the-art for weakly supervised free space estimation on the Cityscapes
dataset, improving over previous efforts by +2.3% in IoU, +2.4% in Precision, and
0.4% in Recall, (4) we discuss the limitations of our simple recursive training approach,
and (5) we release our code and models for reproduction and further work.

The remainder of this paper is organized as follows: In Section 2, we review the
recent literature for free space estimation, data augmentation in the context of semantic
segmentation, and recursive training. In Section 3, we introduce our data augmentation
and recursive training schemes. In Section 4, we describe our use of the Cityscapes
dataset [7] and detail the experimental setup of this study. In Section 5, we carry out
experiments and present the qualitative and quantitative results achieved. Finally, we
summarize our contributions and share further research directions.
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2 Related Work

Over the last decades, free space estimation has been approached with methods that
leverage a wide variety of sensors, e.g. GNSS [24], LiDAR [45] or cameras [35]. In
this work, we place a particular focus on recent camera-based learning methods that
use Convolutional Neural Networks (CNNs). Our work builds on recent advances in
network architectures for segmentation and on unsupervised methods specific to free
space estimation. We present this background material in the following sections.

2.1 Supervised Learning for Segmentation

As a segmentation task, supervised free space estimation has directly benefited from
progress in semantic segmentation. Pixel-level prediction carries a crucial challenge for
network design: an optimal prediction can only be achieved by combining fine-grained
local information with global contextual cues. Fully Convolutional Networks (FCNs)
rely on skip connections to carry these cues in their encoder-decoder architecture [28],
while SegNets ease the upsampling task by reusing encoder max-pooling indices in the
decoder [3]. Building on similar ideas, U-Nets combine entire encoder feature maps
with decoder features at each step of the expansion path of the network [40]. U-Nets
have attracted a lot of attention in recent years, and researchers have proposed refine-
ments such as the use of dense connections [19] and dilated convolutions [51], the in-
tegration of attention mechanisms [34], or extensions to volumetric images [32]. In this
work, we will rely on a simple U-Net architecture. Our choice is motivated by a recent
finding that many recent architecture improvements are outperformed by a well-tuned
vanilla U-Net [17].

2.2 Weakly-Supervised Semantic Segmentation

The major drawback of supervised techniques is their reliance on extensive human-
annotated datasets. The cost of labeling is particularly important in segmentation tasks,
where the total time required to annotate every pixel in a single frame can reach 1.5
hours in some cases [7]. The reuse of models pre-trained on very large datasets such as
ImageNet [11] partially alleviates this problem, but several thousands of training images
are still routinely needed to reach adequate performance. In recent years, researchers
have devised strategies to reduce or eliminate the need for human annotations during
training.

In cases where fine-grained annotations are available for at least a subset of the data,
semi-supervised approaches such as Co-Training can be applied [37]. In the complete
absence of pixel-wise ground truth labels, researchers have proposed to use domain
adaptation from synthetic datasets [16], or to rely on weaker ground truth. Existing
techniques rely on coarser labels, such as bounding boxes [9,20,21,46], image-level
labels [38,12,43], class activation maps [5], single points [4], or scribbles [26].

2.3 Unsupervised and Weakly-Supervised Monocular Free Space Segmentation

Monocular free space estimation has been approached in many different ways that dif-
fer in the representation they use. Stixel-like approaches represent obstacles as verti-
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cal sticks [2,8] or horizontal curves [48], but ignore free space lying behind obstacles.
Monocular SLAM relies on video sequences to obtain point-clouds which do not ex-
plicitly represent free space [13,33,10]. Using temporal sequences and structure-from-
motion to jointly learn an explicit representation of free space and obstacle footprints
has also been recently proposed [44]. Our work uses a different strategy: we learn dense
free space estimates from single frames using approximate masks that are obtained
without human-supervision. Such weak labels have historically been generated using
depth information from stereo pairs before localizing the ground plane, for example
using the v-Disparity algorithm [23,14,31]. Other attempts exploit strong road texture
and location priors, by dividing the input into superpixels and clustering them based on
saliency maps [43] or semantic features [35]. We stress that using weak labels departs
from previously mentioned approaches that leverage coarse ground truth, since weak
labels contain false positives and negatives.

2.4 Training Strategies for Weakly-Supervised Segmentation

Recent research shows that it is possible to train over-parametrized models to generalize
past some of the label noise using Stochastic Gradient Descent (SGD) schemes com-
bined with early stopping [25]. Dealing with label noise at training time has become an
important research area over the past few years. Solutions to this problem include label
cleaning [6], noise-aware network architectures [41], or noise reduction through robust
loss functions [30,29,39].

Besides work on training algorithms themselves, researchers have also largely ex-
plored regularization through data augmentation in unsupervised settings. Traditional
augmentation strategies (scaling, color jittering, flipping, cropping, etc.) change pixel
values in a single input image without altering its semantic content. More recently,
researchers have proposed augmentations that combine several images and their la-
bels. Two notable examples are MixUp [50] and CutMix [49]. MixUp is a method that
augments the training set using convex combinations of image pairs and labels, while
CutMix overlays random crops of other samples on top of original frames.
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3 Methodology

In this work, we train U-Net models to predict dense free space from RGB images by
learning on approximate labels that can be generated without any supervision. Since our
focus is on improving training aspects rather than on improving weak labels generation,
we will reuse the weak labels from [42]. We look at improving training across two
dimensions: data augmentation and recursive training.

3.1 Data Augmentation

We study the impact of data augmentation on weakly-supervised free space estimation.
We cover both traditional augmentation techniques that operate on single images, as
well as MixUp and CutMix, which are more recent and combine multiple samples.

Color-Flip-Crop To represent traditional augmentation techniques, we use a combina-
tion of color jittering, horizontal flips and random cropping, which we will refer to as
Color-Flip-Crop or CFC in the remainder of the text. Each augmentation is indepen-
dently applied with a 50% probability. The color jittering randomly affects brightness,
contrast, saturation, and hue using the bounds defined in the Torchvision implementa-
tion [1]. In order to preserve most of the original image, cropping is performed with a
randomly chosen rectangle that occupies between 25% and 50% of the image area. The
aspect ratio is also randomly chosen, with the constraint that the height is at least 10%
of the height of the original image. Figure 1 shows some examples of the effect of CFC
on a single randomly chosen training image.

Fig. 1: Seven possible Color-Flip-Crop augmentations on a random training sample.
The original sample is on the top-left. We show ground truth mask for illustration pur-
poses, they are not used during training.

MixUp Rather than augmenting isolated images, Mixup trains models on convex com-
binations of samples [50]. By training on synthesized samples that lie between the
original training samples, MixUp encourages the network to exhibit a linear behav-
ior between samples and helps preventing memorization. During training, each sample
(x1, y1) is combined with another random sample (x2, y2) from the batch using Equa-
tions 1 and 2, where we sample λ uniformly in [0, 1]. The effect of combining input
samples is illustrated on Figure 2.
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xmixup = λx1 + (1− λ)x2 (1)

ymixup = λy1 + (1− λ)y2 (2)

(a) (b) (c)

Fig. 2: MixUp augmentation combining two random samples (a) and (b) from the train-
ing set. The convex combination using λ = 0.5 is shown as (c). We show ground truth
mask for illustration purposes, they are not used during training.

CutMix Similar to Mixup in spirit, CutMix also combines two random input samples
(x1, y1) and (x2, y2) from the same batch [49]. Rather than combining them over the
entire image, CutMix overlays a crop of x2 over x1, and the same crop of y2 over y1.
Equations 3 and 4 formalize this process using a random binary maskM ∈ {0, 1}H×W

to denote the cropped area (◦ denotes the element-wise product). Like for the CFC aug-
mentation, the cropping mask M occupies between 25% and 50% of the image area
with a random aspect ratio. Figure 3 illustrates four different instances of CutMix aug-
mentation on a chosen training sample. CutMix generates more natural images than
MixUp and allows the network to learn more localizable features since the transforma-
tion is only applied to a fraction of the input image.

xcutmix = (1−M) ◦ x1 +M ◦ x2 (3)
ycutmix = (1−M) ◦ y1 +M ◦ y2 (4)

3.2 Recursive Training

We are training neural networks to estimate free space by learning on approximate
labels yweak. Since neural networks trained with SGD variants are partially robust to
noise in their training targets [25], the outputs y will tend to approximate the unknown
ground truth y∗ better than yweak. Assuming the outputs y are better estimates of free
space than yweak, it is natural to treat them as cleaner targets for a second round of
training. This process can in principle be iterated to obtain progressively cleaner outputs
y2, y3, etc. This approach was already attempted in the context weakly-supervision free
space segmentation [43], but we revisit its impact in the presence of data augmentation
and with different weak labels. Figure 4 illustrates the process for a given training round.
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Fig. 3: Four instances of the CutMix augmentation on a random training sample.
We show ground truth mask for illustration purposes, they are not used during training.

Augment

Previous Model

ℒ𝑜𝑠𝑠 𝑦𝑖 , 𝑦𝑖−1
+

𝑥

𝑥+

𝑦𝑖−1

𝑦𝑖−1
+

𝑦𝑖Current Model

Fig. 4: Recursive training procedure. The current model is trained on augmented outputs
from the model obtained at the previous training round. In this example, CFC is used
for augmentation. The process is similar for other augmentation strategies.
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4 Experimental Setup

4.1 Dataset

Our experiments leverage the Cityscapes dataset, which provides pixel-wise ground
truth labels for 30 visual classes in 5000 frames [7]. The official test set has no public
annotation, and we therefore treat the 500 frames of its validation set as our test set and
randomly split the Cityscapes training set into 2380 training and 595 validation frames.
Since we are interested in estimating drivable free space in the context of autonomous
vehicle navigation, we consider free space equivalent to the road class. Cityscapes also
contains 1.6% of frames with no road pixel. For these frames, visual inspection con-
firmed that free space correspond to the ground class, and that label was used for free
space instead of road. Finally, the semantic labels include 6 void classes such as unla-
beled, out of the region of interest or ego-vehicle. Following official Cityscapes segmen-
tation benchmarks, we ignore pixels corresponding to such classes at evaluation time
using a binary evaluation mask. We note that this evaluation mask is never used during
training or validation, only to evaluate models on the test set.

4.2 Evaluation Metrics

We use three evaluation metrics: the Intersection-over-Union (IoU), Precision and Re-
call. IoU is a standard metric in segmentation tasks to reflect the overall quality of
the predictions. However, IoU does not immediately capture false free space positives.
These pixels that are labeled as part of the road but are actually occupied are extremely
harmful in robotic path-planning scenarios. For this reason, we also monitor the Preci-
sion of the free space class, i.e. the fraction of our free space prediction that is indeed
free space. To obtain a complete picture of prediction quality, we also monitor Recall.
We however note that missing free space in predictions has less impact than false free
space positives in robot navigation contexts. Given a single free space prediction ŷ,
ground truth y, and evaluation mask m, the metrics for a single frame of shape H ×W
are computed with Equations 5, 6 and 7, where ŷ, y, m ∈ {0, 1}H×W .

IoU =

∑
i ŷiyimi∑

i(ŷi + yi − ŷiyi)mi
(5)

Precision =

∑
i ŷiyimi∑
i ŷimi

(6)

Recall =

∑
i ŷiyimi∑
i yimi

(7)

4.3 Network architectures

Following recent research that shows that a well-tuned vanilla U-Net can outperform
many refined variants on most segmentation tasks [17], we opt for a U-Net structure
based on a ResNet18 residual network backbone [40,15,47]. To allow for comparison
with prior art, we also implement and train the SegNet model described in [42]. For
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computational reasons, we use a 512×1024 input resolution in all experiments. Outputs
are however re-scaled using nearest neighbor interpolation in order to compute IoU and
Precision in the original 1024× 2048 resolution.

4.4 Training procedure

We use the PyTorch framework [36] and train randomly initialized models to minimize
a binary cross-entropy loss using the Adam optimizer [22], a batch size of 8 and an
initial learning rate of 0.001. We train our models on single NVIDIA V100 for up to
200 epochs, with an early stopping strategy that halts training when the validation loss
has not improved by at least 10−4 for 50 consecutive epochs. For each experiment, we
select the model that minimizes the validation loss.

4.5 Use of ground truth data

The Cityscapes dataset provides ground truth annotations for all training and validation
frames used in this study. We stress that these annotations are only used to train the
fully-supervised baseline for comparison with our weakly-supervised approach. Out-
side of the fully-supervised experiment, ground truth labels are never used for training,
hyperparameter tuning, or to perform early stopping. Ground truth IoU, Precision and
Recall are computed only once on the test set, after all these steps have been performed.
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5 Results

This section describes the experiments carried out to benchmark our proposed method,
using Precision, IoU and Recall. We present results for three main categories of mod-
els: 1) a fully-supervised upper-bound, 2) unsupervised and weakly-supervised base-
lines, and 3) U-Nets trained on the weak labels using recursive training and different
augmentation strategies. The quantitative results for each category are summarized in
Table 1. In this section, we analyze the results of each category, discuss the limitations
of recursive training, and present qualitative results.

5.1 Fully-Supervised Results

Since Cityscapes provides pixel-wise ground truth annotations for our training and vali-
dation data, we use it to train a fully-supervised U-Net for comparison with its unsuper-
vised counterpart. When trained on ground-truth labels, our U-Net model reaches high
IoU (94.12%), Precision (97.26%) and Recall (97.27%). Since this fully-supervised
model is the only one that uses ground truth labels at any point during training and
validation, it is expected to produce an upper-bound for our unsupervised experiments.

5.2 Unsupervised and Weakly-Supervised Baselines

Competing unsupervised approaches are often focused on generic semantic segmenta-
tion rather than free space estimation, and use other datasets than Cityscapes as bench-
marks [9,46,38,12,5]. Among weakly-supervised approaches that tackle free space esti-
mation [14,48,43,16], only two publish results for Cityscapes. Distant Supervision [43]
and Unsupervised Domain Adaptation [16] respectively obtain an IoU of 80% and
70.4%, but do not report Precision or Recall values.

We generate approximate labels without supervision using the technique described
in [42]. Evaluating these raw weak labels, we obtain an IoU of 79%, a Precision of
87.78% and a Recall of 89.24%. These results can be further improved by training
a neural network to generalize beyond the noise in these labels. This was already at-
tempted using the SegNet architecture in [42], which we also implement and train for
comparison. SegNet is able to improve results over raw weak labels in IoU (+2.3%),
Precision (+1.58%) and Recall (+0.91%).

5.3 Data Augmentation & Recursive Training

We train the same U-Net model using different data augmentation strategies. Since the
outputs of our different augmented U-Nets are better than the initial weak labels, we use
them as target for a second round of training. We iterate this recursive training process
four times for each of the data augmentation strategies under study. We limit training to
four rounds for computational reasons and because it is enough for IoU values to reach
their peak.
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No Augmentation We start by training a U-Net with the weak labels as targets and with-
out any data augmentation. We observe that it compares favorably with the results from
SegNet, reaching an IoU of 81.85%, a Precision of 90.65%, and a Recall of 89.76%.
Without resorting to data augmentation, recursive training over several rounds is unable
to meaningfully improve IoU, and slightly decreases Precision in favor of Recall.

MixUp Applying MixUp allows to improve Precision compared to not using data aug-
mentation by 0.5% in the first training round. IoU is maintained, but Recall decreases
by 0.45%. Iterative training is however not effective when combined with MixUp, since
we observe a drop in Precision after each round. As discussed in Section 4.2, free space
IoU and Precision are more important than Recall in an autonomous navigation sce-
nario. In this case, increases in Recall are not enough to compensate this effect, and we
observe a steady decrease in IoU.

Color-Flip-Crop Traditional data augmentation consisting of color jittering, horizontal
flips and random cropping is able to improve IoU over not using augmentation and over
using MixUp. After a single training round, CFC allows to reach an IoU of 81.99%
through increasing Recall by 1.47% compared to the first round without augmentation.
Subsequent training rounds are able to improve both Precision and IoU. After 3 itera-
tions, the model reaches an IoU of 82.34% and a Precision of 90.75%.

CutMix The CutMix augmentation can be seen as providing the advantages of cropping
and MixUp. Like MixUp, it synthesizes new input samples by combining pairs of ex-
isting ones. However, CutMix produces more natural images and its effect is localized
since it only affects the area of a random crop. The locality of CutMix has been shown
to allow models to learn more localizable features in classification scenarios [49], and
it is not surprising that such features are helpful in this segmentation context. Indeed,
models trained with CutMix augmentation outperform all other models by a wide mar-
gin. After a single training round, CutMix improves over not using augmentations in
IoU (+1.2%), Precision (+0.5%), and Recall (+0.26%).

Since our application scenario favors Precision over Recall, our best overall model
is obtained after the fourth training round, reaching an IoU of 83.64% and a Precision
of 91.75%. Compared to the prior state-of-the-art results from SegNet [42], it improves
IoU by 2.3%, Precision by 2.4% and Recall by 0.4%. Although our model does not rely
on any human-annotated ground truth, its relative performance compared to the fully-
supervised variant is impressive: we reach 88.8% of its IoU, 94.3% of its Precision, and
93.1% of its Recall.

5.4 Limits of Recursive Training

While CutMix results are impressive, we note that the success of recursive training is
limited. When not applying data augmentation or when using MixUp, recursive train-
ing does not improve on IoU or Precision. In the case of CFC and CutMix augmenta-
tions, results are more encouraging, but the improvements are limited to three rounds of
training. Starting with the fourth round of training, IoU results start to degrade, some-
times getting worse than those obtained after a single round of training. Explaining
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this effect is not straightforward: given that target labels on round 4 are superior to
those used on round 3 in both IoU and Precision, we would expect to either observe im-
proved or plateauing results. Such recursive training strategy has been successfully used
in foreground class segmentation contexts with results improving over more than 10
rounds [21]. As opposed to our completely unsupervised approach, the authors of [21]
could exploit coarser ground truth in the form of bounding boxes in order to refine pre-
dictions after each round. We postulate that the absence of such refinement step in our
approach is the reason we are unable to further leverage recursive training. Designing
such a prediction refinement step will be the topic of future work.

Training/Validation
Labels

Test IoU Test Precision Test Recall

Fully-Supervised U-Net ground truth 94.12% 97.26% 97.27%

Unsup. Domain Adaptation [16] synthetic data 70.40% not reported not reported
Distant Supervision [43] image labels 80.00% not reported not reported
Weak Labels [42] no training 79.00% 87.78% 89.24%
SegNet (repr. from [42]) weak labels 81.30% 89.36% 90.15%

U-Net (no augmentation)
Round 1 weak labels 81.85% 90.65% 89.76%
Round 2 output of round 1 81.79% 89.53% 90.80%
Round 3 output of round 2 81.86% 90.15% 90.27%
Round 4 output of round 3 81.82% 90.11% 90.25%

U-Net + MixUp
Round 1 weak labels 81.89% 91.14% 89.31%
Round 2 output of round 1 81.97% 90.89% 89.60%
Round 3 output of round 2 81.62% 90.13% 89.97%
Round 4 output of round 3 81.45% 89.91% 90.02%

U-Net + Color-Flip-Crop
Round 1 weak labels 81.99% 88.80% 91.23%
Round 2 output of round 1 82.12% 89.71% 90.64%
Round 3 output of round 2 82.34% 90.75% 90.69%
Round 4 output of round 3 81.91% 90.21% 90.27%

U-Net + CutMix
Round 1 weak labels 83.05% 91.19% 90.51%
Round 2 output of round 1 83.58% 91.20% 91.12%
Round 3 output of round 2 83.77% 91.23% 91.29%
Round 4 output of round 3 83.64% 91.75% 90.62%

Table 1: Results on the Cityscapes validation set, which we treat as our test set. The
best results for a given data augmentation strategy are underlined, and the best overall
results are reported in bold.

5.5 Qualitative Results

We compare the free space estimates from weak labels with the predictions of our best
model on test set samples on Figure 5.
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The ability of our learned model to generalize past some of the noise present in
the weak labels that were used during training is clearly visible in the first two rows of
Figure 5. Indeed, the cars and side walks that were wrongly considered free space in
the weak labels are correctly predicted by our trained model. In addition to its higher
Precision, our model also has higher IoU and Recall, as illustrated by the near-absence
of orange areas in its predictions.

The third row shows a more contrasted situation. Although our model is able to
cover more free space, it still shows some signs of overfitting to noise in the weak labels.
Shadows are especially problematic because they are likely to impact the superpixel
segmentation that the weak labels are based on, resulting in missed free space areas such
as the one present in front of the cyclist. Since this effect happens fairly consistently
over the training set, our model is incapable of completely addressing it.

Finally, the fourth row illustrates another partial failure of our model in a partic-
ularly crowded scene. Compared to the corresponding weak labels, the trained model
correctly rejects pedestrians, but is unable to produce a clean segmentation around them
and considers the pavement as occupied space. Although the prediction still contains er-
rors, we note that red areas in our prediction are much more acceptable from a semantics
point-of-view than the ones from the corresponding weak labels.

Weak Labels Predictions

Fig. 5: Qualitative results from the test set obtained from a U-Net trained with CutMix
for 4 rounds. Predictions are color-coded using the ground truth: green and red respec-
tively corresponds to correct and incorrect predictions, orange represents missing free
space, and areas that are ignored at evaluation time are denoted in blue (see Section 4.1).
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6 Conclusion

In this work, we investigate different weakly-supervised training strategies for teaching
a neural network to predict free space from images taken with a single road-facing cam-
era. Our models are trained using weak labels that are generated without human inter-
vention, and we investigate the impact of recursive training with several data augmen-
tation schemes. We show that the CutMix augmentation is particularly efficient for free
space estimation, especially when combined with recursive training. We benchmark our
results on the Cityscapes dataset and improve over unsupervised and weakly-supervised
baselines, reaching 83.64% IoU (+2.3%), 91.75% Precision (+2.4%) and 91.29% Re-
call (+0.4%). Our best model obtains 88.8% of the IoU, 94.3% of the Precision and
93.1% of the Recall of the fully-supervised competitor that trains from expensive pixel-
wise labels. Finally, we show that simple recursive training is limited in its ability to
increase performances, and suggest directions to improve the approach. Future work
will also investigate improvements to weak label generation and applications to more
general segmentation scenarios.
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Peter Hellinckx, José Oramas, and Steven Latré
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Abstract. Object detection on real-time edge devices for new applications with
no or a limited amount of annotated labels is difficult. Where traditional data-
hungry methods fail, transfer learning can provide a solution by transferring
knowledge from a source domain to the target application domain. We explore do-
main adaptation techniques on a one-stage detection architecture, i.e. YOLOv3,
which enables use on edge devices. Existing methods in domain adaptation with
deep learning for object detection, use two-stage detectors like Faster-RCNN with
adversarial adaptation. By using a one-stage detector, the speed increases by a
factor of eight. With our proposed method, we reduce by 28% the changes in
performance introduced by the gap between the source and target domains.

Keywords: Domain adaptation · Object detection · adversarial learning.

1 Introduction

Object detection and classification are amongst the main tasks addressed by computer
vision [30]. They are used in a wide variety of application domains like autonomous
driving, robotics, medical imaging, tracking of various subjects, counting, manufac-
turing, etc. In general, deep learning techniques are applied which require significant
amounts of examples. The performance of deep neural networks with abundantly avail-
able labels surpasses other techniques. Examples of such use cases are car detection and
classification of written characters [11][15].
Most of these deep neural networks also require a GPU which provides the necessary
computing power. Hence, the main obstacles for the adoption of these supervised ma-
chine learning approaches in new applications remain the lack of (labeled) data and
the needed computing power for inference. This last factor clearly limits their use in
edge devices. Often, there already exist application domains with similar properties and
labeled data which can be used as a starting point, i.e. the source domain. Ideally, the
knowledge from the source domain can be transferred to the new application domain,
the target domain. New application domains often do not have enough labels. Examples
of these include the detection of animals other than a cat or dog, autonomous vehicles
other than cars, and even detecting the same subject in another environment/dataset can
cause the source model to have a significant drop in performance. Therefore, an auto-
mated framework to adapt a source model to a target domain with only a few target
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labels can prevent the time- and cost-consuming task of labelling a large dataset.
Existing methods[9][3] for domain adaptation rely on creating domain-invariance be-
tween source and target domain. This can be done by adversarially changing the feature
encodings from convolutional layers or creating synthetic images which close the gap
between the two domains. These techniques will be discussed in detail in Section 2. Re-
garding domain adaptation for the object detection task, most efforts from the literature
are based on the Faster-RCNN detector [9]. Faster-RCNN is a good choice for applica-
tions with sufficient computational power or when no real-time inference is needed.
This is even more critical given the increasing number of new use cases where com-
putations are expected to take place in real-time on-site, instead of on a remote cloud
server [31]. With limited resources and/or the need for a real-time application, faster
frameworks like one-stage detectors provide opportunities to meet the demand. By us-
ing a one-stage network, e.g. YOLOv3 [22], as the backbone network to perform object
detection, the use of edge devices in real-time is made possible. This is mainly due to
the inference speed advantage of YOLO over Faster-RCNN [23].
A good application example is an autonomous vessel that needs real-time tracking of
the vessels in the near distance with the computational power on-board. Maritime ves-
sels scan the whole environment with a radar once or twice every second [2]. This is
sufficient due to their low speed. To make the step towards autonomous vessels, a cam-
era and/or LiDar sensor needs to be added to be able to make navigation decisions with
a more comprehensive understanding of the environment. If a camera can locate and
classify objects in the water with the computation power on-board, in synchronization
with the radar, then this could constitute a leap forward for the maritime industry.
Taking the previous application setting into account, in this paper we present a transfer
learning technique based on feature adaptation that uses the labeled data in a source
domain to improve the performance in a target domain with no or limited labeled data.
This effectively increases the overall generalization and robustness of the source model.
The performance is compared against other transfer learning techniques like cycleGAN
image adaptation [33] and combining feature adaptation with image adaptation. To val-
idate the different transfer learning techniques, two experiments are set up. First, the
different techniques are used to transfer knowledge from one dataset to another when
detecting the same subject (i.e. cars). The two datasets used in are COCO2017 [18]
and KITTI [7]. Second, the techniques are used to detect similar classes from the same
dataset, i.e. learning to properly detect a lion by transferring the obtained knowledge
from detecting a tiger. The dataset used for this task is OpenImages. In both cases, there
are 30 labelled target images available to fine-tune the source model. With feature adap-
tation, there is a 5 to 9% improvement of the mean Average Precision (mAP) compared
to the fine-tuned source model.
To summarize, we propose domain adaptation techniques based on feature alignment
and synthetic image alignment with fast real-time object detection models that enable
use on the edge with limited labeled data.
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2 Related work

The proposed method lies at the intersection of object detection and domain adaptation.
As such, we will position our system with respect to efforts addressing those tasks.

2.1 Object detection

To perform object detection, the subject first has to be localised and then classified.
There are two main categories for object detection models, i.e. traditional models with-
out deep learning and models with deep learning.

Engineered Features. SIFT [20] detects objects in the image by matching local
features which are scale- and orientation-invariant. SURF [1] uses a similar feature
descriptor as SIFT but speeds up the process significantly by the integral image for
image convolutions and simplifying the overall method. Other feature descriptors such
as Haar-like features [16], HOG [5], and ORB [24] perform similarly. They all have
their advantages depending on shape, colour, texture, and illumination. On the one hand,
these methods have the advantage of being relatively lightweight, they are outperformed
by their counterparts based on deep neural networks. This discourage their use in critical
applications.

Learning-based Representations. With the advent of big data and increased com-
putational power, representation learning methods got a lot of interest. Moreover, in
computer vision, all the current State Of The Art (SOTA) methods are based on deep
convolutional neural networks [13]. Their success is attributed to the large number of
parameters present in Deep Neural Networks (DNN), which can be used to model all
the possible variations of how an object is depicted. Faster-RCNN [23] is a very com-
monly used two-stage model which uses a Region Proposal Network (RPN). This is
based on the feature encodings after multiple convolutional layers to first propose pos-
sible bounding boxes to focus on. In the next step, these region proposals are used to
locate the best proposals and classify the object. To speed up the whole process, there
are one-stage models such as YOLO [21] and SSD [19] without the RPN, making it
more a regression/classification model. YOLOv3 [22] improves YOLO with bounding
boxes at three different scales by using a similar idea as a Feature Pyramid Network
[17] and with increased frames per second (fps). There is a small drop in performance
from a two-stage to a one-stage model but the gained speed enables to detect objects in
real-time, even with less computational power.

2.2 Domain adaptation

The focus of this paper is to improve object detection performance when operating on
setting with no or limited annotated data is available. While there are different options
to apply transfer learning, they all involve domain-invariance between source and tar-
get domain [32][8][33][29][9]. A possible method is to map extracted features, which
are the input to the domain classifier, from source to target domain or the other way
around [32]. Another option is to change the style of an image synthetically from
source to target domain or vice-versa. This mapping is primarily done by a Generative
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Adversarial Network (GAN) [8]. Recent SOTA combines both techniques, i.e. creating
domain-invariant features which are based on source images translated to target images.

Real-to-sim domain adaptation [32] adapts the real images to synthetic images to
make the robot feel at home for its navigation task. They use a cycleGAN [33] and
shift loss for more consistent subsequent frames. The previous method translates every
synthetic frame to the realistic style during the training of navigation policies. Although
effective, this approach still adds an adaptation step before each training iteration, which
can slow down the whole learning pipeline. Instead of using a GAN to upsample the
image to perform domain adaptation, it is also possible to change the extracted fea-
tures to another domain without upsampling. In French et al. [6] self-ensembling is
used with a student-teacher method to achieve SOTA results on different visual domain
adaptation benchmarks for classification. Adversarial Discriminative Domain Adap-
tation (ADDA) [29] generalizes the model from the source to the target domain by
changing the feature encodings in the layer before the output layer. The main method
used throughout this paper is based on ADDA and will be further explained in Sec-
tion 3. More recently, the strong-weak alignment method [25] adapts global and local
features adversarially with a domain classifier to again create domain-invariance. Se-
lective Cross-Domain Alignment [34] uses a similar idea but focuses on discriminative
regions of the image representations to perform adaptations. The main ideas are ”where
to look” and ”how to align”. Diversify and match [12] obtains better generalization
to other domains by diversifying the labeled data and then matching the features ad-
versarially to make them close to domain-invariant. FRCNN in the wild [3] uses the
representation from the RPN to get instance-level invariance and the image representa-
tion to get image-level invariance. Hsu et al. [9] combine techniques from ADDA and
image-adaptation, using a cycleGAN, to improve generalization to a target domain.

All the methods listed above use a two-stage detector, mostly Faster-RCNN. These
two-stage detectors reduce halfway the changes in performance introduced by the do-
main gap between the model trained on source data and target data (oracle). To the best
of our knowledge, these unsupervised domain adaptation approaches have not been
tested on one-stage detectors like YOLO or SSD which would significantly improve
the fps and could enable use on edge devices.

3 Proposed Method

We hypothesize that a model trained on a large labelled dataset can be transferred to
a new environment by adversarial training on- or offline. This hypothesis is based on
the success of the transfer learning techniques mentioned in Section 2.2. We test this
hypothesis by using the principle of adversarial feature manipulation for domain adapta-
tion. Adversarial Discriminative Domain Adaptation [29] is a method to acquire a clas-
sification model for a target domain which only has unlabelled samples. This method
consists of the following steps (see Figure 1): First, an initial classification model is
trained on a large dataset of labelled data sampled from the source domain. Then, a do-
main discriminator and another classification and detection model, i.e. the target model,
are trained alternately. The input of the discriminator is the feature encoding just before
the last YOLO-layer, computed by alternately encoding the source and target images.
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After training, the discriminator should not be able to distinguish the extracted feature
encodings from source and target domain. This can be done by using an inverted-label
GAN loss, with the following loss function for the domain discriminator:

Ldisc = −(1− Y )log(1−D(E(I)))− Y log(D(E(I)), (1)

where Y represent the domain label, E(I) the encoded feature from image I , and
D(X) the prediction of the domain classifier with featureX as input. The discriminator
is trained by minimizing Ldisc, while the encoder is trained by minimizing the binary
cross-entropy loss of the detector and maximizing Ldisc.

Finally, the target encoder is evaluated by feeding target samples which are mapped
to an approximately domain-invariant feature space and afterwards classified by the
source classifier

Fig. 1: Adversarial Discriminative Domain Adaptation (figure adapted from [29]) con-
sists of three steps: 1. Pretraining the source model. 2. While freezing the source en-
coder, adversarially training target encoder and domain discriminator to obtain feature
encodings that fool the domain discriminator. 3. Evaluate performance by combining
target encoder and source classifier.

3.1 Adversarial Domain Adaptation for Object Detection

The focus in this paper is not only a classification task but also a localization aspect,
i.e. object detection. Although different, the principle of ADDA in an object detection
setting remains the same by mapping the feature encodings to a shared feature space
between domains. As mentioned in section 2, the application of ADDA for object detec-
tion has been studied in several manners in conjunction with a Faster-RCNN network
and has shown promising results. For successful domain adaptation with a one-stage
detector like YOLOv3 [22], an extra step is needed to align the domain-invariant fea-
tures with the source output layer, i.e. a detection and classification YOLO-layer. This
can be done by training on a small target dataset for a couple of epochs. Consequently,
there is no mismatch between encoding and output layer. The feature encodings will be
slightly shifted to the target domain which can cause a decrease in performance in the
source domain, yet enhance its performance on the target domain.

Applying ADDA in the context of the object detection task consists, mainly, of three
steps (see Figure 2):
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First, the source model needs to be fine-tuned on the large source dataset.
Second, (a) as an intermediate improvement step, it is possible to use a cycle-

GAN [33] to create synthetic images from the source dataset that are more similar to
the target images. This is achieved by using cycle consistency loss, which enables the
use of unpaired data. Two generators map domain A to B and vice versa. The principle
here is that by applying both generators sequentially, the output image should be the
same as the input image. The comparison between input and output is the basis for the
generator loss function. In between generators, domain classifiers differentiate between
synthetic and real images. The generators are thus trained by minimizing generator loss
and maximizing discriminator loss. In this way, we create an intermediate domain that
is closer to the target domain, and makes it easier to close the domain gap with domain
adaptation. These synthetic images substitute the original source dataset and do not alter
the structure of the adversarial feature adaptation algorithm.

(b) Training a domain classifier alternately on source and target images to distin-
guish between them and adapt the feature maps with an inverted-label GAN loss [29].
This loss is used to achieve domain-invariant features in order to fool the discrimina-
tor. Important for this step is that the discriminator is pre-trained, otherwise, it may
take a longer training time to show significant improvement, if any. The quality of the
domain-invariant features depends on the quality of the domain classifier.

Third, the target model is fine-tuned with a small number of target images. For our
experiments, we use 30 randomly chosen target images as the small fine-tuning dataset.
More details will be presented in Section 5.2.

4 Implementation details

In our experiments we considering the YOLOv3 [22] detector with Darknet-53 feature
extractor which has 53 convolutional layers. The input images are resized to 640×320
pixels and training is done with a batch size of 16. These features form the basis for the
detection, classification and localization with the final YOLO-layer. Due to a feature
pyramid network (FPN) [17], it is possible to predict objects more accurately at differ-
ent scales because of the up- and downsampling steps with skip connections between
layers with equal feature size. These skip connections combine low-resolution complex
features with simple high-resolution features. The FPN of YOLOv3 consists of three
different scaling stages and can thus predict for 3 different image sizes.

The domain classifier is a feed-forward model with 5 convolutional layers and a
sigmoid classification layer at the end.

All models are trained on an Nvidia Tesla V100-SXM3-32GB GPU. For the training
of the Darknet-53 network, binary cross-entropy is used as the loss function. Stochastic
gradient descent with Nesterov momentum β = 0.937 optimizes training. The initial
learning rate is α = 1e−2 and the final learning rate is αf = 5e−4 where the learning
is rate is defined by a cosine curve.

αcurrent = αf +
1

2
(α− αf )(1 + cos(

epochcurrent
epochmax

π) (2)

The discriminator is trained on batches of 16 images utilizing an Adam optimizer with
β1 = 0.5 and β2 = 0.999 to decrease the binary cross-entropy loss function. The
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Fig. 2: Inspired by ADDA [29], our domain adaptation algorithm for one-stage object
detection also consists of three steps: 1. Pre-training on source images. 2a. An interme-
diate improvement step of the model is replacing the source domain images with syn-
thetic images generated from a cycleGAN. These generated images create an intermedi-
ate domain, which is closer to the target domain. 2b. Adversarially train Darknet-53 en-
coder and domain discriminator for obtaining domain-invariant features. Note that, the
difference with ADDA here is that the source and target encoder have shared weights
which improves generalization to both domains. 3. Fine-tuning the model on a small
target dataset.
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domain classifier is more difficult to train. Its learning rate is changed depending on
the problem and domain gap. We empirically determined the interval of the learning
rate as α = 2e−8 ∼ 2e−10. The learning rate for the experiments is optimized with a
hyperparameter sweep.

5 Evaluation

5.1 Datasets

We evaluate our method in the following datasets:
COCO2017 (COCO) [18] is a large dataset that consists of 80 labeled classes. In

this study, only the car class is considered. From these examples, 8000 images are used
for training and 4000 for testing.

KITTI Object Detection Benchmark (KITTI) [7] is a large annotated dataset with
15000 images captured from a car-mounted camera. We used 5400 images for training
and 1300 for testing.

OpenImages (OI) [14] is a dataset of 9M images annotated with image-level labels,
object bounding boxes, object segmentation masks, visual relationships, and localized
narratives. For the transfer learning task covered in this research, we chose two similar
classes, i.e. Tiger and Lion. Each class has approximately 1000 samples after cleaning
up the data.

Cityscapes (CS) [4] is a dataset that consists of 6 labeled classes from urban street
scenes. 2976 images are used for training and 500 for testing. For domain adaptation
benchmarks, Cityscapes also has foggy Cityscapes dataset which consists of the same
images synthetically augmented with a fog using depth images to blur distant objects
[26].

5.2 Experiments

To validate the proposed adversarial feature adaptation method when integrated with
single-stage detectors, we test our approach on two simple domain adaptation prob-
lems with datasets that look similar, i.e. a smaller domain gap. Concretely, we look at
the COCO dataset versus the KITTI dataset with the focus on the car class. This ex-
haustively studied case can be a stepping stone towards other autonomous means of
transportation. We will adopt the Mean Average Precision (mAP), at 0.5 Intersection
over Union (IoU), precision, and recall as performance metrics. In addition, we report
the framerate, i.e. the number of frames processed per second (fps), as an indicator of
the computation costs during inference.

Inference speed The framerate is only dependent on the type of detector that is used
as a backbone. The YOLOv3 detector achieves a framerate of 156 fps on an Nvidia
Tesla V100-SXM3-32GB GPU and 1.83 fps on a 2.7GHz vCPU. In comparison, the
Faster-RCNN with VGG-16 [28] achieves a framerate of 17 and 0.24 fps on the same
GPU and vCPU, respectively. The latter is more representative for edge devices.
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These results stress the need for good object detection performance with one-stage
detectors since this speed-up can determine the feasibility of an application or not.
For example, in the marine sector, a lot of research is done on autonomous vessels,
with an operating speed from 5 to 15km/h. To navigate autonomously, they need to
detect nearby objects in the waterway. Importantly, these vessels should be able to scan
the environment frequently, around one or two times per second, which is sufficient at
these low speeds [2]. Comparable new applications will thus benefit from a fast domain
adaptation pipeline.

Object detection performance with domain adaptation To measure the performance
of the method, we compare the mAP, precision, and recall of each transfer learning
technique to a target domain with two models trained on target data. We compare with
the following two models: Base (no TL): the vanilla YOLOv3 model trained on 30
annotated target images without transfer learning. Oracle: the YOLOv3 detector trained
on the full annotated target dataset.

Table 1: Performance baselines on COCO and KITTI focused on the car class
KITTI COCO

fine-tuned on
tested on

mAP P R mAP P R

COCO 0.744 0.623 0.785 0.704 0.666 0.713
KITTI (Base) 0.728 0.733 0.718 0.318 0.464 0.367

KITTI (Oracle) 0.974 0.936 0.961 0.22 0.822 0.166

Table 1 shows the results for the Base and Oracle models evaluated on the validation
sets of the COCO and KITTI datasets. Several observations can be made in Table 1.
First, and as expected, the models trained on images with the same distribution as the
validation images have the highest performance. Second, a model fine-tuned on a larger
dataset (Oracle) performs better than one trained on a smaller dataset (Base). However,
it seems that this gain in performance comes a the cost of lower generalization towards
other datasets, e.g. cross-dataset evaluation.

Taking the observations from above into account, we expect the performance of the
models with transfer learning to lie somewhere in between Base and Oracle.

Measuring the effect of domain adaption We designed two experiments to measure
the effect that domain adaptation has on performance.

On the first experiment we apply domain adaptation to train a model from COCO to
KITTI dataset, with the focus on the car class. This experiments will focus on modelling
intra-class variations introduced by the domain shift.

On the second experiment, we apply domain adaptation to train a model for a Lion
class starting from the Tiger class. Both classes are extracted from the OpenImages
dataset. Here, transfer learning is performed between two similar, yet different, classes.
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This experiment aims at assessing the effect of domain shift caused by inter-class vari-
ations [10].

For both experiments, we limit ourselves to only consider 30 labelled target im-
ages. In future work, the minimum number of needed labelled target images to achieve
improvements will be investigated.

Fig. 3: Precision and Recall curves for the different transfer learning methods (trained
on the COCO dataset) and the oracle model, evaluated on the KITTI dataset.

Table 2: Performance domain adaptation techniques from COCO to KITTI tested on
both COCO and KITTI validation sets.

KITTI COCO
Method mAP P R mAP P R

No TL (Base) 0.728 0.733 0.718 0.318 0.464 0.367
Feature adaptation 0.796 0.824 0.727 0.584 0.729 0.54

CycleGAN 0.733 0.81 0.653 0.421 0.664 0.378
CycleGAN + feature adaptation 0.797 0.876 0.714 0.519 0.826 0.411

Tables 2 and 3 show the results for experiments one and two, respectively.
In general, it can be noted that combining feature adaptation with synthetic data

augmentation from a cycleGAN gives the best results (mAP) for both experiments in
their respective target domains, i.e. KITTI-cars and Lion. The models for KITTI-cars
and Lion improve 5% and 10%, respectively, compared to their Base performance. If
we define the domain performance gap as the difference in mAP between Base and Or-
acle, then the gap is closed by 28%, from 0.728 to 0.797 with an Oracle of 0.974 mAP.
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Fig. 4: The ground truth is shown above the line and predictions on images from the
KITTI dataset, generated by the different models, under the line. The models from top
to bottom are: no TL (Base) (R1), feature adaptation (R2), cycleGAN (R3), feature
adaptation with cycleGAN (R4), and Oracle (R5).
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Table 3: Performance domain adaptation techniques from Tiger to Lion tested on both
Tiger and Lion validation sets.

Lion Tiger
Method mAP P R mAP P R

no TL 0.727 0.919 0.609 0.797 0.915 0.607
Feature adaptation 0.764 0.855 0.715 0.908 0.881 0.906

CycleGAN 0.747 0.99 0.661 0.947 0.967 0.836
CycleGAN + feature adaptation 0.768 0.922 0.711 0.926 0.896 0.906

The precision improves significantly by adding the synthetic images while maintain-
ing a similar recall. Figure 3 further confirms the fact that the combination of feature
adaptation together with synthetic images from a cycleGAN has the best performance
out of the domain adaptation techniques. It also shows that using synthetic images has
an advantage regarding precision while maintaining a similar recall. As hypothesized
earlier, we observe that the Oracle model outperforms the transfer learning techniques.

The focus is on the car experiment, as the KITTI and COCO dataset sizes are large
compared to the OI datasets of the Tiger and Lion classes. This means that more la-
belled source domain images are present for training, and the evaluation results are
more accurate representations of the models’ performance on the target domain, as an
outlier will have less impact on the overall performance. Although smaller, the Tiger to
Lion domain adaptation still shows the increased performance with adversarial learning
in an inter-class setting.

Figure 4 shows qualitative detection results. More specifically, it shows predictions
of the different models on the KITTI validation dataset. The different baselines include:
Base (no TL) (R1), a feature adaptation model (R2), a model trained on cycleGAN syn-
thetic images (R3), a feature adaptation model with cycleGAN synthetic images (R4),
and Oracle (R5). The target models are designed for the target dataset. Remarkably,
applying transfer learning techniques improves the generalization back to the source
domain. This is in contrast to no transfer learning (no TL) with a model only fine-tuned
on 30 labelled target images starting from the source model. The domain-invariant fea-
tures and the intermediate domain dataset generated from a cycleGAN play the most
important factors for this result.

Use of intermediate domain from a cycleGAN Figure 5 shows the result of using a
cycleGAN to generate the synthetic images in an intermediate domain between source
and target domain. It is clear that after the transformation from tiger to lion, the tiger
stripes have vanished and that the colour changed from orange to tawny yellow. There is
a blurring effect that can have a negative effect on performance but this is likely caused
by the small size of the Lion dataset. The transformation from COCO to KITTI mostly
changed the background as the COCO dataset contains more urban-based images while
the KITTI dataset depicts cars more in or around a forest. That is why the generated
images contain fake trees in the background, even in the reflection of the car window.
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Effect on the domain-shift The accuracy of the domain classifier, before and after
adversarial training on the image encoder, can also provide some insight on the observed
performance. Before any adversarial training of the feature encodings, the pre-trained
domain classifier can predict with approximately 55% accuracy, in both experiments,
what the domain of the tested feature encodings is. After adversarial training, this drops
to 50%. The similarity between datasets causes a very low accuracy of 55%. Still, the
feature encoder manages to extract useful information from the domain classifier to
compensate for the subtle differences between datasets.

To follow up on this observation, we conducted an additional experiment focused on
the ships class. More specifically, where the source dataset is the Seaships dataset [27]
and the target dataset is a self-annotated dataset from videos recorded on a cargo ship
on inland waterways. The main difference between those two datasets is the point-of-
view, on-board versus on-shore. Because of this significant difference, the discriminator
model performs very well and has an accuracy of 95+%. Because of this large domain
gap, the adversarial model is not able to manipulate the encoded feature spaces to-
ward each other. This shows the limitations of using only adversarial training. More
pre-processing steps are needed than only a Cycle-GAN to close the domain gap for
effective adversarial learning.

Unsupervised setting In Table 4 a comparison is made between existing methods and
the methods explained and tested in this paper in an unsupervised manner to adapt from
the Cityscapes to the foggy Cityscapes dataset. The difference with the experiments
above is that this time, there is not a last fine-tuning step with a small target dataset.
In Table 4, it is clear to see that the methods with feature adaptation in combination
with YOLO do not improve the results. Using a CycleGAN to create synthetic images
works well. As the foggy Cityscapes itself is a synthetic dataset, it is not surprising that
training on synthetic images from a CycleGAN generates a good result.
The other methods all also use some kind of adversarial feature adaptation, the main dif-
ference is the object detection architecture. In Faster-RCNN, there is a Region Proposal
Network (RPN) which already gives a good idea where objects of interest are while fil-
tering out the background. Our theory is that performing adversarial feature adaptation
on these region proposals is much more specific and accurate domain adaptation. This
understanding can be the key for future work to understand how to replace this RPN
in YOLO to have fast, accurate and specific domain adaptation without the need for a
small target dataset. The previous semi-supervised experiments are still valid as they
improve the baseline model significantly.

Summarizing To summarize, this one-stage object detection model enables near real-
time use on edge devices with 2 fps on a 2.7 GHz vCPU. The domain performance
gap is reduced by 28% (difference between mAP of Base and Oracle) on the COCO
(source) and KITTI (target) datasets. The synthetic images from a cycleGAN to replace
the source images have a positive effect on the precision and mAP of the model and
form a good option to boost performance. The algorithm works both for inter- and
intra-class domain adaptation.
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Table 4: Performance domain adaptation techniques from Cityscapes to foggy
Cityscapes, tested on the foggy Cityscapes validation set.

Method car truck bus train motorcycle bicycle mAP

FRCNN in the wild [3] 40.5 22.1 35.3 20.2 20.0 27.1 27.6
Diversify and Match [12] 44.3 27.2 38.4 34.5 28.4 32.2 34.6
Strong-Weak Align [25] 43.5 24.5 36.2 32.6 30.0 35.3 34.3

Progressive DA [9] 54.4 24.3 44.1 25.8 29.1 35.9 36.9
Feature adaptation 45.9 26.9 22.1 4.77 12.3 21.8 22.3

CycleGAN 68.7 41.8 40.1 17.9 16.7 30 35.9
CycleGAN + feature adaptation 37 27.5 30.4 14.2 7.46 16 22.1

6 Conclusion

We presented a method that enables object detection with a limited amount of labels
on edge devices in near real-time. The main advantages are three-fold. First, the use
of only a limited annotated target dataset, the amount of labels needed depends on the
desired trade-off between cost and performance. Second, by using a one-stage detec-
tor, the proposed systems achieves an increased object detection speed approximately
eight times faster. This enables the possibility to use edge devices, such as a 2.7GHz
CPU which reaches almost 2fps. Third, a reduction of 30% in the changes in perfor-
mance introduced by the domain gap. Moreover, we observed a significant increase
in performance for inter- and intra class domain adaptation. In the unsupervised set-
ting, we saw that finding an alternative for the RPN, implemented in the Faster-RCNN
model, for the YOLO model can accelerate the adversarial training to achieve specific,
accurate and fast domain adaptation. There are also some disadvantages of using this
method: On the one hand, a two-stage detector like Faster-RCNN closes the domain
gap more. In Hsu et al. [9] the domain gap is closed by 56% where the target domain
is Cityscapes [4] and the source domain is KITTI, also focused on the car class. On the
other hand, a source domain with abundantly available data is needed that resembles the
target domain. In our experiment, these source domains are the Tiger class and COCO.
When the gap is too large between source (Seaships) and target domain (self-annotated
vessel dataset), using only adversarial training methods fall short and additional pre-
processing is needed to close the domain gap before using this algorithm.
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Fig. 5: These four columns of images show the transformations, by using a cycleGAN,
of the source domain images to generate synthetic images, which try to match the target
domain distribution. The source image is shown in the first and third column in both
examples (Tiger from Open Images, and car from COCO), and the generated output
which tries to mimic the target images is shown in the second and fourth column (fake
Lion from Open Images, and fake car from KITTI). In the Tiger to Lion example, the
generated output is blurred, yet tiger stripes have vanished and the colour changed from
orange to tawny yellow. In the car example, the environment changes from urban to
woodland.
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Abstract. In recent years, Capsule Networks (CapsNets) have achieved
promising results in tasks such as object recognition thanks to their in-
variance characteristics towards pose and lighting. They have been pro-
posed as an alternative to relational insensitive and translation invariant
Convolutional Neural Networks (CNN). It has been empirically proven
that CapsNets are capable of achieving competitive performance while
requiring significantly fewer parameters. This is a desirable characteristic
for Deep reinforcement learning which is known to be sample-inefficient
during training. In this paper, we propose DCapsQN, a task-independent
CapsNets-based architecture in the deep reinforcement learning setting.
We experiment in the model-free reinforcement learning setting, more
specifically in Deep Q-Learning using the Atari suite as the testbed of
our analysis. To the best of our knowledge, this work constitutes the first
CapsNets-based deep reinforcement learning architecture to learn state-
action value functions without the need for task-specific adaptation. Our
results show that, in this setting, DCapsQN requires 92% fewer parame-
ters than the baseline. Moreover, despite their smaller size, the DCapsQN
provides significant boosts in performance (score), ranging between 10%
- 77% while further stabilising the Deep Q-Learning. This is supported
by our empirical results which shows that DCapsQN agents outperform
the benchmark Double-DQN agent, with Prioritized experience replay,
in eight out of the nine selected environments.

Keywords: Deep reinforcement learning · Capsule networks · Deep Q-
learning.

1 Introduction

Reinforcement Learning (RL) is an experience-based learning paradigm, where
the agent interacts with the environment by performing an action and learns
how to maximize its cumulative reward based on the returned rewards. The
learning is based on trial and error and often requires a large amount of data
for Deep Reinforcement Learning (DRL). In recent years, with advancements in
Deep Learning (DL), Convolutional Neural Networks (CNNs) have made break-
throughs in multiple machine learning tasks like natural language processing
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and computer vision [12, 14]. The field of DRL has benefited from the remark-
able flexibility and advancement of DL as well. CNNs have remarkable flexibility
to learn features for the agent to learn a proper policy or value function. Having
scalar nature, CNNs have additive nature in neurons at any given layer, they
are ambivalent to spatial relationships within their kernel of previous layers [15].
Thus despite their good performance, they have an inherent weakness of limited
modelling capabilities for spatial relationships between the learned features [25,
29]. For example, for the task of recognizing faces in images, CNNs are capable
of learning the regions that resemble a nose or a mouth. However, when recog-
nizing a face, at test time, they have the weakness of focusing on the occurrence
of these “facial parts” and completely ignore the spatial arrangement in which
these should occur in order to effectively represent a face.

Capsule Networks (CapsNets) were designed to mimic human vision [9, 25].
They address the inherent limitation of CNNs, while significantly decreasing the
required number of parameters. CapsNets aim to preserve the spatial information
(pose and precise location) and attributes (length, thickness etc) by encoding
features in vectors rather than scalar values. Under this formulation, the mag-
nitude of the vector represents the probability of the existence of the entity it is
representing. CapsNets in DL require less training data, which is a desirable at-
tribute within a DRL setting. The architectural design of CapsNets profits from
dynamic routing. Routing by agreement is a novel dynamic routing technique, it
plays a key role in preserving spatial information. The architectural overview of
capsules draws inspiration from the Multi-Layer Perceptron architecture. This
architecture with routing by agreement is designed to preserve part-whole rela-
tionships (locations, orientations, etc.) between various entities levels which may
be a complete entity or part-of an entity. For example, the relative positions of
a nose and a mouth on a face in a portrait. [25] used the magnitude of a vector
from the last layer of CapsNets for classification in supervised deep learning.

Reinforcement learning approaches such as DQN strive to estimate the action-
value function [19, 18]. Traditionally for vision-based tasks, an agent’s architec-
ture uses CNNs and fully connected layers to approximate the optimal action-
value function. The CNN-based architecture of the agent in various deep rein-
forcement learning algorithms [19, 28, 26] are inspired from [11]. The agent learns
on raw sensory input that uses CNNs to mimic the effects of receptive fields [19].
While the magnitude of the vector in CapsNets is a good surrogate for multi-
class classification, it is not a good candidate for estimating the state-action
value function in DRL.

Here we propose DCapsQN, an architecture suitable for an agent to learn
value functions based on part-whole relationships. We demonstrate how part-
whole relationships assist in value function estimation and that Q-estimates
from them are much more self-coherent. Owing to a large number of atari envi-
ronments and their experimental/computational costs, we limit our experiments
to a diverse subset of environments with different natures and tasks.

Across multiple environments, the proposed agent uses 92% fewer parameters
and improves 10%-77% on performance (score) compared to the baseline.
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The main contributions of this paper are:

1. Introducing DCapsQN, a task-agnostic CapsNets-based architecture.
2. Presenting the first CapsNets based architecture study on the atari bench-

mark.
3. Comparing DCapsQN to the traditional CNN-based architecture of DeepQN,

showing a reduction in the number of trainable parameters.

2 Background

2.1 Capsule Networks

Computer graphics employ Hierarchical Modeling for building complex objects
by placing simpler objects and their known relations [7]. The idea of CapsNets is
to achieve the capabilities of inverse hierarchical modelling to better understand
the scene where lower level capsules represents simpler entities and higher level
capsule represent the complex. The concepts of capsule (Fig. 1) and CapsNets
(Fig. 2) were introduced in [25] to retain the spatial relationship between complex
and simple entities [9, 25]

CapsNets architecture is inspired from Multi-Layer Perceptron architecture,
where a capsule replaces a neuron in a layer. Capsule [25], as a fundamental unit
of CapsNets, can be defined as a group of neurons where the activities of the
neurons within a capsule represent the various properties like pose (position, size,
orientation) (Fig. 1). Capsule encodes an entity as a vector where its magnitude
represents the probability of entity occurrence and its orientation represents
attributes of the entity (Fig.1). The magnitude of the vector output is always
bound between 0 and 1.

We arrange capsules in 2 levels, in lower level l they are called primary
capsules and upper-level l+1 they are called secondary capsules.

Fig. 1: The similarity between a capsule and a neuron. [16].

Primary capsules: Following the first convolutional layer, the primary capsule
(PrimaryCaps) is responsible for transforming scalar values into a vector. A
capsule in Fig.2 refers to a group of convolutional layers. It is the first layer
where the process of inverse hierarchical modelling takes place. The capsule here
reshapes the feature maps outputs of convolutional layers to output vectors.
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Fig. 2: The figure shows fundamental Capsule network architecture.

Secondary Capsules: Following PrimaryCaps is Secondary Capsules (Sec-
ondaryCaps). They receive an input vector from PrimaryCaps. The weight ma-
trix Wij transforms the output vector of a PrimaryCaps to serve as input to
SecondaryCaps.

ûj|i = Wijui (1)

Routing by agreement: Routing by agreement is a dynamic routing technique
introduced in [25]. Pooling operations statically forward the relevant information
from the previous layer to the following layer and in this process, it loses infor-
mation. Contrary to statically connected pooling layers, dynamic routing during
the forward pass redirects the output from PrimaryCaps to the most relevant
parent in SecondaryCaps. Each capsule i (where 1 ≤ i ≤ N ) in a layer l has
vector ui to encode spatial information. The output of PrimaryCaps ui of the
ith layer acts as input to all capsules in layer l+1 of SecondaryCaps.

The Coupling coefficient cij is iteratively determined through routing by
agreement. It represents the agreement of a capsule of layer l with l+1. If the
agreement is high, the coupling coefficient for child-parent will increase, other-
wise, it would decrease. The coupling coefficient plays a role in the child-parent
relationship to form a parse tree-like structure in CapsNets. The weighted sum
(sj) from all PrimaryCaps contributes to forming the output of SecondaryCaps.

sj =

N∑

i=1

cij ûj|i (2)

The magnitude of the output vector from PrimaryCaps is limited between 0
and 1 by using a squashing function. The magnitude of the vector represents the
probability of the existence of an entity represented by a capsule.

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(3)

The squashing function makes sure to limit the length while still retaining
the positional information.
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2.2 Deep Reinforcement Learning

We study the utility of CapsNets-based representations in Double DQN using
prioritised experience replay. The method uses proportional prioritization of pri-
oritised experience replay.

The Q-learning algorithm is a temporal difference learning algorithm. To
update the value estimate of a state-action pair, the temporal difference (TD)
error is computed at each time step. Deep Q-learning was first introduced by [18]
to approximate Q-values for high dimensional sensory input. Deep Q-learning
is known to be unstable and it overestimates the Q-values. To remedy this [28]
proposed Double DQN. They decoupled the networks for selecting and evaluating
an action separately. The agent generally selects an action using ε-greedy policy.
Under the ε-greedy policy, agents can take a random action with ε probability
or select an action with 1-ε probability maximising Q(s, a).

An Experience replay is used to store the agent’s interaction with the environ-
ment at each time step [18]. This buffer is used to sample batches of experience
during training. [26] proposed a new experience replay design called prioritised
experience replay (PER), where the most important experiences were replayed
to the agent. The importance or priority of experience was calculated using the
TD error. With the design choice, [26] were able to empirically show that ex-
perience replay became more efficient and effective, which led to even better
and faster learning of an agent. The agent performed better compared to the
previous state-of-the-art DQN.

3 Related work

On account of the drawbacks of CNNs, [25] introduced the idea of CapsNets,
but most of the published research on CapsNets is currently focused in the field
of deep learning.[5, 21, 23, 24] extend the work of [25] by proposing new capsule-
based architectures. [23] proposes a DenseNet-like skip connection where the
standard convolution component in the CapsNet is replaced with a hierarchi-
cal architecture. The resulting architecture outperforms the original CapsNets
on datasets like SmallNORB and Cifar-10. [24] remove the margin loss to show
that unsupervised training of sparse capsules can potentially lead to deeper archi-
tectures while achieving higher accuracy. [5] proposes a novel routing algorithm
based on eigen-decomposition of votes. This leads to a higher convergence speed
of the new architecture compared to original CapsNets. [2, 3, 1] and [15] inves-
tigate the performance of CapsNets in medical applications like brain tumour
classification, COVID cases classification, Alzheimer disease detection and Lung
segmentation. [30] study 3D-capsules for pose estimation. The work exploits the
structural relations among local parts for pose estimation. [10] propose dual
attention mechanism capsule network for higher accuracy and faster training.

While CapsNets have gained popularity in standard deep learning approaches,
their study within a Deep Reinforcement Learning (DRL) context has received
significantly less attention. [4] tries integrating CapsNets with Deep-Q Learning.
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They showed that CapsNets-based agents underperform with respect to their
baseline. The experiments were done on FlashRL with environments like Flappy
Bird, Deep Line wars etc. The architecture takes 84×84 input which propagates
to output n× 16 vector from last capsule layer. n being number of actions. The
architecture proposed by [4], employs the magnitude of the vector output from
the last capsule layer for action-value estimation. The authors [4], do not take
into consideration that magnitude of the vector from a capsule is not a good fit
for action-value estimation. While the value function could have any negative or
positive value, the magnitude of the vector output from CapsNets is bounded
between zero and one (Eq.3).

[20] combines CapsNets with A2C, but limits the scope of the study to only
maze navigation in the ViZDoom environment. The ViZDoom environment only
[13] provides tasks like move-and-shoot and maze navigation. Unlike the ViZ-
Doom, the atari benchmark offers a more diverse, challenging and conceivable
tasks in learning, modelling, and planning. Inspired from previous studies [18,
28, 19], we choose a widely accepted Atari benchmark [6] to empirically show the
advantage of our framework in task-agnosticism and parameter reduction. The
study proposes a generalised CapsNets-based agent to learn a state-action value
function with no task-specific adjustments. Our DCapsQN, to the best of our
knowledge, is the first generalised, task agnostic framework to learn state-action
value functions to solve nine diverse atari tasks in addition to maze traversals.

4 Methodology

In this section, we introduce the agents and the environment used as a testbed
for the analysis. We employ the atari suite for our experiments as it provides a
variety of environments with respect to input space, action space and rewards.

Baseline Agent For the baseline, we choose Double-DQN with prioritised ex-
perience replay [26, 28]. The first layer in this architecture is a convolutional
layer composed of 32, 8×8 convolution kernels with a stride of 4. This first layer
feeds a second convolutional layer of 64, 4×4 kernels with a stride of 2. The
third layer receives input from the second and has 64, 3×3 kernels with a stride
of 1. The last convolutional layer of this set is connected to two FC layers. The
first FC layer is composed of 512 neurons while the second FC layer is composed
of a number of neurons equal to the output value estimates for the actions of
interest. ReLU acts as the activation function for all the layers except the last
FC layer. The architectural design of the CapsNets-based agent is depicted in
Fig. 3 (bottom).

DCapsQN Agent In a DRL agent, CNNs learn relevant visual features with
respect to the task at hand while the FC layers aim at learning valuable com-
binations of these features and map them to value functions related to the ac-
tions of interest. In this regard, the FC layers learn the value function based
on the features generated by CNNs. We explore the application and utility of
CapsNets-based representations with Double DQN. The architectural design of

Regular papers BNAIC/BeneLearn 2021

584



Task Independent Capsule-based Agents for Deep Q-Learning 7

the DCapsQN depicted in Fig. 3 (top), takes inspiration from [25, 28] to learn
part-whole relationship between visual entities in input state.

Fig. 3: DCapsQN (top) and Double-DQN (bottom) architecture.

A convolutional layer acts as the first layer, as shown in Fig.3. The Convolu-
tion layer has 16, 3×3 convolution kernels with a stride of 4 and ReLU activation.
This layer detects features from states and serves as an input to the Primary
capsule layer. We have 49 capsules in the Primary capsule layer. A Primary
capsule layer, here is a collection of convolutional capsules. A single convolution
capsule comprises of a group of convolution layers with 9×9 kernel and with a
stride of 2. Each capsule in the PrimaryCaps receives the input of all convolu-
tional layers. Each primary capsule outputs an 8-dimensional vector. The output
from the Primary capsule serves as input to the Secondary capsule layer. The
Secondary capsule layer has 8 capsules with each Secondary capsule produc-
ing a 16-dimensional vector as output. Each of the Secondary capsules receives
the input from all Primary capsules. The connection between the PrimaryCaps
layer and the SecondaryCaps is controlled by dynamic routing. In our study, we
followed the routing by agreement algorithm [25] where each child chooses its
parent based on the cosine similarity between its transformed vector output and
the vector output of its candidate parent. The dynamic routing between layers
utilizes the vector output from capsules to preserve hierarchical relations in a
state. Three routing iterations are used between capsule layers in order to find
optimal weights for relations between layers.
Environment The Arcade Learning Environment (ALE) [6] is a popular bench-
mark composed of a collection of Atari 2600 games. It provides a challenging and
diverse set of tasks with respect to visual input, rewards returned by the envi-
ronment, action space and difficulty. [17] integrate around 40 techniques from a
dozen papers in order to determine the difficulty level of the games that are part
of the benchmark.

Atari offers 57 environments, to compare the performance of our DCapsQN
agent with respect to the baseline agent, we choose a subset of the environments
that are diversified in terms of visual input (simple, complex), reward (sparse,
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dense), action space(3, 4, 6, 8, 18) and difficulty score [17]. Across various tasks,
both agents are tasked with collecting the maximum reward. The environment
gets reset the moment when the agents use all of their lives.

The input states are composed of simple states such as Pong, Boxing to fairly
complex input states like Fishing Derby or Alien. The tasks are also diversified
with respect to rewards offered by the environments. The agents are evaluated
with dense rewards environments like Breakout, Pong and sparse rewards envi-
ronments like Fishing Derby. Further, we the select the tasks that lay in difficulty
spectrum of −2 to 10. Higher the difficulty score, lower was the performance of
most able techniques considered in [17]
Training protocol With Atari, we restrict the training of both agents to only
20 million steps. The DCapsQN-based agent uses a batch size of 128 and a
Learning rate of 0.00015 with RMSprop optimizer and Prioritised experience
replay with alpha = 0.5 and beta with linear annealing from 0.4 to 1. The other
hyper-parameters such as discount rate, the size of the experience replay memory,
target network updates are the same as [26]. Baseline agents use the same hyper-
parameters as described in [26]. An epsilon-greedy action selection method is
employed to balance our exploration and exploitation. Both Double DQN and
DCapsQN based agents randomly explore for the first 50000 steps and then
linearly decrease the probability to randomly select an action for the next 1e6
steps. At end of 20 million steps, there still remains an exploration probability of
0.01. The evaluation section compares the cumulative reward collected by agents
in all tasks. The average is calculated from 4 randomly initialized agents.
Evaluation protocol For evaluation, we refer to [26, 28]. We evaluate both
agents every 1 million steps and average over 100 episodes. The other hyper-
parameters are the same as Double-DQN [28].

5 Analysis

In any given task an agent collects rewards to maximize its performance. The
cumulative reward collected by an agent is the attribute that links to the agent’s
success in a given task. Apart from the cumulative rewards, to better understand
the CapsNets-based representation in DRL environments, we try to get a deeper
insight regarding the agents’ performance under different attributes, e.g. input
states, rewards and action space, of the environments.

5.1 Cumulative reward and Parameters

Our DCapsQN agent (Sec 4) has around 92% lower number of trainable pa-
rameters compared to baseline. To highlight the difference, Table 1 presents a
comparison of trainable parameters of both agents under different environments.
To show the effectiveness of the representations learned via CapsNets, we com-
pare the agents’ performance with respect to the cumulative reward collected
by them in all of the analyzed tasks. Table 2 presents the comparison of the
performance of both agents. Though DCapsQN agents have a lower number
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(a) Alien (V3) (b) Boxing (V1)

(c) Breakout (V2) (d) Fishing derby (V3)

(e) Pong (V1) (f) Qbert (V2)

(g) Space invaders (V3) (h) Tennis (V1)

(i) Tutankham (V3)

Fig. 4: Average score collected by the agents in the respective environment. The
agents follow an epsilon greedy policy. The shaded area represents the± standard
deviation over 4 runs.
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Table 1: Parameters comparison.
Environment name DCapsQN parameters Baseline parameters Difference

Alien (V3) 136,426 1,693,362 91.94%
Boxing (V1) 136,426 1,693,362 91.94%

Breakout (V2) 129,244 1,686,180 92.33%
Fishing Derby (V3) 136,426 1,693,362 91.94%

Pong (V1) 130,270 1,687,206 92.27%
Qbert (V2) 129,244 1,686,180 92.33%

Space Invaders (V3) 136,426 1,693,362 91.94%
Tennis (V1) 130,270 1,687,206 92.27%

Tutankham (V3) 131,296 1,688,232 92.22%

Table 2: Performance comparison

Environment name Difficulty Actions DCapsDQN score ± S.D Baseline score ± S.D Performance

Alien (V3) - 18 1678.20 ±261 1503.79 ±351 11.60%
Boxing (V1) -2.11368712 18 92.87 ±6 58.74 ±18 58.10%

Breakout (V2) -0.44196066 4 259.4 ±59 191.1 ±87 35.74%
Fishing Derby (V3) 1.28989165 18 -11.99 ±14 -27.19 ±14 55.90%

Pong (V1) -0.04440702 3 20.15 ±0.8 18.25 ±1.7 10.41%
Qbert (V2) 1.39864132 6 9942.95 ±1918 5616.26 ±1349 77.03%

Space Invaders (V3) 0.16420283 6 787.64 ±172 924.11 ±232 -14.76%
Tennis (V1) 10.48605210 18 -7.138 ±6 -23.645 ±0.98 69.79%

Tutankham (V3) 1.98175005 8 148.75 ±37 129.20 ±61 15.13%

of training parameters, they outperform baseline in all selected environments
except SpaceInvaders.

Further in our study, we try to rationalise about the higher cumulative reward
collected by DCapsQN on individual attributes of the environment like input
state (Sec 5.2), action space (Sec 5.3) and reward (Sec 5.4). We also discuss,
how they supplement to cumulative reward in discussion (Sec 6.2).

It is also observable that there is co-relation between difficulty score and aver-
age score of DCapsQN. With low difficulty environments like Pong and Boxing,
the average score by DCapsQN is more stable and has lower degree of noise
compared to the baseline. However with higher difficulty score environment like
Tennis or Qbert, we witness a very high standard deviation (S.D) and noisier
average score.

5.2 Input state

In this section, we reason how the input state of an environment (Fig. 5) is an
influencing factor for DCapsQN agent. The CapsNets architecture focuses on
recognising simple and complex entities. As shown in Fig. 5 we can organize the
environments in terms of a number of entities and their visual attributes. Pong,
Boxing, Tennis are one of the visually simple environments with low number of
entities, referring to them as V1. Breakout and QBert are more complex than
V1, referred to as V2. But V2 is simpler compared to Alien, SpaceInvaders,
Tutankham and Fishing Derby of V3.
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(a) Alien (V3) (b) Boxing (V1) (c) Breakout (V2)

(d) FishingDerby (V3) (e) Pong (V1)

(f) Qbert (V2) (g) Space invaders (V3) (h) Tennis (V1)

(i) Tutankham (V3)

Fig. 5: State input of various Atari environments.

It is observable that in the simpler input state of V1, a DCapsQN agent
performs excellently. The performance could be highly attributed to the very
simple input state. In these environments, there are clear separate entities such
as players, ball in the input state. The DCapsQN agent’s learning curve is swifter
compared to the baseline Double DQN (Fig.6). With comparably complex V2,
the convergence of the DCapsQN-based agent is slower yet they outperform the
Double DQN based baseline as well. With added visual complexities and an in-
crease in the number of observable objects, we can observe that convergence slows
down further. The same can be concluded for V3. The principle that DCapsQN
focuses highly on entities further strengthen when comparing the difference in
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performance in Tennis(V1) and SpaceInvaders(V3). DCapsQN outperforms the
baseline agent which struggles to learn with simpler input state that has clear
separate entities in Tennis(V1) (Fig.4h). However DCapsQN struggles where
there are multiple copies of the same entities in SpaceInvaders(V3) (Fig.4g).

5.3 Action space

The atari suite provides a variety of environments with respect to action space as
well. The action space is an important part of an environment since it is directly
related to the number of actions available for the agent. A larger action space
expresses a higher degree of freedom for an agent to choose an action from. For
our study, we started with a small action space of 3 and 4, in Pong and Breakout,
respectively. From there, we go to the largest action space available in atari, i.e
18, in Alien, Boxing, Fishing Derby and Tennis. As can be noticed in Table 1,
apart from the expected increase in the number of parameters introduced by the
fully connected layers, there does not seem to be a direct correlation between an
agent’s performance and the action space.

5.4 Reward

In RL, the agent interacts with the environment to get a reward signal and the
next state. With the goal of maximising the cumulative rewards, the reward as
part of the environment governs how well an agent comprehends the input state.
The environments in ALE can broadly be classified into dense rewards or sparse
rewards environments. For our investigation, we diversify our environments with
some dense reward environments such as Alien and some marginally sparse envi-
ronments such as Fishing Derby. DQN suffers from poor sample efficiency when
rewards are very sparse in an environment [8]. There is a relation between reward
density and convergence of an agent to a value function. In the dense reward
environment Alien, it takes around 3 million steps for a DCapsQN based agent
to outperform the baseline while in Fishing Derby, it takes around 13 million
(Fig. 4).

6 Discussion

6.1 Training

DQN [19] based algorithms use their own estimates to update their value. In
order to analyze and gain insight into the potential of part-whole relations
based representations, we plot and compare the loss (Fig. 7) and value estimates
(Fig. 6) of both agents while training.

Fig. 6 compares the value estimates over time from DCapsQN and the base-
line. Value functions estimate how good it is to perform a given action in a given
state. The notion of “how good” here is defined in terms of future rewards or
expected return [27]. A high oscillation of value estimates in consecutive steps
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Fig. 6: Value estimates comparison of agents in various environments. It is no-
ticeable that the baseline is more volatile compared to DCapsQN.

translates to a high uncertainty of future rewards. We can observe the difference
in magnitude and higher oscillation in consecutive steps between baseline and
DCapsQN. We hypothesize that vectored representations in CapsNets further
help in stabilizing the change in value function of Double DQN. The hypothesis
is further supported by comparing the loss (Fig. 7) of DCapsQN and the base-
line. The losses in DCapsQN are comparatively smaller in magnitude compared
to those from the baseline agents. This can be attributed to a lower change in
weights because the target is often very close to the agent’s current estimate.
The low magnitude of loss in DCapsQN also indicates that CapsNets do not
start representing new entities.

6.2 Environment

While we rationalize the better performance of DCapsQN based agents, there is
not a single most powerful component that directly contributes to it. It is the
combination of all three elements i.e action space, reward and input state.

It is noticeable the performance of the agent in the environment Tennis is
similar to Boxing although they both have a different difficulty level. The leading
performance of DCapsQN based agents in both environments can be attributed
to very simple visual input and high action space. If compared to the difference
in the convergence of agents in Alien (a maze traversal environment and with
a highly dense reward) with Tutankham, which is maze traversal but with a
comparatively sparse reward environment. We notice that the combination of
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Fig. 7: Training loss comparison of agents in various environments. The shaded
area represents the ± standard deviation over 4 runs.

reward and action space contributed more to the performance, compared to the
visual input state.

Human perception suffers from crowding, The DCapsQN based agent seems
to a show similar phenomenon in SpaceInvaders. The low performance could be
attributed to the combination of crowding and low action space, where there are
multiple instances of the same part and whole objects in the input state [22, 25].

7 Conclusion

The paper introduced DCapsQN, a CapsNets-based agent for DRL. We empir-
ically show how CapsNets-based architectures perform well with Double DQN.
The DCapsQN architecture uses fewer parameters while still outperforming the
baseline agent in terms of cumulative reward collected by an agent in a given
task. In contrast to previous research [4] where the agent did not converge,
DCapsQN converges to find a value function.

The presented architecture was found to be the best performing in terms of
design and capabilities in the environments. The outcome confirms the initial
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hypothesis that the value function is learned by the fully connected layers while
CapsNets learns to better represent input states.

Based on observations made in this work, we consider that transfer learning
of representations learned via CapsNets could be an interesting direction for
future research. Once learned part-complex objects, the agent would only need
to converge to find the value function. Although our evaluation covered a variety
of tasks and reward systems, it would be useful to investigate the performance
of the agents in other tasks, domains and within other settings like continuous
action spaces.
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Abstract. Recent advances in computer-generated art (CGA) have led
to a diverse state of generative art models, however, how to evaluate the
works produced by these methods remains an open question, due to the
subjective nature of the domain. In this work, we propose a framework
for evaluating evolutionary art using a Bayesian approach.
The framework provides a method to analyse the results of a number
of ‘art Turing tests’ (ATTs) with a Bayesian model comparison, to as-
sess the influence the evolutionary process has on the degree to which
computer-generated images are distinguishable from human generated
images.
The cases where the human- and computer-generated art can and can
not be distinguished are represented by the null hypothesis and the al-
ternative hypothesis, respectively. We demonstrate the framework using
Interactive Evolutionary Computation (IEC) to evolve images with a
function-tree representation. These images are then used in an ATT
in which n = 11 subjects participated. The results indicate a weak
preference for the alternative hypothesis, showing that the human- and
computer-generated images can not reliably be distinguished. We sketch
future applications of the framework, such as evolving cellular automata
or combining the framework with deep learning approaches to CGA. The
framework is available as an open-source code base, and can be used by
researchers and practitioners interested in evaluating their methods for
generating evolutionary artworks.

Keywords: Computational Creativity · Evolutionary Computation · Interac-
tive AI Methods and Applications · Bayesian Statistics · Genetic Programming

1 Introduction

Since the infancy of computers, mathematicians, programmers and eventually
artists have been intrigued by the new ways in which art could be created. Cel-
lular automata have been used to either create or modify images [11], many
different types of fractals can be generated by computers easily [24], develop-
ments in deep learning in the last decade has allowed artists to create art, e.g.,
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by using style transfer [10] and Generative Adversarial Networks [9], genetic al-
gorithms can be utilized to create art by the iterative process of “survival of the
fittest” [21], and the list goes on.

Here, we will focus on applying Evolutionary Algorithms for generating art.
Evolutionary Algorithms are loosely inspired by the Darwinian theory of evolu-
tion by natural selection, which despite of its relative simplicity, describes all life
in its enormous complexity. The fittest individuals of a population reproduce
often, passing on their genes. The genes mutate and recombine, subsequently
producing new individuals. This process has been abstracted and modified many
times to solve problems such as parameter estimation or agent-based modeling.
It has also been simulated to better understand the actual biological mechanism
[18]. Furthermore, the generation of art by EAs has been explored by many
artists and researchers alike in a variety of different approaches, this is com-
monly called Evolutionary Art (EArt) [21].

Section 2 provides a short introduction into evolutionary art, and the way
it is currently evaluated. In Section 3, we propose a framework for evaluating
EArt using a Bayesian approach. In Section 4 we demonstrate this framework
by applying it to a specific case, in which a weak preference for the alternative
hypothesis is found. We briefly discuss these results in Section 4.3. The results
of a short questionnaire about the experience of working with the framework
are discussed in Section 5, and we sketch future directions and applications in
Section 7.

2 Background

Loosely inspired by Darwinian evolutionary systems, Evolutionary Algorithms
(EAs) can be broken down to a few essential components [2, 12]: an initialization
procedure; a fitness function; a selection procedure; a crossover procedure; and
a mutation procedure.

The EA cycle starts by initializing a population of individuals. These individ-
uals are all evaluated using the fitness function, after which a number of them is
selected. That selection of individuals is then crossed over and mutated to form
a new population. This is repeated until some termination criterion is met.

Because the fitness function that is used is unrestricted, EAs allow human
feedback as well as computer feedback to be used for evolution. When human
feedback is used as a fitness function in EAs, we call this Interactive Evolutionary
Computation (IEC). The dependency of the IEC framework on human evaluation
as a fitness function is considered one of its core strengths. Nonetheless, the
amount of control a user has over the process is still very limited; the selection,
crossover, and mutation procedures are governed by pseudo-randomness.

2.1 Evaluating Computer-generated Art

The Turing test (TT) can be used to assess whether a computer is capable of
exhibiting (human) intelligent behavior [23, 22]. In the TT, a subject has to
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distinguish a human from a computer by only communicating to them through
a text channel. If the computer is indistinguishable from the human, it passes the
Turing test. Following that line of thought, to assess whether a system is creative,
one could devise a Turing test specifically for art, or an ‘Art Turing test’ (ATT),
as introduced by Boden [3]. In an ATT, a subject has to evaluate two pieces of
art, one created by a computer, and one created by a human, and decide which
one of them was created by a human. This way of evaluating art may seem fair
at first, but Pease et al. [19] pose some objections. Mainly, their point is that
the ATT does not allow the subject to interact with the art, as opposed to the
classical TT, where the subject can interact with the human and the computer.
Much information about the art that could influence the subject can not be taken
into account this way. Similarly, the ATT does not take into account framing
information. Another argument they pose is that the ATT encourages imitation,
and not creativity. Lamb et al. [16] do acknowledge that the ATT is only valid
in those cases where the CGA is specifically designed to imitate human art. In
this paper we use an ATT to compare CGA and human art that were both made
with the same method, thereby satisfying the constraints set by Lamb et al. To
the best of our knowledge, we are the first to evaluate evolutionary art using the
methods described here.

3 The Bayesian Framework

We propose to evaluate evolutionary art by doing a Bayesian Model Comparison
(BMC) on results from an art Turing test. Here we provide an explanation of
the framework and the methods used, as well as a .

3.1 Art Turing Test

We use an ATT to determine whether the evolutionary process has an influence
on the degree to which the human generated images can be distinguished from
computer-generated images by humans. To this end, three pools of images need
to be generated by EAs.

– One pool is generated by letting a human act as a fitness function for mul-
tiple sessions of 10 generations. After the 10th generation, all images in the
population are added to the pool of so-called ’human-generated’ images.
Note that although these images are called ’human-generated’, the influence
the human has on the generative process is limited. Images from this pool
are indicated with h10.

– One pool of computer generated images is created in the same way, but
instead of using the human evaluation, we use an automatic fitness function.
Images from this pool are indicated with c10.

– The other pool of computer-generated images is created from purely random
initial trees, i.e., they are evolved to generation 1. Images from this pool are
indicated with c1.
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During the ATT, the user is to decide which of two presented images is human-
generated. The pair of presented images can be one of two possible combinations,
either a (h10, c10) pair, or a (h10, c1) pair, both being equally likely. The subject
does not know which is being presented, and is not aware that this difference be-
tween the cases exists. Naturally, the images within a pair are randomly ordered
when they are presented to the user.

3.2 Bayesian Model Comparison

Null Hypothesis H0 The probability with which a participant answers cor-
rectly on the Turing test is fixed and does not depend on whether the decision
was on a (h10, c1) pair or a (h10, c10) pair. We let zi be 1 if the answer on the
i’th Turing test was correct, and 0 if it was incorrect. We can express this in a
graphical model M0, as shown in Figure 1:

zn

θ

α β

n=1...N

θ | α, β ∼ Beta(α, β)

zn | θ ∼ Bernoulli(θ)

Fig. 1: Graphical model M0 for H0

δθ1 θ2

α1 β1 α2 β2

φn gn v

zn

n=1...N

αi, βi = 1, 1

θi | αi, βi ∼ Beta(αi, βi)

δ | θ1, θ2 = θ1 − θ2
v = 0.5

gn | v ∼ Bernoulli(v)

φn | θ1, θ2, gn =

{
θ1 if gn = 1

θ2 if gn = 10

zn | φn ∼ Bernoulli(φn)

Fig. 2: Graphical model M1 for H1

Alternative Hypothesis H1 The probability with which a participant an-
swers correctly on the Turing test depends on whether the decision was on a
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(h10, c1) pair or (h10, c10) pair. The graphical model corresponding to this hy-
pothesis can be found in Figure 2. The variables θ1 and θ2 are used for each
of the two possible pairs of images. In this graphical representation, if the i′th
decision was made on a (h10, cj) pair, we indicate that with gi = j.

The Bayes Factor The Bayes Factor (BF) was used as a measure to compare
models M0 and M1. The BF is the ratio of the marginal likelihoods of the two

models: B10 = p(Z|M1)
p(Z|M0)

. To estimate the BF one can construct an hierarchi-

cal Bayesian model in which the selection for model M0 or M1 is part of the
sampling process, and governed by a categorical distribution. The ratio of the
frequency that each model was selected can be used as an estimate for the BF.
The BF acquired this way is then interpreted according to, for example, Kass
et al. [13]. Furthermore, the variable δ expresses the difference between the two
cases inM1, in terms of how easy it was to distinguish the h10 images from the
c1 or c10 images.

4 Application

In this section we will apply our framework to a case where images are evolved
by Genetic Programming. First we will provide an explanation of Genetic Pro-
gramming and the type of representation that was used, then we discuss the
fitness function that we propose to generate art by mimicking human evalua-
tion. Lastly, we will analyze the results of the ATTs and briefly discuss those
results.

4.1 Tree Representation

A Genetic Algorithm (GA) is a type of EA where a distinction is made between
the genotype and phenotype of an individual [12]. The genotype represents the
underlying structure by which a potential solution is represented. Commonly
used representations for the genotype are character strings, trees, or real-valued
vectors. The phenotype represents the physical traits of individuals. This distinc-
tion is central to the field of evolutionary computation, as it allows for dynamical
change of the population via cross-over and mutation between genotypes of the
population members. Genetic Programming (GP) [15] is a specific type of GA
where the phenotype is a computer program, or—as in our demonstration—a
mathematical function.

Whereas EAs such as GA and Evolution Strategies (ES) commonly use linear
structures (such as bit strings and real-valued vectors) for the genotype, one can
alternatively construct a non-linear genotype using a tree representation [12,
1]. In this demonstration, the genotype is a tree representation (TR), and the
phenotype is a mathematical function, which is applied to a grid of pixels to
generate an RGB image. Here one could say that the generated image is a plot
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of the phenotype, or that the image is the phenotype itself. A TR is a recursive
structure consisting of terminal and non-terminal nodes. Terminal nodes are
either variables or constants, whereas non-terminal nodes are n-ary functions.

Crossover between two trees happens with probability pc, by exchanging
a random node in the first tree with a random node in the second tree. The
children of the exchanged nodes are also moved to the other tree, so we call
it a transplantation. Mutation in trees normally happens with probability pm,
by randomly changing the function of a function node, or replacing a leaf node
with a new structure. We found that we already achieved pleasing results without
mutation, and in literature it is stated that very low mutation rates are suitable
for trees [14], so we decided to not apply mutation. In our tree evolution runs,
we always set pm to 0.

We experimented with several versions of tree representations to create RGB
images. Our first representation maps every point in a 2D grid to a single numeric
value, and then maps each numeric value to a RGB value using a color gradient.
Our second representation creates a separate tree for each 2D color channel, and
normalizes each layer separately to lay within the correct interval [0, 255]. These
layers are then stacked to create an RGB image. Our third representation is a
single tree which can map 3D coordinates to a numeric value. Like the second
version, the color channels are normalized individually.

Fig. 3: Examples of tree representation-based images from c10

An excellent illustrated overview of the crossover and mutation methods in these
tree representations can be found on Ashley Mills’ website [1].

4.2 The Mathematical Fitness Function

In this section we present ideas that went into designing the fitness function
that the computer uses to evaluate the images will be presented. We hypothe-
sise that if presented with a small population—say a population consisting of 9
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individuals—a person would evaluate the individuals by the characteristics that
make them stand out from the other individuals in the population. Following this
line of thought, one could define a human-inspired mathematical fitness function
F for an individual p, as the mean distance of individual p to each of the other
individuals in the population P :

FD(p) =
1

|P | − 1

∑

p′∈P,p′ 6=p

D(p, p′) (1)

Any distance metric can be used, for example the Euclidean distance. Using the
Euclidean distance does not yield very interesting images, however. Suppose in
a population we have one entirely white image, and one entirely black image.
The Euclidean distance if evaluated in the RGB space is maximized, since the
RGB components of white are (255,255,255) and the RGB components of black
are (0,0,0). As a result, these images will be assigned a high fitness, even though
they are (subjectively) very uninteresting. A more interesting approach would
be to use the variance of the difference of the pixel values as a distance function.
Using the example of the entirely white and entirely black image again, the
distance between these two images will now be 0; the difference between every
pair of white and black pixels is the same. This approach yielded more interesting
images, see equation 2.

DVar(p, p
′) = Var(p− p′) (2)

The pool of c10 individuals used in the experiment was evolved using the func-
tion described in Equation 1 with the distance measure from Equation 2 as a
fitness function. The pool of c1 individuals was generated by simply randomly
initializing trees. The pool of h10 individuals was evolved by letting a human
act as the fitness function by rating the images produced by them. Starting
from the root node, working downward, each node is uniformly sampled from
either the binary or unary functions, or the leaf nodes. Within each category, the
specific selection is again sampled uniformly from {+,−,×,÷,power,min,max},
{sin, cos, tan, abs,

√ }, and {x, y, z, 0.618}, respectively.

4.3 Results and Analysis

The h10 pool used here was generated by the authors, who do not have a formal
art education. The experiment was done with n = 11 participants, each of which
performed 20 ATTs, resulting in 220 binary (correct/incorrect) results. The age
of the participants ranged between 20 and 27, and none of them had a formal art
education. The average interaction time per participant was around 15 minutes.
Of the 220 ATTs, 97 were answered correctly, about 44%. The results of the
ATTs on the sub-classes are listed in Table 1.
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Table 1: Results of the ATTs

All c1 c10
Total 220 94 126

# Correct 97 38 59
% Correct 44% 40% 47%

Table 2: Relative sampling
frequencies fs for each model

Model rank fs
M0 1 0.468
M1 0 0.532

(a) θ, governing M0, was esti-
mated to have a mode below 0.5.

(b) θ1 was estimated to have a
lower mode than θ2.

Fig. 4: Density estimates

After running two Markov chains of 5000
samples for each model, our samplers
over the model parameters converged
nicely to some interesting distributions,
which can be seen in Figure 4. It is in-
teresting to see that θ1 peaks at a lower
value than θ2. This seems to imply that
participants have a lower chance of an-
swering the ATT correctly if the com-
puter generated image is completely ran-
dom, and not evolved using the auto-
matic fitness function.

It would be premature to say that
the use of the automatic fitness func-
tion actually makes the art look less
human-like, but that is what the num-
bers seem to indicate. Still, the peak of
θ2 is also lower than 0.5, meaning that
the human-generated images are often
correctly identified.

Model M0 was sampled in 46.8% of
the cases during the BMC. Model M1

was sampled in the remaining 53.2% of
the cases (see Table 2), resulting in an
estimated Bayes factor of 1.14. According to Kass et al. [13], this is weak support
for the alternative hypothesis.

Although the BMC showed weak preference for the alternative hypothesis,
there is too little evidence to reject H0. We can not conclude that images gener-
ated by function trees evolved using the automatic fitness function are perceived
as more human-like than images generated by random function trees. However,
the number of participants in our experiment was small, and with more partici-
pants it may be possible to give a more conclusive answer.
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5 Questionnaire

All participants were asked to fill in a questionnaire after interacting with the
evolutionary framework through the GUI. The questions and the results of that
questionnaire are listed in Table 3.

Table 3: Results of the questionnaire, entries are counts
Strongly
disagree

Strongly
agree

1.I enjoyed the process of making images
interactively. 0 0 1 1 2 3 4

2.I have the feeling that the image is improving with
increasing number of iterations. 0 0 1 3 2 1 4

3.I feel that I have control over the evolution of the
images. 0 1 0 3 3 2 2

4.The generated images were surprising to me.
0 1 0 2 2 3 3

5.I find the generated images pleasant.
0 1 0 2 4 3 1

6.I want to know how the underlying mechanism
works. 0 1 1 0 3 0 6

The quality and responsiveness of the evolutionary process is rated positively
in general, but indicate that there is still room for improvements. Question 4
addresses the extent to which participants felt control over the evolution of the
art, which resulted in a mode of 4 and 5, a median of 5 and a mean of 5. This
was a positive outcome, with one outlier on the lower end. Question 5 covers the
degree of surprise of the images, and was perceived positively with a mode of 6
and 7, a median of 6 and a mean of 5.36. Again, we find one low outlier with a
rating of 2. Lastly, question 6 addresses the degree to which participants found
the images pleasant. The results indicate a mode of 5, a median of 5 and a mean
of 5.55. Again, we find one negative outlier at 2.

Based on the questionnaire results, we conclude that the IEC framework is
perceived very positively. Participants generally enjoy the process of creating
images and are curious about the underlying mechanisms. Furthermore, par-
ticipants notice the improvement of images as a function of generations. The
results also indicate room for improvement when it comes to the quality of the
generated art. In particular, participants showed lower scores for control over
the generated art. We hypothesize that this is related to the relative small pop-
ulation size (a population size of 9 is used at each iteration), which can make
the process susceptible to losing the fittest individuals in the population due to
the stochasticity of the crossover function. Lastly, we conclude that even though
the tool is generally highly perceived, outliers exist, which indicates that there
are strong differences between participants in how the application was used and
perceived.
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6 Code Base

A primary result of this project is an open-source code base written in Python
which includes many variations of the basic components of evolutionary algo-
rithms listed in Section 1, and which can be easily extended to include more.
This Python code also includes a GUI that allows the user to perform the inter-
active evolution, and to perform the ATTs required for the proposed framework.
The project can be found on GitHub [4].

7 Discussion

The demonstration of the ATT using a function-tree representation showed that
participants scored worse than chance, meaning computer generated art could
not reliably be distinguished from human generated art created with the IEC
framework. We hypothesize that this could be caused by the lack of control of
the creative process that is given to participants while using the function-tree
representations. This is in line with the questionnaire results, which highlight
that the evolved images using function-tree representations were generally per-
ceived well by the participants, but the control over the evolutionary process
can still be improved. We hypothesize that the choice of selection strategy can
be of influence on this: by using roulette-wheel selection, individuals with high
ratings are likely to stay in the population. This however also quickly filters out
images with low ratings, causing the process to converge faster than desired. In
contrast, different selection mechanisms such as tournament selection can cause
good solutions to disappear despite high ratings, but retains solutions with low
ratings better than roulette-wheel selection.

We propose several directions for future research, which may provide further
improvements to the statistical framework, and the code base.

First, we believe that the use of different selection mechanisms such as steady
state selection [20] and Boltzmann selection [17], or techniques like elitism [12]
may improve the control of participants over the evolutionary process.

Second, the set of functions that are used to construct the function-tree can
be extended. Since these directly influence the images, this can have a signif-
icant effect on their ratings. Moreover, extensions to our work could include
different representations. We ourselves have experimented representing individ-
uals as Cellular Automata (CA), such as in Conway’s “Game of Life” [8]. We
extended these CAs by generalizing the discrete states to intervals and the dis-
crete time domain to acceleration, such as in Chan’s “Lenia” [6, 7]. Results of
both representations can be seen in Figure 5a and 5b, respectively.

Third, the presented framework is readily extendable to be applied to dif-
ferent types of evolutionary art representations, such as representations based
on deep learning. For example, Bontrager et. al (2018) [5] combine Generative
Adversarial Networks (GANs) and IEC to evolve images. Applying different rep-
resentations of artworks in the presented framework is a promising direction of
future research.
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(a) Cellular automaton (b) Multi-neighborhood
cellular automaton

Fourth, the many potential uses of the framework can be exploited; for in-
stance, one could study the influence of the evolutionary process on the perceived
creativity of the process underlying the art generation with a finer granularity
than was done here. In our demonstration, we generated pools of c1 and c10
images, but one could easily extend that to include cn images, and compare the
influence of the generation depth on the Bayes Factor. Additionally, one could
use the framework as a competition between several types of evolutionary art.
Lastly, the ATT could be interpreted more freely, and instead of asking the
subject which of the presented images was perceived to be more likely to be
generated by a human, one could ask the subject simply which of the images
he/she liked more. In a world where computer-generated art is ubiquitous, a
flexible statistical framework like this may prove a valuable tool.

The questionnaire results showed that the application was found very enjoy-
able and quite intuitive, which is why we believe extending the framework and
the code base is a venture worth pursuing.

8 Conclusion

Art is subjective. Nonetheless, complex and often interesting patterns can emerge
using the techniques of algorithmic evolution. Utilizing the input of users in an
Art Turing Test, we frame the task of evaluating generated art as the degree
to which computer generated art can be distinguished from human generated
art. Using a Bayesian model comparison, we created a framework for inferring
whether the difference in degree of distinguishability is significant. The proposed
automated fitness function scored worse than non-evolved function-trees in the
ATT, although the results are inconclusive. We conclude that this means the
method can be further improved to provide more control over the evolutionary
process of generating images. We provide a framework for IEC using function-
tree and CA representations, which allow the user to provide feedback on the
generated individuals. The framework is open source and easily extendable to
different representations, allowing for researchers and practitioners to adopt it
efficiently. Results from an experiment show that the method is well-perceived
in general, however improvements can still be made to the representations.
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Abstract. Explainable artificial intelligence (xAI) is seen as a solution to making 

AI systems less of a “black box”. It is essential to ensure transparency, fairness, 

and accountability – which are especially paramount in the financial sector. The 

aim of this study was a preliminary investigation of the perspectives of supervi-

sory authorities and regulated entities regarding the application of xAI in the fi-

nancial sector. Three use cases (consumer credit, credit risk, and anti-money 

laundering) were examined using semi-structured interviews at three banks and 

two supervisory authorities in the Netherlands. We found that for the investigated 

use cases a disparity exists between supervisory authorities and banks regarding 

the desired scope of explainability of AI systems. We argue that the financial 

sector could benefit from clear differentiation between technical AI (model) ex-

plainability requirements and explainability requirements of the broader AI sys-

tem in relation to applicable laws and regulations. 

Keywords: Explainable AI, Artificial Intelligence, Financial Sector. 

1 Introduction 

In recent years increasingly powerful, but often also increasingly complex, machine 

learning methods have become available and are used to greater extent in commercial 

contexts [1,2]. Generally, this form of machine learning is referred to simply as “artifi-

cial intelligence” (AI). The increasing use of novel and hard-to-understand types of AI 

systems has sparked a discussion on the need for explainability of AI [3,4]. Especially 

for high-risk use cases there is a realization, both scientifically and societal, that AI 

needs to be explainable to be understood. For instance, the upcoming EU legislature on 

AI [5] will require demonstrable transparency for which explainable AI will be essen-

tial. In the financial sector comprehensive understanding of the use of AI systems is 

even more crucial: both stipulated by a wide range of laws and regulations and because 

trust in financial institutions is of high importance [6]. Simultaneously, expectations of 

new AI systems are high in the financial sector, while regulators need time to keep up 

with the speed of development [7]. Striking the right balance between performance and 

explainability can present a difficult dilemma for financial institutions. 
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The field of explainable AI (or ‘xAI’) studies how AI can be made explainable by 

making algorithms and their systems more transparent, often referred to as “opening 

the black box” [3]. An improved understanding of the working of these algorithms helps 

us to verify them, improve them, and implement them ethically. Most developments in 

xAI focus on either technical tools for model developers or approach explainability as 

a social or cognitive challenge [8,9]. Other authors have stated that making models 

explainable should be foregone instead of using inherently interpretable models [10]. 

Given the attention transparency and explainability receive as a requirement for ethical 

AI, it is no surprise that many reports on the responsible use of AI have stressed the 

need for xAI [11]. Notably, the number of empirical studies that provide practical in-

sights into how xAI is actually used in practice is very limited [12] which we believe 

represents a hiatus in the current literature. 

Financial institutions, both large and SME, have begun to use AI, for instance in 

delivering instant responses to credit applications, claim settlement, and transaction 

monitoring [24,25]. The World Economic Forum [16] notes that the opacity of AI sys-

tems poses a serious risk to the use of AI in the financial sector: lack of transparency 

can lead to loss of control by financial institutions and thereby damage consumer con-

fidence and society. Given the crucial role of trust in the financial sector, explainability 

of the outcomes and functioning of AI systems is considered necessary [16]. Explaina-

bility is in fact one of the EU’s key requirements for trustworthy AI [11]. With new EU 

AI legislation announced, explainability is expected to become even more important 

and necessary for some high-risk use cases such as consumer credit scoring [5]. 

Limited empirical descriptions on the challenges surrounding the application of xAI 

exist. In addition, only preliminary guidelines exist [17] on how to implement xAI, 

often based in theory and lacking empirical validation. In the future, a solid and practi-

cal framework could help organizations to better understand their obligations (regula-

tory and otherwise) regarding xAI and how to operationalize them. In the financial sec-

tor, such a framework could also help supervisory authorities to translate current regu-

lations regarding transparency and the provision of information, to clear expectations 

regarding xAI to regulated entities. In lieu of such a framework, a starting point is to 

map what is currently expected of in terms of explainability of AI by banks and super-

visory authorities. 

The current exploratory study aims to identify what the differences are regarding the 

expectations of explainability of AI for supervisory authorities and regulated entities in 

the financial sector. Three use cases were examined in which AI is used at financial 

institutions in the Netherlands. Data were collected by means of semi-structured inter-

views with interviewees of both banks and supervisory authorities. This study is in-

tended to add empirical data on how xAI is regarded and used in practice and as step-

ping stone towards a framework as described above. The main research question is: 

What are the perspectives of supervisory authorities and regulated entities regarding 

the application of xAI in the financial sector? 
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2 Theoretical background 

Explainable AI (xAI), also referred to as interpretable or understandable AI, aims to 

solve the "black box" problem in AI [18,19]. A typical present-day AI system utilizes 

data (e.g., information on a person’s financial situation) and produces an outcome (e.g., 

a risk of default indication). However, in such a system it is not always evident from 

the output how or why a certain outcome is reached based on the data. Especially when 

using more complex AI systems (e.g., using deep learning or random forest methods) 

the process from input to output is practically impossible to understand by humans even 

with full knowledge of the inner workings, weightings, and biases of the system. The 

term xAI encompasses a wide range of solutions that explain why or how an AI system 

arrives at outcomes or decisions [20]. One line of research focuses on technical tools to 

explore the relation between model input and output, such as SHAP [21] and LIME 

[22]. A critique on the xAI field expressed by various authors is that xAI is often not 

clearly defined and discussed without proper understanding of the surrounding concepts 

and the parties involved [19,23]. As such, the exact scope of xAI is not always well-

defined, as sometimes the term is used to focus on technical solutions directly relating 

to the model, but sometimes the system context is also taken into account.  

Transparency is one of the central concepts of xAI. Importantly, the term is used in 

two distinguishable contexts or manners in the literature, which we differentiate by us-

ing model transparency and process transparency. Model transparency is the property 

of a model to be understood by a human as it is, in terms of its general working or 

design. The opposite of “black-boxness” is model transparency [3,10]. This type of 

transparency is generally what model developers refer to and is highly related to the 

concept of interpretability [24,18]. Process transparency is transparency of the use and 

development of an AI system; it relates to openness and not concealing information for 

stakeholders [24]. This form of transparency is generally what the colloquial meaning 

of transparency refers to. However, it is also the type of transparency that is meant in 

some of the literature on responsible use of AI when talking about “transparency” 

[10,17].  

Explainability means that an explanation of the operation and outcome of a system 

can be formulated in such a way that it can be sufficiently understood by the stakeholder 

[3]. The term “stakeholder” refers to the individual, party, or audience impacted by the 

functioning and/or outcomes of the AI system, requiring information in the form of an 

explanation. In a vacuum, i.e., without a stakeholder, an explanation cannot be said to 

do what is intended, namely making something understood by an individual [9]. We 

would argue that the core concept of explainable AI is effectual explanation. An effec-

tual explanation is not only about providing the required information, but to do so in a 

manner that leads to stakeholder understanding [25], for instance by offering the right 

amount of detail or boundary conditions of a model [26]. In addition, explanations can 

be global or local [13,14,26]. That is, a global explanation reveals the inner workings 

of the entire AI system (potentially including a case at hand), a local explanation offers 

insight in a specific outcome.  

We used the following definition of explainable AI in this study: “Given a stake-

holder, xAI is a set of capabilities that produces an explanation (in the form of details, 

Regular papers BNAIC/BeneLearn 2021

610



4 

reasons, or underlying causes) to make the functioning and/or results of an AI system 

sufficiently clear so that it is understandable to the stakeholder and addresses the stake-

holder’s concerns.” [15]. 

Various types of information that can be used as the basis for an explanation can 

be distinguished. A distinction that should be noted here is that of the of process-based 

versus outcome-based explanation [17]. A process-based explanation gives information 

on the governance of the AI system across its design and deployment; the explanation 

is about “the how”. An outcome-based explanation gives information on what happened 

in the case of a particular decision; the explanation is about “the what”. In addition, 

explanations can be said to be “global” (explaining the entire model) or “local” (ex-

plaining a specific outcome) [13,14,26]. Furthermore, xAI techniques to gain more in-

formation about the functioning of a model can be model-agnostic (and work on any 

model, e.g., SHAP [21]), or be model-specific.  

As a basis for this study we established a list of types of information that can un-

derpin an explanation (of an AI system) that are relevant in the financial sector. We 

based this list on literature on explainable AI (using snowball search and focusing on 

the most cited papers in the field) and adapted it to fit use cases in the financial sector 

([9,13,14,17,26]) . It should be noted that we incorporated types of information that are 

related to process-based explanation (e.g. the process surrounding the AI system), and 

which might be omitted in some views of explainable AI, that are however relevant 

from a regulatory perspective on AI in finance. 

• The reasons, details, or underlying causes of a particular outcome, both from a local 

and global perspective. 

• The data and features used as input to determine a particular outcome, both from a 

local and global perspective. 

• The data used to train and test the AI system. 

• The performance and accuracy of the AI system. 

• The principles, rules, and guidelines used to design and develop the AI system. 

• The process that was used to design, develop, and test the AI system (considering 

aspects like compliance, fairness, privacy, performance, safety, and impact). 

• The process of how feedback is processed. 

• The process of how explainers are trained. 

• The persons involved in design, development, and implementation of the AI system. 

• The persons accountable for development and use of the AI system. 

3 Research method 

3.1 Use cases 

To address our research question, we applied a qualitative research approach by means 

of a series of semi-structured interviews. Three types of use cases were examined. The 

two supervisory authorities took part in all three use cases, with each of the three banks 

partaking in two of the three use cases (due to constraints in availability of 

Regular papers BNAIC/BeneLearn 2021

611



5 

interviewees). The three use cases were: 1) consumer credit, 2) credit risk management, 

and 3) anti-money laundering. A brief outline of these use cases will now be given.  

The use case on consumer credit considers a typical case for consumer credit and a 

mortgage lending case. Consumer credit is credit provided to a consumer, which can 

be used to purchase goods and services. Financial institutions that provide consumer 

credit in the Netherlands have the right and obligation to ensure that the borrower has 

the capacity to repay the loan. Credit risk management focusses on internal risk and/or 

capital requirement models (early warning systems and probability of defaults models) 

where AI systems can be used to improve or replace the currently used models. The use 

case on anti-money laundering (AML) concerned AI systems which are used to conduct 

suspicious activity monitoring and transaction monitoring.  

3.2 Data collection 

The organizations involved in this study are two supervisory authorities (SAs) and 

three banks in the Netherlands. For reasons of anonymity these will be referred to as 

“SA”, or “first SA”, “second SA”, “first bank”, etc. depending on which interview took 

place first. The three banks belong to the major banks in the Netherlands, each with 

more than one million clients, and can be characterized as financial incumbents [27]. 

Semi-structured interviews were conducted with employees of these five organizations 

regarding the three use cases. For all interviews, use case experts (i.e., individuals that 

worked primarily on the use case at hand) were present. These experts either had a 

technical expertise (those directly involved with the development of the AI system) 

and/or a more supervising/governing role (such as compliance & risk officers and 

model owners).  

At each interview at least two interviewees of that organization were present, and at 

most four (if the complexity of the use case required more diverse expertise in the in-

terviewees). Interviews took between 1 and 1.5 hours. In total 13 interviews took place, 

six with interviewees from supervisory authorities and seven with interviewees from 

banks (as one bank took part in an additional interview to fully cover all questions). In 

addition, the findings were refined in a plenary session in which at least one participant 

of all five organizations was present. As a starting point during the interviews, a list of 

questions was used to guide the discussion, but the conversation was permitted to de-

velop naturally in the direction deemed most suitable by the interviewers and interview-

ees. 

The interviews with the banks and supervisory authorities had a slightly different list 

of starting questions, as the SA interviewees did not have the same direct knowledge of 

a specific use case in contrast to the banks. The interviewees of the banks were asked 

questions about the following topics: the context of how AI is being used in the organ-

ization, the role of explainability in the AI development process, the workings of the 

use case at hand, the application of AI in the use case, the relevant stakeholders, and 

how the bank deals with explainability in this particular use case. Finally, the banks 

were asked what types of information that can serve as a basis for explanations (based 

on the list from section 2) are considered relevant for supervisory authorities.  
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For the supervisory authorities, the focus of the interviews was on the boundaries of 

what they would allow in terms of AI and what their expectations of explainability were 

for that use case. The interviewees were asked questions concerning: their perception 

of the use of AI and xAI, applicable legislation around the use case, and the require-

ments for explainability from a supervisory perspective. In addition, they were asked 

what types of information (based on the list from section 2) they consider relevant for 

their supervisory role for the use case at hand. The interviews with the two supervisory 

authorities were conducted with interviewees who were aware of the applicable pru-

dential, integrity and conduct regulations relating to the use cases. 

All interviews were conducted by two researchers of the HU University of Applied 

Sciences via Webex. During every interview, one of the researchers had the lead in 

asking questions while the other made notes used for later analysis. After the inter-

views, the interviewees verified the interview reports and supplemented information 

where needed. 

3.3 Data analysis 

Data analysis was conducted based on the interview reports. As a first step we analyzed 

the interview reports and created a list of the main findings and conclusions per inter-

view. These findings and conclusions were verified and supplemented by the interview-

ees. As a next step, we analyzed all interview reports and developed an overview of the 

main conclusions. These conclusions were discussed in a plenary session with partici-

pants of the supervisory authorities and banks. The output of this session was used to 

refine the conclusions.  

4 Results  

First, we discuss the most notable results per use case. Second, we discuss the overall 

findings.  

4.1 Consumer credit  

The first bank provided a use case about mortgage lending (a type of consumer credit) 

in which an AI system was used to assess mortgages with traffic-light colors to support 

middle office employees. The AI system runs in parallel to other, more traditional sys-

tems in the mortgage approval and monitoring process (e.g. using business rules). The 

AI system uses a rather simple form of machine learning based on logistic regression 

and uses around 10 variables. It improves on a business rules system in that it uses 

historical data. Interestingly, relating to explainability the primary users of the AI sys-

tem (the middle office employees) were by design not given detailed insight into the 

functioning and results of the AI system to prevent potential gaming of the system. Due 

to the relative interpretability of the model, explainability to other stakeholders was not 

considered to be a challenge beyond the previous systems. 
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The second bank also supplemented their traditional loan approval system for con-

sumer credit with an AI system. The traditional system uses basic data, such as the data 

a client provides through the application process or data from credit bureaus. The new 

AI system is trained and continuously supplied with new transactional data. The com-

bination of both models resulted in fewer defaults on loans. For this use-case, model 

developers are considered the most important stakeholders regarding explainability. It 

was stated that it would be possible from a technological point of view to explain the 

model to customers, although this requires a thorough understanding of which type of 

narratives would be comprehensible by different consumer groups. This might require 

an interactive process, which was indicated to present a challenging IT problem rather 

than a problem of getting the relevant information (and explanations) from the AI sys-

tem.  

One of the SAs monitors whether lenders (i.e. banks) comply with lending standards. 

The lending standards (“leennorm” in Dutch) follow straightforward rules limiting the 

amount that can be loaned depending on the financial situation of the lender and are the 

basis for valid loan approval. Regardless of what an AI system indicates, banks must 

(and do) conform to this lending standard in all cases. The interviewee of the SA indi-

cated that this was the primary method by which the supervisory authority currently 

ensured a lending consumer was protected. An interesting point was raised that within 

the lending standards banks might use AI to find cases their traditional systems would 

not give a credit, but the AI determines as being profitable for the bank. However, this 

might not always be good for the consumer. Widespread adoption of AI models might 

thus require reevaluation of the lending standards.  

In summary, for consumer credit, banks reported they use AI in conjunction to tra-

ditional (“business rules”) systems. As a result of the lending standards, what is and 

isn’t allowed for banks by supervisory authorities in terms of offering loans to consum-

ers is currently clearly specified and understandable for both parties. As a result, in 

terms of explainability the lending standards are the basis (and thereby the explanation) 

for rejection of most loans of consumers. As for the edge cases where (within the lend-

ing standards) newer AI models might give a different recommendation compared to 

the traditional models of banks, explainable AI would be especially important to give 

insight into exactly what causes the deviation from traditional models. Due to the cur-

rent simplicity of the utilized models, this is at the moment not yet a concern, as also 

stated by the interviewees. Interviewees at a bank indicated that automated explainabil-

ity towards consumers (loan applicants) is in principle possible due to the high level of 

interpretability of the models. Currently, in most cases there is a human-in-the-loop (the 

advisor) who provides the customer with information and acts as a potential ethical 

safeguard.  

4.2 Credit risk management  

The AI system of the first bank in the credit risk management use case follows an AIRB 

(advanced internal rating-based) model for the bank's residential mortgage portfolio (a 

capital model). It predicts a probability of default for each mortgage customer and a 

prediction of loss-given-default for each customer. The model uses around 10-15 
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variables and is based on logistic regression. There is no interaction with any consumer 

based on the model, it is only used internally. The main stakeholders for explanations 

are the internal “first line” and the supervisory authority. More advanced AI is expected 

to potentially be able to lead to better performance, however, the interviewees reported 

apprehension to use more complex models due to the expected long and time-consum-

ing process to get approval both internally and externally from supervisory authorities. 

From the interview with the first SA, it became apparent that regulations such as 

capital requirements regulations (CRR [28]) heavily determine the boundaries for what 

type of AI systems can be used in this use case. Predominantly, logistic regression mod-

els are used across all financial institutions. Models that are more complex may not 

meet requirements like traceability and replicability. Another requirement for credit 

risk models is to demonstrate "experience" in applying a model. In practice, this means 

that the model must be used as a shadow model for at least three years before approval 

can be given. Banks are conducting plentiful research and pilots into AI in credit risk, 

but the regulations are a limiting factor for further implementation. Currently, AI in 

credit risk does not appear to lead to sufficient benefit compared to the challenge of 

getting its use approved within the current regulatory framework to make it worthwhile. 

It was indicated that the bank first to implement a new AI method must assume it takes 

at least a year and a half before approval is granted.  

In summation, in credit risk management strict requirements are heavily embedded 

in regulations like CRR. Credit risk management forces ‘transparent by design’ models, 

therefore, xAI is less of an issue as AI models that are not inherently transparent are 

simply not used. Regulations/supervisory authorities are slow to change on credit risk, 

possibly to the more international nature and societal importance of regulation in this 

use case. Changing these regulations to allow for AI systems that are more complex 

will be an incremental process that takes time and trust in the safety of such systems. 

4.3 Anti-money laundering (AML) 

For the first bank the use case of anti-money laundering (AML) involved an AI system 

developed to detect fraudulent activity in corresponding banking transactions. The AI 

system consists of two algorithms (models): a deduplication algorithm and a classifica-

tion algorithm. As AML investigators check the flagged transactions, there is a human-

in-the-loop. The AML investigator receives explanations (e.g., the most important fea-

tures leading to a flagging) as part of the outcome of the AI system. The xAI tool SHAP 

[21] was used with output provided to the investigator. As such, the investigator can be 

said to be main stakeholder for explanation in this use case. Explanation, in a broader 

sense, to other stakeholders is done via technical documentation and various internal 

processes.  

The use case of the second bank concerns machine learning (ML) used for transac-

tion monitoring. In the past, transaction monitoring was only done rule-based. Cur-

rently, multiple ML models are used in conjunction with a rule-based methodology. For 

instance, there is a supervised AI model that is used as noise reduction (i.e. reduces 

false positives) on the output of the rule-based system. Furthermore, there is also a 

supervised model that gives customers scores based on suspicion of money laundering 
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practices and an unsupervised anomaly detection AI model. The output of the models 

is intended for transaction monitoring analysts who have expertise in recognizing in-

tegrity risks. These analysts are generally not concerned with assessing the quality of 

model output, which is done by quality assurance analysts. The ML model output in-

cludes extensive information (which can be considered explanation) about suspicious 

situations, e.g., indicating the most relevant features, as opposed to rule-based systems. 

This explainability aspect of these (modern ML) models is thus an important part of the 

subsequent analysis done by the analyst. This analyst also uses a multitude of other data 

(sources) outside the detection models for further verification. The analyst can be seen 

as the human-in-the-loop in this use case, and as the most important stakeholder in need 

of explanation. Notably, results of the ML-models are improved over the traditional 

models: both fewer false positives and fewer false negatives (thus more suspicious 

transactions are reported). 

Interviewees indicated that both internally for banks, but also for supervisory author-

ities, a change of mindset is required to transition from the traditional way of thinking 

in thresholds (contained in business rules), to more probabilistic thinking about the fea-

tures of an AML case (contained in modern ML methods). With the latter, explanations 

can be more complex, but should not be of less quality.  

The first SA, in the case of AML, is tasked with ensuring that banks comply with 

the Anti-Money Laundering and Anti-Terrorist Financing Act [29]. Currently, this SA 

does not impose any requirements on what type of AI system is used for AML as long 

as it can be properly explained both to the supervisory authority and internally. Exactly 

what sufficient explanation is for which type of AI system is not defined by the SA but 

assessed on a case-to-case basis, due to the highly varying contexts in which AI is used. 

For the time being, there is also no framework in which explainability is defined, which 

is directly applicable to this use case. In the context of controlled business operations, 

a bank must be able to explain how its systems work. If a bank cannot explain an AI 

system, both to the supervisory authority and internally, as there may be uncontrolled 

business operations the bank does not sufficiently manage its risks.  

In summary, AML was indicated to be one of the use cases that can benefit most 

from AI in terms of improving results while also being the use case in which the super-

visory authorities allow the most room for the use of novel AI methods. So far, the issue 

of explainability did not hinder the deployment of more complex AI systems in this use 

case. The internal AML analyst/investigator is viewed as the most important stake-

holder regarding explanations by the banks. This investigator is trained to work with 

and understand model output, which can be seen as a form of, or bringing about of, 

explainability.  

4.4 General 

One of the main findings, reported throughout the interviews, is that explainable AI is 

high on the agenda of banks and supervisory authorities. Within banks, it either is or is 

planned to be an aspect of an ethical framework used within the organization. Such a 

framework generally builds on existing principles or procedures (not related to AI spe-

cifically), but there is a trend towards more unification of principles and a more explicit 
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focus on AI. For supervisory authorities, explainability is not exclusively an ethical 

concern, as it is also relevant from a prudential and legal perspective (e.g., a prudential 

or legal framework such as CRR, lending standards, and the GDPR). As such, explain-

ability is relevant to a wide range of supervisory authorities in the financial sector 

among which the two in this study, but also including, e.g., data protection supervisory 

authorities. 

The use of complex AI systems by banks is increasing although often still limited, 

mainly still using basic methods such as logistic regression. The use case of AML is a 

notable exception where more varied and advanced AI models are used. In the plenary 

session, the following reasons for the slow adoption of AI were mentioned: 1) The time 

needed to become familiar with and implement complex models and especially xAI 

methods (such as SHAP and LIME [21,22]), which have emerged only in the last years. 

Deciding what xAI method to choose, and how to implement it, is a challenging process 

as xAI is still developing rapidly and in a short period new methods might make a 

current xAI method obsolete. 2) Uncertainty as to whether financial regulations (such 

as lending standards, CRR) or the supervisory authority would allow the use of novel 

AI. 3) Traditional models are deemed adequate for many use cases. 4) Internal hesita-

tion to implement complex AI systems in customer facing applications. 5) AI systems 

that are more complex are difficult to maintain and monitor over time. 

As for the types of information that can serve as the basis for explanations it could 

be noted that across all use cases the supervisory authorities indicated they are inter-

ested in the full range of types of information, while the interviewees from banks gen-

erally indicated only a subset per use case was relevant (see Table 1). 
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Table 1.: Responses of SAs and banks on the importance of the types of information 

that can potentially underpin an explanation for supervisory authorities per use case. 

A plus-sign (+) indicates a positive, a minus-sign (-) a negative, and both (+/-) indi-

cates a partial importance. Note that each of the three banks only partook in two use 

case interviews, and thus two banks responded per use case, except for the credit risk 

use case where only interviewees of one bank filled in this list. 

 

 Consumer Credit Credit Risk AML 

 SAs Bank Bank SAs Bank SAs Bank Bank 

The reasons, details, or 

underlying causes of a 
particular outcome 

+ - + + - + - + 

The data and features 

used as input to deter-

mine a particular out-
come 

+ + + + + + - + 

The data used to train 

and test the AI system 
+ + + + + + - + 

The performance and 
accuracy of the AI sys-

tem 

+ - + + - + + + 

The principles, rules, 
and guidelines used to 

design and develop the 

AI system 

+ + + + + + + + 

The process that was 
used to design, de-

velop, and test the AI 

system 

+ + + + + + + + 

The process of how 

feedback is processed 
+ - + + - + + + 

The process of how ex-
plainers are trained 

+ + + + + + - + 

The persons involved 

in design, develop-

ment, and implementa-
tion of AI system 

+ - + + - + - +/- 

The persons accounta-

ble for development 
and use of the AI sys-

tem 

+ + + + + + - + 

 

5 Discussion and conclusions 

The main finding of this study is that there appears to be a disparity between the 

supervisory authorities (SAs) and the banks regarding the desired scope of explainabil-

ity required for the use of AI in finance. This is exemplified by responses by these two 

types of organization on what types of information are required by SAs in the various 

use cases (visible in Table 1). SAs indicate all types of information are relevant while 
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banks indicate only a subset is relevant. Various laws and regulations already explicitly 

or implicitly impose requirements on the explainability of information systems, regard-

less of whether they are AI systems or other classes of systems. However, the use of AI 

systems brings with it a new type of ethical, social, and legal challenges in addition to 

the direct technical challenge of opening the black box of non-interpretable models 

[8,9,23,30]. Therefore, it seems warranted to further explore how this disparity should 

be addressed.  

The financial sector could perhaps benefit from clear differentiation between tech-

nical (model) explainability requirements and explainability requirements of business 

operations, applicable laws, and regulations on this topic of AI. A similar bifurcation 

as can be made for transparency (process transparency and model transparency [23]) 

might be useful for the xAI field: for instance, “AI model explainability” and “AI sys-

tem explainability”. The first of these relating to a set of techniques and methods that 

are directly used to better understand the AI model and how its input relates to its out-

put. The second of these relating to the broader concept of explainability that views the 

AI model as embedded in a system or a set of systems or processes. Whether a black 

box houses a deterministic machine learning system, or whether a (larger) black box 

houses a complex system of processes and various agents interacting with an AI, both 

require explanation [25]. In the first case the questions will be more like “how does this 

input lead to this output”, the opening of the traditional black box AI. However in the 

second case questions could be: “how is this process designed?” or “who is responsible 

for the data quality?”.  

Most interviewees, especially the technical (i.e. model developers) associated ex-

plainable AI with the technical tools that have been developed in the last few years, that 

focus on explaining the model in a low-level fashion. While technical tools, such as 

SHAP [21], give additional information about the operation of a model, they do not 

answer how such information in general is conveyed understandably to a stakeholder, 

by means of an explanation suited to that stakeholder [9]. Additionally, these tools are 

often post-hoc or after the fact [13]. Like requirements as privacy, security, and fair-

ness, explainability should require attention from the onset of the design of an infor-

mation system, “explainability by design” [31,32].  

It should be noted that several factors could have made the disparity (seen in Table 

1) larger than it is in actuality. Firstly, the interviewees at the bank might not have the 

same understanding about the laws and regulations as interviewees from the SAs had. 

Another explanation for the disparity is that it is difficult to translate laws and regula-

tions into precise requirements for information systems and AI systems in particular 

[33], thus for novel developments very broad ranges of requirements are assumed. The 

exact reason for the disparity found in this study is certainly a worthwhile topic of future 

research as well as for subsequent coordination and collaboration between supervisory 

authorities and regulated entities on topics such as transparency, explainability, and 

associated definitions. 

The requirements regarding explainable AI reported in the interviews varied widely 

per use case and stakeholder. This limits the possibility of quickly creating a generic 

framework or checklist for AI in finance that covers all or most bases. Subsequent re-

search could first explore a single use case to create a full picture of the explanation 
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requirements and what information is relevant for which stakeholder given a range of 

possible AI models. Subsequently, mapping stakeholders to xAI methods [19,21,22] to 

see how they can be helped can be a valuable avenue of research that can produce prac-

tical instruments for the implementation of xAI.  

This study has several limitations that should be noted. First, we only interviewed 

employees of a subset of the Dutch financial sector, three banks and two supervisory 

authorities. In addition, we only spoke to a total of 21 employees across the five organ-

izations. Furthermore, we only touched the surface in the examination of the use cases 

with interviews as the main method to collect data. More in-depth studies are necessary 

to confirm and extend our findings and to determine whether our findings hold across 

different geographies. 

We found banks are hesitant to put complex AI models into practice in their primary 

business processes for the lending and credit risk use cases. Interestingly, supervisory 

authorities indicated that they in principle do not restrict the use of specific types of AI 

systems. However, laws and regulations such as lending standards and CRR impose 

explainability requirements which limit the choice of AI methods beforehand. This 

might be a chicken-or-the-egg type problem, in which banks are unclear what regulators 

would precisely allow and therefore do not develop a certain AI solution (based on a 

certain model), while regulators wait for banks to put AI systems into practice before 

they can clearly say which type of model is allowed and which is not. To counteract 

this, in the plenary session it was proposed to increase communication between banks 

and SAs, also in the development process of new AI models.  

Notably, in the consumer credit and AML use cases, the use of novel AI methods 

went hand in hand with the ability to leverage more (types) of data in addition to the 

ability to use historical data. This is a clear advantage of these novel AI methods over 

the traditional business rule systems and might explain the increased performance that 

was reported in these use cases. 

The application of AI at banks for the three use cases is currently only focused on 

internal stakeholders, such as the investigators in the AML use case or the mid-office 

employees in the consumer credit use case. The fact that there is a human-in-the-loop 

was reported as a positive, as this offered an additional safeguard before action was 

taken based on the AI output. In the future, more familiarity with (fully) automated AI 

systems might lead to banks deploy more customer-oriented AI. 

This is one of the first studies that provides practical insight in the application of xAI 

in the context of use cases and AI systems in the financial sector. It demonstrates that 

a wide range of aspects requires attention when designing and building AI systems, and 

that explainability cannot be considered as a merely technical challenge nor a one-size-

fits-all solution. For financial law and policy makers, this research illustrates that finan-

cial laws and regulations have an impact on the design of information systems and in 

particular, AI systems.  

In conclusion, there appears to be a disparity between the perspectives as provided 

by the interviewees of the banks and those of the supervisory authorities for the use 

cases investigated in this study. Namely, the supervisory authorities view explainability 

of AI in a wider fashion. Potentially, this can be reframed as the supervisory authorities 

requiring explanation of the AI model as embedded in a broader system, explicitly or 
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implicitly part of financial laws and regulations. On the other hand, the regulated enti-

ties (i.e. the banks in this study) tended to view explainable AI more as a requirement 

of only the AI model. A clear differentiation between technical AI (model) explaina-

bility requirements and explainability requirements of the wider AI system in relation 

to applicable laws and regulations can potentially be of benefit to the financial sector 

and help in the communication between supervisory authorities and banks. 
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Abstract. The Dutch Ministry of Social Affairs and Employment has
to regularly explore the content of labour agreements. Studies on topics
such as diversity and work flexibility are conducted on the regular basis
by means of specialised questionnaires. We show that a relatively small
domain-specific dataset allows to train the state-of-the-art extractive
question answering (QA) system to answer these questions automatically.
This paper introduces the new dataset, Dutch SQuAD, obtained by ma-
chine translating the original SQuAD v2.0 dataset from English to Dutch
(made publicly available on https://gitlab.com/niels.rouws/dutch-squad-
v2.0). Our results demonstrate that it allows us to improve domain
adaptation for QA models by pre-training these models first on this gen-
eral domain machine-translated dataset. In our experiments, we compare
fine-tuning the pre-trained Dutch versus multilingual language models:
BERTje, RobBERT, and mBERT. Our results demonstrate that domain
adaptation of the QA models that were first trained on a general-domain
machine-translated QA dataset to the Dutch labour agreement dataset
outperforms the models that were directly fine-tuned on the in-domain
documents. We also compare several ensemble learning techniques and
show how they allow to achieve additional performance gain on this task.
A new approach of string-based voting is introduced and we showed that
it performs on par with a previously proposed approach.

Keywords: extractive question answering · domain adaptation · Dutch.

1 Introduction

The state of the art in natural language processing (NLP) field has progressed
since the introduction of Transformer-based models [25]. BERT [7], one of these
models, has become a baseline on numerous benchmarks due to its performance
on them [22]. While language models pre-trained on English corpora are com-
mon, other languages have fewer available resources. Devlin et al. [7] have trained
a multilingual BERT model (mBERT) on 104 languages and monolingual BERT
models for non-English languages are being investigated, like BERTje [5] for
Dutch, for example. The main advantage of these pre-trained language models
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is that they can be applied to multiple downstream tasks, including question
answering (QA).

The department Cao Onderzoek en Beleidsinformatie (COB) of the Dutch
Ministry of Social Affairs and Employment regularly investigates the contents of
labour agreements to evaluate existing policies or devise new ones [23]. About
30 research studies are conducted each year by the COB, and every study may
include up to 80 questions to be answered for each unique labour agreement.
Part of these investigations is extracting answers based on the contents of these
labour agreements, which can be automated using a QA system. For this pur-
pose, a small curated dataset composed of roughly 250 training examples is
created, adopting the same format as SQuAD [20], with questions relevant to
these investigations and paragraphs extracted from roughly 100 labour agree-
ments containing the answers. The relevant paragraphs have been collected by
running a baseline model, a BERT model trained on SQuAD data, on textual
segments of labour agreements that have previously been identified as relevant
by domain experts. The final labour agreement dataset is composed of questions
regarding topics like diversity or work flexibility and relevant paragraphs from
each labour agreement to make up training examples. As labour agreements
are legal documents, the language used and overall document structure differ
from Wikipedia texts, which are often used as corpora for pre-training language
models and is also used to create the SQuAD dataset [20].

Similar datasets are created for the biomedical field, the COVID-QA dataset
[17] or BioASQ [24], for example, where Jeong et al. [10] or Poerner et al. [19]
apply transfer learning methods to increase performance on these datasets. An-
other instance where transfer learning is applied is by Hazen et al. [8] that train
general domain QA models to an auto manual dataset with limited data.

This paper will compare the performance of three pre-trained language mod-
els on extractive QA for Dutch labour agreements. Three models will be consid-
ered: BERTje [5], RobBERT [6], and multilingual BERT (mBERT) [7]. These
models will be trained and compared on a general domain using a SQuAD v2.0
dataset [21] which is machine translated into Dutch. The quality of the dataset
will be investigated, as well as the impact of further processing on overall per-
formance.

Fine-tuning the trained models to the domain-specific labour agreement
(CAO) dataset and ensemble models will be other points of investigation. Models
are expected to benefit from training on a large general domain first before being
fine-tuned on the labour agreement dataset, a small domain-specific dataset. En-
sembles are expected to further improve performance. Furthermore, constructing
ensembles with models that excel in different types of queries will perform better
than ensembles made up of identical model types [2].

The main research question addressed in this paper is:

– How do pre-trained language models perform on extractive question answer-
ing for Dutch labour agreement by using fine-tuning?

Fine-tuning the model from a machine translated general domain Dutch
SQuAD v2.0 to a specific domain makes it relevant to answer the sub-questions:
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Table 1. Example question-answer pairs from SQuAD v2.0 [21] and the Dutch labour
agreement dataset. Question 1 is an answerable, or positive, example, answered by
the span of text in red. Question 2 on the other hand is an unanswerable, or negative,
example without a valid answer present in the reference text. Question 3 originates from
the labour agreement dataset, where the reference text commonly contains elements
structuring documents.

Article Normans
Reference The English name “Normans” comes from the French words
text Normans/Normanz, plural of Normant, modern French

normand, which is itself borrowed from Old Low Franconian
Nortmann “Northman” or directly from Old Norse Norðmaðr,
Latinized variously as Nortmannus, Normannus, or
Nordmannus (recorded in Medieval Latin, 9th century) to mean
“Norseman, Viking”.

Question 1 When was the Latin version of the word Norman first recorded?
Answer 9th century
Question 2 When was the French version of the word Norman first recorded?
Answer No answer

Article Labour agreement
Reference 3.2 Arbeidsduur
text 3.2.1 Basisarbeidsduur

De basisarbeidsduur is gemiddeld 36 uur per week en 1872 uur
per jaar.
3.2.2 Andere arbeidsduur
Je kunt met je leidinggevende een andere arbeidsduur afspreken.
De maximale arbeidsduur is gemiddeld 40 uur per week en
2080 uur per jaar. Je loopbaan mogelijkheden worden niet
belemmerd door een kortere arbeidsduur

Question 3 Wat is de referteperiode?
Answer per jaar

– What is the influence of language filtering on a machine translated Dutch
SQuAD v2.0?

– How does domain adapting QA models, trained on a general domain dataset
to a specific domain, using fine-tuning compare to directly fine-tuning models
on a specific domain?

Furthermore, the effectiveness of ensemble models in other applications raises
the question:

– What will be the influence of ensemble models on the performance of extrac-
tive QA on Dutch labour agreements?

The contributions of this work include the evaluation of Dutch QA models
trained on both a general domain and small specific domain. A fine-tuning strat-
egy is employed which can act as an example for other Dutch QA applications
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with specific target domains using only a limited amount of data. Furthermore,
an analysis and proposed filtering for a machine translated Dutch SQuAD v2.0
dataset is performed. The machine translated Dutch SQuAD v2.0 with addi-
tional language filtering is made publicly available3. This dataset can still be
improved upon to reduce noisy examples due to translation in order to create
better Dutch datasets for future studies on extractive QA and other downstream
tasks. Finally, Dutch pre-trained language models are compared on the down-
stream extractive QA task on this Dutch dataset both individually and ensemble
learning for small gains in exchange for more computational power.

2 Related work

Training and evaluating Dutch QA systems with a lack of dedicated resources
has been investigated by Isotalo [9]. Experiments show that machine translating
datasets is a viable option to train Dutch QA systems on. Disadvantages of using
machine translated data include reducing linguistic richness of translated texts,
possibly resulting in easier examples. Similar works exist that study transfer
learning, or domain adaption, of BERT-based models to specific domains like
the COVID-QA dataset [17, 19], biomedical QA [10], or QA on an automobile
manual domain [8].

Möller et al. [17] has created a QA dataset with 2k examples related to
COVID-19 annotated by experts of biomedical sciences. Answers are generally
longer and need to be extracted from longer reference texts compared to the
general domain SQuAD dataset [20]. A RoBERTa model [13] was fine-tuned on
SQuAD and evaluated on the COVID-QA dataset as baseline. EM and F1 scores
were both significantly improved on by training the fine-tuned model on the
COVID-QA dataset [17]. Poerner et al. [19] propose a CPU-only domain adap-
tation method for pre-trained language models. This approach involves learning
Word2Vec [16] embeddings for text of the target domain, aligning them with the
already existing embeddings of the pre-trained language model and updating the
embedding layer together with a new tokenizer. A baseline BERT model trained
of the SQuAD dataset [20] was adapted using this approach and performs better
than prior being domain adapted.

Another example of domain adaptation of BERT models to the biomedical
field is the work of Jeong et al. [10]. They apply sequential transfer learning to im-
prove performance of models on biomedical QA. Jeong et al. [10] state that fine-
tuning models on both the SQuAD dataset [20] and BioASQ [24], a biomedical
QA dataset, produces better results than only training on the BioASQ dataset.
Furthermore, they show that fine-tuning BioBERT on natural language infer-
ence (NLI), using the MultiNLI dataset [26], followed by training on BioASQ
outperforms the SQuAD approach. Additional experiments show that the order
of datasets used to fine-tune matters for longer chains fine-tuning on both the
MultiNLI and SQuAD datasets prior to BioASQ.

3 https://gitlab.com/niels.rouws/dutch-squad-v2.0
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Hazen et al. [8] investigate domain adaptation to apply QA in new specific
domains like an automobile manual. Their standard approach to transfer a QA
model to this domain is to use general domain datasets like SQuAD [20] as
starting points and training for 2 epochs to the auto manual domain. With
limited data, around 200 examples were shown great performance increase on
the specific domain and shows that models trained on large amounts of general
data can be transfer learned with limited data of a specific domain [8].

This work will be using a machine translated Dutch SQuAD v2.0 dataset
as a general domain dataset in order to adapt the domain to a legal domain
using limited data extracted from labour agreements. Machine translating exist-
ing English datasets into other languages is a strategy employed by others, for
instance, translating SQuAD to Spanish [4], Korean [12], or Persian [1].

3 Datasets

The models are fine-tuned and compared on two Dutch QA datasets. A large
general domain machine translated Dutch SQuAD dataset and a small domain
specific curated dataset composed of Dutch labour agreements.

3.1 Dutch SQuAD v2.0

Dutch SQuAD v2.0 is a machine translated, using the Google Translate API,
version of the original SQuAD v2.0 [21] by Borzymowski [3]4. Direct translations
of the answers were used to find the start tokens in the translated reference text.
Question-answer pairs were lost in translation if the translated answer is not
present in the translated context [3]. Due to this, around 31 thousand question-
answer pairs were removed in the training set of the translated version.

Despite these processing steps, noisy examples remain in the dataset con-
taining foreign words, for example, see Table 2. Examples are either partially
translated or contain large pieces of non-Dutch languages.

In order to further reduce noise in the translated dataset, language identifica-
tion [15] is employed to remove noisy non-Dutch examples using Pythons langid
module5. An example was removed if either the question or the reference text
was classified as non-Dutch.

4 https://github.com/borhenryk/train_custom_qa_model
5 https://github.com/saffsd/langid.py
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Table 2. Examples of contexts in the Dutch SQuAD v2.0 dataset removed using
language identification.

Example 1: After the Peace of Westphalia, several border territories were assigned
to the United Provinces. They were federally-governed Generality
Lands (Generaliteitslanden). They were Staats-Brabant (present North
Brabant), Staats-Vlaanderen (present Zeeuws-Vlaanderen), Staats-
Limburg (around Maastricht) and Staats-Oppergelre (around Venlo, af-
ter 1715).

Example 2: New Delhi is de thuisbasis van Indira Gandhi Memorial Museum, Na-
tional Gallery of Modern Art, National Museum of Natural History,
National Rail Museum, National Handicrafts and Handlooms Museum,
National Philatelic Museum, Nehru Planetarium, Shankar’s Interna-
tional Dolls Museum. en Supreme Court of India Museum.

Figure 1 shows the language distributions of both questions and answers in
the Dutch SQuAD v2.0 training set. Answers are predominantly classified as
English followed by Dutch and German, unlike the reference texts and questions
that are predominantly Dutch. Out of 18.6k contexts, only 31 cases were classified
as non-Dutch in the training set and 3 in the development set, two cases are
shown in Table 2.

Fig. 1. Language distribution for questions and answers of the Dutch SQuAD v2.0
dataset. All languages are shown that exceed the threshold value t = 100.

The exact distribution of example types per dataset are shown in Table 3.
Positive examples decrease each iteration, while the number of articles remains
constant. The amount of negative examples only decline at the last iteration
when they belong to non-Dutch questions or contexts. As a result of both trans-
lating and filtering, the proportion of positive to negative examples has shifted
towards more negatives per positive example compared to the original SQuAD
v2.0.
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Table 3. Dataset statistics of SQuAD v2.0 [21], a Dutch SQuAD v2.0, a Dutch SQuAD
v2.0 with additional language filtering (LF), and labour agreement dataset.

English Dutch Dutch Labour
SQuAD v2.0 SQuAD v2.0 SQuAD v2.0 (LF) agreements

Train
Total examples 130,319 99,265 95,054 241
Positive examples 86,821 55,767 53,376 165
Negative examples 43,498 43,498 41,768 76
Development
Total examples 11,873 9,669 9,294 103
Positive examples 5,928 3,724 3,588 71
Negative examples 5,945 5,945 5,706 32

3.2 Labour agreement dataset

The labour agreement (CAO) dataset is a domain-specific dataset with almost
250 training examples collected from close to 100 labour agreements of Dutch
businesses. Question-answer pairs were collected and curated in cooperation with
experts from the Dutch Ministry of Social Affairs and Employment. Labour
agreements are legally binding contracts, which is reflected in the language used
in both questions and reference texts, which are relatively short compared to the
SQuAD v2.0 dataset [21]. Negative examples are composed of rejected combi-
nations of questions and reference texts. They are added to have slightly more
than two positive examples per negative example, as is the case in the training
set of SQuAD v2.0.

4 Approach

The different model configurations and training policies will be described that
were applied to BERTje [5], RobBERT [6], and mBERT [7] in order to make
meaningful comparisons.

4.1 Fine-tuning

Initially, the three models were trained on both the unfiltered Dutch SQuAD v2.0
dataset and the language filtered Dutch SQuAD v2.0 dataset to test whether an
mBERT would have an advantage due to translation errors. The fine-tuning
strategy for all experiments consist of training the models for 2 epochs with a
learning rate of 5e−5, batch size of 8 and AdamW [14] with ε = 1e−8. The
pre-trained models were acquired from the Hugging Face model database 678

and used as starting points for baseline models on the CAO dataset, and the
6 https://huggingface.co/GroNLP/bert-base-dutch-cased
7 https://huggingface.co/pdelobelle/robbert-v2-dutch-base
8 https://huggingface.co/bert-base-multilingual-cased
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models trained on the SQuAD datasets for testing whether filtering the dataset
would improve the results of the monolingual models relative to the multilingual
model. The models fine-tuned on the filtered Dutch SQuAD v2.0 dataset are
subsequently fine-tuned for another 2 epochs on the CAO dataset and compared
to the baselines.

4.2 Voted BERT

In order to boost performance on the CAO dataset, two ensemble approaches
utilizing voting mechanisms have been implemented.

The first approach votes based on the sub-strings enclosed by the output
answer spans of models. Voting for the second approach, on the other hand,
relies on the output scores produced by the dot product of token scores with the
start and end vectors. Score voting is applied to ensemble identical models and
string voting to combine mixed model types due to the different tokenizers and
vocabularies of different models.

Score-based voting A model fine-tuned on the filtered Dutch SQuAD v2.0
dataset is copied K times. Each model k is independently fine-tuned, following
the general strategy, on the CAO dataset with a unique seed. At evaluation
time, the models are combined into an ensemble that makes prediction based on
the output scores of the K models. The output of a single model k is a start
vector sk and an end vector ek of size l which is the maximum sequence length.
s and e contain the logits that denote the probability of tokens in the input
sequence being the start and end symbols of an answer. These probabilities are
summed and normalized by K to produce the start and end vector representing
the prediction of the ensemble [27]. If BERT(x; θn) denotes the tuple 〈sk, ek〉
predicted by a BERT model with parameters θk from the input x, this ensemble
can be formulated as:

BERTV OTE(x;Θ) =
1

K

K∑

k=1

BERT(x; θk) (1)

String-based voting The other voted BERT approach is implemented by vot-
ing using an algorithm comparing the output strings in order to mix different
BERT models. As for the score-based approach K models are fine-tuned on the
CAO dataset, they are, however, different model types. One model for each type
is fine-tuned and combined with the others at evaluation time. A naive variant
of the algorithm votes for the most occurring exactly matching output, or de-
faults to the longest available prediction in the voting pool. The other version
does not require the outputs of individual models to match exactly. It calculates
the longest common sub-string 9 for each unique combination and votes on the
longest prediction in the highest scoring combination.
9 https://www.geeksforgeeks.org/longest-common-substring-dp-29/
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5 Evaluation

A description of the pre-trained language models that have been experimented
on will be given in this section, in addition to the evaluation metrics used to
assess and compare them.

5.1 Models

The pre-trained language models used are comparable in parameters and archi-
tecture but vary in, for example, corpora and objectives during pre-training.

BERTje BERTje [5] is a Dutch monolingual model comparable to BERTbase

with 12 layers and cased tokenization. It has a vocabulary of 30k tokens and is
pre-trained on 12 GB of corpora originating from Dutch books, TwNC, SoNaR-
500, Web news, and Wikipedia. It is pre-trained on two objectives: sentence
order prediction (SOP) and masked language modelling (MLM). For their MLM
objective, they mask consecutive word pieces that belong to the same word
instead of randomly masking single word pieces.

RobBERT Another monolingual model is RobBERT [6], a Dutch RoBERTa
based model with 12 self-attention layers, 12 heads and 117M parameters. Rob-
BERT is pre-trained using the RoBERTa training regime [13] and does not
include the SOP objective compared to BERTje. The OSCAR corpus was used
as a dataset, which is 39 GB of Dutch text obtained from the Common Crawl
corpus. It also includes their own byte pair encode (BPE) tokenizer constructed
using the OSCAR corpus consisting of 40k tokens, 10k more than BERTje. The
authors found that RobBERT outperforms other BERT-like models when deal-
ing with smaller datasets.

mBERT mBERT [7] is a multilingual model for 104 languages trained using
Wikipedia texts using an MLM objective and next sentence prediction (NSP).
mBERT can generalize across languages with a multilingual representation of
words without an explicit training objective for this task [18].

5.2 Evaluation metrics

We evaluated the QAmodels using two metrics: exact match (EM) and F1 scores.
In addition to calculating EM and F1 scores on the complete datasets, scores
are calculated for both the subsets of data containing only positive examples
(HasAns) and negative examples (NoAns) individually to give a better insight
into the performance of the models.

Moreover, we calculated the EM and F1 scores per interrogative Dutch words
to gain an understanding of challenging questions. Models that excel at different
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question types can be combined in an ensemble to exploit strengths and compen-
sate for weaknesses. Question types were assigned to questions by using regular
expressions for Dutch interrogative words: wie, wat, waar, waarom, wanneer,
welk, welke, hoe, hoeveel. Questions without a match for any of these words were
placed in a separate category: other.

6 Results

This section presents the collected results to answer the research questions, start-
ing off with the results generated from the Dutch SQuAD v2.0 dataset, followed
by the results of QA systems on the labour agreement dataset.

6.1 Dutch SQuAD

Language filtering The effect of language filtering described in section 3.1 is
tested by fine-tuning BERTje [5], RobBERT [6], and mBERT [7] models on both
the unfiltered and language filtered Dutch SQuAD v2.0 dataset and evaluating
these models on their respective development sets. The results of this experi-
ment are shown in Table 4 with models trained on the language filtered dataset
followed by (LF). The HasAns column show the scores calculated exclusively on
the subset of positive examples and NoAns scores on the subset of negative ex-
amples. mBERT achieves the highest scores on the unfiltered dataset by a large
margin on all subsets of the data. While remaining the best performing model,
the difference between models shrinks as RobBERT’s scores improve on all fields
and BERTje slightly decreases except on the NoAns section, where it becomes
the best scoring model.

Table 4. Evaluation results of models, on their respective development set, fine-tuned
on the unfiltered Dutch SQuAD v2.0 dataset and language filtered version. Models
fine-tuned on the language filtered version are followed by (LF). The HasAns column
are the evaluation scores exclusively with the subset of positive examples and NoAns
scores on the subset of negative examples. Bold font indicates the best scores on the
unfiltered dataset, and underlined font indicates the best scores on the filtered dataset.

Model EM / F1 HasAns EM / F1 NoAns F1
BERTje 65.26 / 69.13 44.33 / 54.39 78.37
BERTje (LF) 65.05 / 68.72 43.62 / 53.89 78.53
RobBERT 63.38 / 67.34 43.43 / 53.72 75.88
RobBERT (LF) 64.64 / 68.55 45.43 / 55.54 76.73
mBERT 67.37 / 71.31 47.80 / 58.03 79.63
mBERT (LF) 65.69 / 69.35 46.40 / 55.89 77.81

Results per question type The datasets contain a diverse mix of question
types, which have been evaluated as separate subsets to identify challenging
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questions and compare whether the challenge exists across model types. Table
5 contains these results for all positive examples of the language filtered Dutch
SQuAD v2.0 development set for the models fine-tuned on the training set.

All three models show a comparable performance distribution along the ques-
tion types. Wie/Who and wanneer/when questions are among the best perform-
ing types, while waarom/why, hoe/how, and other questions score worst and have
significantly large differences between EM and F1 scores. Predicting the ground
truth for these question types appears to be challenging, but still parts of them
are captured relatively frequently. Wat/What scores are surprisingly low for the
high number of examples compared to other questions.

Table 5. Model scores of positive examples evaluated per question type on the filtered
Dutch SQuAD v2.0 development set. Underlined scores denote the highest scores per
row, and bold scores the highest score for a model type.

Question Number of BERTje mBERT RobBERT
type examples HasAns EM / F1 HasAns EM / F1 HasAns EM / F1

wie/who 332 59.34 / 65.41 61.14 / 67.09 61.45 / 68.39
wat/what 1035 35.65 / 45.23 38.16 / 47.47 36.23 / 46.56
waar/where 244 35.66 / 49.35 35.66 / 52.51 38.52 / 51.87
waarom/why 44 20.45 / 41.95 22.73 / 35.22 11.36 / 33.61
wanneer/when 289 55.36 / 61.67 65.74 / 73.51 61.25 / 69.45
welk/which 444 50.90 / 57.49 52.70 / 59.56 53.15 / 59.06
welke/which 629 44.67 / 53.10 47.22 / 54.55 46.10 / 55.42
hoe/how 198 33.33 / 47.30 37.88 / 52.00 36.87 / 53.87
hoeveel/how much 324 50.00 / 63.49 50.62 / 63.66 51.85 / 65.45
other 103 25.24 / 37.51 30.10 / 42.58 26.21 / 36.15

6.2 Labour agreement dataset

Domain adaptation Table 6 shows the results of all systems trained on the
labour agreement (CAO) dataset. The training strategies can be derived from the
datasets following the model name. Baseline models are fine-tuned on the CAO
dataset only, as opposed to domain adapted models. They are first fine-tuned
on the large general domain language filtered Dutch SQuAD v2.0 (DSQuAD)
followed by fine-tuning on the small domain specific CAO dataset. The results
show that the baseline models are outclassed by the domain adapted version
of the same model type. BERTje mainly gains performance on the negative ex-
amples and sees the least improvement on the positive examples, whereas both
RobBERT and mBERT drop performance for negative examples and gain signif-
icant performance on positive examples. In addition to outperforming baseline
models, domain adapted models attain higher scores on the CAO dataset than
models score on the Dutch SQuAD datasets (see Table 4).

Ensemble models Ensemble models show in the majority of cases an increase
in performance regarding single models. The score-based approach with ensem-
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Table 6. Exact match (EM) and F1 scores of all systems evaluated on the CAO
development set. Bold scores indicate the highest score per column, and underlined
scores indicate the highest score per model type. Baseline models are fine-tuned on the
CAO dataset (CAO) while all other systems are first fine-tuned on the filtered Dutch
SQuAD v2.0 dataset followed by fine-tuning on the CAO dataset (DSQuAD + CAO).
K denotes the ensemble size of score-based voted BERT systems. The final cell shows
the mixed ensembles using string-based voting with LCS to indicate voting using the
longest common sub-string algorithm.

System EM / F1 HasAns EM / F1 NoAns F1
BERTje (CAO) 62.14 / 65.99 57.75 / 63.34 71.88
BERTje (DSQuAD + CAO) 66.02 / 71.38 59.15 / 66.93 81.25
BERTje (DSQuAD + CAO) (K=3) 66.99 / 73.94 60.56 / 70.65 81.25
BERTje (DSQuAD + CAO) (K=5) 65.05 / 72.78 61.97 / 73.19 71.88
RobBERT (CAO) 58.25 / 61.15 50.70 / 54.90 75.00
RobBERT (DSQuAD + CAO) 66.99 / 73.48 66.20 / 75.61 68.75
RobBERT (DSQuAD + CAO) (K=3) 69.90 / 76.83 66.20 / 76.24 78.13
RobBERT (DSQuAD + CAO) (K=5) 65.05 / 72.78 61.97 / 73.19 71.88
mBERT (CAO) 63.11 / 68.23 59.15 / 66.58 78.13
mBERT (DSQuAD + CAO) 69.90 / 76.38 67.61 / 77.00 75.00
mBERT (DSQuAD + CAO) (K=3) 69.90 / 75.57 66.20 / 74.42 78.13
mBERT (DSQuAD + CAO) (K=5) 70.87 / 75.90 69.01 / 76.30 75.00
BERTje + RobBERT + mBERT (DSQuAD + CAO) 70.87 / 76.28 67.60 / 75.45 78.13
BERTje + RobBERT + mBERT (DSQuAD + CAO) (LCS) 69.90 / 76.47 66.20 / 75.72 78.13

ble sizes of K = 3 and K = 5 produce primarily better results than single
models. Increasing the ensemble sizes also appear to benefit scores on positives
examples for both BERTje and mBERT. RobBERT, on the other hand, sees a
sudden decrease in performance for K = 5. The ensembles composed of mixed
models perform generally well, achieving high overall scores. Voting using the
string matching approach or largest common sub-string (LCS) approach achieve
comparable results, with a trade-off between EM scores and F1 scores for positive
examples.

7 Discussion

The most significant findings include the improved performance of domain adapted
models compared to baseline models and slight additional gain in performance
of ensemble models compared to their single model counterparts. These results
were expected based on the results of similar studies of transfer learning mod-
els from general domain datasets to specific domains in the biomedical domain
[17, 10], for example, or on automobile manuals [8].

The ensemble models slightly improve model results as expected [27] which
could be improved upon by creating ensembles of models that do not have as sim-
ilar performance distributions per question type as have been found for BERTje
[5], RobBERT [6], and multilingual BERT [7].

Hyperparameter optimization for BERT during fine-tuning could increase
model performance. All models have been fine-tuned using a general strategy
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which is likely not optimal for each model type, leading to under- or overper-
forming models.

Improving models for the labour agreement domain could alternatively take
the approach of BioBERT [11] by pre-training on data from the target do-
main. However, pre-training a model on corpora within a domain requires large
amounts of data and computing power. Alternatively, the relatively inexpensive
domain adaptation approach of Poerner et al. [19] could be explored.

7.1 Conclusion

In this paper, we examined fine-tuning pre-trained language models for a Dutch-
language QA task. The models were evaluated on a general-domain machine-
translated Dutch SQuAD as well as on a low-resource target domain of Dutch
labour agreements. Our results show that fine-tuning the models on the language-
specific QA dataset is beneficial even when such dataset is machine translated
from English. This finding has important implications beyond the QA task show-
ing that the model performance can be improved across languages by machine
translating English-language resources.

We also note, however, that the domain-adapted models using fine-tuning
attain higher scores on the labour agreement dataset than on the Dutch SQuAD
v2.0 datasets. The cause of this is likely that a machine translated dataset con-
tains more noise compared to a curated dataset. A limited variety of questions
for the labour agreement dataset could be another reason why higher scores are
attained. Our results demonstrate that the best performance can be achieved by
using a mixed ensemble of mBERT, BERTje and RobBERT using string-based
voting, closely followed a mBERT ensemble utilizing a score-based voting sys-
tem. The best models overall reaching EM scores up to 70.87% and a F1 score
of 76.28% on the target domain.

Interestingly, language filtering the machine-translated Dutch SQuAD results
in decreased performance for mBERT, while RobBERT gained in performance
and BERTje had only slight changes in performance. All of these results are still
significantly below comparable QA models for English.

Our results provide important insights on the intricacy of domain adaptation
for non-English QA models. We show that it is feasible to train QA models in a
low-resource scenario which is prevalent when automating recurrent tasks in the
real-world settings, such as the labour agreement investigations by the Dutch
Ministry of Social Affairs and Employment.
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During the execution of a business process, organizations or individual em-
ployees may introduce mistakes and temporary or permanent changes to the
process. Such mistakes and changes in the process can introduce anomalies and
deviations in the event logs, which in turn introduce temporary and periodic
process variants. While methods exist for detecting anomalous cases in business
processes, these methods will not detect different variants of the process. To fill
this gap, the method we present in [1] discovers, in real-time, temporary and
permanent changes to the process from event log data, in addition to anomalies.
The method classifies cases in an event log into four categories: (i) common cases
(type of cases which are most-followed in the process), (ii) temporary cases (type
of cases which are followed temporarily in the process), (iii) periodic cases (type
of cases which are followed at certain times in the process), and (iv) anomalous
cases (type of anomalous cases). At the core of this method lies a clustering ap-
proach using Non-Euclidean Relational Fuzzy c-Means (NERFCM) [2] supported
by Correlation Cluster Validity (CCV) [4].

The proposed method works as follows. First, the user defines the number
of initial cases to form initial clusters, the merging criteria, and the number of
days after which an existing cluster or anomalies may be forgotten or saved. Then
CCV algorithm is applied to estimate the probable number of clusters that exist
in initial cases, followed by the application of the NERFCM algorithm, which
creates the initial clusters. The clusters are saved in a list called ‘cluster list’. At
this stage, the cut-off size for a new cluster is also computed, i.e. the size of a new
cluster to qualify into the main cluster list. When a new case arrives and falls
under the radius of any existing clusters, it is added to that cluster; otherwise,
it is stored in a list called ‘anomaly list’. Simultaneously, it is checked if new
clusters are forming inside the anomaly list. If, at any point in time, the size of
a cluster in the anomaly list becomes larger than the defined cut-off size, then
that cluster of cases is removed from the anomaly list and added to the main list
of clusters. Next, if at any point in time the similarity between any two or more
clusters in the cluster list becomes greater than a defined merging criteria, then
those clusters are merged. If no new case is added to a cluster in the cluster list
for a defined number of days, that cluster is removed from the cluster list and
added to a list of forgotten clusters. Similarly, if no new case is added to the
anomaly list for the same number of days, all the cases are removed from the
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anomaly list and saved as confirmed anomalies. The algorithm then waits for a
new case to arrive and implements all the steps again.

We evaluated our method on several synthetic and real-life event logs. To
show the effectiveness of the method here we only discuss the results from one of
the synthetic event logs where we knew the occurrence of different process vari-
ants. Moreover, anomalies were introduced to the event log, using the approach
proposed in [3]. Figure 1 shows a visual comparison between results obtained by
setting the choice of forgetting the clusters as ‘No’ and ‘Yes’. In Figure 1, each
row represents a cluster, where cluster C n represents common cases, cluster
PC n represents periodic cases, cluster TC n represents temporary cases, where
n is the number of cluster. For instance, C 1 shows the first cluster in the main
cluster list. The last row in both Figure 1a and Figure 1b shows the confirmed
anomalies (ALS). The horizontal axis shows the arrival of cases in the order of
their time of completion. Each vertical bar in a cluster shows the assignment of
a case to that cluster. In Figure 1b, PC 1-PC 5 and TC 1 are the clusters that

(a) forgetting type = No (b) forgetting type = Yes

Fig. 1: Blue bars are common cases, Green bars are periodic case, Orange bars
are temporary cases, and Red bars are cases marked anomalous.

were forgotten from the main cluster list at some point in time since no new case
was added to them. In the post-analysis of the results, it is found that a cluster
similar to PC 1 reappeared again in PC 2, PC 3 and part of PC 4. Also, part
of PC 4 reappeared in PC 5. Since the reappearing clusters are similar to each
other and they were forgotten after some time, therefore, they are categorized
as periodic cases. On the other hand, TC 1 is a cluster that was forgotten after
some time, but no similar cluster ever reappeared in main clusters or forgotten
clusters. Therefore, cases in TC 1 are categorized as temporary cases. Further-
more, in Figure 1a, all the periodic and temporary cases are included in the
main cluster. Cases falling in these clusters make up of periodic and temporary
process variants.
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1 Introduction

The goal of one-class classification, also known as semi-supervised outlier, anomaly
or novelty detection, is to distinguish between a target class and the other class,
on the basis of a training set that only contains target class instances. Many
one-class classification algorithms, known as data descriptors, contain one or
more hyperparameters that need to be set by the user. Previous experimental
comparisons of data descriptors have used instances from the other class to tune
these hyperparameter values [4, 12].

The contribution of our paper [6] is threefold. First, we present our own
algorithm, Average Localised Proximity (ALP). Second, we determine optimal
default hyperparameter values for a number of data descriptors. And third, we
compare the performance of a number of data descriptors experimentally.

2 Average Localised Proximity

ALP builds on a number of existing nearest neighbour data descriptors. The
simplest of these is Nearest Neighbour Distance (NND) [5], the distance of a test
instance to its kth nearest neighbour in the training set. Because the density
of the target class may vary throughout the feature space, Localised Nearest
Neighbour Distance (LNND) [9, 13] divides this distance by the distance between
the kth nearest neighbour and its own kth nearest neighbour in the training set.
Unfortunately, this also increases its sensitivity to random fluctuations in the
distribution of the training set. Local Outlier Factor (LOF) [1] is based on a
more complex calculation that involves three rounds of aggregation and the
substitution of small local distances with larger values.

Like LOF, ALP aggregates localised distance values, but is less complex and
does not discard any values. ALP has two hyperparameters, k and l. For each
i ≤ k and each j ≤ l, we calculate the ith nearest nearest neighbour distance
of the jth neighbour of a test instance. We then take the weighted mean with
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linearly decreasing weights of the values corresponding to each i, to obtain the
local ith nearest neighbour distance, and divide this by the sum of itself and the
ith nearest neighbour distance of the test instance to obtain the ith localised
proximity value of the test instance. Finally, we sort these proximity values from
large to small and again take a weighted mean with linearly decreasing weights.

3 Experiments and results

Our experimental data consists of 246 one-class classification problems derived
from 50 real-life datasets from the UCI machine learning repository. Each prob-
lem is created by choosing one class as the target class and combining the re-
maining classes to form the other class. Each feature in the data is rescaled by
dividing by the interquartile range of that feature in the training set.

We first determine the optimal default hyperparameter values of ALP, NND,
LNND, LOF, as well as the Support Vector Machine (SVM) data descriptor [14,
11], by identifying the values that obtain the highest weighted mean AUROC
on our problem set, giving equal weight to each original dataset (Table 1).

Table 1. Optimal default hyperparameter values of data descriptors, with n the size
of the target class and m the number of attributes. Hyperparameters k and l rounded
to the nearest integer in the range [1, n− 1].

Data descriptor Hyperparameter Optimal default value

NND k 1
LNND k 3.4 logn
LOF k 2.5 logn
SVM ν 0.20

c 0.25m
ALP k 5.5 logn

l 6.0 logn

Next, we compare the data descriptors with each other, as well as a number
of data descriptors that don’t require setting any hyperparameter values: Maha-
lanobis Distance (MD) [8], Isolation Forest (IF) [7], Extended Isolation Forest
(EIF) [3], and the Shrink Autoencoder (SAE) preprocessor combined with cen-
troid distance [2]. The hyperparameter values in this comparison are set using a
leave-one-dataset-out scheme. Using a clustered Wilcoxon signed-rank test [10]
for each pair of data descriptors, and correcting for multiple testing, we find
that ALP performs significantly better than LNND, LOF, and the other data
descriptors, except SVM, for which the difference is only weakly significant.

Subsequent analysis shows i.a. that ALP has a particularly strong advantage
(in general, and over SVM in particular) with one-class classification problems
that admit good solutions.
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The Knowledge Base Paradigm (KBP) advocates a strict separation between
declarative domain knowledge and logical inference tasks that can be applied to
this knowledge to solve problems of interest [2]. In this paper we report the
results from a case study in which we combine the principles of the KBP with
a Natural Language (NL) interface. The case was executed at an international
financial institution. As a part of its service, an investment banker offers clients
advice on the financial products to buy or sell. The clients’ preferences can be
expressed in an investment profile, that determines which assets are eligible for
a specific investment. The eligibility of a specific asset depends on a plethora
of interacting rules and constraints. Previously, a bank operator translated the
several requests into lengthy programs that contain a lot of enumerations, rep-
etitions, and complex nesting of if-then clauses and exceptions that need to be
followed in the right order. This makes each creation of an investment selection
program a complex and time consuming task. Furthermore, the result is hard to
validate, which entails a substantial operational risk.

Our application allows the eligibility of financial products to be defined by
means of controlled natural language (CNL). Each sentence is constructed from
a number of building blocks that are selected step by step to get to a complete
sentence. The resulting highly structured NL sentence is automatically translated
to first order logic (FOL). The application also contains a deep learning NLP
module that accepts free-form English. It proposes three CNL statements that
are most likely to present the English sentence. The user then selects the most
correct sentence, makes adjustments if necessary, and validates the result.

When completed, the KB can be used by different inference methods to per-
form multiple tasks in the problem domain. We use the IDP system with its
associated FOL-based language as underlying reasoning engine [1]. A KB con-
sists of three parts: a vocabulary that contains the ontology of the domain, a
theory that contains rules and constraints on the concepts in the vocabulary, and
a structure, that delineates the domain of the concepts, and typically gives an in-
terpretation for some of them. The information that is declaratively stated in the
KB, can be used for different purposes. The inference task of model expansion
can be used to decide on the eligibility of a specific asset. Given a theory T (that
contains the rules of eligibility), and an interpretation Ip for part of its vocabu-
lary V , the model expansion inference computes interpretations It for the entire
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V such that Ip ⊂ It and It |= T [4]. In our application we typically possess all
the information on the asset, such that only the values of Eligible and NotEligible
need to be computed. The optimize inference is used to find a combination of
eligible assets that can be acquired at minimal cost. To this end we create an
additional term m that represents this cost. Given a theory T , interpretation Ip
and term m, the optimize inference will look for a model expansion It of Ip that
minimizes m [1]. This is, it will select a combination of assets with the lowest
associated cost that follows the eligibility rules and given Ip. The propagation
inference computes a set of facts that are consequences of T given Ip, i.e., that
hold in all model expansions It of T with Ip ⊂ It [1]. In the application, the
propagation works interactively: as soon as a new rule is created, the impact on
the eligibility is immediately shown by coloring the asset green (eligible) or red
(not eligible). The explanation inference traces the propagated values back to
the given values of the interpretation Ip [3]. The application allows the user to
click on a propagated value and see immediately which atoms steered the deci-
sion. The theory comparison task uses themodel expansion inference to compare
two profiles. Active investors will typically update their profile regularly. In this
case an automated comparison of two versions of the profile is helpful to ensure
that correct amendments have been made. With the model expansion inference
the logical equivalence of two theories can be checked by merging two theories
T1 and T2, and adding the constraint that an asset can only be eligible in one
of both theories. If no model It that satisfies T3 is found, the two theories are
equivalent.

Application development A prototype with a real-life example KB and the
described inference tasks were showcased to the company in a prototype. Follow-
ing this, the company has launched a project to further develop this prototype
into a production application. The first technical release in production was done
in February 2021 and a second release with improved workflow for signing the
profiles between counterparties was released in June 2021. As of the second re-
lease, clients from large investment banks have access to a sandbox environment
for training purposes. A full commercial roll-out will be done by September 2021.
The target users for this commercial release are operations teams in the treasury
back offices of large investment banks globally (target around 500 users across
150 organisations). The correctness of the knowledge base was insured by per-
forming empirical tests with profile descriptions with up to 20 rules, and applied
to portfolios of up to 300 assets with response times less than 3 seconds. These
represent reasonable tranches for proper business use. Any larger portfolios can
be tested off line with reporting being sent when processing has finished. Com-
pared with the manual creation of a profile, the operational risk linked to the
automation is almost non-existent thanks to the two-step procedure to turn nat-
ural language sentences via CNL automatically into an FO(.) KB. Once the KB
is created, the application supports multiple services, such as the selection of el-
igible assets, optimisation of the associated costs and explanation of unexpected
results.
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derzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme.

References

1. Broes De Cat, Bart Bogaerts, M Bruynooghe, G Janssens, and Marc Denecker.
Predicate logic as a modeling language: The idp system. In Declarative Logic Pro-
gramming: Theory, Systems, and Applications, pages 279–329. ACM Books, 2018.

2. Marc Denecker. Building a knowledge base system for an integration of logic pro-
gramming and classical logic. volume 5366, pages 71–76. Springer, 2008.

3. Marjolein Deryck, Jo Devriendt, Simon Marynissen, and Joost Vennekens. Legisla-
tion in the knowledge base paradigm: interactive decision enactment for registration
duties. pages 174–177. IEEE, 2019.
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1 Introduction

The abundant availability of data allows the construction of predictive systems
that support decision makers in business and society. A problem arises if an
organization does not have a large enough data set by itself to construct a
system of adequate quality. Obtaining additional data from other parties may
be impossible because of competitive threats or privacy regulations, e.g. the EU
General Data Protection Regulation (GDPR) [1].

To overcome these risks, federated learning is becoming increasingly popular
to enable automated learning in distributed networks of autonomous partners
without sharing raw data. Federated learning enables a collaboration between
multiple parties to jointly train a machine learning model without exchanging
the local data [7]. Because the data are not exchanged between parties, it is
considered a privacy preserving approach. The collaboration in learning is con-
sidered successful, if for at least one party the performance of the federated
model is better than the performance of the local model [5].

So far, only crisp systems have been used in this context. The use of a fuzzy
inference system [8] can bring advantages to deal with vagueness and uncertainty
in predictive systems. We show that it is indeed possible to build a fuzzy inference
model in a federated learning setting, resulting in a Federated Fuzzy Learning
System (F2LS). We also show that this combination brings advantages to decision
making that cannot be achieved with either mechanism in isolation.

2 Method: Constructing an F2LS

The learning algorithm we use follows both the two-step process of training the
Takagi-Sugeno fuzzy inference model [4, 6, 3] and the general federated learning
process [7].

In the first stage of the algorithm (structure and rule antecedent identifica-
tion), the server requests each client to cluster their local data and return to the
server the cluster centers and the standard deviations. Next, similar clusters are
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merged (i.e., cluster centers that are close enough are averaged). For this pur-
pose we use agglomerative hierarchical clustering with a predefined threshold. In
this process, two clusters from the same client cannot be merged. The number
of merged clusters determines the number of rules in the F2LS: for each cluster,
one rule will be formed. The fuzzy sets in the rule antecedents are defined by
the corresponding cluster as Gaussian membership with averaged cluster center
c̄ and averaged standard deviation σ̄ as parameters.

In the second stage of the algorithm (rule consequent identification), we use
the stochastic gradient descent algorithm in a federated setting. This means that
each client selected in each round receives a federated model, runs E training
passes of the stochastic gradient descent algorithm to find consequent parameters
on a training batch of local data, and then returns the updated parameters to
the server. The server updates the parameters of the rule consequent of the
federated model as the weighted average of parameters returned by the clients
in this round. The weights are dependent on the size of local data, such that
large data sets have more influence than small data sets.

Details of the algorithm are described in our full paper [9].

3 Results: Testing an F2LS

We have tested the proposed F2LS on two small data sets from the UCI repos-
itory [2]. The goal of these experiments is to verify whether one can train a
fuzzy inference system in a federated setting. As a success criterion we use the
one proposed by Li et al. [5], in which a federated model should improve the
performance for at least one party.

We have calculated MSE and MAE on the test sets available to each client,
for both the local and federated models. Each experiment was repeated 20 times
with random partitioning of the data. The mean of the errors shows that the
federated learning setting is successful, as all parties on average improve their
performance quality. However among the 20 repetitions, there are a few cases in
which the federated model didn’t outperform any of the local models. Further
research is required to learn in which cases joining a federation is beneficial for
a party.

4 Concluding remarks

We have proposed an approach for building an F2LS, using a Takagi-Sugeno fuzzy
inference system in a federated setting. The F2LS approach integrates the best of
two worlds: federated learning to deal with privacy-preserving data integration
and learning and fuzzy inference to deal with uncertainty and vagueness in the
contents of the learning process. We have shown that on average a federated
model can outperform corresponding local models. The presented prototype ap-
proach requires further testing with an emphasis on test cases with heterogeneous
data, as this is a known weak point of federated approaches.
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Abstract. BERT is a popular pre-trained language model used as a base
for getting outstanding performance on a wide variety of natural language
tasks.Recent studies show that BERT models trained on a single language
significantly outperform the multilingual version. Also, its performance
was improved by robustly optimising the architecture, as done in the
RoBERTa model. We trained a Dutch language model called RobBERT
and evaluated different tokenizers, its performance on various tasks and
its fairness. The results show that it is a powerful pre-trained model for
a large variety of Dutch language tasks, which we released to support
further downstream Dutch NLP applications.

Keywords: Natural Language Processing · BERT model · RoBERTa

1 RobBERT

RobBERT is a pre-trained BERT-like Dutch language model, which can be used
for various downstream natural language processing tasks. We trained it using
the RoBERTa architecture and training regime [7], which optimised BERT’s
setting [6] e.g., by only using masked language modelling as pre-training task.
The data used to train RobBERT is the Dutch part of the OSCAR corpus [9],
based on Common Crawl where sentences were classified and split per language.

We evaluated RobBERT on several tasks against competing models, such
as multilingual BERT (mBERT) [6] and other BERT models such as BERT-
NL [3] and BERTje [4]. We also evaluated the importance of language-specific
tokenizers by using the original (English) RoBERTa tokenizer (RobBERT v1)
and training a new Dutch tokenizer (RobBERT v2). We evaluated the models on
book review sentiment analysis (DBRD), die/dat co-reference resolution (die-dat)
[1], part-of-speech tagging (POS) [10], We found that RobBERT outperforms
the competing models on most tasks. This could be due to the fact that the
RoBERTa architecture optimized the BERT architecture, and because RobBERT
uses more data than its other Dutch counterparts. Another reason could be the

This extended abstract is the abbreviated version of the paper with the same name
from Findings of the Association for Computational Linguistics: EMNLP 2020 [5].
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Table 1. Results on four benchmarks and comparison with other models, both Dutch
and multilingual. The dataset size for mBERT (indicated with †) is estimated using
current Wikipedia dumps. Earlier reported results are annotated with their citations.

Pre-training data Benchmark scores

Model Datasets Size Vocab. DBRD DIE-DAT NER POS

mBERT Wikipedia 75† GB WordPiece (int.) — 98.3± 0.04 90.9 [11] 96.5± 0.3
BERT-NL SoNaR [8] 2.2 GB WordPiece 84.0 [3] — 89.7 [3] —
BERTje SoNaR [8] + others 12 GB WordPiece 93.0 [4] 98.3± 0.04 88.3 [4] 96.3± 0.3

RobBERT v1 OSCAR [9] 39 GB BPE (En.) 94.4± 1.0 98.4± 0.04 87.5 96.4± 0.4
RobBERT v2 OSCAR [9] 39 GB BPE 95.1± 0.9 99.2± 0.03 89.1 96.4± 0.4

nature of the training data, namely text scraped from the internet, as its stylistic
diversity creates a more robust model.

2 Fairness

Since RobBERT is a model that could be used as a base model for a wide range
of tasks, we evaluated its fairness by probing for gender biases. We did this by
checking for gender stereotypes and its predictive performance on texts written
by different genders. We translated an existing English dataset of professions
[2] to Dutch, and filled these into three template sentences: a control template
(‘‘<mask> goes to a <T>.’’) and two with co-reference (‘‘<mask> is a

<T>.’’, ‘‘<mask> works as a <T>’’). We then checked how often the mask
was filled in with “he” compared to “she”. For the co-referent templates, we
found that RobBERT estimates the male pronoun more likely in almost all cases,
even for processions with a gendered suffix. This is likely an artefact due to the
male pronoun being much more present in text in general.

We also evaluated if RobBERT had unequal performance based on the writer
of the review in the DBRD dataset. We augmented the test set with the gender of
the writer who self-reported this on their user profile, and checked if our already
fine-tuned model (which thus never saw this gender) had predictive parity for this
sensitive attribute. Only 64% of users reported their gender, of which 76% were
written by women. While the performance for just predicting positive reviews is
about equal, we found that the finetuned model has a higher performance for
predicting highly positive reviews when written by women than by men.

3 Conclusion

We introduced a new pre-trained Dutch language model called RobBERT, and
showed that it outperforms earlier approaches on various language tasks. The
RobBERT model can thus serve as a useful base that can be fine-tuned on new
datasets, and thus help foster new models that advance results for a diverse range
of Dutch language tasks.
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1 Evolving Long-term Cognitive Network

In the discussed journal paper, we proposed an interpretable neural system for
data classification termed Evolving Long-term Cognitive Network (ELTCN). The
ELTCN model builds upon the Long-term Cognitive Network (LTCN) [3], but
what makes it distinct is that it allows for the weights to change from an iteration
to another during the reasoning process. The ELTCN is a neural architecture
with two layers. We envisioned that the Fuzzy Cognitive Map (FCM) [1] model
would be embedded in this architecture as an input layer. The FCM can get
unfolded without losing the ability to interpret the nodes and the weights in the
resulting architecture. The second layer is the output layer.

Let us introduce the backbone of data processing of an unfolded ELTCN with
T abstract layers, each containing M neurons. We have N output neurons and

P = M + N . Let w
(t)
ji be a weight in the t-th iteration and a

(t)
i the activation

value of the i-th neuron. Eq. (1) shows how to compute neurons’ activation values
by following the evolving reasoning principle,

a
(t+1)
i = f

(t+1)
i




P∑

j=1

w
(t)
ji a

(t)
j


 (1)

where f
(t+1)
i (x) can be either the sigmoid function,

s
(t)
i (x) =

1

1 + e−λ
(t)
i (x−h

(t)
i )

(2)

or the hyperbolic tangent function,

q
(t)
i (x) =

e2λ
(t)
i (x−h

(t)
i ) − 1

e2λ
(t)
i (x−h

(t)
i ) + 1

(3)
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where λ
(t)
i > 0 and h

(t)
i ∈ R denote the function slope and its offset, respectively.

The activation values for output neurons is given by:

a
(t+1)
i =

e

(∑M
j=1 w

(t)
ji a

(t)
j

)

e

(∑N
k=1

(∑M
j=1 w

(t)
jk a

(t)
j

)) . (4)

An essential contribution of this paper was related to a new backpropagation
algorithm that implements the ELTCN reasoning process and adjusts the weights
of this neural model and some transfer function parameters.

The learning algorithm includes two regularization components that attempt
to produce neural models we can understand. They allow minimizing the weight
variability between two consecutive iterations and the offset values. Producing
“stable” weights makes the model easier to interpret. We also modified the weight
normalization procedure presented in [2] to this model.

2 Results and Conclusion

In the paper, we demonstrated the predictive power of the proposed model in
a series of numerical simulations concerning 58 pattern classification datasets.
We also showed how to derive intrinsic explanations. The state-of-the-art clas-
sifiers selected for the comparative analysis were as follows: Logistic Regression
(LR), Gaussian Naive Bayes (GNB), Decision Tree (DT), Support Vector Ma-
chine (SVM), Random Forest (RF), and Multilayer Perceptron (MLP). We made
a motivated decision of not optimizing the hyperparameters of neither of the al-
gorithms used, including the ELTCN.

The key findings were that the proposed ELTCN model (together with the
new backpropagation learning method) attains competitive prediction rates con-
cerning traditional classifiers. Fig. 1 presents the average Kappa value achieved
by each classification model after performing 10-fold cross-validation. It can be
observed that MLP, RF, and ELTCN report the highest prediction rates in this
study but only ELTCN provides intrinsic interpretability.
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Fig. 1. Average Kappa value achieved by each classifier on the 58 datasets.

Furthermore, we observed that the ELTCN variant using the hyperbolic tan-
gent function is more accurate in terms of Kappa values than the variant using
the sigmoid function when it comes to the Kappa values.
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Abstract

Security Operations Center (SOC) analysts investigate thousands of intrusion
alerts on a daily basis, leading to alert fatigue and reduced productivity [1].
While alert correlation techniques help reduce the volume of alerts, they do not
show the bigger picture of how the attack happened. Attack graphs (AG) are
visual models of attacker strategies. State-of-the-art approaches for AG gen-
eration focus mostly on deriving dependencies between system vulnerabilities,
based on network scans and expert knowledge [3]. In real-world operations how-
ever, it is costly and ineffective to rely on constant vulnerability scanning and
expert-crafted AGs.

We propose to learn AGs, purely based on the actions observed through intru-
sion alerts. In this paper, we develop an unsupervised sequence learning system,
called SAGE (IntruSion alert-driven Attack Graph Extractor)3. It constructs
alert-driven AGs without any expert input. These AGs unlock a new means to
derive intelligence regarding attacker strategies without having to investigate
thousands of intrusion alerts.

Class imbalance remains a major challenge for machine learning-enabled at-
tacker strategy identification – severe alerts are infrequent, while non-severe
alerts (related to network scans) are very frequent. This makes most machine
learning solutions inherently unsuitable, since they discard infrequent behavior.
Instead, we learn an interpretable suffix-based probabilistic deterministic finite
automaton (S-PDFA) using the FlexFringe automaton learning framework [4].
We tune the learning algorithm and transform the alert data such that the re-
sulting model accentuates infrequent severe alerts, without discarding any low-
severity alerts. The model summarizes attack paths leading to severe attack
stages. It can distinguish between alerts with the same signature but different
contexts, i.e., scanning at the start and scanning midway through an attack are
treated differently, since they indicate different attack stages. Targeted attack
graphs are extracted from the S-PDFA on a per-victim, per-objective basis.

Tested with intrusion alerts collected through Collegiate Penetration Testing
Competition [2], we evaluate SAGE’s efficacy on distributed, multi-stage attack

3 SAGE is open-source: https://github.com/tudelft-cda-lab/SAGE
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Fig. 1. Alert-driven attack graph of data exfiltration (IDs are state identifiers). The
S-PDFA finds 3 ways of exploiting the objective based on path differences.

scenarios. SAGE compresses over 330k alerts into just 93 AGs, while also showing
how a specific attack transpired. For instance, Fig. 1 shows 3 teams conduct-
ing data exfiltration. The AGs capture the strategies used by the participating
teams, producing directly relevant insights for SOC analysts, e.g., they reveal
that attackers follow shorter paths after they have discovered a longer one. In
Fig. 1, Teams 1 and 5 make two attempts, where each subsequent attempt is
shorter than the first. This happens in 84.5% of the cases. They also provide an
intuitive layout to compare attacker strategies for discovering parallel attacks
and fingerprintable paths. We believe that alert-driven attack graphs can play
a key role in AI-enabled cyber threat intelligence as they open up new avenues
for attacker strategy analysis whilst reducing analysts’ workload.
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The gossip problem addresses how to spread secrets among a group of agents
by pairwise message exchanges: telephone calls. Each agent holds a single secret,
and when calling each other the agents exchange all the secrets they know. An
agent may call another agent if it has that agent’s telephone number. The goal of
the information dissemination is that all agents know all secrets. The situation
can be represented by a network where the nodes are the agents and where,
when two nodes are linked, the agents can call each other.

There are many variations of the problem. It goes back to the early 1970s [5,
18, 16, 6, 19, 13]. In this classic setting only secrets are exchanged, and the focus
is on minimum execution length of protocols executed by a central scheduler.
Later publications assume that the scheduling is distributed [15, 12]. Fairly recent
developments focus on gossip protocols with epistemic preconditions for calls [1,
3, 4, 2, 7, 11]. For example, agents may only call another agent once, or only if
they do not know the other agent’s secret, etc. In dynamic gossip [8, 9] the agents
do not only exchange all the secrets they know but also all the telephone numbers
they know. This results in network expansion: not only the secret relation but
also the number relation is expanded after a call. A way to load the messages
beyond merely exchanging secrets is to exchange knowledge about secrets [14].
One can thus achieve higher-order shared knowledge of all secrets (all the agents
know that all the agents know, etc.).

In this contribution we investigate gossip protocols with the epistemic goal
that all agents know that all agents know all secrets. Unlike [14] we continue
to assume that agents only exchange secrets. However, we additionally assume
that the agents may have knowledge of the protocol, where we consider four well-
investigated gossip protocols, and we also model additional behaviour of agents,
and how they affect properties such as termination and execution length. The
following summarize our approach:

– The protocol terminates if everyone knows that everyone knows all secrets.
– Agents know the gossip protocol that is used by all agents.
– Agents who know that everyone knows all secrets no longer make calls.

Encore abstracts BNAIC/BeneLearn 2021

662



– Agents who know that everyone knows all secrets no longer answer calls.

An agent who knows all secrets is an expert. An agent who knows that everyone
is an expert is a super expert. So our epistemic goal is for all agents to become
super experts, where we also investigate the effect of additional assumptions that
the protocol is known and that super experts no longer make and answer calls.
Asynchronous conditions where agents are only aware of calls involving them,
are distinguished from synchronous conditions where agents are aware of calls
taking place but not who make them if they are not involved.

Below is a simple example for four agents a, b, c, d under asynchronous con-
siditions. The rows describe the effect of successive calls. The columns describe
what respectively a, b, c, d know: a lower case y in the column of agent x means
that x knows the secret of y; an upper case Y means that x knows that y knows
all secrets. Therefore, “abcd” denotes an expert and “ABCD” denotes a super
expert.

a b c d all only know own secret
ab→ ab ab c d
cd→ ab ab cd cd
ac→ abcd A C ab abcd A C cd
bd→ abcd A C abcd B D abcd A C abcd B D
ab→ abcd ABC abcd AB D abcd A C abcd B D
ad→ abcd ABCD abcd AB D abcd A C abcd AB D a is a super expert
bc→ abcd ABCD abcd ABCD abcd ABC abcd AB D b is a super expert
cd→ abcd ABCD abcd ABCD abcd ABCD abcd ABCD all are super experts

We present a logical language and semantics for gossip protocols with the
epistemic goal that all agents know that all agents know all secrets. A proto-
col is super-successful if all executions terminate satisfying this condition. We
recall four gossip protocols from the literature: ANY, PIG, CMO, and LNS. We
obtain various results for the protocols ANY and PIG, mainly that they are
super-successful (both for the synchronous and asynchronous versions) in some
sense adequate for protocols permitting infinite call sequences. We further refine
the logic in order to model common knowledge of gossip protocols. If a protocol
is common knowledge we call it a ‘known protocol’. We then show that syn-
chronous known CMO is super-successful. Subsequently we refine the semantics
of commonly known protocols with the feature that super experts do not make
calls and do not answer calls. We then show that, if this is also known, super-
successful protocol executions can be shorter. However, under these conditions
CMO is no longer super-successful. An even further refinement of the semantics
adds ‘skip calls’ following terminal protocol-permitted sequences, that allow us
to regain a super-successful CMO, and that seems a promising feature to adapt
or repair yet other epistemic gossip protocols.
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Abstract. Recently, deep neural networks have expanded the state-of-
art in various scientific fields and provided solutions to long standing
problems across multiple application domains. Nevertheless, they also
suffer from weaknesses since their optimal performance depends on mas-
sive amounts of training data and the tuning of an extended number of
parameters. As a countermeasure, some deep-forest methods have been
recently proposed, as efficient and low-scale solutions. Despite that, these
approaches simply employ label classification probabilities as induced
features and primarily focus on traditional classification and regression
tasks, leaving multi-output prediction under-explored. Moreover, recent
work has demonstrated that tree-embeddings are highly representative,
especially in structured output prediction. In this direction, we pro-
pose a novel deep tree-ensemble (DTE) model, where every layer en-
riches the original feature set with a representation learning component
based on tree-embeddings. In this paper, we specifically focus on two
structured output prediction tasks, namely multi-label classification and
multi-target regression. We conducted experiments using multiple bench-
mark datasets and the obtained results confirm that our method provides
superior results to state-of-the-art methods in both tasks.

Keywords: · Deep-Forest · Multi-output prediction

1 Introduction and Method

Recently, deep learning has arisen as a cutting edge methodology advancing the
state-of-the-art in many domains. Apart from its success, deep neural networks
suffer also from weaknesses. For example, their training is computationally very
expensive and demands large-scale datasets. As an alternative, deep-forest meth-
ods have been recently investigated as efficient and low-scale solutions [7, 6].

Motivated by them, we proposed a novel deep tree-ensemble (DTE) method
where deep-models are built by sequentially concatenating layers of ensemble
models. Here, we present a condensed version of our work, while a detailed de-
scription of our method and evaluation setup is available in the main publication
[4]. In every layer of our model, we include a tree-based representation learning
step extending the original input space with low-dimensional tree-embeddings
(TEs) [5]. Different from [7, 6], instead of simply using the predictions of the
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previous layer as extra attributes for the next one, we enrich the input feature
space with a representation learning component based on the decision paths of
the trees in the tree-ensemble collection. Our main hypothesis is that adding
a representation learning component to the deep forest methodology will boost
predictive performance while keeping computational complexity low.

TEs are generated as follows: All trees in the ensemble are converted to a
binary vector C = {c1, ...c|C|}, where |C| is the total number of nodes. Each

ci ∈ C is treated as a feature, creating a representation F ∈ R|N |×|C|, where N
stands for the number of instances in the dataset. Fij = 1 if an instance belongs
to such node, otherwise Fij = 0. F is then filtered and weighted based on how
frequently a node is traversed and PCA is used to generate the final embeddings.

2 Experiments

We have focused on two multi-output prediction tasks: multi-label classification
(MLC) and multi-target regression (MTR). For both tasks, we have collected
multiple datasets from public repositories and performed 5-fold cross-validation.

To summarize our experiments, we present the Friedman-Nemenyi diagrams
(Figures 1a and 1b). We have compared 4 variants of our method, each variant is
described by the representation used at each layer. In this case, X stands for the
original features, TEs for the tree-embeddings and OS for output space features.
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(b) Diagram using Label-ranking

As can be seen, our variant X TE is ranked higher than its main competitor
methods DSTARS and MLDF in MTR and MLC, respectively [2, 6]. Moreover,
X TE being ranked first states that TEs should be employed with the original
representation (X) and not replace it, as the TE variant performed worse than
X TE. Additionally, the variants with OS are constantly ranked lower than its
counterparts with TEs, reinforcing the representational power of the latter.

3 Conclusion

In this paper, we have proposed a novel deep tree-ensemble model for multi-
output prediction tasks which integrates tree-embeddings. Our experiments have
shown that the proposed model yields superior results in both tasks.

In future work, we would like to investigate tree-embeddings in tasks with
a larger number of labels, such as hierarchical multi-label classification [3] and
extreme multi-label classification [1].
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This is an extended abstract describing the paper ”Prompt Tuning or Fine-
Tuning - Investigating Relational Knowledge in Pre-Trained Language Models”
published at AKBC 2021 [2].

Keywords: Language Models · Knowledge Graphs · Knowledge Graph Con-
struction

1 Introduction

Recent research has shown that large pre-trained language models may serve as
rich sources of relational knowledge [6]. The paper Language Models as Knowl-
edge Bases has shown that it is possible to extract relational knowledge from
arbitrary masked language models by completing cloze-style sentences. As an
example, the sentence Albert Einstein was born in [MASK] could be completed
by the word Ulm. Using this idea, factual knowledge from Wikidata [8] can be
extracted from the language model BERT with a precision of around 31%.

The quality of these extractions, however, is strongly dependent on the for-
mulation of the input sentence, the so-called prompt. A lot of effort was invested
into tuning the prompt by complex mining and learning techniques, such that
the extraction quality is improved up to 43% without changing the underlying
language model [7, 1, 4, 3]. However, existing techniques usually need a signif-
icant amount of training data in the form of existing knowledge graph triples
and a large amount of training time to optimize these prompts by using complex
additional models.

In our paper, we perform a simple adaptive fine-tuning method on the origi-
nal language model using only a few training triples from an existing knowledge
graph. We continue training on the pre-training objective using masked sen-
tences: Given the triple (Albert Einstein, bornIn, Ulm), we use the sentence
Albert Einstein was born in [MASK] and the correct answer Ulm as a train-
ing input. By this very simple idea, we achieve superior results on the LAMA
probe with a precision of over 48% without the need of a complex prompt tuning
technique.
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2 Experiments and Results

In this work, we perform three experiments to evaluate our adaptive fine-tuning
model (BERTriple) using the standard LAMA benchmark dataset ([6]) for fact
extraction from language models.

In the first experiment, we show that BERTriple can significantly improve
upon the best state-of-the-art baselines on the LAMA probe as depicted in Ta-
ble 1. Our method outperforms existing methods by around 5% precision if we
use at most 1000 training triples for adaptive fine-tuning.

Table 1. P@1 [%] of four baselines and our model BERTriple evaluated on LAMA

Test Dataset BERT LPAQA BERTese AutoPrompt BERTriple

LAMA 31.1 34.1 38.3 43.3 48.4

In the second experiment, we investigate how prone our training approach is
to using smaller training datasets. We evaluate the precision of different training
dataset sizes on LAMA. Our method still achieves 45% precision With only 50
training triples per relation. Thus it outperforms the prompting methods with
a very small amount of training data.

The third experiment evaluates the transfer learning capabilities of our model
BERTriple by leaving out the training data for single relationships from the
training procedure. Considering the precision of the models, the relations can
be clustered into three groups. The precision is either (a) in the same range of
the original BERT, (b) better than BERT and in the same range of our method
BERTriple (bold), (c) or notably lower than BERT. Hence, some relationships
show good transfer learning capabilities and even improve when not trained on,
while others show not transfer learning capabilities at all.

3 Conclusions

There is one major difference between prompt tuning techniques and adaptive
fine-tuning. Whereas the main goal of prompt tuning is to use the prompts
for many downstream tasks and not to save separate language models for each
task [5], adaptive fine-tuning creates a model which is limited to the cloze-
style fact extraction task. For a different task, a new adaptive fine-tuning has
to be executed. However, as discussed in this work, most models for prompt
tuning are complex and add a significant extra training effort, even though using
tuned prompts results in a worse fact extraction performance in contrast to our
adaptive fine-tuning. Consequently, instead of reaching the goal to have a single
solution for all tasks, fine-tuning a pre-trained language model offers a more
computational efficient solution to achieve superior fact extraction performance.
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Abstract. We propose a new way to understand self-attention net-
works [1,4]: we prove that self-attention possesses a strong inductive
bias towards “token uniformity”. Specifically, without skip connections,
the output converges doubly exponentially to a rank-1 matrix. On the
other hand, skip connections stop the output from degeneration. Our
experiments verify the convergence results on a standard transformer
architecture.

1 Attention loses rank doubly exponentially

We start by providing background in Sec. 1.1 on self-attention networks (SANs).
Sec. 1.2 then proves that SANs converge doubly exponentially (with depth)
to a rank-1 matrix. The role of skip connections is studied in Sec 1.3. Finally,
Sec 1.4 empirically investigates rank collapse in a real architecture.

1.1 Background: self-attention networks

Let X be a n× din input tensor consisting of n tokens. An SAN is built out
of L multi-head self-attention layers, each having H heads. The output of
the h-th self-attention head can be written as SAh(X) = PhXWV,h + 1b>V,h,
where WV,h is a din × dv value weight matrix and the n × n row-stochastic

matrix Ph is given by Ph = softmax(d
− 1

2

qk (XWQK,hX
> + 1b>Q,hW

>
K,hX

>)),
where the key and query weight matrices WK,h and WQ,h are of size din × dqk,
whereas WQK,h = WQ,hW

>
K,h. The output of each SAN layer is SA(X) =

1[b>O,1, · · · , b>O,H ] + [SA1(X), · · · ,SAH(X)] [W>
O,1, · · · ,W>

O,H ]> where we set

Wh = WV,h W
>
O,h and bO =

∑
h bO,h and [H] = [1, . . . ,H]. Let X l be the

output of the l-th layer and fix X0 = X. As is common practice, we let all layers
consist of the same number of heads. The SAN output is given by repeating
the recursion X l = SAl(XL−1) over l ∈ [L] layers.

1.2 The rank collapse phenomenon

We now move on to analyze the convergence of deep SANs with multiple heads
per layer. We examine, in particular, how the residual

res(X) = X − 1x>, where x = argminx‖X − 1x>‖

changes during the forward pass. We also denote the `1, `∞-composite norm of
a matrix X as ‖X‖1,∞ =

√
‖X‖1‖X‖∞. We note that `1,∞ is not a proper

norm as it does not satisfy the triangle inequality, though it is absolutely
homogeneous and positive definite. Our main result is as follows:

? Yihe Dong and Andreas Loukas contributed equally to the full version of this article
which appeared as an oral contribution to ICML 2021.
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Theorem 1. In a depth-L and width-H SAN without skip connections, let
‖W l

QK,h‖1‖W l
h‖1,∞ ≤ β for all heads h ∈ [H] and layers l ∈ [L], then:

‖res(SAN(X))‖1,∞ ≤
(

4β H√
dqk

) 3L−1
2

‖res(X)‖3L1,∞.

The bound guarantees convergence of SAN(X) to rank one when 4βH <
√
dqk.

The identified cubic rate of convergence is significantly faster than what
would be expected when analyzing products of stochastic matrices (linear rate).
As a rule of thumb, to achieve a decline of three orders of magnitude, say from
1000 to 1, one could expect a linear rate of convergence to require roughly a
dozen iterations, whereas a cubic rate can do so in just two or three iterations.
The reason why we get a cubic rate is that the rank of attention matrices
depends also on the rank of the input. As we show, the self-attention heads mix
tokens faster when formed from a low-rank matrix. This phenomenon becomes
stronger as we build deeper SANs, leading to a cascading effect.

1.3 Skip connections counteract rank collapse

Our findings raise a pertinent question—why do attention-based networks work
in practice if attention degenerates to a rank-1 matrix doubly exponentially with
depth? Aiming to obtain a deeper understanding, we focus on the transformer
architecture [4] and expand our analysis by incorporating a key component of
transformers that SANs lack: skip connections. While we can derive an upper
bound for the residual similar to above, it is more informative to have a lower
bound on the residual, to align with practice, where SANs with skip connections
do not suffer rank collapse. We present the following simple lower bound:

Theorem 2. Consider a depth-L and width-H SAN with skip connections.
There exist infinitely many parameterizations for which res(XL) ≥ res(X). The
preceding holds even for L→∞ and β arbitrarily small.

1.4 Rank collapse in practice
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Fig. 1: Relative norm of the residual along the
depth before and after training. Pure attention
(SAN) converges rapidly to a rank-1 matrix.
Adding MLP blocks and skip connection gives
a transformer. Skip connections play a critical
role in mitigating rank collapse (i.e., a zero
residual).

To verify our theoretical predic-
tions, we examine the residual of a
well-known transformer architec-
ture: BERT [2]. Figure 1 plots the
relative residual of each layer’s
output before and after the net-
work has been trained. To com-
pute these ratios we ran the net-
work on 32 samples of 128 to-
kens excerpts of biographies from
Wikipedia [3] and display the
mean and standard deviation.

The experiment confirms that,
as soon as the skip connections
are removed, all networks exhibit
a rapid rank collapse.
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This document is an extended abstract of the paper “Interpreting a black-box
predictor to gain insights into early folding mechanisms” published at the Com-
putational and Structural Biotechnology Journal [2].

1 Motivation

Proteins perform a multitude of essential functions in nature. The protein se-
quence encodes its behavior and, by extension, the environmental context that
is required for the protein to fold and/or function. From the different theories
about how proteins fold independently, the concept of initial foldon formation
is now strongly supported by hydrogen-deuterium exchange (HDX) based mass
spectrometry (MS) experiments [1, 5]. Foldons essentially form through favorable
interactions between amino acids close to each other in the sequence (early fold-
ing residues or EFRs), so further creating local structural elements that provide
the right context for other residues in the protein to fold.

To gain insights in the early folding residues that drive very first stage of
protein folding and the subsequent formation of foldons, the Start2Fold database
was created [7]. Based on the Start2Fold per-residue information for a set of 30
proteins, the EFoldMine predictor [8] uses a support vector machine to detect the
location of likely early folding residues in a protein sequence. Although support
vector machines are known to be highly accurate classifiers based on strong
mathematical foundations, the resulting model in multi-dimensional space is
difficult, if not impossible, to understand by humans. This restricts the extraction
of further knowledge about the determinants of early folding in proteins.

? W.V. is supported by the Research Foundation Flanders (FWO) - project [grant
number G.0328.16 N]. I.G. is supported by the Flemish Government (AI Research
Program) and the BRIGHTanalysis project, funded by the European Regional De-
velopment Fund (ERDF) and the Brussels-Capital Region.
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2 Results

To enable interpretation of the EFR determinants, we propose a semi-supervised
classification approach, where we leverage unlabeled and non-homologous pro-
tein sequence data for which protein structure data are available [9]. By labeling
these data with EFR residues as identified by the black-box approach, we enlarge
the interpretable training data, assuming it helps in elucidating the separation
of the classes by interpretable classifiers. The goal is to obtain an interpretable
model with better performance compared to only using experimentally labeled
data, as well as obtaining a large dataset of (predicted) early folding data that
can be analyzed statistically.

Our self-labeling grey-box (SlGb) approach [3, 4] therefore aims to find a bal-
ance between accuracy and interpretability in a semi-supervised classification
setting, so leveraging both labeled and unlabeled data, and providing a more
flexible approach to interpretability. In the learning process, the enlarged inter-
pretable dataset is amended to avoid propagating misclassifications in the self-
labeling. We experiment with rule-based classifiers as a proxy for interpretability,
since these approaches are capable of providing both global holistic views of the
model and local interpretations that explain a particular prediction.

We show that the self-labeling grey-box approach achieves competitive results
against the EFoldMine black box in terms of sensitivity and specificity, through a
leave-one-group-out cross-validation. Yet, it is able to represent the classification
model with an average of 43 rules. Further analysis of these rules, combined
with more classical analyses of the enlarged predicted dataset, enables us to
gain mechanistic residue-level insights into the early folding process as well as a
better definition of what constitutes an early folding fragment, which can provide
useful information for protein design strategies.

The prediction rules are fully interpreted for the SlGb approach, and analyzed
in relation to sequence patterns and secondary structure adopted in the folded
protein, with all information provided via http://xefoldmine.bio2byte.be/,
a resource for the community to help understand and steer early protein folding.
Our interpretation confirms the importance of backbone rigidity for early folding
[6], and reveals the importance of inherent sheet propensity for the early folding
residue itself, and strong helix propensity for the residue at position -2. This
indicates that very particular specific restrictions on local conformations could
be driving the formation of more stable local structures that then initiate the
folding process.
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Over the past decades, Answer Set Programming (ASP) has emerged as an
important paradigm for declarative problem solving [5]. Technological progress
in ASP has been stimulated by the use of common standards, such as the ASP-
Core-2 language. While ASP has its roots in non-monotonic reasoning, efforts
have also been made to reconcile ASP with classical first-order logic (FO). This
has resulted in the development of FO(·) [3], an expressive extension of FO, which
allows ASP-like problem solving in a purely classical setting. This language may
be more accessible to domain experts already familiar with FO, and may be
easier to combine with other formalisms that are based on classical logic. It
is supported by the IDP inference system [2], which has successfully competed
in a number of ASP competitions. However, technological progress has been
hampered by the limited number of systems that are available for FO(·). We
address this gap by developing FOLASP: a translation tool that transforms an
FO(·) specification into ASP-Core-2, thereby allowing ASP-Core-2 solvers to be
used as solvers for FO(·) as well.

An IDP specification consists of three parts, a vocabulary, a structure, and a
theory. Using graph coloring as an example, we now illustrate how each of these
is translated to ASP.

Vocabulary V {
type Country

type Color

Border(Country ,Country)

ColorOf (Country) : Color

}

{colorOf (C,X)} :- country(C), color(X).

δr(C) :- #count{C,X : colorOf (C,X)} = 1.

:- #count{C : δr(C)} 6= 3.

Structure S: V {
Country = {be, nl, lux}
Color = {red, blue}
Border = {nl, be; be, lux}

}

country(be). country(nl). country(lux).

color(red). color(blue).

border(nl, be). border(be, lux).
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Theory T: V {
∀c1, c2 : Border(c1, c2)

⇒ ColorOf (c1) 6= ColorOf (c2).

}

δr3(C1, C2, X) :- not colorOf (C1, X).

δr3(C1, C2, X) :- not colorOf (C2, X).

δr2(C1, C2) :- #count{X : δr3(C1, C2, X)} = 2.

δr2(C1, C2) :- not border(C1, C2).

:- #count{C1, C2 : δr2(C1, C2)} 6= 9.

Note that only vocabulary symbols not closed by their interpretation in the
structure are translated and that more complex language features of FO(·), such
as function symbols or logical implications, are reduced to a more basic form.

By implementing the translation, we created a new model expansion engine
for FO(·), called FOLASP. 1 It uses the syntax of the IDP system for its input
and output, and uses Clingo [4] as back-end ASP solver. We tested the cor-
rectness of the FOLASP by checking that the solutions produced by FOLASP
are accepted as such by IDP, and that, for optimization problems, the optimal
objective values produced by IDP and FOLASP were in agreement.

In our experiments, we compare FOLASP using Clingo as backend ASP
solver to two other approaches: IDP, running on the same FO(·) specifications
as FOLASP, and Clingo, running on native ASP encodings of the same prob-
lems. As benchmark set, we use the problem instances from the model-and-solve
track of the fourth ASP competition [1]. We use fourteen benchmark families
that cover a wide range of applications, with each (close to) thirty instances. 2

Our experiments confirmed what one would typically expect, namely that the
best performance is obtained by running a specification that was native to a par-
ticular solver on that solver. However, the experiments also showed that, for a
number of benchmarks, our translation-based approach is actually able to match
or even, in rare cases, outperform the native approaches. This demonstrates the
usefulness of our translation also from a computational perspective: a specifica-
tion that performs poorly with one solver, may be more efficient when translated
to the input language of another solver. Our experiments also demonstrate that,
in cases where the translation performs significantly worse than the native so-
lutions, the grounding often is very large. Future work will therefore focus on
further optimising the translation to reduce the overhead it introduces.

In conclusion, by presenting a translation of FO(·) model expansion problems
to ASP-Core-2, we both extend the range of solvers for FO(·) and enable the
use of FO(·) as an alternative modeling language for these solvers. Hereby, the
main contribution of our work is to provide increased flexibility, both in choice
of specification language and in choice of solver. We believe that this will be use-
ful to drive technological progress, to develop real-world applications using the
best tools for the job, and to allow cross-fertilisation between different research
groups.

1 The source code is published on Gitlab: https://gitlab.com/EAVISE/folasp
2 Runnable software, instance files, and detailed experimental results are made avail-

able at Zenodo: https://doi.org/10.5281/zenodo.4771774
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1 Introduction & Background

Modern society performs countless choices affecting all sorts of needs daily. Both
industry and academia are intensifying their effort to both extend the plethora
of possible alternatives and narrow down the most significant ones to be sug-
gested to the user [1]. Thus, it would maximize the possibility of the services
consumption and user satisfaction. Recommender systems (RS) [2] have reached
remarkable accuracy and efficacy in several domains [3]. Nevertheless, more sen-
sitive areas (i.e., nutrition) demand more complex dynamics beyond conventional
RS’ capabilities. For example, virtual coaching systems (VCS) leverage persua-
sion techniques, argumentation, informative systems, and RS (see Figure 1a).
However, their efficacy is still far from the one achieved by human coaches, even
considering the limitations of the case (see [4]). In particular, the major setbacks
are the lack of explanations supporting a given suggestion, the impossibility of
“discussing” it with the VCS, and the lack of significant explorations for new
out-of-the-box solutions.

Therefore, this work suggests the following negotiation schema for nutrition
VCS: 1− to− 1(−to− σ) with σ = 0, ..., N and N being the number of virtual
VCs in the system. In particular, it leverages human-to-agent (1 − to − 1) and
agent-to-agent (1 − to − σ) joint problem solving via negotiation to generate
recommendations and arguments to support them.

2 Personalized Health Coach: Vision & Challenges

Our approach envisions a one-to-one user-agent mapping. Nevertheless, the VCS
can consist of multiple agents (assisting users possibly characterized by par-
tially shared traits/features). Therefore, the possibility of extending the agent’s
knowledge and range of recommendations leveraging other agents’ knowledge
is more than tangible. Let us assume a user is interacting with the associate
agent who has insufficient data to provide accurate suggestions (i.e., cold start).
To avoid less appealing and possibly wrong assumptions/suggestions, the agent
must profit from inter-agent negotiations to convene more accurate support (see
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Figure 1b). With such interactions, the freshman agents produce a series of ne-
gotiations equipped with proper argumentations. Once an agreement is reached,
new knowledge can be generated, or the old one can be revised. This frame-
work can be formulated as a team negotiation [5]. The team representative (e.g.,
a freshman agent) can negotiate with the user while, at the same time, it can
negotiate with other expert agents. The features used in the agent-to-agent nego-
tiation [6] can exploit or explore solutions leveraging the agents’ understanding
over personal information (without ever disclosing the actual personal data) and
previous interactions. To do so, the first challenges to be overcome are:
CH1 - Effective Interaction: Both structured and natural language-based in-
teractions need to define common ground. Therefore, the challenge is to establish
shared syntax, semantic, and knowledge representations. CH2 - Generating
Explainable Arguments: Comprehensive, personalized, and well-structured
explanations can enhance the recommendations’ acceptability. The challenge is
to create techniques to dynamically generate interpretable explanations (e.g., in
natural language or images) w.r.t. their interests and background. CH3 - Ex-
plainable Negotiations: The interactions must produce sound outcomes (i.e.,
the decision should be supported by interpretable arguments and suggestions)
[7–9]. The challenge is to design agents capable of reasoning over the negotia-
tion, handling information requests, users’ demands/interests dynamically, and
accordingly generating an offer (i.e., recommendation) equipped with the break-
down of the reasoning process. In addition, the agent should be able to process
and learn from users’ feedback/comments (e.g., why a given offer is not accept-
able). CH4 - Simultaneous negotiations: If short on resources/data, agents
can help each other sharing their experiences. It can be formulated as group
negotiation(s), exchanging aggregated (explainable) understandings on multiple
fronts.

Personalised Food  
Recommender Systems

Informative Systems

Persuasion  
Techniques

Argumentation 
Techniques

VCS

(a) VCS Overview.

Human-to-Agent
Agent-to-Agent

(b) Explainable Team Negotiation

Fig. 1: Vision and Negotiation Framework
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Abstract. We present Expert RuleFit (ERF), an approach to integrate
expert knowledge in the form of rules and linear terms into an existing
method for rule learning (RuleFit). A customized regularization strategy
allows us to consider the different strengths of expert knowledge. For an
empirical evaluation, we trained ERF models on a diabetes dataset for
which we acquired expert rules from medical guidelines and expert in-
terviews. The integration of different knowledge sources makes the ERF
model a promising tool for learning accurate, explainable and trustwor-
thy medical decision rules.

Machine Learning (ML) systems offer great potential to provide healthcare
improvements. However, they often generalise poorly on small training sets, are
difficult to combine with human expertise, and are often difficult to explain to
experts. We hypothesise that the inclusion of prior expert knowledge will allow
ML algorithms to better generalize to unseen cases while allowing human experts
to better understand and validate recommendations. We test this hypothesis by
proposing Expert RuleFit (ERF), a classification method that combines the
strengths of inductive ML with expert rule-based reasoning. ERF injects expert
knowledge in the form of rules and linear terms into the existing rule ensemble
method RuleFit [2]. A tailored regularization strategy allows experts to specify
confirmed knowledge to be certainly included into the final prediction model
as well as optional knowledge to be soft-promoted over data rules through a
customized penalization strategy.

METHOD Our proposed method Expert RuleFit (ERF) operates in 3 stages:
Stage 1: Knowledge Acquisition. Prior to the learning process, expert knowl-
edge is formulated as rules and linear effects. Useful sources for rule formulation
are clinical practice guidelines, whose recommendations are often formulated as
rule-like statements. To distinguish different degrees of validated expert knowl-
edge, ERF allows rules and linear terms to be declared as confirmed or optional.
Stage 2: Combined Ensemble Generation. Consequently, 4 sets of expert

0 Full paper published in the 12th International Workshop on Knowledge Represen-
tation for Healthcare (KR4HC), LNCS, Springer Verlag, forthcoming.
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knowledge enter the ERF model together with the given dataset: confirmed ex-
pert rules and linear terms, as well as their optional counterparts.
Stage 3: Knowledge-Aware Regularization. To learn the coefficients for all
of these elements, we developed a tailored regularization strategy, where adaptive
penalty factors serve to guarantee the inclusion of confirmed expert knowledge
and allow for a soft-promotion of optional expert knowledge over data-generated
predictors in the final model.

EXPERIMENTS We evaluated ERF on the PID dataset of 768 Diabetes Type
2 patients from the UCI repository [1]. The task is to diagnose these patients
based on 10 observable values. As expert knowledge, we manually extracted rules
and linear terms from two diabetes guidelines. In two expert interviews, prac-
ticing physicians specified task-relevant patient subpopulations based on their
diagnostic expertise. This resulted in 20 confirmed expert rules, 2 confirmed lin-
ear terms, 34 optional expert rules and 3 optional linear terms.
Experimental Protocol. We trained four different versions of our proposed
ERF model, plus an existing implementation of the conventional RuleFit model
and a Random Forest model (the latter two serve as baselines). The four versions
of the ERF model differ in the extent to which they penalise data rules over ex-
pert knowledge. We train the model on successively smaller subsets of the data.
We applied 10-fold cross validation to provide balanced accuracy measures.
Results. AUC and classification accuracy results are similar for all model set-
tings and data-set sizes. This shows that expert knowledge is often able to replace
data-driven rules without sacrificing predictive performance. For smaller sam-
ples, the expert knowledge contains as much task-relevant information as 400
training examples. We found that the inclusion of expert knowledge decreases
the ensemble size compared to our baseline implementation of RuleFit: 50-75%
of all base learners that remain in the final model and 8-10 out of the 10 most
important terms (i.e. the terms with highest coefficients) correspond to expert
knowledge. Thus, ERF models largely base their results on validated, medically
coherent predictors instead of correlations derived from a patient sample. These
results were confirmed in a simulation study, as well as in a Diabetes Type 2
hospital readmission prediction task on 100.000 patients.

CONCLUSION We conclude that the ERF replaces data-driven rules with
explainable and medically coherent rules without sacrificing predictive accuracy
or adding to model complexity, while needing fewer training data. As such, ERF
promises accurate and yet simple models, including both data-driven rules and
a large fraction of validated and explainable expert-provided knowledge.

[1] Dua, D., Graff, C.: UCI machine learning repository, http://archive.ics.uci.edu/ml2
[2] Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. The
Annals of Applied Statistics 2(3), 916–954 (2008)
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Abstract. Neural-network classifiers are trained to achieve high pre-
diction accuracy. However, their performance still suffers from frequently
appearing inputs of unknown classes. As a component of a cyber-physical
system, the classifier in this case can no longer be reliable and is typ-
ically retrained. We propose an algorithmic framework for monitoring
reliability of a neural network. In contrast to static detection, a mon-
itor wrapped in our framework operates in parallel with the classifier,
communicates interpretable labeling queries to the human user, and in-
crementally adapts to their feedback.

Keywords: monitoring · neural networks · novelty detection.

Automated classification is an essential part of numerous modern technolo-
gies and one of the most popular applications of deep neural networks [4]. Neural-
network image classifiers have fast-forwarded technological development in many
research areas, e.g., automated object localization as a stepping stone to success-
ful real-world robotic applications [9]. Such applications require a high level of
reliability from the neural networks.

However, when deployed in the real world, neural networks face a common
problem of novel input classes appearing at prediction time, leading to possi-
ble misclassifications and system failures. For example, consider a scenario of
a neural network used for labeling inputs and making decisions about the next
actions for an automated system with limited human supervision: a robot assis-
tant learning to recognize objects in a new home. Assume the neural network
is trained well on a dataset containing examples of a finite set of classes. How-
ever, after this robot is deployed in the real home, novel classes of objects can
appear and confuse the neural network. The inherent misclassifications can stay
undetected and accumulate over time, eventually reducing overall accuracy.

The likelihood of severe system damage increases with the frequency and
diversity of novel input classes. Typically, this risk is addressed by detecting
novel inputs, augmenting the training dataset, and retraining the classifier from
scratch [5]. This procedure is not only inefficient, but also leaves the system
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vulnerable until such a dataset has been collected. Techniques to incrementally
adapt classifiers at prediction time are beneficial for improving accuracy in real-
world applications [8, 7]. They, however, do not provide desired interpretability
for the human. Approaches to run-time monitoring of neural networks were
therefore introduced [6]. In particular, approaches based on abstractions [2, 3,
1, 10] proved to be effective at detecting novel input classes. In addition, they
provide transparency of neural-network monitoring.

Crucially, these monitors are constructed offline and remain static at pre-
diction time. Functionalities they are still lacking are distinguishing between
“known” and “unknown” novelties and selectively adapting at prediction time.

We propose an active monitoring framework for neural networks that de-
tects novel input classes, obtains the correct labels from a human authority, and
adapts the neural network and the monitor to the novel classes, all at prediction
time. The framework contains a mechanism for automatic switching between
monitoring and adaptation based on run-time statistics. Adaptation consists of
either learning new classes (when enough data has been collected) or retraining
with more up-to-date information (when the run-time performance is unsatisfac-
tory), where retraining is applied to the network and the monitor independently.
A trained neural-network model accompanied by our framework, as an external
observer and mediator between the neural network and the human, achieves
improved transparency of operation through informative interaction.

Furthermore, we propose a new monitor designed for the adaptive setting.
Introducing a quantitative metric at the hidden layers of the neural network,
the monitor timely warns about inputs of novel classes and reports its own con-
fidence to the authority. This allows for assessing the need of model adaptation.
The quantitative metric allows for easy adaptation at prediction time to newly
introduced labels and successfully maintains overall classification accuracy on
inputs of known and previously novel classes combined. As such, our framework
is an interactive and interpretable tool for informed decision making in neural-
network based applications.

Our framework is independent of the choice of the dataset and the neural-
network architecture. The only requirements for applicability of our approach
are access to the output of the feature layer(s). We plan to extend our procedure
toward real-world applications with particular need of active monitoring, e.g.,
in robotics for the trained controller to gradually adapt to the behavior of the
authority. Other interesting directions are time-critical applications where the
adaptation of the monitor or the neural network need to be delayed to uncritical
phases, and scenarios where novel inputs occur rarely. In addition, the underlying
method of our framework can serve as a suitable tool for designing an algorithmic
approach to explainability of a neural network’s predictions.
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Abstract. Temporal salience considers how visual attention varies over
time. Although visual salience has been widely studied from a spatial
perspective, its temporal dimension has been mostly ignored, despite
arguably being of utmost importance to understand the temporal evolu-
tion of attention on dynamic contents. To address this gap, we proposed
Glimpse, a novel measure to compute temporal salience based on the
observer-spatio-temporal consistency of raw gaze data. The measure is
conceptually simple, training free, and provides a semantically meaning-
ful quantification of visual attention over time. Glimpse could serve as
the basis for several downstream tasks such as segmentation or summa-
rization of videos. Our software and data are publicly available.

Keywords: visual attention ➲ temporal salience ➲ eye-gaze ➲ video

1 Introduction and Method Overview

How to automatically estimate temporal salience in videos using eye-tracking
data? Spatial saliency is well understood [1,2,3,4,5,6,7,9,10,11,12,13,14,16,18,19],
however the temporal dimension has been mostly ignored [8,15,20]. Our main hy-
pothesis was that when gaze coordinates are spatio-temporally consistent across
multiple observers, it is a strong indication of visual attention being allocated
at a particular location within a frame (spatial consistency) and at a particular
time span (temporal consistency).

Our approach, named Glimpse [17] (gaze’s spatio-temporal consistency from
multiple observers), is illustrated in Figure 1 and formulated as follows:

s(t) =
2

n(n− 1)

∑

i,j∈{1,...,n}
i 6=j

✶[dij < θs], t ∈ {1, . . . , T} (1)

where dij is the pairwise Euclidean distance between the ith and jth points in
the set Pt of n gaze points from all the observers within a temporal window of
length 2θt + 1 centered at frame t, i.e.,

Pt =
{
g(o, t) : o ∈ {1, . . . , N}, t ∈ [t− θt, t+ θt]

}
(2)

and ✶[p] is the indicator function, which is 1 when predicate p is true and 0
otherwise.
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Fig. 1. Left: Frames of SAVAM video v22 (top) and observers’ gaze points (bottom).
Right: temporal salience score estimation with pointers to key events.

Glimpse processes raw gaze data and has two hyperparameters (θt and θs)
to control the temporal and spatial scale. The effect of such hyperparameters is
shown in Figure 2. Note that s(t) ∈ [0, 1], where 1 means high temporal salience.
Finally, Figure 3 shows a convergence analysis to decide how many observers
would be required to get good salience estimates. We can see that Glimpse is
quite scalable, as reliable estimates can be obtained with few observers.

Fig. 2. Effect of spatial scale θs and temporal scale θt on salience score s(t) computed
for SAVAM video v22 (see Figure 1 for an example of the video contents).

Fig. 3. Convergence analysis for five different SAVAM videos. See [17] for more details.
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1 Introduction

In [1], we introduced a novel reward shaping method for Deep Reinforcement
Learning (DRL) modeling of pricing problems in Real Time Bidding (RTB) auc-
tions. In RTB auctions, the impressions generated by user views are the assets
to be sold. For each impression, an ad request is sent to the intermediate enti-
ties between publishers and advertisers. These intermediate entities run online
auctions to sell the impressions. The auctions are mainly second price auctions
where the winner pays as much as the maximum of the second highest bid and
a reserve price which determines the minimum price of the impression. In a
practical framework used in business, the ad publisher sends ad requests to the
Header Bidding Partners (HBPs) simultaneously and receives their bids. Then,
a reserve price is set according to the HBPs bids, and another ad request is sent
to an AdX. If AdX’s winner bid is higher than the highest bid of HBPs, the
impression goes to AdX; otherwise, it goes to the HBP. In common practice, the
highest bid of HBPs is the reserve price which may not be optimal because AdX
might outbid higher reserve prices. Therefore, the problem is to determine the
reserve price in impression level to uplift the revenue of ad publishers. Dynamic
environment, sequential decision-making modeling of the pricing problem, and
limited available information motivate us to use Deep Reinforcement Learning
(DRL) to solve this problem. To learn a suitable reward function, our proposed
method employs a reward shaping method to prioritize higher reserve prices.
Results show that this method increases the revenue significantly.

2 DRL for Reserve Price Optimization

The process of adjusting the reserve price for each impression is performed by
using a deep neural network policy that is trained by DRL. We use Proximal
Policy Optimization (PPO) algorithm as a policy gradient method to train the
policy and the value networks. Common impression information in RTB systems
based on HBPs and AdX, including URL, size and location of the ad slot, time
of generating the impression, and the highest bid of HBPs (ζHBP

t ) construct the
states. The action at is the reserve price that is obtained from the output of the
policy network. Since at is continuous, the policy network has a single output
that provides the mean value for a Gaussian distribution. The standard deviation
is fixed, and the reserve price at is sampled from the Gaussian distribution.
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Defining reward is challenging because AdX provides no information about
its winner bid (ζAdX

t ) and a binary value (βt) showing whether the auction has
a winner is the only feedback from AdX auction. For this reason, we develop a
reward shaping approach that extends the limited responses of the environment.
Following the fact that larger at may lead to higher revenue, the main objective
of the reward shaping is to assign proper weight to larger at. To achieve that, the
interval between ζHBP

t and an estimation of ζAdX
t , is divided into n equal sub-

intervals and a particular weight wj for j ∈ {1, ..., n} is assigned to the interval j.
Vector w⃗ ∈ W contains the weights wj and W is the space of candidate weights
vectors. Vector r⃗(at, ζ

HBP
t , βt) assigns a reward rt,j to each interval j. Assuming

interval zero for values smaller than ζHBP
t and interval n + 1 for values larger

than the estimated ζAdX
t , the inner product of vectors w⃗ = (w0, w1, ..., wn+1)

and r⃗(at, ζ
HBP , βt) = (rt,0, rt,1, ..., rt,n+1) provides the reward value for each

impression. In other words, R(at, ζ
HBP , βt) is r⃗(at, ζ

HBP , βt) · w⃗. The weights
and the reward definition are found by searching in the space of candidate values.

3 Experiments and Results
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Fig. 1. Revenue of individual impressions

Algorithm
∑

t
ζHBP
t

∑
t
at

∑
t
ζAdX
t %at

DRL-LR 1527.23 73.57%
H3-1 1315.82 63.38%
H5-3 628.00 1430.96 2075.86 68.93%

DRL-DA 1315.82 63.38%
DRL-RTB 1437.20 69.23%
SA-PM 986.88 47.54%

DRL-LR 1521.77 73.67%
H3-1 1305.82 63.22%
H5-3 599.32 1420.92 2065.43 68.79%

DRL-DA 1305.82 63.22%
DRL-RTB 1414.03 68.46%
SA-PM 955.09 46.24%

Table 1. Revenue of the algorithms

Since using real RTB systems for training is not possible, we develop a sim-
ulator using historical data. For this purpose, we use ζHBP

t for the impressions
that go to AdX, to generate a lower bound for ζAdX

t . Our proposed method
with learned reward is denoted by DRL-LR. Each test data contains 10000 im-
pressions where ζAdX

t > ζHBP
t because for other impressions the winner is HBP

regardless of the value of at. As the baselines, we use two heuristic methods
(H5-3 and H3-1), DRL with normal feedback of RTB environment as the re-
ward (DRL-RTB), DRL with discrete actions (DRL-DA), our reward shaping
DRL method (DRL-LR) and a supervised learning method in the literature (SA-
PM). For evaluation, we consider the sum of reserve prices (

∑
t at), sum of AdX

winner bids (
∑

t ζ
AdX
t ) and their ratio. According to the results shown in table 3

and Fig. 3, DRL-LR outperforms the other pricing methods in terms of revenue.

Encore abstracts BNAIC/BeneLearn 2021

692



Title Suppressed Due to Excessive Length 3

References

1. Afshar, Reza Refaei, Jason Rhuggenaath, Yingqian Zhang, and Uzay Kaymak.
”A Reward Shaping Approach for Reserve Price Optimization using Deep Rein-
forcement Learning.” In The International Joint Conference on Neural Networks
(IJCNN2021). 2021.

Encore abstracts BNAIC/BeneLearn 2021

693



A Human-Agent Architecture for Explanation
Formulation (An extended abstract)?

Yazan Mualla1, Igor Tchappi1, Timotheus Kampik2, Amro Najjar3, Davide
Calvaresi4, Abdeljalil Abbas-Turki1, Stéphane Galland1, and Christophe
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1 Introduction

With the widespread use of AI systems, understanding the behavior of intelligent
agents and robots is crucial to facilitate successful human-computer interaction
(HCI) [3]. Recent studies have confirmed that explaining an agent’s behavior
to humans fosters the latter’s acceptance of the agent [2, 4]. However, providing
overwhelming or unnecessary information may also confuse humans and cause
failure [15]. For these reasons, parsimony has been outlined as one of the key
features of successful explanations in HCI [10, 9]; in this context, a parsimo-
nious explanation is defined as the simplest explanation (i.e., least complex)
that describes the situation adequately (i.e., descriptive adequacy) [9, 5]. While
parsimony is receiving growing attention in the literature, most works are carried
out on the conceptual front, and little research has been done from engineering
and empirical HCI perspectives.

2 Contribution

This work proposes a mechanism for parsimonious eXplainable AI (XAI) [6,
7, 16]. In particular, it introduces the process of explanation formulation and
proposes HAExA, a human-agent explainability architecture (Figure 1) allow-
ing to make this formulation operational for remote robots. In HAExA, re-
mote robots (right) are represented as agents that generate contrastive expla-
nations6 [12] to explain their behaviors based on the changes in the environment
and their goals. Assistant agents (center) collect the remote agents’ raw ex-
planations to communicate filtered explanations to the human (left); the filter-
ing helps prevent that humans get overwhelmed by the information the remote
agents provide. Considering that the assistant agents have a global overview of
the environment, they may post-process the raw explanations received from the
remote agents to aggregate, update, and filter them; subsequently, they commu-
nicate the updated and filtered explanations to the human.

? This work has been accepted in the Journal of Artificial Intelligence on the 2nd of
August 2021 [14]. DOI: https://doi.org/10.1016/j.artint.2021.103573

6 Broadly speaking, contrastive explanations answer why A and not B? questions.
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Fig. 1. Human-Agent Explainability Architecture (HAExA).

3 Evaluation and Results

To evaluate HAExA, several research hypotheses are investigated in an HCI
study using an agent-based simulation based on a scenario of package delivery
in smart cities (see our demo paper [13]). The study relies on well-established
XAI metrics [8] to estimate how understandable the explanations are to the hu-
man participants. The study investigates the impact of the different techniques
of explanation formulation (static filter, adaptive filter, and adaptive filter with
contrastive explanations) on humans. The participants’ responses are collected
using a 5-Likert scale [1]. The significance of these responses is statistically an-
alyzed and presented using statistical testing: Non-parametric (Kruskal-Wallis),
Parametric (ANOVA), and Cronbach’s alpha.

Based on the analysis of subjective and objective understandability, we gath-
ered evidence that adaptively filtered and contrastive explanations improve hu-
man understandability compared to statically filtered explanations (i.e., non-
adaptive to the environment). Our insights indicate that contrastive explana-
tions can be used without risking a detrimental effect on understandability. Our
study could not confirm the same effect on trust (which remains a challenge
identified in many other works in the literature [11, 8]). Nevertheless, the re-
sults provide empirical insights on human-multiagent system explainability as a
starting point that future research on XAI could expand.
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Abstract. This is an extended abstract of [5] where we introduce the
notion of MAP-independence in Bayesian networks and explore some
computational properties of establishing MAP-independence.

Keywords: Bayesian Networks · Most Probable Explanations · Rele-
vance · Explainable AI · Computational Complexity.

1 Motivation

In decision support systems the motivation and justification of the system’s di-
agnosis or classification is crucial for the acceptance of the system by the human
user. In Bayesian networks a diagnosis or classification is typically formalized as
the computation of the most probable joint value assignment to the hypothe-
sis variables, given the observed values of the evidence variables (known as the
MAP problem). While solving MAP gives the most probable explanation of the
evidence, the computation is a black box as far as the human user is concerned
and it does not give additional insights that allow the user to appreciate and
accept the decision. In this paper we specifically try to improve the user’s un-
derstanding of a specific decision by explicating the relevant information that
contributed to said decision. In deciding what the best explanation is for a set
of observations, marginalizing out unobserved non-hypothesis variables makes
the process more opaque: some of these variables have a bigger impact (i.e.,
are more relevant) on the eventual decision than others, and this information
is lost in the process. For example, the absence of a specific test result (i.e., a
variable we marginalize out in the MAP computation) may lead to a different
explanation of the available evidence compared to when a negative (or positive)
test result were present. In this situation, this variable is more relevant to the
eventual explanation than if the best explanation would be the same, irrelevant
of whether the test result was positive, negative, or missing. Our approach in
this paper is to motivate a decision by showing which of these variables were
relevant in this sense towards arriving at this decision. To this end, we introduce
a new concept, MAP-independence, which tries to formally capture this notion
of relevance, and explore its role towards a justification of an inference to the
best explanation.
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2 MAP-independence

Pearl has suggested to use conditional independence as a measure of relevance
for explanatory purposes; i.e., a variable is irrelevant when it is conditionally
independent of the explanation [7]. We argue that this may be too strict and
leaves too many potentially relevant variables. We propose that an explanation is
MAP-independent from a variable if the explanation will be the same irrespective
of any specific value of this variable. Formally, we say that A is MAP-independent
from B given C = c when ∀b∈Ω(B)argmaxaPr(A = a,B = b | C = c) = a for a
specific value assignment a ∈ Ω(A). In decision support systems, an explication
of how a variable may impact or fail to impact the most probable explanation of
the evidence will both help motivate the system’s advice as well as offer guidance
in further decisions (e.g., to gather additional evidence [2, 1] to make the MAP
explanation more robust).

3 Formal analysis

In the paper we show co-NPPP-completeness of a suitable decision variant of
establishing MAP-independence. A straightforward brute-force algorithm be-
low gives a run-time of O(Ω(R)) = O(2|R|) times the time needed for each
MAP computation. This implies that, given known results on fixed-parameter
tractability [3] and efficient approximation[6, 4] of MAP, the size of the set
against which which we want to establish MAP independence is the crucial
source of complexity if MAP can be computed or approximated feasibly.
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Coordinating between a great number of agents in large-scale environments
can be highly challenging due to the impact of the curse of dimensionality;
learning policies and value functions in these settings is non-trivial due to expo-
nentially sized joint state and joint action spaces. The task additionally requires
tremendous amounts of data, which are not always available, and significantly
increase the amounts of computational resources required.

We introduce Cooperative Prioritized Sweeping (CPS), a model-based al-
gorithm with excellent scaling properties, which is able to coordinate between
agents in a sample-efficient way and with a low computational cost.

CPS relies on the intuition that many large real-world cooperation problems
benefit from locality, i.e. agents interact directly only with close-by neighbors and
state features. CPS leverages this domain-knowledge information in the form of
a coordination graph (CG) [Guestrin et al., 2002, Verstraeten et al., 2020], which
specifies the way state features and agents are dependent on each other. CPS
uses the CG to: efficiently learn a model of the environment, learn an approx-
imate factorized value function and sample additional simulated environment
interactions from the model to accelerate learning.

The main contribution of CPS lies in the way it uses the learned model to
sample additional experience. Naively one could use the model to randomly gen-
erate new experience (the approach taken by Dyna-Q [Sutton, 1990]). However,
in large environments, the curse of dimensionality quickly makes this approach
ineffective, as most updates get applied to parts of the value function that do
not need them. Instead, CPS’s key idea is that we can improve sample-efficiency
by detecting where updating the value function will be most effective. Recall the
Bellman equation for the optimal value function:

V ?(s) = R(s, a?) + γ
∑

s′

T (s′| s, a?)V ?(s′) (1)

During learning, after each interaction with the environment we obtain new
experience that can be used to update the value function. Equation 1 suggests
that after each update for a particular state s′, it is likely that the values for
all its predecessor states s should be changed as well. The magnitude of the
change for s will be proportional to (i) the temporal difference error of the initial
update for s′, and (ii) the probability of the transition T (s′| s, a). Similar to the
single-agent prioritized sweeping algorithm [Moore and Atkeson, 1993, Andre

Encore abstracts BNAIC/BeneLearn 2021

699



2 E. Bargiacchi et al.

et al., 1998] (PS), CPS summarizes this information through a priority, which
is computed after each update of CPS’s factored value function. In contrast to
PS however, these priorities are also factorized, such that interesting, i.e., high-
priority, joint states and actions can be efficiently identified. CPS’s model of the
environment is then sampled on these state-action pairs to generate synthetic
experience and update the value function more quickly.

We perform several experiments to evaluate the empirical performance of
CPS. We compare against against 4 benchmarks: a random policy as a naive ap-
proach, the factored LP planning algorithm on the ground truth MMDP model as
the upper bound [Guestrin et al., 2002], Sparse Cooperative Q-learning (SCQL)
with and without randomized experience replay [Kok and Vlassis, 2004], and
QMIX [Rashid et al., 2018] as competing algorithms. The algorithms were imple-
mented using the AI-Toolbox [Bargiacchi et al., 2020] and PYMARL [Samvelyan
et al., 2019] frameworks. Figure 1 shows two typical results. Note that we do
not plot the training for QMIX as its training took much longer than the other
benchmarks. Figure 1(a) shows results in the SysAdmin [Guestrin et al., 2002]
problem, using a torus topology with 10x10 agents. Figure 1(b) shows results in
a randomly generated multi-agent setting with 15 agents.

We show that CPS is consistently faster learning and converges to better
policies in the test benchmarks. Additionally, CPS is able to scale much better
to large environments, both in time and compute resources. These properties
make CPS a practical tool in tackling large-scale cooperation tasks.
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(b) Random setting with 15 agents.

Fig. 1: Histogram shows average per-timestep reward over 1000 timesteps for all
policies, after training. Line plots show the mean and standard error of per-
timestep reward of CPS and SCQL during training, compared against a random
policy and the LP planning upper bound. All data is averaged over 100 runs.
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1 Introduction

Recently it has been shown that many machine learning models are vulnerable to
adversarial examples: perturbed samples that trick the model into misclassifying
them. Neural networks have received much attention but decision trees and their
ensembles achieve state-of-the-art results on tabular data, motivating research
on their robustness. Recently the first methods have been proposed to train
decision trees and their ensembles robustly [4, 3, 2, 1] but the state-of-the-art
methods are expensive to run.

We propose GROOT, an efficient algorithm for training robust decision trees.
Like Chen et al. [3], we closely mimic the greedy recursive splitting strategy
that traditional decision trees use and we score splits with the adversarial Gini
impurity. We prove that the adversarial Gini impurity is concave with respect to
the number of modifiable data points and use its analytical solution to compute
the function in constant time. Our results show that GROOT trains trees 3 to
6 orders of magnitude faster than the state-of-the-art method TREANT [2] and
trains random forests 100-1000 times faster than provably robust boosting [1].

2 GROOT: Growing Robust Trees

We introduce GROOT, an algorithm that trains decision trees that are robust
against adversarial examples generated from a user-specified threat model. Like
regular decision tree learning algorithms, GROOT runs in O(n log n) time in
terms of n samples. Similar to these algorithms, GROOT greedily makes splits
according to a heuristic and while such strategies perform well in practice, they
have no provable bound [5]. Where regular tree learning algorithms use the
Gini impurity to score splits, GROOT uses the adversarial Gini impurity. This
function represents the worst-case impurity after adversarial attacks, see Fig. 1.

3 Results

We evaluated the robustness of the algorithms on 13 tabular datasets by attack-
ing all samples within a radius of 10% of the feature range in Fig. 2. GROOT
decision trees and random forests on average perform as well as the existing
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Fig. 1. We want to move samples from
I over the threshold to maximize the
weighted average of Gini impurities. Here
we can move the single blue sample from
RI into LI to maximize it.

Fig. 2. Average adversarial accuracy over
13 structured datasets, GROOT trees and
random forests achieve top results.

Fig. 3. Logarithmic training runtimes for single decision trees on different datasets.
GROOT and Chen et al. run orders of magnitude faster than TREANT.

state-of-the-art works in trees and ensembles. To compare the efficiency of the
algorithms, we plot the run times of each run in Figure 3 averaged over 5 data
folds. All experiments ran on a single core of a Linux machine with 16 Intel Xeon
CPU cores and 72GB of RAM total. Our results show that GROOT fits trees
within seconds and scores as well as existing work against a box-shaped attack
model. GROOT is available as a Scikit-learn compatible classifier1.
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1 Introduction

Feature selection, which identifies the most relevant and informative attributes of
a dataset, has been introduced to address the challenges raised by the emerge of
high-dimensional data [3]. Most existing feature selection methods are computa-
tionally inefficient; inefficient algorithms lead to high energy consumption, which
is not desirable for devices with limited computational and energy resources. In
[1], a novel and flexible method for unsupervised feature selection is proposed.
This method, named “QuickSelection”5, introduces the strength of the neuron in
sparse neural networks as a criterion to measure the feature importance. When
tested on several benchmark datasets, the proposed method is able to achieve
the best trade-off of classification and clustering accuracy, running time, and
memory usage, among widely used approaches for feature selection.

2 Proposed Method

QuickSelection is capable of selecting the most informative attributes of the data
efficiently. The overview of the method is presented in Figure 1. This algorithm
consists of two main phases: 1. Training Sparse DAE. We use the ability of
Denoising autoencoders (DAEs) to learn a robust representation of the data and
select the most important features. We introduce for the first time sparse train-
ing in the world of denoising autoencoders, and we name the newly introduced
model sparse denoising autoencoder (sparse DAE). We train the sparse DAE
with the Sparse Evolutionary Training (SET) [4] algorithm to keep the number
of parameters low during the training. 2. Feature Selection. In the second
phase, we use the trained network to derive the hierarchical importance of the

? This research has been partly funded by the NWO EDIC project.
?? The full paper corresponding to this abstract has been accepted for publication in

the Machine Learning Journal (ECML-PKDD 2022 Journal Track)
5 The code is available at: https://github.com/zahraatashgahi/QuickSelection
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Fig. 1. A high-level overview of the proposed method, “QuickSelection”.

features. We select the most important features of the data based on the weights
of their corresponding input neurons of the trained sparse DAE. Inspired by node
strength in graph theory [2], we determine the importance of each neuron based
on its strength. We estimate the strength of each neuron by the summation of ab-
solute weights of its outgoing connections. We select the features corresponding
to the neurons with K largest strength values as the K important features.
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Fig. 2. Feature selection compari-
son using a ranking-based score.

Results. In order to verify the validity
of our proposed method, we carry out sev-
eral experiments to measure its performance
in terms of the running time, memory re-
quirement, clustering accuracy, and classifica-
tion accuracy. To analyze the trade-off of the
methods between accuracy and efficiency, we
compute a ranking-based score (Figure 2): on
several datasets and for several values of K,
we rank the methods based on the aforemen-
tioned metrics. Then, we give a score of 1 to
the best and second-best performers. As can
be seen in Figure 2, our proposed method can
achieve the best trade-off between accuracy, running time, and memory usage,
among all the considered methods.

3 Concluding Remarks

In this paper [1], a novel method (QuickSelection) for energy-efficient unsuper-
vised feature selection has been proposed. We introduced neuron strength as a
metric to measure the importance of the input neurons in a sparse neural net-
work. By adopting this metric in a sparsely connected denoising autoencoder, we
are able to derive the importance of all input features simultaneously. By using
sparse layers instead of dense ones from the beginning, the number of parameters
drops significantly. As a result, QuickSelection requires much less memory, com-
putational resources, and energy consumption than its competitors. This will
not only save the energy costs of processing high-dimensional data but also will
ease the challenges of high energy consumption imposed on the environment.
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Review scores collect users’ opinions in a simple and intuitive manner. However,
review scores are also easily manipulable, hence they are often accompanied by expla-
nations. A substantial amount of research has been devoted to ascertaining the quality of
reviews, to identify the most useful and authentic scores through explanation analysis.
In this paper, we advance the state of the art in review quality analysis. We introduce
a rating system to identify review arguments and to define an appropriate weighted se-
mantics through formal argumentation theory. We introduce an algorithm to construct a
corresponding graph, based on a selection of weighted arguments, their semantic sim-
ilarity, and the supported ratings. Such an algorithm identifies tokens in corpora of
reviews, and then clusters them according to their similarity. Token similarity is mea-
sured using the Word Mover distance [4], since it allows measuring semantic similarity
of short items of text. Attacks are defined between tokens when they belong to conflict-
ing reviews (i.e., to reviews which scores are different). Such attacks are weighted on
the readability level of the reviews and on the importance of the token in the review.
Potential arguments are considered as stronger when they belong the most readable re-
views, and when their importance in the review is high. As a readability measure, we
use the Flesch Kincaid Reading Ease measure [3]. This formula provides reliable scores
between 100 (text understandable by 5th graders) and 0 (texts understandable by pro-
fessionals). Other readability measures will be tested in the future. As a measure of the
importance of the possible arguments, we employ the textRank algorithm [6].

We provide an algorithm to identify the model of such an argumentation graph,
maximizing the overall weight of the admitted nodes and edges. We evaluate these
contributions on the Amazon review dataset by McAuley et al. [5], by comparing the
results of our argumentation assessment with the upvotes received by the reviews. Also,
we deepen the evaluation by crowdsourcing a multidimensional assessment of reviews
and comparing it to the argumentation assessment. We use a dedicated crowdsourcing
platform where we ask crowd contributors to assess the quality of reviews according
to seven dimensions of quality (truthfulness, reliability, neutrality, comprehensibility,
precision, completeness, informativeness). These dimensions are based on literature [1]
and allow evaluating the quality of dimensions according to different and possibly in-
dependent aspects. Lastly, we perform a user study to evaluate the explainability of our
method. Our method achieves three goals: (1) it identifies reviews that are considered
useful when looking at their number of upvotes; (2) when deepening the analysis on
the quality of the reviews that are accepted on the basis of argumentation reasoning, we
can observe that, in particular, they are considered as comprehensible and truthful; and
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(3) our user study shows that our approach provides a comprehensible explanation of
review quality assessments.

This extended abstract is based on a paper published at ICWE [2].
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Abstract. The full article published in Environment and Planning B
studies the effect of a range of possible municipal policy measures on
the peer-to-peer short-term rental market. The case study is the city of
Amsterdam. A spatial agent-based simulation indicates that more lower
income citizens remain in the city centre when regulation of the market
is stronger, and that banning the touristic market restrains the overall
increase in house prices, compared to the business-as-usual scenario.
However, the feasibility of enforcement of regulation, and its libertarian
consequences, must be considered.

1 Motivation and Approach

The full article by Overwater and Yorke-Smith [6] recognises that gentrification,
displacement and social exclusion are hot topics of debate in the city of Ams-
terdam, the Netherlands. A current phenomena is short-term rentals of private
homes. In its peer-to-peer form, this phenomena has grown sharply, facilitated by
services such as Airbnb. Its growth has caused controversies among communities
in touristic areas of Amsterdam, since it contributes to a changed social fabric,
increased housing prices and overall gentrification [3, 11]. In the Netherlands
and elsewhere, municipal and national policy makers are interested to regulate
short-term rentals [2].

The article’s methodological lens to study the ‘Airbnb effect’ on Amsterdam –
and to provide insights into qualitative policy effects on the regulation of short-
term rentals – is a micro-level agent-based simulation. The agent-based model
(ABM) developed is grounded in data. In contrast to Vinogradov et al. [10] the
model is geographically accurate, and is based on Smith’s rent-gap hypothesis
rather than a real estate market model.

The spatial agent-based model captures two types of agents: city residents
and visiting tourists. The article builds upon an extant ABM of urban residential
dynamics [7, 9] that combines Smith’s rent-gap theory [8] and Axelrod’s cultural

⋆ This is an extended abstract of [6].
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Fig. 1: Comparison of four regulation scenarios

exchange theory [1], adapting it significantly to model the touristic rental market.
It captures private and social housing, and residents’ propensity to rent their
dwelling, under the cases where it is and is not permitted by contract. While
calibrated on data from Amsterdam and the Dutch legal setting, the modelling
approach presented in the article is generic.

2 Results and Discussion

Simulation analysis shows that the tourism market has caused considerable
changes in housing prices and population development. As an example of the
article’s results, Figure 1 shows population and house prices under four regulation
scenarios: no regulation, 60 nights rental per property per year, 30 nights, and a
complete ban. The simulation proceeds from a start year of 2011 for ten years.

The article finds that more lower income citizens will live in the city when
regulation of the market is stronger. Banning the touristic market restrains
the overall increase in house prices, compared to the business-as-usual scenario.
However, the feasibility of enforcement of regulation [5], and its libertarian
consequences [4], must be considered. Indeed, a complete ban would not align
with the ‘tolerant’ Dutch culture. Thus the main conclusion for the case of
Amsterdam is that tighter limits, on the amount of nights a property can be
listed on Airbnb, is preferable to an outright ban.

A future enrichment will be to survey residents in order to better characterise
their attitude to restrictions and touristic rentals, and their propensity to ignore
rules and contracts [5]. The interplay of the short-term and long-term rental
markets deserves further study using agent-based simulation.

Acknowledgements Thanks to Jan Kwakkel and Stephen van der Laan, and
the E&PB reviewers. This research was partially supported by TAILOR, a project
funded by EU Horizon 2020 programme grant number 952215.
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Abstract. Deep reinforcement learning (RL) has achieved high success
in solving routing problems. However, state-of-the-art deep RL approaches
require a considerable amount of data before they reach reasonable perfor-
mance. This limits the applicability of these methods to many real-world
instances. This work studies a setting where the agent can access data
from suboptimal heuristics for the traveling salesman problem. The agent
has access to demonstrations from 2-opt improvement policies and our
goal is to learn policies that can surpass the quality of the demonstra-
tions requiring fewer samples than pure RL. We propose to first learn
policies via behavior cloning, leveraging a small set of demonstrations.
Afterwards, we combine on policy and value approximation updates to
improve performance. We show that our method learns good policies in a
shorter time and using less data than classical policy gradient. Moreover,
it performs similarly to other state-of-the-art deep RL approaches.

Keywords: Deep Reinforcement Learning · Combinatorial Optimization · Trav-
eling Salesman Problem.
Acknowledgments: This research is funded by NWO Big data: Real Time ICT
for Logistics, project number 628.009.012
Publication: The full paper of this abstract has been accepted at the 2021
International Joint Conference in Neural Networks.

1 Introduction

The traveling salesman problem (TSP) is a well-known combinatorial optimization
(CO) problem where the aim is to find an optimal tour that visits n locations
once and returns to the origin. The TSP is NP-hard, [1] and solving large TSP
instances optimally can be impractical due to high computational costs. For that
reason, several (meta)heuristics have been proposed the problem. However, these
rely on expert knowledge and may perform poorly if the regularity of problem
instances are not considered during development.

2 Methods

Recent reinforcement learning (RL) methods aim at learning better policies
for such problems, exploiting the regularity of problem instances. However, RL
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methods require many samples and high computational time to learn policies that
can compete with metaheuristics. Thus, this work proposes to use demonstration
data from expert heuristics and learn via behavior cloning (BC). Because expert
heuristics can be sub-optimal, our approach also considers a second learning stage
in which RL is employed to surpass the quality of the heuristic. Our proposed
method focuses on the classical improvement heuristic based on a 2-edge swap
change (2-opt) to a TSP solution. We consider as expert demonstrations the greedy
version of the heuristics that select the swap that leads to best improvement (BI)
in cost and the one that chooses the first improvement (FI). Our approach can
achieve similar results to previous RL methods after learning from demonstrations
and a few interactions of RL training, requiring lower training times and sample
complexity. In the experiments, we collect expert demonstrations from FI and
BI heuristics, extract a policy from demonstrations and perform policy gradient
[2] updates over online environment interactions to improve upon the expert
policies.

3 Results

We learn policies for TSP instances with 20, 50 and 100 nodes, and depict the
optimality gap for 10,000 test instances in Table 1. The results show that we can
learn effective early policies that decrease the optimality gap over the training
epochs and can approximate the performance of the previous methods for the
same task learning solely via RL.

Table 1: S : Number of samples. Type: Solver, SL: Supervised Learning, BC:
Behavior Cloning, RL: Reinforcement Learning. @{iterations of PG}

Method Type TSP20 TSP50 TSP100
Cost Gap S (×108) Cost Gap S (×108) Cost Gap S (×108)

PG@1 RL 7.62 98.72% 0.01 14.08 147.30% 0.01 33.66 333.50% 0.01
PG@5 RL 4.04 5.26% 0.05 7.59 33.30% 0.05 11.06 42.50% 0.05
PG@20 RL 3.85 0.21% 0.21 5.94 4.28% 0.21 8.56 10.29% 0.21
PG@200 RL 3.84 0.01% 2.05 5.71 0.30% 2.05 7.89 1.61% 2.05

BC+PG@1 BC, RL 3.88 1.17% 0.01 6.28 10.29% 0.01 8.86 14.15% 0.01
BC+PG@5 BC, RL 3.84 0.07% 0.05 5.84 2.61% 0.05 8.47 9.02% 0.05
BC+PG@20 BC, RL 3.84 0.02% 0.21 5.74 0.86% 0.21 8.07 3.98% 0.21
BC+PG@200 BC, RL 3.84 0.00% 2.05 5.71 0.21% 2.05 7.87 1.41% 2.05
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1 Introduction

Continual learning aims to build intelligent agents that can continuously learn
new tasks over time while preserving the old learned knowledge. Ideally, the
agent should continually learn without adding a huge computational and memory
overhead to learn a new task or remember the old ones. The main challenge in
this paradigm is catastrophically forgetting previous tasks when the model is
optimized for a new one [6]. Existing methods mitigate this problem at the
expense of increasing the model capacity [12,9] or replaying the old samples [8].
This hinders its applicability to real-world applications where the old data might
be inaccessible and computation and memory efficiency are required. To address
these limitations, we proposed SpaceNet [11] 1 a new architectural-based strategy
that utilizes the available fixed-capacity of the model efficiently. We harness the
significant redundancy of deep neural networks [2] and learn each task in a
compact space using dynamic sparse training. SpaceNet learns semi-distributed
sparse representation for each task. This representation has two key advantages:
(1) it reduces the interference between tasks and (2) it leaves free neurons for
future tasks without adding extra computation and memory overhead.

2 Proposed Method

SpaceNet is a brain-inspired method that mimics the high sparse activity in
the brain [1,4]. It is motivated by the recent success of dynamic sparse train-
ing methods in achieving a similar performance of dense neural networks using
high sparse networks [7,5]. An overview of SpaceNet is illustrated in Figure
1. We dynamically train each task from scratch using a sparse sub-network.
SpaceNet consists of three main phases. (1) Sparse connections allocation be-
tween the free neurons in each layer. (2) Dynamic sparse training. During learn-
ing each task, the sparse topology is optimized for paying more attention to
the useful neurons for the current task. In particular, the distribution of the
sparse connections is adaptively changed and compacted in the most impor-
tant neurons for the current task through drop-and-grow cycles (Figure 2).

? The full paper has been published in Elsevier Neurocomputing, Volume 439, 2021,
Pages 1-11. https://doi.org/10.1016/j.neucom.2021.01.078.

1 The code is available at: https://github.com/GhadaSokar/SpaceNet
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Fig. 1: An overview of our proposed method SpaceNet. The figure shows the
learning process of Task 2 in the sequence. SpaceNet consists of three main
steps. (a) Sparse connections allocation for the current task between the
free neurons that are not reserved by previously learned tasks. (b) Dynamic
sparse training in which the weights and the sparse topology are optimized
simultaneously for the current task. (c) Neuron reservation of the important
neurons for the current task and removing them from the free list of neurons.
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Fig. 2: Visualization of the number
of weights connected to each input
neurons for Task 1, digits (0,1), in
the Split MNIST benchmark [13] be-
fore (left) and after (right) training.

(3) Neuron reservation. After training,
a fraction of the important neurons for
the current task is reserved and can
not be used by other tasks. This results
in sparse representations for each task
which reduces the interference between
the tasks, hence forgetting. Table 1 shows
the performance of SpaceNet compared
to other strategies. As shown in the ta-
ble, SpaceNet outperforms the regulariza-
tion and architectural methods by a big
margin. It also achieves promising results
compared to the rehearsal strategy given
that SpaceNet does not use previous data.

3 Conclusion

Table 1: Accuracy (ACC) on split
MNIST [13] using different ap-
proaches.

Strategy Method ACC (%)
Regularization EWC [3] 20.01 ± 0.06

Rehearsal
DGR [10] 90.79 ± 0.41

SpaceNet-Rehearsal 95.08 ± 0.15

Architectural
DEN [12] 56.95 ± 0.02

SpaceNet 75.53 ± 1.82

In this paper [11], we proposed an
architectural-based strategy to continu-
ally learn a set of tasks sequentially with-
out forgetting. We introduced a dynamic sparse training algorithm to train each
task to produce sparse representation. By learning these sparse representations,
we managed to reduce the forgetting in previous tasks without replaying previous
data. We showed that we can accumulate knowledge over time while preserving
the old one with a negligible memory and computation overhead.
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1 Introduction

Robots that incorporate social norms in their behaviors are seen as more supportive
and friendly. Since it is impossible to manually specify the most appropriate behav-
ior for all possible situations, robots need to be able to learn it through trial and er-
ror, by observing interactions between humans, or by utilizing theoretical knowledge
available in natural language. In contrast to the former two approaches, the latter has
not received much attention because understanding natural language is non-trivial and
requires proper grounding mechanisms to link words to corresponding perceptual in-
formation. Previous grounding studies have mostly focused on grounding of concepts
relevant to object manipulation [1,4], while grounding of more abstract concepts rele-
vant to the learning of social norms has so far not been investigated.
In this paper, we present an unsupervised cross-situational learning based online ground-
ing framework to ground emotion types, emotion intensities and genders through their
corresponding concrete representations, which represent sets of invariant perceptual
features obtained through an agent’s sensors that are sufficient to distinguish percepts
belonging to different concepts [3], extracted from audio with the help of deep learning.
The proposed framework is evaluated through a simulated human-agent interaction ex-
periment in which the agent listens to the speech of different people and receives at the
same time a natural language description, describing the gender of the observed person
as well as the experienced emotion. Furthermore, the proposed framework is compared
to a Bayesian grounding framework that has been employed in several previous studies
to ground words through a variety of different percepts [1,4].

2 System Overview

The employed grounding framework consists of three parts: (1) Perceptual feature ex-
traction component, which extracts audio features from video using openEAR [2], (2)
Perceptual feature classification component, which uses deep neural networks to obtain
concrete representations of perceptual features, (3) Language grounding component,
which identifies auxiliary words, i.e. words that have no corresponding concrete repre-
sentations, and creates mappings from non-auxiliary words to corresponding concrete
representations using cross-situational learning.

? This is an extended abstract of Roesler and Bagheri [5].
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3 Results

The obtained results show that the framework is able to identify auxiliary words and
ground non-auxiliary words, including synonyms, referring to abstract concepts through
their corresponding emotion types, emotion intensities and genders. Furthermore, they
illustrate that the grounding algorithm employed by the proposed framework depends
on the accuracy of the used concrete representations, which are in this study obtained
through deep learning, but does not require perfectly accurate representations because
the framework is already able to obtain all correct mappings, if the accuracy of the
concrete representations is on average only around 85% for all considered modalities.
Additionally, the proposed framework outperformed the baseline framework in terms
of the accuracy of the obtained groundings as well as its ability to learn new groundings
and continuously update existing groundings during interactions with other agents and
the environment, which is essential when considering real-world deployment. Finally,
the framework is also more transparent, due to the creation of explicit mappings from
words to concrete representations.

4 Conclusion

The proposed framework allowed identification of auxiliary words and grounding of ab-
stract concepts, like emotion types, emotion intensities and genders, through their corre-
sponding concrete representations in an online manner using cross-situational learning.
In future work, we will integrate the framework with a knowledge representation to
explore the utilization of abstract knowledge to increase the sample-efficiency of the
grounding mechanism as well as the accuracy of the obtained groundings, and enable
agents to reason about the world with the help of an abstract but grounded world model.
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Play the Reinforcement Learning Agent

Hélène Plisnier, Alessandro Fasano, and Ann Nowé

Vrije Universiteit Brussels
helene.plisnier@vub.be

https://youtu.be/CP4HPBzsmtU

Abstract. In the past few decades, artificial intelligence has gained an
increasing amount of interest from the general public. Accompanying this
interest, comes expectations of how sophisticated AI methods and their
abilities are, often without a proper understanding of how they actually
work. This demonstration is meant to give non-expert participants an
idea of the view an RL agent has of its environment. We invite a volunteer
to take the place of a standard RL agent and try learning the task solely
based on information that would be available in a typical RL setting.
The purpose of this demonstration is to illustrate how unintuitive an
RL agent’s perspective of its environments is from a human point of
view, and hence how limited its understanding of the task it is learning
is. By establishing this idea in non-experts minds, we hope to debunk
certain inaccurate assumptions people may have about AI technologies,
specifically RL in this case.

Keywords: Reinforcement Learning · Transparency · Volunteer-Driven
Demonstration

1 Introduction

Reinforcement Learning [3] (RL) is an Artificial Intelligence method, in which
an agent learns to perform a task from scratch by repetitively interacting with
its environment. At each timestep, the agent chooses and executes one of the
actions at its disposal based on some state information, then receives a reward
or punishment and goes on to the next state. RL methods consist in a promising
approach to make robots easier to deploy in human-populated spaces, such as
industries, offices and homes.

However, for robots executing RL algorithms to be accepted and allowed in
human spaces, and to comply to (current and future) AI Transparency [1] and
Explanability regulations 1 their decision-making processes must be made clear
for human users [6, 4, 2, 5]. An important component of the RL process is the
way RL agents “perceive” and “understand” their environment. That kind of
information is often restricted to experts in RL, who are used to design RL al-
gorithms and test them on different environments. Our demonstration has been

1 Such as the General Data Protection Regulation: https://eur-lex.europa.eu/eli/
reg/2016/679/oj
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developed with the intent to give non-expert participants a feel of the reasoning
used by an RL agent. Such demonstration can help users level their expectations
of the capabilities of AI technologies, and help them shape an informed mental
representation of these technologies. In this paper, we present a demonstration
involving a volunteer, whom is put in the position of a reinforcement learner,
with access to a number of actions, some state information, and reward signals
in the form of colored lights (see Figure 1). Without knowing it, the volun-
teer is controlling a simulated hook used to move a container onto a ship; this
graphical representation of the task is not shown to the volunteer during the
demonstration, but is visible to accompanying people, allowing them to follow
the volunteer’s progress.

Fig. 1. Left: Controller window provided to the volunteer. Right: Graphical represen-
tation of the task. The volunteer is not shown this window during the demonstration.
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Abstract. The field of Hybrid Intelligence (HI) is like a vast land with
many tribes that speak different languages. Our goal is to develop a lin-
gua franca to unify the peoples of the HI land. We expect our language to
facilitate documentation and communication of research results and thus
collaboration among various HI fields by making use of design patterns
describing human-AI interactions.

Keywords: Design pattern language · Hybrid intelligence · Human-AI
interaction.

1 Introduction

The premise of this project is to create a language whose words are design pat-
terns in Hybrid Intelligence (i.e., HI) design. These patterns describe a configu-
ration of machine and human agents which are designed to carry out a particular
task in a particular set of circumstances [1, 4]. The difficulty of such an endeavor
lies in the fact that the HI field is like a vast land with many tribes (i.e., groups
of scientists and engineers from many different disciplines) working in it. These
tribes usually speak different languages and work in diverse contexts and have
diverse backgrounds. This causes dispersion in communication between various
tribes and through time. Difficulties arise in integrating one tribe’s work in an-
other tribe’s project, in communicating one tribe’s findings in a certain field to
another field, in getting two or more tribes to collaborate on a project, and even
to deliver one tribe’s work through time so that future projects can benefit from
it.

We would like to facilitate communication throughout the HI land by creating
a lingua franca which all the various peoples of the HI land can speak. To do
this, a strategy is needed to document the experiences of designers in various
HI fields by extracting useful patterns from those experiences. In effect, future
designers will not need to reinvent the wheel and will have a vocabulary and a
framework that will guide them in their designing efforts.
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2 Development and Evaluation

What we need in order to build a language is a vocabulary and a grammar (which
is some kind of structure). The vocabulary is the set of design patterns and most
design pattern languages stop there. They are just a catalogue or a dictionary of
design patterns. However, having the same vocabulary does not necessarily mean
mutual intelligibility between two languages. To have a universal language we
also need a common grammar. The grammar is a formalism (e.g., context-free
grammar, combinators, lambda calculus, category theory, etc.) that structures
the vocabulary and dictates how to compose different design patterns within
different levels and between different levels of abstraction.

As a starting point, we should identify design patterns through observing
how people working in HI think and solve their problems. In representing de-
sign patterns we should focus on how these patterns compose so that we can
superimpose a structure as the language’s grammar. Our effort will be geared
toward generating as many useful syntactically possible combinations of our
atomic patterns as possible [2, 3]. We expect the pattern language to have both
an easy-to-access graphical notation and a formal representation that can be
manipulated by computer-tools (e.g., editor, validator, search tool, configurator,
etc). One very idealistic end product to imagine is a Domain Specific Language
accessible to both humans and machines which could be used to design an Inte-
grated Development Environment.

In evaluating how successful the design pattern language is, we can take into
account the following. Firstly, the employed design patterns should be valid,
meaning they have to be instantiated in a concrete context to see how far the
system behaves according to the pattern. To do this, in certain cases, tests
involving simulations to address the size, diversity, and dynamics of the human
and artificial cognitive processes can be carried out. Furthermore, the design
pattern language should be as complete as possible or viable, meaning it must be
able to describe as many as the HI application scenarios which are useful for the
users. However, the most important questions to ask in evaluating the language
should address researchers’ and engineers’ performance in reliably instantiating
an HI design pattern into a solution for their situated problem. Questions like
how easy it is to understand the idea expressed in a design pattern; how easy it is
to find a design pattern expressing a certain idea; how well the language expresses
the important properties of an idea, such as its scope or impact; and is it possible
to compare design patterns or ideas therein using the pattern language. It is also
very important that our language be dynamic, meaning designers must be able
to add to it and change it as the research field develops.

3 Concluding Remarks

The above paragraphs sketch out a plan for constructing a design pattern lan-
guage. However, to begin with, we must understand what a design pattern means
in the field of HI; which design patterns are available in this field; and what ef-
forts have been made in formalizing design pattern languages. Therefor, we have
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set out to write two review papers on design patterns in HI and on methods of de-
sign pattern formalization. The future plan consists of incrementally discovering
and formalizing extant design patterns in HI and identifying gaps therein.
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Shepherd: Reinforcement Learning as a Service with
Distributed Execution

Hélène Plisnier, Denis Steckelmacher, and Ann Nowé
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Video: https://youtu.be/1Ia0MHhhAHg
The web-page: https://steckdenis.be/shepherd_demo.html
Hardware requirements: a power plug and a table on which to put a screen

Abstract. Most current implementations of Reinforcement Learning agents con-
sider that one agent interacts with one environment, and that the agent and envi-
ronment run on the same machines. Previous work, such as RL-Glue1, went a step
in the direction of allowing the agent and environment to be different processes
on a computer, but a wider separation of the agent and environment is much less
common. In this demonstration, we illustrate how Shepherd, a web-service that
allows clients to remotely query a Reinforcement Learning agent for actions, al-
lows multiple people to interact at the same time with a single agent, on their
phone, over the Internet, without having to install anything. Shepherd ensures
that knowledge obtained from one client (one person in this demonstration) is
quickly leveraged to improve the performance of the agent for the other clients.

1 The demonstration

This demonstration considers the Reinforcement Learning setting. An agent learns what
action to perform in what state of the environment, in order to obtain the highest-
possible sum of rewards over an episode (a sequence of actions).

In this demonstration, the environment is the BNAIC venue. We will place Belgian
chocolates somewhere on the demo floor, along with a few paper tags. The goal will be
for visitors of BNAIC to find the chocolates, by following instructions given by their
phones, more precisely, given by a web-page2 that they have opened on their phone.
Every time the visitor finds a tag, they enter on the web-page the two-letters code dis-
played on the tag, and press a button. The web-page will send a request to a remote
Shepherd server, telling it what tag has been seen by the person. The Shepherd server
will reply with an instruction, such as “go to the nearest coffee machine” or “look at
the demo stand on the right”. The user then performs the action. This can lead to 3
outcomes, that the user tells Shepherd about by clicking buttons on the web-page:

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1 https://sites.google.com/a/rl-community.org/rl-glue/Home
2 https://steckdenis.be/shepherd_demo.html
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1. The user finds another tag→ they enter its two-letters code and get a new action;
2. The user does not find any tag→ they click on a button that punishes the Shepherd

agent;
3. The user finds the pralines → they click on a button that rewards the Shepherd

agent.

Over time, the Shepherd agent learns to give instructions that quickly lead the users
to the pralines. The agent also learns to avoid instructions that lead to no tag. The main
property of this demonstration is that several people can participate in the demo at
the same time. They will all interact with the Shepherd agent independently, and re-
ceive their own instructions. Shepherd makes sure that the experiences collected by one
person immediately improve the instructions given to the other people. This is a sin-
gle agent, multiple executions setting, comparable to what A3C proposes for compute-
efficient Reinforcement Learning [2]. The novelty of Shepherd is that it does not rely
on the A3C algorithm, but instead is compatible with any Reinforcement Learning al-
gorithm.

2 Shepherd

Shepherd is a web application, implemented in Python with Django3. It acts as a bridge
between web clients, that connect to it over the network (using JSON commands sent
over HTTP), and state-of-the-art Reinforcement Learning agents available in the Stable-
Baselines3 [4]. Shepherd presents itself to the RL algorithms as a fully standard OpenAI
Gym environment [1]. At the core of Shepherd, the Actor-Advisor [3] is used to allow
each client of Shepherd, each running their own instance of the RL algorithm, to ad-
vice the other clients. This is what allows Shepherd to be compatible with the single
agent, multiple executions setting described above, without having to modify the RL
algorithms it exposes to the clients.

For this demonstration, a Shepherd instance will run on a server visible on the In-
ternet. The Shepherd agent will be configured to learn with Tabular BDPI, a tabular
(discrete states) version of Bootstrapped Dual Policy Iteration [6] described in this PhD
thesis [5]. BDPI has been chosen because it is highly sample-efficient, especially in its
tabular version, which is critical for a demonstration during which the agent will learn
(instead of a demonstration that shows an already-trained agent).
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2. Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning. In International Conference on Machine Learning (ICML), page 10,
2016.

3. Hélène Plisnier, Denis Steckelmacher, Diederik M Roijers, and Ann Nowé. The actor-advisor:
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1 Introduction

There is certainly some behavior that you want to change. Maybe you want to
become more physically active, call your mother more often or snack less when
watching TV at night. Let’s assume that you want to quit smoking. You are not
doing this alone, but are supported by your coach Hannah. Hannah constantly
persuades you to stick to your intervention. How does she decide how to do that?
First, Hannah has a lot of theoretical expertise. Moreover, you are not Hannah’s
first client, so she can draw upon her experience with other and especially similar
clients. Third, Hannah considers your current situation - are you confident or
stressed about a deadline? In addition, she will persuade you in such a way that
she can persuade you again in the future. And lastly, Hannah will keep adapting
her strategy over time. Now, let’s suppose that you have another coach, Sam.
Unlike Hannah, Sam is a virtual coach. Can Sam do what Hannah can?

Changing personal behavior is a very promising way to improve health and
reduce premature death. For example, nearly 40% of deaths in the United States
are caused by behavior [21][26], and smoking alone contributes to 19,000 annual
deaths in the Netherlands [22][29]. To support such behavior change, recent
years have seen a surge of eHealth applications [4][8][17][18]. Yet, while such
interventions have the advantage that they are available at all times, scalable,
cost-effective and can facilitate tailoring [16], adherence to them remains low
[4][15]. We thus aim at developing persuasive communication for a virtual coach
that aids people in adhering to their intervention. Previous work has shown that
data gathered on other people [13][14], similar people [11][30] or an individual
[12][13][14][20][25] can be used to choose a persuasion type. Yet, little work has
also incorporated the context of a persuasive attempt, which has been supposed
to have an important impact on the effectiveness of different persuasion types
[2][3][24]. In addition, persuasion types also differ in their impact on the context
of future persuasive attempts [28]. We thus propose a reinforcement learning
approach to persuading people that considers a person’s current and future states
as well as the similarity of people. We test this approach based on persuading
people to do small preparatory activities for smoking cessation and physical
activity increase such as listing reasons for wanting to quit smoking.
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2 Approach

We created a text-based virtual coach that attempts to persuade people to
do small activities. For each persuasive attempt, the virtual coach selects a
persuasion type based on its learned policy. After a certain time interval, the user
provides the virtual coach with feedback by reporting the effort they put into
their suggested activity. This feedback is used by the agent to update its policy.
Formally, we can define our approach as a Markov Decision Process 〈S,A,R, T, γ〉.
The action space A thereby consists of different persuasion types, which include
a subset of Cialdini’s persuasion types [6], action planning [5][10][27], and the
option to not persuade. The reward function R : S ×A→ [−1, 1] is determined
by the self-reported effort, T : S×A×S → [0, 1] describes the transition function,
and the discount factor γ is set to 0.85 to favor rewards obtained in the near
future over rewards obtained in the more distant future. The finite state space S is
defined by answers to questions that are based on the COM-B Model for Behavior
Change [19] and capture a person’s capability, opportunity and motivation to
perform an activity (e.g. ”I feel that I need to do the activity”). To further
incorporate the similarity of people, the agent maintains a policy πi for each user
i. When updating πi, an observed sample from user j is weighted based on how
similar i and j are with regards to their personality [9] and stage of change for
becoming more physically active based on [23].

3 Experiment

To gather data for and test our approach, we have conducted an experiment with
more than 500 daily smokers who planned or contemplated to quit smoking [7].
Participants interacted with the virtual coach Sam in five conversational sessions.
In each session, the virtual coach suggested a new activity, together with a per-
suasion type. The first two sessions thereby served as training sessions in which
participants were persuaded by a random persuasion type, whereas the last three
sessions were used to test the algorithm components. To this end, participants
were randomly split into four groups after session 2. Based on the data gathered
in sessions 1 and 2, participants in the four groups were subsequently persuaded
based on 1) a persuasion type with the highest immediate reward average, 2) a
persuasion type with the highest immediate reward average in their state, 3) a
persuasion type with the highest Q-value in their state, and 4) a persuasion type
with the highest similarity-weighted Q-value in their state. The data from the
experiment will be analyzed according to our Open Science Framework (OSF)
pre-registration [1]. We will also share our collected data in anonymized form.

Acknowledgments. This work is part of the multidisciplinary research project
Perfect Fit, which is supported by several funders organized by the Netherlands
Organization for Scientific Research (NWO), program Commit2Data - Big Data
& Health (project number 628.011.211).
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SafeTraveller - A conversational assistant for
BeNeLux travellers?

Kristina Kudryavtseva1 and Sviatlana Höhn1[0000−0003−0646−3738]
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kristina.kudryavtseva.001@student.uni.lu
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Abstract. The artificial conversational assistant SafeTraveller helps peo-
ple understand travel regulations related to COVID-19. The current im-
plementation covers travel regulations for BeNeLux countries. It is im-
plemented using RASA and works in Facebook Messenger. The heuristic-
based evaluation of user experience shows performance above average.

Keywords: COVID-19 Travel Regulations · Conversational Assistant

1 Problem

COVID-19 pandemic caused various restrictions in mobility within and across
European countries. It lead to a lot of uncertainty in regions close to borders
with high number of work commuters. The regulations changed many times,
and different rules were applied for transit and stays of different duration in
countries, as well as for different travel purposes. People were overwhelmed with
changing rules, actual information is sometimes difficult to find, and sometimes
only available in one language not spoken by the concerned persons.

While many implementations address issues related to health questions and
symptom checking, for example [2,4,3], topics of mobility under pandemic condi-
tions did not receive much attention. We solve these problems with an artificial
conversation assistant called SafeTraveller.

2 Solution

Our first prototype includes travel information within and across three countries:
Luxembourg, Belgium and the Netherlands. The chatbot is provided with a
knowledge base of travel regulations. The chatbot retrieves an answer depending
on the travel characteristics: transit or stay, duration of stay (e.g. more or less
than 48 h), purpose of stay (e.g. work or leisure). The chatbot also provides
information about COVID-19 tests and informs about wearing masks. It also
covers regulations related to vaccinations. The current implementation is based

? S. Höhn thanks Luxembourgish National Research Fund INTER-SLANT 13320890
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on RASA1 and uses Facebook Messenger to connect with users. The knowledge
based was populated with regulations related to travel and restrictions within
the countries. The regulation texts were paraphrased to make them sound more
conversational and accessible. The working of the system is illustrated in a video
demonstration of the prototype2.

3 Evaluation

The evaluation of the user experience in expert interviews based on 12 heuristics
[3] shows that SafeTraveller outperforms the average results from [3] in heuris-
tics 2,3,4,8,9,11,12, reaches approximately the same score in heuristics 6,7,10 and
needs more attention in heuristics 1 and 5 (SafeTraveller in blue and the average
bot in red in the plot below). The screenshot shows the start of the conversation.
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4 Conclusions and Future Work

SafeTraveller as a proof-of-concept shows that the conversational assistants help
to find the relevant information for the given use case faster. The dynamics of
the pandemic (vaccinations, virus mutations and people’s mobility) shows that
this topic is still urgent.

In our next release of the SafeTraveller we plan to include information for
all European countries in at least three languages. We plan to use the dataset
collected by [1] to train the language understanding models in all languages of
the Greater Region. In addition, we plan to include dynamic updates of the
knowledge base in order to keep the information for all countries up to date.
We will also integrate logic and reasoning to handle contradictions. However,
several research challenges need to be solved such as automated translation of
regulations and automated reasoning over a multilingual knowledge base.

1 https://rasa.com
2 https://youtu.be/BKuH7lMw3PU
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Logical Reasoning application with NLP
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The field of knowledge representation and reasoning (KRR) is under develop-
ment since the early days of artificial intelligence [6]. One of the largest challenges
in the field is to develop a representation that is expressive enough to model a
certain domain, but that is also useful to reason with and derive conclusions.
The Knowledge Base Paradigm (KBP) advocates a strict separation between
these two concerns: domain knowledge should be modelled in a Knowledge Base
(KB), while separate inference algorithms can use this KB to calculate solutions
for a given problem. The IDP system offers an implementation of the KBP [3].
We have demonstrated the power of the IDP system in a variety of case studies
including law, configuration and insurance [5,1,2]. In this demo we showcase a
system that consists of a Natural Language (NL) interface that allows an easy
creation of the KB, combined with the various functionalities offered by IDP.

The KB in IDP is modelled using FO(·), a language derived of First Order
Logic [7]. Although the language is easily readable for computer scientists, this is
far from trivial for business users. However, in many applications it is important
that business users can adapt the KB themselves. Our contribution is that we
created an application that combines KRR with NL processing, such that a
natural language profile is automatically translated into a knowledge base that
can be used for automated reasoning. The setup of the system is generic, such
that it can easily be tweaked to different sectors. E.g., we have successfully
developed a production application in the domain of investment management [4].
In this application clients are able to create their own investment profile based
on asset characteristics and their associated Environmental, Social en Corporate
Governance (ESG) metrics (hence implementing the company’s ESG policy in
the investment strategy). But we have also developed prototypes for other areas,
both within and outside the financial sector, e.g., credit risk applications and
client communication templates.

The key element of the natural language processing functionality is the man-
ually created tuple tree. The standard tree of a case study application to create
investment profiles consists of 400 nodes and took two weeks to construct. The
creation time of a tuple tree depends on the number of nodes within the domain.
Each node represents a concept, like country or asset type, and each concept ac-
cepts possible values related to it. Users can extend the available picklist of
values by introducing and defining new concepts. The concepts are used to cre-
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(a) CNL building blocks

(b) Natural language sentences

Fig. 1: Adding formulas to the KB using CNL and NLP

ate highly structured sentences step-by-step by selecting blocks (panel(a) of Fig.
1). To avoid ambiguity, the sentences sum up the conditions that need to be true
in conjunction. It is not possible to create a sentence with disjunction. Any NL
sentence that uses an ’or’ statement, can be split in different sentences that only
contain conjunctions. The resulting highly structured natural language sentence
is automatically translated to FO(·) and added to the KB. The user can also
type a free formal natural language sentence (panel(b) of Fig. 1). The application
then proposes three CNL statements that are most likely to present the English
sentence. The user then selects the most correct sentence, makes adjustments if
necessary, and validates the result. As before, this CNL statement is added to the
KB in FO(·). The NLP module consists of a custom attention-based network,
that was implemented in Tensorflow. The models use a sequence-to-sequence
architecture with attention. The training data uses a combination of real and
synthetic data. The real data are previous interactions from the users. The syn-
thetic data is achieved by creating random walks on the tuple tree and several
grammatical transformations to achieve a rich set of examples. The model is
trained with a combination of real and synthetic data on an NVIDIA RTX 2080
with training times from tree to five hours.

Once the KB is created, numerous powerful and generic inference tasks can
be used and combined such as model expansion, optimisation, propagation, ex-
planation, etc. [7]. As a result, the system can offer multiple services that i) use
the same KB, and ii) are inconceivable in classic imperative system.
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Using privacy preserving amalgamated machine
learning for pedestrian safety in warehouses

Imen Chakroun, Tom Vander Aa, Roel Wuyts and Wilfried Verarcht

Exascience Life Lab , IMEC
Leuven , Belgium

Forklifts and automated guided vehicles (AGV) are useful tools in facto-
ries and distribution facilities. With regard to worker safety, however, there are
issues to keep in mind when using either manned or automated powered in-
dustrial vehicles. Recent information about automated guided vehicle accidents
also demonstrates that even with on-board sensors these vehicles did not de-
tect nearby workers. In many forklift incidents, the driver’s view was partially
or fully blocked due to the forklift structure and load, environment occlusions,
etc. Further complications involving worker safety will happen as AGVs work
in more unstructured environments. These safety risks can be mitigated with
the use of new machine learning techniques that run models using on-board and
environment sensors.

Consider a setup (Figure 1) where multiple cameras view (different parts of)
a scene and need to give environmental feedback to one or more AGVs that risk
an imminent collapse because of occlusion. We see every camera as a separate
privacy silo that does not share its raw data, nor its internal models as every
device have only a partial view on the global image.

Fig. 1. Sketched scenario with AGVs and environment cameras.

One solution would be to pool all data from all cameras (stitching frames to-
gether or centralizing data) and learn on that combined dataset (Figure 2). How-
ever this may be problematic for technical reasons (required network bandwidth,
centralized storage) or for privacy concerns. To tackle this, We have defined a
privacy preserving amalgamated machine learning (PPAML) solution (Figure
3). Our amalgamated machine learning technique lets every local model build
intermediate features (dubbed PAML features) that can be safely shared with
other models. The camera has its own model that calculates PAML features that
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Fig. 2. Pooling all data together.

are used in the AI model driving the AGV. Even though every device knows only
its portion of the network and its data, we showed experimentally that overall
prediction is improved with respect to the local models.

Fig. 3. Using PPAML features.

We have build a physical demonstrator for pedestrian safety in warehouses
where pedestrian and automated guided vehicles (AGV) work together. Us-
ing PPAML, the environment sensor detects pedestrian and AGV positions
and sends PPAML features to the AGV which uses these abstract features
in an internal machine learning model to quantify the safety of the environ-
ment. The AGV do not have any sensor on-board. It relies entirely on the
input of the camera. For the communication layer between the environment
sensor and the robot we are leveraging the DUST framework [1]. When the
robot predicts that it is very close to the pedestrian it will step back immedi-
ately to further proceed when it predicts safety again. We currently have im-
plemented a solution with a single robot and environment sensor, which we
then plan to extend further in the future. The demonstration can be found in
https://www.dropbox.com/s/rtkq2zlmljqd31y/DemoChakrounetal.mp4?dl=0

1 Acknowledgement

We thank the researchers from IDLab Antwerp to get us up and running with
the DUST framework.
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Abstract. ENRICH4ALL is a newly funded project about the development of an 

e-government chatbot. The Machine Translation system of the European Com-

mission, eTranslation, will be integrated into a commercial AI chatbot engine 

and through fine-tuned Natural Language Understanding models, a newly devel-

oped multilingual chatbot service will be deployed in Luxembourg, Denmark, 

and Romania. 

Keywords: AI, eTranslation, Multilingual Chatbot, NLU. 

1 Introduction 

1.1 ENRICH4ALL project 

In this paper we introduce the European Action ENRICH4ALL [1] (E-goverN-

ment [RI] CHatbot for ALL) which is about the development of a multilingual chatbot 

service called eChat that will be deployed in public administration in Denmark, Lux-

embourg, and Romania. 

Government chatbot. The COVID pandemic has drastically changed how govern-

mental services have been working so far and how Digital Service Infrastructures 

(DSIs) deliver networked cross-border services for citizens, businesses, and public ad-

ministrations. The “digital first” mindset plays a big role in today’s society and tends 

to be the next new normal. The advancements in AI and Machine Learning have made 

virtual assistants very powerful and present in many domains nowadays, such as com-

merce, healthcare, etc. Microsoft stated that the ultimate form of AI is a digital assistant 

and in 20 years, AI-operated personal digital assistants will be so integrated into our 

lives that they will be like “alter egos, a second self” [2]. Regarding government chat-

bots in Europe, there is not currently any interoperable infrastructure throughout the 

multiple EU countries. There are a few existing e-Government chatbots, such as in Es-

tonia [3], Belgium [4], Ukraine [5], and UK [6], but they do not share the same archi-

tecture, and thus are not interoperable.  

 With eChat, we aim to integrate eTranslation [7], and move from a scarce and frag-

mented e-government virtual assistant-based interaction to a fully digital and unified 
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ecosystem, which provides updated information on laws, regulations and public ser-

vices 24/7. E-government chatbots have many benefits for all stakeholders: citizen, 

businesses and public administration. Chatbots can process many service requests, 

work 24/7, and provide always timely and up-to-date information. On the top of that, 

having a multilingual government chatbot, the services are open to a large number of 

people irrespective of language, geographical or cultural barriers, see Sec. 2. 

In ENRICH4ALL we will use the AI powered chatbot by SupWiz, Denmark [8] and 

integrate the eTranslation API (see 2.1). The SupWiz chatbot is based on Natural Lan-

guage Understanding (NLU) models which will be fine-tuned to appropriately map the 

user questions, so called intents to the chat flows that will be developed in the project. 

Besides, the SupWiz chatbot is easy to set-up, enables smooth integrations, and also 

assists human agents by transferring the intents to a department, when the user asks for 

human support or the chatbot cannot handle the user´s problem. 

2 Multilingual chatbot  

2.1 eTranslation powered AI chatbot 

eTranslation is the neural Machine Translation (MT) tool provided by the European 

Commission to all EU bodies, public services, and public administrations across EU, 

Iceland and Norway, as well as European SMEs and startups. It currently covers not 

only the 24 official languages of the EU, but also Russian and simplified Chinese, Turk-

ish, and Arabic. eTranslation is a Connecting Europe Facility (CEF) building block 

which can be integrated into digital services in order to add translation capabilities. 

Thus, eTranslation is available both as stand-alone webservice and as API that can be 

integrated in other online services. One significant benefit of eTranslation over other 

MT solutions for a government chatbot solution implementation is the data privacy 

preservation. This privacy will be even enhanced through a user profiling module that 

will be developed in ENRICH4ALL: user data will be extracted and identified in order 

to have the history logs from previous user-agent interactions; this user data is limited 

to the name and a unique ID number. The history logs will enable the facilitation and 

acceleration of personalized user requests. 

2.2 Societal impact 

Luxembourg is a highly multilingual country with 20% of the population speaking three 

languages at work environment [9]. Moreover, Luxembourgish is not yet an official EU 

language. However, Luxembourgish is spoken by the majority of the population as a 

1st and 2nd language and thus, a multilingual chatbot in Luxembourg, supporting also 

Luxembourgish, would have a significant economic and societal impact. 

ENRICH4ALL is in line both with Luxembourg’s strategic vision for AI [10] as well 

as with the resolution “Language equality in the digital age”, which was passed by the 

European Parliament in 2018. Motivated by this resolution, the European Language 

Equality [11] project, consisting of 52 partners covering all European countries, 
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research and industry and all major pan-European initiatives, develops a strategic re-

search, innovation and implementation agenda as well as a roadmap for achieving full 

digital language equality in Europe by 2030. Through a multilingual bot, citizen would 

save their long way to the public administration and would not be hindered by any 

language barrier, since they can communicate with the eChat in any of their preferred 

language. More significantly, the public administrations that will deploy the chatbot 

will reduce their resources having a bot to resolve easy issues, such as password resets 

or getting information on laws and regulations, while the human agents can have the 

possibility to focus on more complex requests, which cannot be resolved yet digitally. 
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Abstract. In this demo, we showcase the “Talking to your Data” sys-
tem. The key idea of this system is to support data governance and
data mining in a novel way. We aim to bring the use of interpretable ma-
chine learning techniques closer to the business analysts by using natural
language. We have developed a conversational agent and a data mining
backend that supports the analysis of data. Our approach facilitates solv-
ing prediction tasks and also provides explanations for these predictions.
Furthermore, we make possible the interaction for including the feedback
of the business analysts in the models.

Keywords: conversational agents · decision tree · subgroup discovery ·
interactive machine learning · explainable artificial intelligence

1 Introduction

The Collibra project [6] aims to develop a platform for supporting data manage-
ment through smart engagement using a conversational agent. The goal is to go
beyond the level of reports, incorporating interpretable data mining models to
gain new insights into the data. Here, by interpretability we refer to the trans-
parency of the model, i.e. the model is referring to terms familiar to the user
and the user can understand the reasoning of the model [4].

By adding the human in the process of building or fine-tuning a machine
learning model, the users’ understanding and trust of the system, as well as the
accuracy of learned systems, can be improved. Decisions trees (DT) [8] are one of
the most widely used intrinsically interpretable machine learning techniques [7].
While the lesser-known (but also interpretable) subgroup discovery techniques
are focused on generating descriptions of interesting patterns in data [5]. Other
works have proposed interactive machine learning tools for building and visual-
izing machine learning models [10, 9], but they rely on traditional graphical user
interfaces.
? Supported by the Innoviris TeamUp project “Driving collective data governance

through smart engagement platforms”.
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2 System description

In this work, we propose the use of a conversational agent for the interaction
with data and interpretable machine learning techniques. The conversational
agent was implemented using the RASA library [1], which facilitates the dialogue
management and language understanding/generation modules. Our systems re-
lies in two backend services, the Collibra Data Governance Platform [2] and a
data mining backend. The Collibra Platform manages all requests regarding re-
ports, data editions, and permissions, while the data mining backend processes
all machine learning-related tasks, such as learning, prediction, interpretation,
and edition of the models. The system architecture is depicted in Figure 1.

Fig. 1. System architecture of “Talking to your Data”, involving the conversational
agent (blue), the Collibra Platform backend (green) and the data mining backend
(orange).

Our system supports common operations with data that are needed during
the exploratory phase of the data mining process. For example, loading or merg-
ing datasets, requesting the possible values of a feature, and performing group-by
operations offering aggregation statistics. For the predictive phase, we allow to
train decision tree models and subgroup discovery algorithms. The latter also
providing the possibility of intervening during the optimization process [3]. After
the machine model is built, it can be questioned in natural language for obtain-
ing predictions, even with incomplete information. Perhaps the most relevant
features are the possibility to obtain explanations over the predictions in the
form of rules and to modify those rules based on the feedback of the user, thus
changing the trained model with the knowledge of the expert. For this last fea-
ture, we rely on ontologies associated with the datasets, which allows controlling
the vocabulary, finding alternative features, and reusing the calculations already
performed by the classifier. System requirements for demonstration: Two screens
and internet connection. Video available at: https://youtu.be/SaigB3usp6U
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Abstract. We present a novel architecture for an AI system that allows
a priori knowledge to combine with deep learning. In traditional neural
networks, all available data is pooled at the input layer. Our alternative
neural network is constructed so that partial representations (invariants)
are learned in the intermediate layers, which can then be combined with
a priori knowledge or with other predictive analyses of the same data.
This leads to smaller training datasets due to more efficient learning. In
addition, because this architecture allows inclusion of a priori knowledge
and interpretable predictive models, the interpretability of the entire
system increases while the data can still be used in a black box neural
network. Our system makes use of networks of neurons rather than single
neurons to enable the representation of approximations (invariants) of
the output.

Keywords: Interpretability · Neural Network architecture · A priori
knowledge.

1 Introduction

One problem in machine learning is the combination of data sets of different sizes.
In many practical applications, there is domain specific information available
that could beneficially influence the training of deep learned data sets. Predictive
models based on small data sets often have the advantage that white box AI
techniques (interpretable), such as Generalized Linear Models, perform as well
as black box AI techniques (less interpretable), such as Artificial Neural Networks
(ANNs) [2]. The traditional strategy to combine data in deep learning is based
on the pooling of data with different levels of detail level into one input set that
is used to train the model. Once pooled, the interpretability properties of the
original data sets converge to those of the deep learned model.

ANN may combine different kinds of data through skip layers (ResNet, [1]),
gate units (LSTM, [4]) or other architectural devices that allow information of
different levels of detail to mix in the training stage. The resulting model mostly
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disallows of meaningful interpretation because it is notoriously hard to interpret
the assigned weights of a neural network in terms of a representation that is
understandable by humans.

2 Computational model with invariants

In human brains objects are represented simultaneously at different detail levels
[3]. Higher level representations are more abstract, hence less sensitive to varia-
tions that appear in the more detailed layers. In a machine learning system for
image recognition, invariance to visual translations (such as scaling, rotations)
can be built up by simply memorizing examples that underwent such transla-
tions. The core of our computational model is to construct a system that does
not rely on such extensive memorization, but that can rather build up the dif-
ferent levels of representation directly and apply any necessary translations - or
in this case: add the bias that is learned from smaller data sets.

We present a Neural Network architecture that can learn invariants from data
while combining with predictive models of other kinds to arrive at a joint predic-
tion that retains both the predictive power and the interpretability properties
of each of the individual data models.

The proposed general computational architecture follows a representational
model of invariants [3]. To compute invariants, we implement a distinction be-
tween simple and complex neurons (henceforth: S-, respectively C-neurons) where
C-neurons pool S-neurons in a network.

3 Impact and limitations

The impact of our architecture on practical implementations is that a priori bias
or well-known functions may be mixed into the predictions made by the neural
network. This allows prior established bias to occur in the network, which reduces
the size of training and enhances its understandability.

One of the notable limitations is that our architecture requires more engi-
neering steps than traditional systems that learn all traits from a single input
layer. In addition, the performance of ANNs may be better if the system is al-
lowed to learn from input data in an unconstrained way - unlike in our approach,
which uses a priori knowledge to influence the output of the system.
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1 Introduction

Melanoma is considered the deadliest type of skin cancer, due to its poten-
tial to spread more easily to other organs, unless it is detected early. Early
detection of melanoma is often difficult, with the success rate of diagnosing
melanoma by dermatologists reaching 75-84% [2]. The time needed to analyze
skin lesions images is one of the many reasons why visual analysis and man-
ual inspection of melanoma are not very reliable [1]. The goal of this paper is
to develop a computer-aided diagnostics system that facilitate the early detec-
tion of melanoma using both visual and patient information, to assist medical
practitioners in diagnosing melanoma effectively. We examine what image pre-
processing and data augmentation methods are best suited for combining with
State-of-the-Art (SoA) deep learning classification models applied to bench-
marking, real-world images of melanoma. We deploy these within a 2 branch
deep network, to analyze demonstrate that fusing patient-level contextual infor-
mation with the analyzed visual data leads to improved melanoma recognition
outcomes.

2 Methods

Although research has achieved expert-level performance on skin cancer clas-
sification, no study to date has examined patient-level contextual information.
To fill the gap between clinical practice and automated melanoma diagnosis,
this paper implements a deep learning model that is trained on both skin lesion
images and patient-level contextual information. The used patient’s metadata
consists of age, gender, and anatomical location of skin lesions. We designed a
deep neural network by incorporating the patient-level contextual information
with lesion images [4]. Specifically, in the proposed model, two branches are
designed to handle both the lesion images and clinical information about the
patients: The branches are: Image branch which is a pre-trained VGGNet-16
convolutional neural network that responsible for processing image data. Addi-
tionally, other models e.g. EfficientNet and ResNet were trained on the same
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dataset to compare their performance with VGG-16. The second branch is a
basic fully connected neural network that include the patient’s information. To
begin, the patient’s metadata are pre-processed. Then, images are augmented
and pre-processed. In the end, the two branches are combined to a single network
for the diagnosis of melanoma.

The used dataset contains 10,982 testing images and 33,126 training images
of skin lesions from over 2,000 patients (32542 benign and 584 malignant). Con-
sidering that there is a significant disproportion among the number of examples
of benign and malignant melanoma classes in the dataset, we performed data
augmentation techniques to reduce the possible overfitting of the model. Thus,
the used data augmentation techniques are: random rotation, image shifting,
randomly zooming in the images, random brightness change and shearing.

Pre-processing of the images involves the following steps: body hair augmen-
tation, hair removal because hair may cause a serious information loss, noise
reduction, and testing various image features such as low contrast images.

3 Results and Discussion

When the model trained on images with artificial hair, the VGG-16 model ob-
tained 90% accuracy. The accuracy of ResNet50 was lower by 8% compared to
VGG-16. But, the model loss was similar to that of the VGG-16 + artificial hair
model. By contrast, EfficientNetB0 achieved the best training accuracy of 98%.
After data augmentation, training and testing accuracy rose by 17% and 18%,
respectively. The model loss was also reduced by 0.031. The findings empha-
size the importance of using data augmentation to train melanoma classification
models.

We obtained training and testing accuracy of 63% and 64%, respectively,
when the images were cropped to focus entirely on the melanocytic lesions. This
finding may be explained by the idea that certain essential image features needed
to diagnose melanoma can be obscured when images are circularly cropped.
Then, converting the images to HSV or Lab color space improved the accuracy
greatly. When the model was trained on images in HSV color space, the training
and testing accuracy was 96% and 97%, respectively. However, when images were
in Lab color space, the model attained an accuracy of 74%. The findings clearly
suggest that the color spaces used had a significant impact on the overall model
performance.

When the model was trained on only images, the CNN model demonstrated
a wide gap between training and testing loss, as well as a poor accuracy of 58%,
indicating an overfitting issue. On the contrary, once the model was given extra
information about the patient (age and gender), its performance rose signifi-
cantly from 58% to 90%. In addition, the test loss has been reduced. Surpris-
ingly, when all of the patient’s metadata were supplied, model performance fell
down. In other words, the accuracy dropped from 90% to 72%. However, this
combination of all of patient’s metadata and images outperforms training the
model with images only.
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Abstract. In this thesis, we propose a novel Deepfake video detection
model that extends state-of-the-art spatiotemporal models by adding
hand-crafted facial features into the model. The proposed model has
been tested against several baseline models on the balanced Celeb-DF
dataset with multiple frame selection methods. We conclude that the
proposed model outperforms the baseline CNN+LSTM model, but that
deep convolutional features are superior to hand-crafted facial features.
Finally, this work shows that a frame selection method based on equal
intervals captures more inconsistencies, leading to the best performing
model. Code for this paper is publicly available at:
https://github.com/sjasseldonk/Deepfake-Detection.

Keywords: Deepfake Detection · Hand-Crafted Features · CNN+LSTM.

1 Introduction
Manipulation of visual content that leads to misinformation has become one of
the greatest challenges in digital society [11]. Especially facial manipulations are
preferred over other objects because faces play a central role in the communi-
cation between humans [5]. This phenomenon is known as Deepfakes, stemming
from ‘Deep Learning’ and ‘fake’, and is defined by [15] as swapping the faces of
two persons based on a deep learning approach. As a result of the rapid advance-
ments in Artificial Intelligence (AI) there is an increasing concern that Deepfakes
are used for more harmful purposes such as politics [10], causing an erosion of
trust [3].

Most Deepfake detection approaches are based on frame-level features present
in an image extracted via Convolutional Neural Networks (CNN) [12, 14, 17].
However, these detection models fail to capture information hidden over time
in a video, which are referred to as temporal features. Recently, research has
been carried out to include these temporal features, outperforming frame-level
methods [8, 16, 6]. However, no studies have been found that also include hand-
crafted facial features to improve the classification performance, although [13]
have found that hand-crafted features may provide models with complementary
information. This paper explores the fusion of hand-crafted facial features with
deep features and then feeding them to an Long Short-Term Memory (LSTM)
network to detect Deepfake videos.
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2 Methods

The proposed model in this study fuses deep convolutional and hand-crafted
facial features which are then used in a LSTM unit to compose a robust method
to detect Deepfake videos. The deep convolutional features are extracted with
the Xception architecture [2] pre-trained on the ImageNet dataset [4]. The 84-
dimensional hand-crafted facial feature vector include amplitude, velocity and
acceleration signals of 17 facial Action Units (AU) [1], eye gaze direction vec-
tors, head pose vectors and distance vectors between two facial landmarks. This
hand-crafted feature vector is then concatenated with the deep convolution fea-
ture vector derived from the Xception network, composing the 340-dimensional
feature descriptor of the model. This feature descriptor is then passed through a
single LSTM layer of 512 hidden units to capture temporal inconsistencies. The
output of this layer is extended with a 256-dimensional fully connected layer with
50% dropout rate to avoid overfitting. Finally, a 2-dimensional fully connected
layer is added with softmax activation function to compute the probabilities of
a video being real or Deepfake. Next to the proposed model, we developed 2
baseline models: (i) CNN+LSTM (Baseline 1) and (ii) hand-crafted facial fea-
tures + LSTM (Baseline 2). We evaluated these models by selecting the first k
consecutive frames of the video and by selecting frames with equal intervals.

Table 1. Detection performances on balanced Celeb-DF [7] test set using different
frame selection methods. EI refers to a frame selection method with Equal Intervals of
30 and 15 frames in between. The highest performances are marked in bold.

Frame Selection Method
First 10 First 20 EI(30) EI(15)

Models Acc % AUC Acc % AUC Acc % AUC Acc % AUC

Baseline 1 0.706 0.775 0.670 0.774 0.731 0.801 0.725 0.819

Baseline 2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Proposed 0.681 0.745 0.725 0.801 0.712 0.789 0.738 0.822

3 Results

The results of this study indicate that hand-crafted facial features can increase
the detection accuracy of the model when it has been trained on a sufficient
number of frames per video. Besides, deep convolutional features are superior to
hand-crafted facial features as the model was not able to learn after removing
the CNN extracted features. Although the best performing proposed model did
outperform the baseline CNN+LSTM model by 1.3% percent on the Celeb-DF
test set, it seems that hand-crafted facial features are becoming less informa-
tive features due to the rapid development of sophisticated Deepfake creation
methods which is in line with the literature [9]. Lastly, the findings show that
selecting 10 frames with an equal interval of 15 frames in between, captures more
inconsistencies and irregularities and leads to the best performing model.

Thesis abstracts BNAIC/BeneLearn 2021

755



Deepfake Video Detection 3

References

1. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: Facial behavior
analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2018). pp. 59–66. IEEE (2018)

2. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1251–1258 (2017)

3. Chu, D., Demir, I., Eichensehr, K., Foster, J.G., Green, M.L., Lerman, K., Menczer,
F., O’Connor, C., Parson, E., Ruthotto, L., et al.: White paper: Deep fakery - an
action plan (2019)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. IEEE (2009)

5. Frith, C.: Role of facial expressions in social interactions. Philosophical Transac-
tions of the Royal Society B: Biological Sciences 364(1535), 3453–3458 (2009)
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Introduction. Scene graphs can be used to improve upon autonomous 

robots by describing a variety of environments [1][2][3].  A scene 

graph is a symbolic, graphical representation of an image. The nodes 

correspond to objects in the image, and the edges represent an interac-

tion This thesis compares performance of transformer models, trained 

on common knowledge bases such as Wikipedia, WordNet [4] and 

ConceptNet [5], in the creation of common-sense graphs. These graphs 

are based on images, but the concepts in the graphs are image-inde-

pendent. For example, a ‘living room’ can be used as a scene, with a ta-

ble and a chair present as objects in the common-sense graph. The hy-

pothesis is that the bidirectional encoder representations from trans-

formers (BERT) model can help improve the graph generation by pre-

dicting spatial relations between objects [6]. KnowBERT is a version of 

BERT that uses an entity linker to provide information from a 

knowledge base to expand the entity embeddings provided to the lan-

guage model [7]. The combination of knowledge bases and powerful 

machine learning techniques in KnowBERT make it a well-suited 

model for spatial relation prediction.  

 

Method. The Visual Genome dataset [8] was used for training. In this 

thesis, only the triplets with two objects and a relationship were used in 

order to create a scene graph from a scene as input. The relationships of 

the triplets can be verbs (e.g., sits on, wears) or prepositions (e.g., on, 

with) describing relations between objects in an image. Similar to cur-

rent research developments [2][9][10][11], the datasets with the 100 

and 50 most common relationships are used.  
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The generation of the scene graph generation consisted of three phases: 

1) Object collection using the ConceptNet API; 2) spatial relation pre-

diction; 3) scene graph generation using RDFLib [12]. 

 

For step 2, three different models are compared: a statistical model 

based on most frequent relations, a ConceptNet-trained KnowBERT 

model, a Wikipedia-WordNet KnowBERT model. For the last two 

models only the most certain predictions were kept in the dataset. 

 

Five scene graphs were generated to evaluate each of the three models: 

a garden, a bathroom, a living room, a bedroom, and a kitchen. 

 

Results. While the method is successful at creating common-sense 

graphs, some wrong relations were predicted using the KnowBERT 

models.   

For the spatial relation prediction, the Wikipedia-WordNet model out-

performed the ConceptNet model slightly in the 100-relation model (F1 

= 0.55, F1 = 0.51± 0.01) but not for the 50-relation model (F1 = 0.54± 

0.03, F1 = 0.54± 0.01). This could be due to the fact that the Wikipedia 

+ WordNet model is trained on two knowledge bases. Wikipedia con-

tains a lot of textual information on an entity, while WordNet synsets 

give information on what entities are related. The statistical model 

proved to be slightly superior over both KnowBERT models, with an 

accuracy of 0.59 ± 0.01 for the 100-relation model and an accuracy of 

0.62 ± 0.04 for the 50-relation model. However, for unseen relations, 

all KnowBERT models perform far better than the statistical model. 

The model for 100 relations has an accuracy of 0.53 and 0.48 for the 

Wikipedia-WordNet and the ConceptNet model respectively against an 

accuracy of 0.29 for the statistical model. The model for 50 relations 

has an accuracy of 0.53 and 0.56 for the Wikipedia-WordNet and the 

ConceptNet model respectively against an accuracy of 0.36 for the sta-

tistical model. To conclude, BERT can be combined with several 

knowledge bases to create common sense graphs.  
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Abstract. Under what conditions can cooperation emerge and be sus-
tained? Previous studies abstract cooperation and defection using the
spatial Prisoner’s Dilemma (PD) game. We study a local reputation
mechanism in which agents can remember defectors, abstain from inter-
acting with them, and warn nearby agents. Simulations find that local
reputation is effective in sustaining cooperation and punishing defection.
Further, we find that the size of agent memory and amount of gossip
are not significant factors, provided that the locality range of gossip is
greater than the agent movement speed.

1 Motivation and Experimental Design

Reputation systems strongly boost cooperation in spatial exchange games such
as spatial PD [2, 6]. Similarly, allowing game participants to pass information,
either directly [4] or indirectly [1], increases the rate of cooperation.

We aim to explore the limits of local reputation—built up via gossip—in
promoting and sustaining cooperation. Agent’s behaviour is defined by the finite
state diagram shown in Figure 1. We expand over prior work [5] by giving agents
a (limited size) memory to keep track of defectors and to allow them to share
this information by gossiping with other agents in a certain range.

2 Results and Discussion

Agents are one of two types: cooperator or defector. We allow agents to remember
the five most recent defectors and to ask nearby agents in a Moore neighbourhood
of radius 1, 2 and 3 if they remember an agent defecting in a certain number of

Find
Opponent?

Play PD
Game

Attempt to
Reproduce

Attempt
Movement

Pay Cost
of Living

Energy
≤ 0?

Die

End Turn

Yes

No

No

Yes

Fig. 1. Agent behaviour diagram: showing the decision flow of an agent’s single turn
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Fig. 2. Cooperator agent saturation for various gossip sizes after 1000 steps. Left col-
umn: no gossip, right column: with gossip mechanism. Top row to bottom: gossip radii
1, 2 and 3, respectively. Std. dev. of 30 simulation runs, outliers removed

past encounters—varying between 0 and 5. We run the simulation for 1000 steps
and plot the saturation percentage of cooperator agents in Figure 2.

The introduction of gossip is a strong deterrent of defection and quickly leads
to cooperator-only populations, as seen in the right column. We find that the
size of the memory and the size of the gossip are not significant factors, only
speeding up the convergence slightly.

Our simulation results also find that the most important factor in predicting
cooperator success is the range at which gossip can be exchanged; the amount
of information included in the gossip has negligible effect. If the gossip can move
faster than agents, cooperators will flourish. Otherwise, defectors can reach full
population saturation.

We studied a local reputation mechanism in spatial PD. Several directions
can build on our results. Notably, we assumed all information is transferred with
100% fidelity. However, not all strategies that perform well in noiseless environ-
ments can do so under the presence of noise [3]. If the agent behaviour is unpre-
dictable enough, the gossip mechanism could deter more cooperator–cooperator
interactions: the pros and cons in noisy environments deserve investigation.
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Abstract. This study researches the changes in NO2 concentrations
over the Maltese islands by comparing the readings gathered from the
Sentinel-5P satellite, pre-COVID-19 and during COVID-19 for the months
of March, April and May 2019 and 2020. It was found that during the
lockdown period, NO2 levels dropped by 12.79% in March, 14.39% in
April but increased by 7.31% in May as lockdown restrictions started to
be eased. When comparing the results gathered from Sentinel-5P with
the World Air Quality Index (WAQI) values obtained by the local Envi-
ronment Resource Authority (ERA), a correlation of 98% for the monthly
delta values were found. Comparing the remote data for Malta with other
close major European cities also showed a similar correlation.

Keywords: Remote Sensing · COVID-19 · Sentinel-5P · NO2

1 Introduction

The monitoring of air quality is a national priority as well a regional (EU)
priority, to monitor the improvement of the quality of life for human beings.
There are several approaches to monitor air quality, such as, local land sensors
and remote sensing. Land based assessment has been exclusively used in the
Maltese islands since 2016 with a total of four sensors (Attard, Gèarb in sister
island Gozo, Msida and Żejtun) spread across the islands to cover an area of
316Km2 [3]. This research focuses on reviewing the viability of using Sentinel-5P
data to determine a better product regarding quality, that can be offered.

2 Results

A total of 235 products were downloaded from Sentinel-5P over a period of 184
days taking up 88.1GB of storage. The land sensors actually provide a contin-
uous hourly based reading, which the ERA make available on their portal and
aggregated on the WAQI portal. It is important to note that the NO2 units

Thesis abstracts BNAIC/BeneLearn 2021

764



2 A. Vella et al.

from the WAQI dataset are calculated in µg/m3, while the Sentinel-5P level 2
are calculated in mol/m2. For further analysis on the Sentinel-5P values, the
NO2 averages were compared for March, April, and May 2019 and 2020 for the
three regions (Gozo, North and South). It was observed that the NO2 values

Fig. 1. Sentinel-5P Level 3 Images April 2019 & April 2020

were lowest in the region of Gozo, which is more rural then Malta, through all
three months for both 2019 and 2020. When looking at the NO2 values for the
North and South regions, overall the North region had higher NO2 values for
both 2019 and 2020. WAQI values show that, NO2 reduced by 49.51% between
2019 and 2020, and according to the Sentinel-5P values, NO2 reduced by 6.24%
between 2019 and 2020. Due to different units of measure adopted from different
datasets, we cannot directly compare these datasets and [2] do not recommend
converting to compare. The Harp library was used to convert the daily satellite
Level 2 images to monthly aggregated level 3 composite visualisation. Passive
assessment maps from ERA were visually compared with the Sentinel-5P level
3 composite, shown in Figure 1, and we could see a direct correlation. The delta
in each dataset was then statistically calculated and correlation across the 2
datasets which was found to be 98% well over the 75% standard value in this
sector of research, which indicates that both averages from both sensors will
calculate the same percentage drop/increase in NO2.

In [5, 6, 1, 4], the majority of NO2 reductions for major cities in Europe were
between the months of March, April and May, ranging between 22% - 54% from
values gathered from Sentinel-5P and 17% - 50% from values gathered from in
situ observations. Although the difference in Malta is small it is expected since
Malta is less densely populated than Milan, having the population densities of
1,383 people/km2 and 7,551 people/km2 respectively as of 2018.

3 Conclusion

The remote sensing assessment has proven to be a reliable and consistent source
of data, currently unexplored and underutilised at a local level. The findings
of this research have been presented to the Environment & Resource Authority
(ERA), who consult the local government, for their consideration.
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1 Introduction

We are concerned with automated agents representing humans in negotiations. To negotiate effectively
and obtain a favorable outcome, the agent must know the preferences of the human user it is repre-
senting. These preferences are often represented by a utility function. When the agent does not know
these preferences, we say that it is negotiating under uncertainty (Fig 1). To gather information about
these preferences, the agent can interact with the user by asking questions or queries. The whole point
of automating a negotiation is to make it more convenient for the user, we therefore do not want the
agent to ask too many queries. Optimal queries were previously considered as ones with high expected
value of information, which is the prospected gain in utility that a query can add to the final outcome
of the negotiation (i.e. the one agreed upon) [1]. We bring forward another perspective: We consider
queries as optimal based on their inherent ability to reduce uncertainty on the user’s preferences.

Fig. 1. Negotiating Under User Preference Uncertainty

2 A Framework for Optimal Reduction of Uncertainty

We build a general framework to formally deal with the problem of reducing uncertainty (Fig 2). We
assume that the true user utility is parametrizable by θ∗ ∈ Θ and that queries can be answered by the
user according to an answer function a. We introduce the notion of information potential of a query,
which is the minimal amount of information that the agent can extract on the user’s utility by asking it.
It quantifies the worst possible reduction of uncertainty that is obtained when asking a query. Formally,
we denote it by I(q) for a query q and define it as such:

I(q) := min
r∈A
− logΠ(Θ(q,r))

where ∀r ∈ A, Θ(q,r) := {θ ∈ Θ : a(θ∗, q) = r}
(1)

Based on its current belief on the user preferences, the agent’s objective therefore becomes to ask a
query that maximizes the information potential. After observing the answer to a query a(θ∗, q), the
agent’s belief is narrowed down to the set Θ(q,a(θ∗,q)), which we call the posterior set. We thus provide
an objective approach of reducing uncertainty through a sequential optimization problem: the agent
must find a sequence of queries maximizing the information potential.
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Fig. 2. Our Framework to Deal with User Preference Uncertainty

3 Application to Multi-Issue Negotiation

A multi-issue negotiation domain is divided into different issues whose combinations form possible deals
for the negotiation: Ω = I1 × · · · × In. A popular way of representing a user’s preferences on a multi-
issue domain is through a linear additive utility function, which gives relative importance weights to
issues and valuations for the possible values of issues. The unknown user utility is: uθ∗(ω) =

∑n
i=1 θ

∗
i ·

val(ωi), with θ∗ being in the standard n−1 simplex ∆n−1, where ∆n−1 = {θ ∈ R+,
∑n
i=1 θ

∗
i = 1}. The

queries we consider are pairwise outcome comparisons: asking the user to compare two given outcomes
in Ω.

We use our framework to derive an optimal querying algorithm to reduce uncertainty on the issue
weights vector θ∗. We assume a uniform prior on ∆n−1. Because uθ∗ is linear additive, pairwise outcome
comparisons correspond to hyperplanes. Our Optimal Query Sequence (OQS-n) algorithm (Algorithm
1) exploits that by successively finding a query that bisects the current posterior set. Under some
assumptions on the valuation functions, we show that OQS-n generates query sequences of absolutely
maximal information potential of arbitrary length T (Theorem 1).

Algorithm 1: OQS-n

Input: Ω, val1, · · · , valn, T
1 P ← V (∆n−1) // Store the n vertices of ∆n−1

2 for t ∈ {1, · · · , T} do
3 (p, q)←(pi,pj)∈P2 d(pi, pj) // Find longest edge of P

4 m← 1

2
(p+ q) // mid point of longest edge

5 `← HP(P\{p, q},m) // ` is the hyperplane bisecting P
6 q ← Query(`) // Find a query corresponding to `
7 a← Ask(q)
8 P ← Update(q, a)

Theorem 1. For any given θ∗ ∈ ∆n−1, and any length T ∈ N, OQS-n (Algorithm 1) produces a query
sequence of length T of maximal information potential.
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Abstract. In this master thesis, a new interactive subgroup discovery
algorithm is proposed. This method has two main contributions. First,
the algorithm allows the expert to intervene during the search process by
assessing each subgroup with a degree of appreciation which influences
the search process. The second contribution is a diversity parameter that
allows the user to avoid that the new subgroups share more than a chosen
percentage of instances with already found subgroups. Experiments show
that when diversity control is performed, the resulting subgroups have
less overlap than the baseline version of the algorithm. Additionally,
when using the proposed interactive version of the algorithm, a higher
user appreciation of the subgroups is observed. This interactive subgroup
discovery algorithm was implemented in the backend of a conversational
agent for supporting business analysts in data mining tasks.

Keywords: subgroup discovery · interactive machine learning · explain-
able artificial intelligence

1 Introduction

Subgroup discovery [10] is a data mining technique that lies between predictive
and descriptive analysis. These algorithms search for subsets of data points that
are characterized by a value of interest with respect to the target feature and also
share similar properties within the subsets. For example, a company might be
interested in the characteristics of the subgroup of customers for which a given
advertisement campaign was successful. Subgroup discovery algorithms mainly
differ in their search strategy for generating candidate subgroups and the quality
measures they use for ranking the subgroups.

The description of these subgroups or local patterns can be done in the form
of rules, which makes the resulting model intrinsically interpretable, similarly

? Supported by the Innoviris TeamUp project “Driving collective data governance
through smart engagement platforms”.
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to other rule-based models [4, 9]. A rule describing a subgroup has the form
Cond −→ Target where Cond is the condition, often consisting of a conjunction
of feature-value pairs, and Target is the value for the variable of interest. An ex-
ample of such a rule or subgroup is the following: (Salary > 80K AND Education =
University) −→ Loan Approved = Yes. This subgroup describes that the popu-
lation group with a high income and education level is more likely to receive an
approved loan compared to the total population.

Although several algorithms for subgroup discovery are proposed in the lit-
erature [6, 5], these methods often produce overlapping and therefore redundant
subgroups [1]. Furthermore, they often produce general and obvious rules which
are already known by the user, therefore they are regarded as uninteresting [3].
To overcome these drawbacks, we propose two modifications that allow for more
interactivity and diversity in the resulting subgroups. The first contribution is
that our algorithm allows the user to intervene during the search process by
assessing each subgroup with a degree of appreciation. This weight is used to
adjust the quality measure of the subgroup and thus influences the search pro-
cess. The second contribution is a diversity parameter that allows the user to
avoid that the new subgroups share more than a chosen percentage of instances
with already found subgroups.

2 Experiments and Results

We implemented the proposed interactive algorithm in the context of the data
mining backend for the conversational platform “Talking to your Data” [8, 7].
The goal of this conversational agent is to bring the data mining process closer to
business analysts by translating their needs expressed as natural language to data
mining tasks, execute them and translating back the generated rules to natural
language. This facilitates the analysis of data and generating explanations in a
conversational way that is appropriate for the audience in question [2].

We performed several experiments involving three datasets and a profile of
a hypothetical user that generally does not like common knowledge subgroups.
These experiments show that when diversity control is performed, the resulting
subgroups have less overlap than the baseline version of the algorithm. Addition-
ally, when using the proposed interactive version of the algorithm, a higher user
appreciation of the subgroups is observed. However, from the experiments where
both interactivity and diversity are applied, there is not a big gain from apply-
ing diversity on top of interactivity. This is especially the case if the user profile
values more the rare and interesting subgroups than the large and well-known
subgroups.

Future work on this topic would include an extension of the experimentation
with other profiles of user behavior (e.g. more interested in general rules) or
a real-world scenario to conduct a user test with the participation of experts.
Extending the implementation with extra support to guide the user in their
choice and include extra measures to evaluate the entire subgroup set as a whole
would also be useful.
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Abstract. This thesis investigated the performance of different neural network 

architectures on a facial expression-based pain recognition task. In addition, 

the efficacy of transfer learning between the RGB and thermal domain was 

assessed. To achieve that, the BP4D+ dataset, which contains thermal videos 

of 140 subjects experiencing ten different emotions, was used. It was found that 

the best performing model consisted of CNN that is pre-trained on RGB images and 

finetuned on thermal images combined with LSTM, however the performance gap 

between the other models was not extreme.   
 

Keywords:  Pain recognition · Thermal imaging · Deep learning 

 
1 Introduction 

 
Pain is a prevalent medical and societal problem. Historically, self-report or observer 

implemented scales were the gold standard of pain assessment. However, patients and 

doctors tend to evaluate pain levels differently [1] and self-report methods cannot be 

reliably used by individuals with cognitive impairments, unconscious patients, or 

children [2]. This warrants a development of more objective and automatic pain 

assessment methods. Facial expression has a lot of potential in the context of pain 

recognition, however most of the work in this field focused on facial expression of pain 

captured in visible spectrum (e.g., red-green-blue referred to as RGB) domain and little 

attention has been dedicated to the use of thermal imaging. It has certain advantages 

over both traditional RGB images and physiological measurements such as being 

insensitive to illumination [3], correlating with other physiological signals [4, 5] and 

having the potential to minimize the privacy concerns. 

 

  Automatic detection and intensity estimation of pain have been mostly explored 

through the McMaster-UNBC Shoulder Pain Archive Database [6]. Conventional 

models such as Support Vector Machines [7, 8], AdaBoost [9], Hidden Markov Models 

[10], as well as deep learning methods [11] were explored. Deep neural networks 

proved to be particularly effective. Using 2D CNN + LSTM architecture, Rodriguez et 

al. [11] achieved 93.3% AUC score, outperforming the previous top AUC score of 

84.7% [12]. In contrast, the literature on the use of thermal data for emotion recognition, 

and pain recognition in particular, is very scarce. Lack of research in this area can be 

partially explained by the absence of well-annotated datasets in other visual modalities. 

Zhang et al. [13] developed a multi-modal spontaneous emotion corpus, BP4D+, which 

contains facial expression data in RGB, 3D and thermal modalities, alongside 

physiological data. The authors validated the thermal data subset on a facial emotion 

recognition task, achieving 91% accuracy using SVM, demonstrating the utility of 

thermal data in the context of emotion recognition task. The present study provided a 

three-fold contribution to the scientific community: establishing a baseline performance 

on pain recognition on the thermal subset of BP4D+ dataset, comparing the results of 
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CNNs trained exclusively on thermal data and models pre-trained on RGB images, and 

lastly, comparing the performance of LSTMs and GRUs on pain recognition using 

thermal imaging.   

 

2 Methods 

 
The architectures explored in this study combined two networks: 2D CNN that was 

used to obtain spatial representation in each frame, and RNN, either LSTM or GRU, 

used to model temporal information in a sequence of frames. The CNN selected was 

VGG-16 [14], as it was shown to give promising results on other emotion recognition 

tasks [11, 15]. The CNN was (i) pre-trained on ImageNet and fine-tuned with the 

thermal subset of BP4D+ dataset or (ii) trained from scratch exclusively on thermal 

data. Both versions were trained using the same settings: stochastic gradient descent 

optimizer with learning rate of 0.001, momentum of 0.9, mini-batch sizes of 32 and 

cross-entropy loss. Once the CNNs were trained, feature vectors of length 4096 were 

extracted from the fc6 layer as in [11]. From each video only 16 frames were selected 

and passed through the CNN network. These were then concatenated to from an array 

of shape 16x4096.  

 

A grid search was performed to find the best set of hyperparameters of LSTM and 

GRU. Adam optimiser was used [16], with different training rates explored. To ensure 

better generalisability of the model and to potentially reduce overfitting, two 

regularization strategies were used: applying L-2 regularization and introducing a drop-

out layer with varying drop-out rate. Twelve different combinations of hyperparameters 

were compared and all the models were trained for 25 epochs. To choose the best 

performing model, three different evaluation metrics were used: weighted accuracy, 

AUC and F-1 score of both the minority and majority class.  

 

3 Results 

 
CNN fine-tuned on thermal images combined with LSTM outperformed all the other 

models, achieving weighted accuracy of 84.37%, AUC score of 0.84, F-1 score of 0.55 

and 0.92 for the “pain” and “no pain” classes, respectively. Interestingly, CNN trained 

from scratch performed best with GRU, however the difference between GRU and 

LSTM models was not overwhelming. Finally, models based on fine-tuned CNN made  

more false positives compared with false negatives, whereas the opposite was the case 

for models based on CNN trained from scratch.  

 

 

Model Weighted  

Accuracy 

AUC 

 

F-1 

pain 

F-1 

No pain  

Fine-tuned CNN + LSTM 

256 hidden size, 1 layer, lr = 0.0001, 

dr = 0.4 

84.37 0.84 0.55 0.92 

CNN trained from scratch + GRU 

100 hidden size, 1 layer, lr = 0.0001, 

wd = 0.0001, dr = 0.4 

78.05 0.74 0.55 0.96 

Table 1. Results on the test set of two best performing models.  
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In many settings, multiple devices with similar design specifications are in-
stantiated to execute the same control task, which is called a fleet. An example
of such a setting is a wind farm, in which a group of wind turbines aim to
optimize power production. With the Industry 4.0, cyberphysical machines are
equipped with modern wireless sensors, while their data is being transmitted to
a cloud-based architecture. This allows a fleet of machines to be monitored and
controlled as a single system. In order to improve the efficiency and optimal-
ity of the fleet controller, it is important to exploit the similarities between the
machines and establish a framework through which data can be shared. Fleet
reinforcement learning tackles this setting, and uses data exchange in order to
improve the control task of multiple reinforcement learning agents operating in
similar environments . However, the safety issue of applying reinforcement learn-
ing in fleet settings has not been addressed yet. Specifically, allowing multiple
machines to randomly explore the environment while learning may violate phys-
ical constraints and potentially damages the machines. Therefore, we propose a
novel fleet reinforcement learning algorithm that uses a safe exploration mecha-
nism. Specifically, We ensured safety for the exploration phase of this algorithm
by implementing a Control Barrier Function (CBF) (Cheng, Orosz, Murray, &
Burdick, 2019). A CBF blocks unsafe actions by modeling the unknown system
dynamics of the agent’s environment through a Gaussian process.

To examine the safety of our implementation, we experimentally analyzed the
CBF on a fleet variant of the mountain car benchmark (Moore, 1990), containing
3 mountain cars with varying mass. The target mountain car needs to estimate a
sufficiently accurate transition model by transferring knowledge based on learned
correlations with the source members. When an optimal policy is found, it is
executed greedily and safely with the implemented CBF.

Figure 1 visualizes the agent’s behaviour. η represents how strongly the CBF
restricts the agent into a set of safe states, with η = 1 being the most unsafe
version of the CBF and η = 0 being the safest version. A reoccurring strategy of
the agent is removing the unsafe exploration of different actions. We observe that
η = 1 leads to a safer approach to find the optimal strategy, whereas η = 0 leads
to an optimal solution in a slower and preventive manner. This demonstrates
the effects of the CBF.

We also demonstrated our method on the FLORIS state-of-the-art wind farm
simulator . Our results show that in this case the agent also adopts a safer control
policy with our proposed CBF-based fleet control algorithm.

Still, riskier actions may often lead to higher rewards. Therefore, it is expected
that incorporating the CBF introduces a decrease in performance. Figure 2 shows
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Fig. 1. Density mountain car action usage. Action -1 driving backwards and 1 driving
forward

Fig. 2. Wind farm power production

how this loss in performance translates into the power production of a wind
farm. Specifically, the median power production decreased from 1.04 MW to
1.026 MW.

The trade-off between performance and safety is a necessary decision to be
made by the fleet’s operators. Our algorithm uses the η parameter through which
the operators can adapt this trade-off in a transparant manner.

Our experimental results showed the potential benefits of our safe reinforce-
ment learning algorithm in real-world fleet applications. We demonstrated that
our safe fleet-wide policy iteration method can ensure safety while still minimiz-
ing the performance gap with the unsafe version.
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Motivation. Artificial Intelligence (AI) systems are widely employed to solve
pattern classification problems. These often include classifying which people can
get a loan, receive medical treatment, or commit a crime. These life-changing de-
cisions should be fair, i.e. not be based on protected features like race or gender.
However, research revealed that this is not always the case due to biased labels
or imbalanced data. Aiming to tackle this issue, numerous bias measures have
been proposed, but despite these efforts, there is still great need to introduce new
measures [1] for the following reasons. Existing approaches depend on different
and often conflicting notions of fairness [4] or might consider part of the informa-
tion available in the dataset (only sensitive and target features) [2]. Moreover,
they often depend on black-box Machine Learning (ML) models whose outputs
are sensitive to data preprocessing or training-test splits, and are not intuitively
explainable. Finally, users need to make assumptions regarding the discriminated
feature-category. We attempt to offer a remedy to these challenges.

This thesis proposes five measures based on the fuzzy-rough set (FRS) theory
to quantify bias related to sensitive features of pattern classification datasets.
This mathematical theory allows analyzing inconsistency in decision making sys-
tems [7], can define similarity thresholds when handling continuous features [6]
while offering an explainable semantic background.

Methods. The measures are computed in a two step process. As a first step,
we build information granules describing each decision class following the FRS
formalization as introduced by [8]. Three information granules are computed
per decision class: a positive, negative and boundary fuzzy-rough region. The
membership value of an instance to a certain positive region indicates the extent
to which the instance belongs to a decision class, does not belong to that class
or the extent to which the instance belongs to the boundary region. This fuzzy
granulation process is repeated twice: first, the three fuzzy-rough regions are
calculated using all features in the data and, next, they are calculated again ex-
cluding one of the protected features. The intuition is that removing features from
the decision making process should not cause large changes in the fuzzy-rough
regions. The extent to which this happens is a proxy for bias.

As a second step, the five measures are calculated. These measures quantify
the change in the membership values characterizing fuzzy-rough regions after the
suppression of a protected feature. The first two measures quantify the change
locally (between decision classes and information granules) and the rest glob-
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ally (between information granules). Note that these values are not absolute but
should be interpreted relatively to the respective values reported when we sup-
press a different protected feature. If the measures report relatively larger values
regarding a certain protected feature, then that means that the exclusion of this
same feature has a greater impact on the classification process, which can be
understood as evidence for explicit bias.

Numerical simulations. The proposed measures are tested on German Credit
and Compas datasets [5]. Protected features are age and gender for the former
and race and gender for the latter. Decision classes are creditworthy or the oppo-
site and likely or unlikely to re-offend respectively. The outputs of the proposed
fuzzy-rough measures are compared to four popular bias measures [3] that fall
under the category of group fairness and are computed using the AIF360 open
source toolkit [5]. Results showed that almost all proposed measures differ from
the literature measures both in direction and magnitude (a sample of the results
is shown in Table 1). Such a disagreement raises concerns regarding the consis-
tency of measures for bias quantification.

Table 1: Results of baseline and global fuzzy-rough measures tested on German
Credit dataset. Ideal value of the former is 0.

Protected att. Baseline measures Proposed global measures

Statistical
Parity

Equal Op-
portunity

Average
Odds

Positive
regions

Negative
regions

Boundary
regions

Age (young) -0.28 -0.3 -0.25 0.01 0.01 0.04
Sex (female) -0.002 0.04 -0.01 0.02 0.02 0.08

Conclusions. The proposed measures rely on an intuitive notion of explicit
bias related to the uncertainty in decision-making as expressed by changes in the
fuzzy-rough boundary regions. Our measures have several advantages that can be
summarized as follows. First, the measures do not depend on any ML model. Sec-
ond, the measures consider all features and feature-groups at once. This means
that all available information is being leveraged and that arbitrary assump-
tions regarding the discriminated groups are avoided. Third, no discretization
is needed during pre-processing to handle numeric features. Finally, the mea-
sures are not affected by data imbalances. Potential limitations of our approach
include the limited number of considered literature measures, lack of experimen-
tation with respect to bias that is implicitly encoded in non-sensitive features
and dependence on the distance function and fuzzy operators.

As for the ramification of this thesis, we developed a stronger measure [9]. The
corresponding paper received the Best Paper Award at the 25th Iberoamerican
Congress on Pattern Recognition. An extended version of this work is currently
under review for publication [10] at the Pattern Recognition Letters journal. Fi-
nally, we have recently submitted a journal contribution to the Neurocomputing
journal where a neural model using a different approach confirmed the patterns
found by the five proposed measures.
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10. Nápoles, G., Koutsoviti Koumeri, L.: A fuzzy-rough uncertainty measure to dis-
cover bias encoded explicitly or implicitly in features of structured pattern classifi-
cation datasets, arXiv (2021)

Thesis abstracts BNAIC/BeneLearn 2021

780



Learning Deep Coordination Graphs for
Multi-Agent Systems

G. Wullaert, F. Perez Sanjines, T. Verstraeten, and A. Nowé
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Autonomous systems have been essential for solving complex real-world problems
and planning new efficiencies in various other domains. Reinforcement learning
(RL) underlies how we model and think about autonomous decision-making
systems. In RL, we model the decision-making system as an agent receiving
observations from the environment and taking actions in that environment. The
environment responds with a reward signal, and the objective is to maximize the
total discounted reward. The agents usually achieves this objective by learning
from feedback based on continuous trial and error.

In many scenarios, our agent may not be the only agent in the world, and
there might be multiple agents trying to achieve their goal. This introduces
many challenging problems. One of these problems is how multiple agents need
to coordinate in order to maximize a shared reward function. A straightforward
approach for coordination in a multi-agent setting is to reduce the problem
statement to a single-agent reinforcement learning problem where the action
space is the joint-action space of all agents in the environment. However, this
approach becomes quickly infeasible due to the combinatorial increase of joint
action-space in terms of the number of agents.

Many other exciting coordination methods can be found in the literature;
however, the work done during my thesis focuses primarily on coordination
graphs. In a coordination graph, each agent is represented as a node in the
graph, and we are defining a set of edges between pairs of agents that cor-
responds to a payoff function that depends on the actions of both connected
agents. This allows us to break down the coordination between all agents into a
smaller coordination problem with fewer agents that is easier to solve.

In the literature, often a planning perspective is taken in order to create
coordination graphs, rather than a learning perspective. This is due to the fact
that creating these coordination graphs often requires domain expertise in their
design. However, this may be challenging for dynamic environments with shifting
coordination requirements.

We propose a novel sample-efficient reinforcement method based on deep
implicit coordination graphs (DICG) [Li et al., 2021] to automatically learn the
coordination graph between agents while learning the optimal joint control strat-
egy. The deep implicit coordination graph infers the coordination graph using a
self-attention network, which uses soft-edges to indicate the strength of the co-
ordination between agents. Afterwards, it uses a graph neural network to learn
the implicit relations about the joint-actions. We use this DICG to learn the
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trade-off between fully centralized and decentralized learning via a soft-actor
critic method, which is an off-policy reinforcement learning algorithm. There-
fore, our method is most suitable for learning that takes place in a centralized
environment, where we can share parameters, observations, gradients, and so
forth., between all homogenous agents in the environment. However, we show
that the learned policies by the agents can not only be executed in a centralized
but also in a decentralized setting, where there is no communication between
the agents.

Our approach is evaluated on the well-known Predator-Prey domain, where
eight predators have to coordinate to catch the eight preys in the environment.
We configure the environment to be a 10 x 10 grid world with a 5 x 5 grid view
visibility for the predators with themselves at the center. If two predators capture
the same prey, the predators receive a reward of 10. However, we penalize both
predators with a negative reward if a single predator tries to capture the prey.
Therefore, we require at least two predators to be present in the neighboring
grid cells of prey to capture successfully. By introducing this negative reward,
we show that our approach solves the relative overgeneralization pathology, i.e.,
other agents act randomly during exploration, and punishment caused by unco-
operative agents may outweigh rewards achievable with coordinated actions.

Our approach proves to be more sample efficient and stable than previous ap-
proaches. This is because we are using off-policy reinforcement learning methods
in contrast to the previous approach, where they used on-policy reinforcement
methods.

The framework built in this work scales well for complex environments with
changing dynamics, which means that our approach would perform well on real-
world applications such as traffic light control, wind farm control, routing of taxi
fleets, and drone swarms. Often, such settings can be formulated as coordination
problems in which agents have to coordinate to optimize a shared team reward.
In future work, we aim to specifically validate our method on a wind farm control
case.
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Faults and defects in machine control applications and industrial systems can
have far-reaching and costly consequences in terms of downtime or damage to
equipment. The time-series data resulting from such systems is high-dimensional
and multi-modal in nature and the types of faults that might be encountered
during operation are usually not fully known in advance [7]. Encoder-decoder
architectures (e.g. Autoencoders, Transformers) using a reconstruction objective
offer a framework in which only nominal system data is necessary to train mod-
els to detect and diagnose these faults as anomalies. These architectures learn to
encode and subsequently decode (or reconstruct) nominal datapoints. They aim
to detect anomalies by failing to accurately reconstruct them under the learned
model, interpreting the reconstruction error as an anomaly score [4]. However,
performing a case study showed that encoder-decoder architectures can prove
difficult to control and interpret, posing risks for their reliability in practical
applications. In response to the observed drawbacks we develop and empirically
evaluate a novel architecture for anomaly detection, termed Self-Attention Au-
toencoder. Furthermore, an anomaly diagnosis methodology is proposed in order
to assist machine engineers by identifying potential anomaly causes.

In order to develop an interpretable, multi-variate anomaly detector, the
standard Transformer architecture [6] is adapted by removing all residual con-
nections so as to achieve a straightforward flow of information. Next, with the
intention of simplifying the model to its essentials, the decoder component of the
model is completely removed. This means that input is now only fed into a single
component and only a singular layer of attention remains. Furthermore, instead
of Multi-Head Attention, Scaled-Dot-Product Attention [6] was used, which only
produces a single attention matrix. The bottleneck and decoder of the new model
are realized by converting the feedforward layer of the Transformer’s encoder into
an Undercomplete Autoencoder [3]. A visualization of the proposed architecture
is shown in Figure 1. Once an anomaly is detected, potential anomaly causes
are identified. The signal (variable) with maximal reconstruction error as well
as attention matrix column with maximal attention are determined. Together,
these establish where the model’s reconstruction of the input was thrown off,
giving a clear indicator for machine engineers to directly focus their anomaly
cause investigation on.
? This research was carried out as part of the ITEA3 18030 MACHINAIDE project.
Full text available at https://github.com/JulianPosch/MSc-Thesis-Anomaly-DD
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Fig. 1: Visualization of the proposed Self-Attention Autoencoder architecture.
Att. and L.N. refer to Scaled Dot-Product Attention [6] and layer normalization
[1] respectively.

The proposed Self-Attention Autoencoder is evaluated for its anomaly detec-
tion performance on digital twin data from an industrial machine setup. Perfor-
mance is measured through AUC [2] and F1-Score [5] resulting from true and
false positive rates at different anomaly score thresholds. The Self-Attention
Autoencoder shows an AUC of 0.913 and F1-Score of 0.918, outperforming Un-
dercomplete Autoencoders (AUC: 0.791, F1: 0.828), LSTM Autoencoders (AUC:
0.899, F1: 0.867) and matching the performance of Transformers (AUC: 0.917,
F1: 0.905). Anomaly diagnosis performance is evaluated on synthetically gener-
ated data. This allows for control over the exact signal and timestep location of
anomalies, making it possible to measure anomaly diagnosis performance quan-
titatively.3 Both Transformer and Self-Attention Autoencoder perform similarly
in terms of identifying anomalous signals among the multi-variate data, with
an average of 19.5 and 19.6% of reconstruction error resulting from anomalous
signals. When it comes to identifying the correct timestep of the anomaly how-
ever, a substantial difference is observed between the proposed Self-Attention
Autoencoder and Transformer. The Self-Attention Autoencoder focuses its at-
tention on timesteps corresponding to the anomaly in 55.9% of cases compared
to the Transformer, which only does so in 17.9% of cases.

In conclusion, the architecture and methodology proposed in this thesis allow
for both detecting anomalies as well as providing valuable information towards
the spatial and temporal location of anomalies. The proposed Self-Attention
Autoencoder matches the anomaly detection performance of the best evaluated
encoder-decoder architecture (Transformer), while cutting down on complexity
and including an easily controllable bottleneck. In terms of anomaly diagno-
sis performance, the Self-Attention Autoencoder vastly outperforms the Trans-
former, providing the potential for speeding up the efforts of engineers in resolv-
ing faults and defects.

3 Since the proposed anomaly diagnosis methodology requires an attention mechanism,
results will only be presented for the Transformer and Self-Attention Autoencoder.
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In banking industry, modelling the Probability of Default (PD) of loan appli-
cants is a key component of credit risk management [7]. PD models are usually
built on a sample of accepted borrowers and ignore the characteristics of rejected
customers. As the accepted and rejected populations have different characteris-
tics, a PD model may suffer from sample bias. Reject Inference (RI) refers to
the techniques that try to remedy sample bias by inferring the performance of
the rejected applicants. The goal of RI is to improve the performance of the PD
model on the full through-the-door population (accepts and rejects).

Recent research suggests that RI can benefit from new modelling approaches
inspired in machine learning, in particular semi-supervised learning (SSL). SSL-
RI methods rely on labelled data from the accepted customers and unlabelled
data from the rejected customers. There is evidence that SSL methods can out-
perform traditional RI approaches [2, 3, 5, 6], however, under certain conditions,
SSL models can lead to undesirable outcomes [1, 4, 8–10]. These threats are part
of the reason why traditional RI methods (e.g., simple augmentation [7]) are,
still today, the most common approach in PD models.

In order to broaden the real-world application of SSL in RI, it is necessary to
have a precise picture of the conditions that need to be met for this approach to
be effective. We need conclusive evidence on the limits on unlabelled data that
should be used in the SSL process. In this research, we investigate the quantity
and type of data that are required for the successful application of selective SSL
in RI. For that purpose, we systematically test the accuracy of SSL-RI varying
1) the percentage of unlabelled used in training and 2) the original distribution
of applicants data. Based on edge-case data scenarios, we conclude that, if the
default distributions of the rejected data are not significantly different than those
in the accepted data and if an optimal range of (unlabelled) rejects are added
to the training data, SSL-RI outperforms traditional methods.

Methodology and Results
We use as a baseline (to enhance with SSL and use as benchmark) a RI method
commonly used in banking: simple augmentation [7]. In simple augmentation, a
supervised classifier is trained on the accepted data and then used to score the
rejects. A cutoff value is chosen to determine a classification threshold, above
which the rejects will be classified as bad. The labelled accepted and the pseudo-
labelled rejected data are then used to retrain the model. A disadvantage of
conventional simple augmentation is that it is developed only on the labelled
data. We propose to use selective SSL classifier (Self-Training) in place of the
base supervised method with the goal of developing a model that can gradually
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learn from the unlabelled rejected examples. During SSL training, the algorithm
chooses the data-points with lowest and highest probabilities in the model – of
being classified as good/bad – as the most confidently labelled examples that, as
such, can be (pseudo-)labeled and added to an augmented training set. The ex-
periment is conducted multiple times by adding different fractions of unlabelled
data, while logging the performance on accepted and total samples.

To evaluate the effectiveness of the proposed approach, we perform two ex-
periments, comparing simple augmentation with the SSL framework against the
conventional simple augmentation approach. Experiment 1 demonstrates the
variability of the results with respect to the amount of unlabelled data used
in the training process. Experiment 2 tests the sensitivity of the outcome to
different scenarios for default and reject rates. 16 scenarios in total are tested,
including 4 different data distributions and 4 different combinations of default
and reject rates. While the full results can be accessed in the thesis 1, here we
present the optimal fraction of unlabeled data to be considered for two specific
data distributions (see figure below). These two edge cases are chosen to rep-
resent a situation, where the labels in the rejected region could be inferred by
extrapolation from the accepted region. Further tests are performed to assess
the effectiveness of the RI-SSL method when the accepted and rejected data are
drawn from significantly different distributions.

Fig. 1: We present RI accuracy for 2 data distributions (left, linear; right,
horizontal parabolic) and for different percentages of unlabeled data used in

training (horizontal axis). The inset figures represent the synthetic data
distribution, where green is good (pays loan), red is rejected (defaults) and

faded region corresponds to rejected data. In this example, we consider 10% of
default and 10% of 10% rejected individuals.

The results of our experiments indicate that RI-SSL enhances the perfor-
mance of simple augmentation under two conditions: First, the distribution of
the unlabelled data should be similar to the distribution of the labelled data.
Second, there is an optimal fraction of unlabelled data that should be added
in the training process; adding all unlabelled examples on the through-the-door
population is detrimental for RI accuracy.
1 https://scripties.uba.uva.nl/search?id=722905
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Abstract. Solvers for constraint optimisation problems exploit variable
and value ordering heuristics. Numerous expert-designed heuristics exist,
while recent research uses machine learning to learn novel heuristics. We
introduce the concept of deep heuristics, a data-driven approach to learn
extended versions of a given variable ordering heuristic. We demonstrate
deep variable ordering heuristics based on the smallest, anti first-fail, and
maximum regret heuristics. The results show that deep heuristics solve
20% more problem instances than classical ‘shallow’ heuristics.

1 Motivation and Approach

The order in which the variables are chosen can have significant effect on the
total runtime of a constraint optimisation problem solver [3]. We address the
situation of online solving of unseen optimisation problems. We introduce deep
variable ordering heuristics, approximation functions that look at multiple levels
of a search tree with the aim of generalizing better than classical heuristics.

As summarised in Figure 1, we implement deep heuristics in the open source
Gecode solver [5]. Given a problem instance, an initial probing phase employs
pseudo-random search to gather a variety of variable-value assignments. This data
is then utilised by the machine learning component to acquire a deep heuristic
function. Then second, during solving, given the current search state, the solver
can predict scores with the learned model and select the variable with the best
predicted score. Third, to leverage the pseudo-random nature of the probing
data, a restart-based search strategy allows for multiple ML models to be learned,
increasing the chance of finding solutions.

Chu and Stuckey [1] use online learning to acquire value heuristics: we learn
variable ordering heuristics and we utilise a more complex score function. We
use deeper lookaheads than Glankwamdee and Linderoth [4], and exploit ML
predictions to circumnavigate the cost of lookaheads during search.

2 Results and Discussion

We test deep heuristics on four representative problem classes from the MiniZ-
inc benchmarks: Resource Constrained Project Scheduling Problem (RCPSP),
Evilshop, Amaze, Open Stacks. Instances are run for a maximum time of 4 hours.
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Fig. 1: Probing, learning, and heuristic search phases implemented in Gecode.

(a) Gecode heuristics (b) Deep heuristics

Fig. 2: Comparison of mean runtime between heuristics

Results, such as shown in Figure 2, indicate that the deep heuristics often –
but not always – outperform the ‘classical’ version of the heuristics. For the deep
heuristics, the runtime includes the probing and training time, as well as the
solving time. Full results are found in the thesis [2]. Overall we find that deep
heuristics solve 20% more problem instances, while improving on total runtime
for the Open Stacks and Evilshop benchmark problems.

The thesis provides a novel approach to one-shot learning of search heuristics
for constraint optimisation problems. Further experiments are warranted to assess
the contribution of each the parts of our approach. In particular, recognising
the stochasticity inherent in a learning-based approach, we use restarts with the
deep heuristics – but not with their classical counterparts.
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In the future AI systems, it is vital to guarantee a smooth human-agent inter-
action, and explainability is an indispensable ingredient for such interaction [16,
17]. Accordingly, the research domain of Explainable AI (XAI) is gaining in-
creased attention from researchers of various disciplines [4, 5, 1]. When providing
explanations to humans, the aim is to imitate how they generate and commu-
nicate everyday explanations in their everyday life [7]. This leads us to discuss
the parsimony of explanations [6, 15] that could help in providing the necessary
information while reducing the human cognitive load to avoid overwhelming the
human with useless information [18], i.e. there is a trade-off between the two
features of an explanation, namely simplicity and adequacy [2, 3].

The thesis presents a mechanism for parsimonious XAI that strikes a balance
between simplicity and adequacy. In particular, it introduces a context-aware and
adaptive process of explanation formulation and proposes a human-agent archi-
tecture allowing to make this process operational for remote robots represented
as Belief-Desire-Intention (BDI) agents [14]. To formulate parsimonious explana-
tions, the proposed architecture relies first on generating normal explanations,
in relatively normal situations, and contrastive ones [8] in abnormal situations;
second on updating and filtering the explanations before communicating them
to the human. The architecture investigates the three phases of providing an
explanation from agents to the human: generation, communication, and recep-
tion [13]. We argue that a well-formed combination of these phases leads to
formulating a parsimonious explanation.

The research methodology is five-fold (Figure 1): (a) Identify open research
issues after performing a Systematic Literature Review (SLR) [10]. (b) Define
Research Questions (RQs) based on the identified research issues: RQ1) Does
explainability increase the humans’ understandability of the remote robots rep-
resented as agents? RQ2) How to strike a balance between simplicity and ade-
quacy? RQ3) Are the cognitive architecture and the BDI model good candidates
for human-agent explainability? (c) Structure the RQs in Research Hypotheses
(RHs) that can be statistically analyzed3. (d) Propose the architecture, model,
and process to answer the RQs. (e) Conduct a specific experimental methodol-
ogy to evaluate the proposals by statistically investigating the RHs according to
the recommendations in the XAI domain.

? This work is a synthesis of the Ph.D. thesis defended at Université Bourgogne
Franche-Comté, France on the 30th of November 2020 [9].

3 Details about the RQs and the RHs can be found in the thesis [9].
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Fig. 1. Research methodology of the thesis.

The human understandability of AI is subjective, and this emphasizes the
importance of empirical human user studies, where the users’ opinions on the
usefulness of explanations are investigated [8]. We have conducted two tests: Pilot
test (Mann-Whitney U ) [12] and Main test (Kruskal-Wallis and ANOVA) [11].
The responses of the participants (or users) are statistically analyzed and vali-
dated in terms of significance for both tests.

The pilot test discusses RQ1 and its results show that the explanation in-
creases the ability of users to understand the explanations of remote robots.
However, too many details overwhelm the users; hence, the filtering of expla-
nations, that provides less, concise, and synthetic explanations, is preferable.
In the main test, RQ2 and RQ3 are handled. It is proved that a combination
of the phases of explanation generation and communication is needed to formu-
late the most useful explanation for the user. Comparing several combinations of
parsimonious explanation formulation, it is proven that the best one includes us-
ing adaptive filtering with both normal and contrastive explanations. Regarding
RQ3, the results revealed that the BDI model helps in realizing the explanation
formulation process, as it organizes the various interactions between the sys-
tem entities and allows for an adaptive and context-aware response based on the
changes in the beliefs and intentions of the agents. Future work could investigate
more the human-centered or user-aware XAI approaches and the verification and
validation of XAI Systems.
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Schumacher, M., Främling, K. (eds.) Explainable, Transparent Autonomous Agents
and Multi-Agent Systems. pp. 41–58. Springer International Publishing, Cham
(2019)

2. Chomsky, N., Collins, C.: Beyond explanatory adequacy, vol. 20. mitwpl (2001)
3. Contreras, H.: Simplicity, descriptive adequacy, and binary features. Language

pp. 1–8 (1969)
4. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research

Projects Agency (DARPA), nd Web (2017)
5. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.:

XAI—Explainable Artificial Intelligence. Science Robotics (2019)
6. Laird, J.: The law of parsimony. The Monist 29(3), 321–344 (1919),

http://www.jstor.org/stable/27900747
7. Malle, B.F.: How the mind explains behavior: Folk explanations, meaning, and

social interaction. Mit Press (2006)
8. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences.

Artificial Intelligence 267, 1–38 (2019)
9. Mualla, Y.: Explaining the Behavior of Remote Robots to Humans : An

Agent-based Approach. Theses, Université Bourgogne Franche-Comté (Nov 2020),
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Identifying strong predictors of engagement in
Facebook news posts?

Pietro Piccini

Maastricht University, Maastricht, The Netherlands.

Abstract. In this paper, a data-set from Facebook news posts is con-
structed in order to measure the engagement of users with different news
items. Logistic Regression is used as a baseline classifier to identify im-
portant post characteristics (e.g. topic, Page type, posting time, etc.)
with respect to engagement.

Keywords: Social media · User engagement · News

1 Background & Data

In recent years social media has become a major news source for an increasing
number of people and the task of modelling user engagement behaviour is be-
coming very relevant. This research aims at extending the current literature and
offering new insights. The initial data was collected through the use of Crowd-
tangle, which is a platform that allows third parties to collect social media data.
From there, some features are extracted to enhance the data-set. One of the
most important extracted features is the topic of a post which is extracted using
NLP techniques. Another important change to the data-set was the construc-
tion of an engagement metric that could describe the engagement level of a post
with respect to how big, in terms of followers, the page that posted the news
is. The solution for this problem was found by taking the ratio between total
interactions and number of followers. The resulting feature which will be referred
as the ”total interactions ratio” solved some of the problem encountered when
using the overperforming score calculated by Crowdtangle, mainly, the fact that
it had a very unbalanced distribution, resulting in an unbalanced model. The
full pipeline is described in figure 1.

2 Analysis results and Discussion

In order to analyze user engagement patterns I have used a binary classification
model that takes all of the post features as argument and the binarized total
interaction score (TIR) as target variable. The result is a Logistic Regression

? This thesis was prepared in partial fulfilment of the requirements for the Degree of
Bachelor of Science in Data Science and Artificial Intelligence, Maastricht University.
Supervisor: Jerry Spanakis
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Fig. 1. Data-model pipeline

Table 1. Model F1-scores per class of TIR classification model

F1-Score

Low Engagement High Engagement

Logistic Regression 66.8% 66.4%

Ridge Classifier 66.6% 66.7%

Neural Network 68.3% 67.9%

model with a performance described in table 1 together with other tested al-
gorithms. To identify strong predictors of engagement I looked at the model’s
coefficients which showed that the most influential variable for user engagement
is the category of the page, followed by the page name, post type, topic, and fi-
nally, date and time. The coronavirus topic was by far the most correlated with
high engagement, furthermore, it showed a frequency of angry and sad reac-
tions that was much higher than the average. The page category that brings the
most engagement was radio stations. The coefficients from the time of posting
showed that the best possible time for posting news on Facebook is the evening
with a sharp decline during night hours. In conclusion, the performance of the
model is in line with models proposed in previous publications but its analysis
brought new insights into user engagement patterns. Further research is required
to deepen the analysis and gain a better interpretation.
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Abstract. The goal of this thesis to generate natural and beat-matching
choreography from music using deep learning. We compare different pose
estimators to create a dataset of human figures to generate dance. Our
framework comprises of a music encoder to create music features which
is fed to a pose generator to create dance pose sequences, as well as music
feature generator which reconstructs music features from output poses
to improve music feature encoding. Our results showed a pose estimator
with a GRU music encoder, generated more natural dance movements
which match K-Pop music compared to previous work.

Keywords: Dance Choreography Generation · Pose Estimation · Music
Encoders

1 Introduction

Dance and music are abstract art forms. There are no established rules relat-
ing dance to music [3] particularly for the open-style or urban dances, which
is the focus of our work. This style is creative and expressive, comprising of
spontaneous body movements inspired by dance genres such as street, hip-hop,
contemporary and jazz. The goal of this thesis is to generate natural open-style
sequences of dance poses from K-Pop music using generative techniques. It is
more complex to design and create aesthetic and rhythmic choreography with
this music as it requires creative diverse dance techniques and comprehension of
musical elements.

Previous work [5] explored generative techniques trained on different styles
to create dance movements with human figures from music. Dancers specialize
in a few styles, hence training with different styles could have resulted in dances
with style-inconsistencies. This thesis extends the work in [5] with a music feature
generator, inspired by the idea that humans can infer some audio features such as
beat and tempo from watching dance. Hence, good dance movements should be
able to generate music features. We trained on a dataset focusing on open-style
dances to K-pop music. The choreography generated more natural open-style
dance poses for the music. Successful choreography generation would benefit
applications such as robotics, gaming, animation, and virtual reality.

? Source code available at https://github.com/SonghaBan/DancingAI. A demo video
of the experiments is available at https://youtu.be/UE9QnT59LlI
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2 Methods

The dataset consisted of 50 dance videos (115986 frames in total with a resolution
of 640 x 320 and 30 fps) provided by Nataraja Academy available on YouTube
and the first author. Pose estimation methods were applied on the raw dance
videos to extract key points on the dancer’s body, to build a dataset for our deep
learning framework. A pose cleaning method filtered out poses in one frame
which deviate significantly from previous frame. These poses were recovered
using spline interpolation.

Our goal is to generate dance choreography by learning a model G : X −→ Y ,
where X is the music input and Y is the set of dance poses such that the distribu-
tion of the generated choreography G(X) is undistinguisable from the distribu-
tion of the real dance poses Y. The original framework proposed in [5] comprised
of a music encoder and a pose generator. The music encoder transforms the au-
dio input into a hidden sequence of music features. In the thesis, we compared
two models for music encoding (LTSM and GRU). The pose generator generated
the poses Y which made up the choreography. This thesis extended the original
framework [5] with an addition of a music feature generator. The music feature
generator regenerated the music features from the generated pose sequences. A
Local Temporal Discriminator evaluated our model on the coherence of consec-
utive frames. A Global Content Discriminator used self-attention mechanism [4]
to obtain a comprehensive embedding and classified whether the pose sequence
matched the music features.

3 Results

The Frechet Inception Distance (FID) [2] was used to assess the distance sim-
ilarity between the generated dances and the real dances. The beat coverage
(#motion beats
#music beats ) and beat hit rate (#aligned beats

#motion beats ) were evaluated. Music beats

were obtained by computing onset strength from the audio [1]. Motion beats
were detected by using standard deviation [6]. Our framework with LSTM in
the music encoder performed best in beat coverage and slightly worse in FID
and beat hit rate than the original framework trained on our dataset. The new
framework with GRU in the music encoder resulted in the best in FID and beat
hit rate. Our results were also evaluated by real dancers, which prefered our
model compared to previous work.

Table 1. Result of quantitative evaluation.

Method FID Beat Coverage (%) Beat Hit Rate (%)

Ren et al. 18.3 47.9 89.9
Original 16.6 50.0 91.2
LSTM 16.0 51.3 90.6
GRU (my model) 14.8 50.4 91.5
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Auto-regressive language models (LM), such as GPT-2 [7], are pretrained
into non-conditional models with the ability to generate realistic text. Still, their
capability to produce text in a specified style is rather limited. Desired features,
such as sentiments, cannot directly be included.

One method to incorporate this control in text generation is with conditional
fine-tuning. Earlier works use pseudo self-attention (PSA) in the transformer
layers of a pretrained GPT-2 [1, 3, 11]. PSA lets the representation of a desired
feature precede all the input tokens for certain elements of the transformer self-
attention [11]. This enables the desired feature to be directly absorbed into the
output of the transformer layers, thus conditioning the model output. However,
these past studies use an all-layer fine-tuning method, which requires many re-
sources. Using this has been criticized for its financial and ecological affects [9].

An alternative is fine-tuning with adapters. These are modules with task-
specific parameters [8, 2]. Adapters are randomly initialized and injected to aug-
ment a pretrained LM architecture, while freezing the pretrained weights. These
new parameters are then trained to adapt the LM to a downstream task. Only
a handful of parameters have to be trained, making it less costly to fine-tune an
LM. The resulting fine-tuned LMs can moreover be re-purposed by only exchang-
ing the adapter modules [6]. With the current usage consensus, every adapter in a
pretrained layer is mapped onto one specific task [4, 6]. To enable the conditional
fine-tuning of an LM, we focus on an alternate adapter configuration.

Our adapter, called an iblock, is a transformer layer that is composed of PSA
[11] and a feed forward, both followed by a layer normalization. The iblocks have
a coefficient on a residual connection that is initialized at zero [8], which sets
the pretrained LM as the starting point for fine-tuning. Different from [8], we
include a dropout and a cap as optional hyper-parameters for this coefficient.
The linear parameters of the last layer normalization have to be disabled for the
regularization methods to work. The iblocks are placed on an interval through
the pretrained architecture. These configurations are visualized in Figure 1. In
our experiments, we use a 12-layer pretrained GPT-2 and 4 total iblocks.

We first investigate whether a pretrained GPT-2 could be conditionally fine-
tuned. We use the IMDb dataset for sentiment [5] and AG News for topics [10].
For both we observe that the perplexity decreases after conditional iblock fine-
tuning, compared to the pretrained GPT-2. The coefficients appear to be an
important model element, as disabling them increases the perplexity on both
datasets. We moreover find that regulating the coefficient values with a dropout
and a value cap can limit catastrophic forgetting to some degree. Applying a cap
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Fig. 1. The model architecture, with the internals of one
iblock (left) and the placing of the iblocks within a pre-
trained GPT-2 (right), with z as the feature representa-
tion, α as the residual connection coefficient, D repre-
senting an embedding, and P portraying an interval of
pretrained layers between iblocks.

Fig. 2. The coefficient devel-
opment during conditional
fine-tuning on IMDb (top)
and AG News (bottom),
where iblock 1 is the lowest
adapter in the architecture.

on the top iblock allows the model to converge on IMDb. For AG News, using
a cap decreases the level of forgetting, but does not prevent it completely. The
development of the coefficients during fine-tuning is displayed in Figure 2.

Since successful conditioning is unclear from merely the perplexity, we per-
form a text generation experiment. We use a conditional and a non-conditional
GPT-2, both fine-tuned on the IMDb data. We generate 400 total samples: 200
non-conditional samples and 100 samples per conditional feature class. These
are blindly annotated with either a Positive, Negative, or Unclear sentiment.
35.50% of the conditional samples are annotated with Unclear, compared to
51.50% of the non-conditional samples. The accuracy of the conditional samples
is higher for the positive samples (60%) than the negative samples (45%), but
neither is significant. These results indicate an effect of conditioning, although
the accuracy itself is not significant with our sample size.

In short, we investigate the application of residual transformer adapters with
extra features for controlled text generation. We implement this for the condi-
tional fine-tuning of a pretrained, auto-regressive, non-conditional LM and iden-
tify a partial success. We discover that it is valuable to include a coefficient on
the adapter’s residual connection, both as a learned parameter and as an element
to regularize against catastrophic forgetting. Still, more research is needed with
regards to the generation accuracy of the fine-tuned models. A further limitation
of this study is the absence of a baseline model comparison.

Overall, with the used datasets and model configurations, training the trans-
former adapters requires less than 24 hours. With future studies, they may be
able to conditionally fine-tune large scale transformer language models in a cost-
effective manner.
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Reinforcement Learning (RL) has become an important driver to tackle com-
plex control problems in a variety of applications. Specifically, in the context of
fleet control, RL methods are used to control a collection of similar, but non-
identical, machines that are performing the same task. Due to these similarities,
fleet members can exchange knowledge with each other in order to improve
sample-efficiency of the learning process.

However, the training process and the resulting control policies of current
RL methods are challenging to explain and justify to humans. In many high-risk
domains, the lack of interpretability and transparency makes it difficult, if not
dangerous, to trust the output of such models.

We propose a novel explainable fleet-wide control learning algorithm. Specif-
ically, a coregionalized Gaussian process is used to capture the transition model
of multiple members in the fleet, after which a policy iteration method is ap-
plied to optimize the control policy of each specific member [4]. Afterwards, these
policies can be distilled into a more compact and explainable Soft Decision Tree
(SDT) model [1], which is a binary decision tree with weighted edges that reflect
the importance of control decisions given the observed state information.

Furthermore, we extended the method with two transfer learning methods,
i.e. TrAdaBoost [2], a boosting method for a fleet member’s model that weights
the importance of the data of another fleet member, and Multi-class TrAd-
aBoost [3], an extension that uses a multi-class exponential over the set of pos-
sible actions. The introduction of transfer learning further leverages the similar-
ities between fleet members in order to share data. This improves the sample-
efficiency while learning an explainable policy. Specifically, fleet members that
are similar enough should transfer training data between each other. The de-
cision which pair of members are similar is based on the average correlations
between those members learned by the Gaussian process.

An extensive analysis was performed to compare the different methods on
fleet variants of two classic control benchmarks: mountain car and cart pole.
For each experiment, a fleet consists of one target member, a source member
similar to the target, and different source member. The differences between the
members are simulated by varying the power of the cars and mass of the poles.
The goal of the target is to learn an efficient control policy, while leveraging the
data obtained by the other two source members. Based on the obtained fleet
policy, five different SDT models are distilled. Specifically, two baseline models
are trained, one for the target and one for the source, using the traditional
training method with a large data set. Moreover, three different models are
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trained for the source: one using the standard TrAdaBoost algorithm, one using
the standard TrAdaBoost algorithm for a single iteration with the correlation
between the target and the source as fixed weight, and one using the Multi-class
TrAdaBoost algorithm. For these last three models, a large data set from the
source and a small data set from the target was used.

Fig. 1. SDT model visualisation with depth three for source (SA) from the mountain
car fleet obtained with the Multi-class TrAdaBoost algorithm, with weight updates for
100 iterations using the large dataset from target (T) and the smaller dataset from the
source (SA).

The results were analysed using the obtained SDT visualisations as shown in
Figure 1 by comparing the baseline SDT models trained with the standard train-
ing method to the SDT models obtained with the transfer learning methods in
terms of similarity and performance. The correlation between the fleet members
seems to play an important role in the explainability. With lower correlations, the
difference between policies is bigger which reduces the effectiveness of the trans-
fer learning to obtain a similar SDT model. Multi-class TrAdaBoost algorithm
provides the best result in terms of accuracy and interpretability and provides
an SDT model that is almost identical to the baseline SDT model. The standard
TrAdaBoost algorithm also provides similar SDT models. The learning method
in which we use the correlation as the initial weight for one iteration gives less
desirable results in terms of interpretability. There is a trade-off that needs to
be made between interpretability and accuracy, deeper trees collect more reward
because they allow you to create more specific action distributions in the leaf
nodes. This complexity comes with the downside of decreased interpretability,
for this reason, we selected trees of depth three.
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1 Introduction and Methodology

As Artificial Intelligence (AI) becomes more relevant in various fields, interac-
tions between humans and artificial agents will become more and more common.
In order to be trustworthy and acceptable as assistive agents, such agents should
be able to predict and account for human preferences. In strategic situations as
modelled in game theory, humans will often deviate from predicted equilibrium
models. While it has been shown that AI agents can be trained to reach su-
perhuman performance in zero-sum games like poker, their learned policies do
not reflect typical human strategies and therefore are not suited to predict the
actions of humans. However, this does not mean that humans act in an unpre-
dictable manner, they follow their own preferences, that take into account both
their opponent’s actions and the context of the interaction. While a big part
of AI research has been focusing on beating the opponent in zero-sum games,
most interactions are actually “mixed motive”, which means that the interests
of the players are not completely aligned, but also not solely competitive. Since
the goal of AI is to aid human decision-making, the problem then becomes: how
can AI optimize for human social preferences that are not easily hard-coded but
change according to different parameters?

To tackle this question we use a classical mixed-motive game: the Prisoner’s
Dilemma (PD). Specifically, we focus on repeated interactions as they provide
more diverse insights on how human preferences might change in accordance to
the actions of the opponent. For this purpose we will use empirical data from the
two-player iterated PD to illustrate the aforementioned dynamics [3]. To help AI
infer human preferences in such setting we turn to Imitation Learning techniques,
specifically the Bayesian Inverse Reinforcement Learning (BIRL) method [7]. As
in Inverse Reinforcement Learning (IRL) [6], BIRL extracts the reward function
from any given set of demonstrations with the added value that BIRL takes a
probabilistic view of the reward. This means that, with BIRL, we can incorporate
domain knowledge to choose the prior that selects from the (infinitely) many
possible rewards for which the observed actions would be optimal.
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2 Results and Discussion

First, we tested whether the rewards humans follow are stationary. For this pur-
pose we tested agents with different memory capacity about previous rounds of
play. In Fig. a we show the results: it is clear that higher memory agents outper-
form the lower memory agents. Even larger memories were tested, but showed a
decline in performance, suggesting that general human behavior is only station-
ary for a certain time frame.

To incorporate domain knowledge, in opposition to keeping the Uniform prior
used in the baseline, we used an adapted version of the Ising prior [1]. We chose
that for two reasons: to give more relevance to the more recent rounds when
predicting the next [2, 5] and to emphasize a clear choice between the available
actions by the expert. The results are seen in Fig. b where the 5-memory agent
has the most significant increase in performance. This shows that a well con-
structed prior, using domain knowledge, can significantly help agents in their
performance, even when there is not much data available to them.

The transition probabilities in the baseline model, which define the beliefs of
the expert about their opponent’s action, assumed equal chance of either action.
To test different transition probabilities, we follow the principles of theory of the
mind [4] and test whether assuming that the expert is able to correctly predict
their opponent every period will influence accuracy. From the results in Fig. b
we see that the accuracy increases very slightly, suggesting that even though
perfect prediction is not realistic, randomness seems to perform worse.

(a) Average amount of errors for the base-
line agent comparing different observation
memories

(b) Average accuracy comparing 3 differ-
ent agent setups on agents with memory
5 and 30

In conclusion we show that incorporating domain knowledge and probing the
expert’s beliefs increase the accuracy of the imitation technique used. The first
proving to greatly increase the performance of the agent even for situations with
small amount of available data (lower memory setups).
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Abstract. The growing popularity of Machine Learning (ML) tech-
niques has lifted several doubts on the benefits that these approaches
can offer to medical research. Machine Learning intrinsic difficulty of in-
terpretation and lack of validation methods have limited the applicability
in the clinical field. In this work, we have investigated the capability of
Machine learning methods applied to survival analysis and classification
in clinical context. We have compared results with the well established
methods of Cox Proportional Hazards model and Logistic Regression.

Keywords: Machine Learning · Survival Analysis · Interpretability.

1 Introduction

The growing popularity of ML techniques has lifted several doubts on the bene-
fits that these approaches can offer to medical research. ML methods have great
potential to deal with complex data but their intrinsic difficulty of interpretation
and lack of validation methods have limited the applicability in the clinical field
in favour of classical statistics. Equally decisive are the characteristics of the
available clinical datasets, often relatively limited both in the number of obser-
vations and in complexity. In this work, we provide a comparison between ML
methods applied to survival analysis and classification, and the well established
methods of Cox Proportional Hazards model [3] and Logistic Regression (LR).
An essential aspect of the comparison is the interpretability of models, which in
the clinical setting must be taken into account as much as the predictive perfor-
mance. The analyses are performed on two different datasets with two aims: to
develop a death risk score for High-Grade Glioma patients, and classify Sjögren’s
syndrome patients according to lymphoma risk.
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2 Experiments

We have collected data from two multicentric studies about High-Grade Glioma [1]
and Sjögren’s syndrome [2]. Missing data were imputed using missForest [7, 8]. In
Table 1 we present a comparison between ML methods (XGBoost [4] and Ran-
dom Survival Forest (RF) [6]) with Cox Proportional Hazard model, for High-
Grade Glioma dataset. ML algorithms parameters were tuned using mlr [10–15]
with 10-fold-cross validation and assumptions for Cox PH model were verified.
Additionally, we have used SHAP values [9] to extract both importance and
direction of the impact on the risk score of the predictors.

In both classification and survival setting, ML algorithms do not outperform
classical statistical techniques in terms of performance, and RF is poorly cal-
ibrated. However, ML methods provide insights about features impact on the
prediction, that are comparable to statistical models and clinically plausible.

Table 1. C-index

C-index.

XGboost 0.758
RF 0.765

Cox PH 0.762

3 Conclusions

In the analyzed context, ML algorithms do not provide substantial improvement
in the prediction with respect to statistical models. However, they are able to
identify important risk factors and provide useful insights on their impact on
the prognosis. Future works might consider more datasets, and a deeper analysis
of the interpretability of ML techniques to investigate a possible connection
between the feature importance provided by ML models and Hazard Ratios
as well as Odds Ratios provided by Cox PH model and Logistic Regression,
respectively.
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