
Chapter 5

Adaptive User Interfaces

In computing systems, technology alone cannot survive without adequate user
interfaces. To maximize the benefits that usable interfaces bring to users, often
developers try to target as many people as possible. However, attempting to
create UIs by following the one-size-fits-all approach is doomed to fail if an ap-
plication is intended to be exposed to an arbitrary audience—take for instance
web pages or mobile applications. Therefore, we must look for automated
solutions.

This chapter proposes a novel approach to automatic UI adaptation that lever-
ages implicit interactions to weight the importance of the information supplied
with estimated priorities in user activity. This way, by analyzing information
that is submitted with little or no awareness (e.g., mouse movements, clicks,
keystrokes), elements where users focus their interaction are incrementally mu-
tated. While this is still a work in progress, preliminary results indicate that
this method has an interesting potential to build self-adaptive UIs.

Chapter Outline
5.1 Introduction 72

5.2 Related Work 73

5.3 ACE: An Adaptive CSS Engine 74

5.4 Fostering Creativity 79

5.5 Evaluation 81

5.6 Discussion 82

5.7 Conclusions and Future Work 84

Bibliography of Chapter 5 85

71



Chapter 5. Adaptive User Interfaces

5.1 Introduction

In computing systems, technology alone cannot survive without adequate user
interfaces. Personalization and customization have been widely promoted by
UI design theories but seldom few of them are put into practice. The vast ma-
jority of UIs are visually-oriented and assume that users do not have functional
impairments of special requirements. Caveats, standards, and best practices
have evolved on where to place layout widgets, navigation items, and body con-
tent. As such, to maximize the benefits that usable interfaces bring to users,
often developers try to target as many people as possible. However, attempt-
ing to create UIs by following the one-size-fits-all approach is doomed to fail
if an application is intended to be exposed to an arbitrary audience. Take for
instance web pages or mobile applications, where, in addition, the range of
screen sizes and the rendering possibilities are exceedingly large.

UI adaptation is about exploiting some features of the application and avoid-
ing others. For instance, the mobile space has an incommensurable range of
devices, and content often renders better when tailored to specific device char-
acteristics. Another part of adaptation requires working around problems found
in specific parts of the UI; e.g., elements that may cause confusion or frustration
to first-time users and so on. A more drastic option is to build a separate UI
for each user, but a manual approach is impractical and definitely not scalable.
Also, continuously performing usability tests to assess new changes committed
on the application is very time-consuming. Therefore, we must seek automated
adaptation solutions.

Traditionally, UI adaptation techniques can personalize the layout presentation
(e.g., modifying font sizes or applying some accessibility guidelines), but un-
fortunately the changes they perform operate from a global perspective. Some
proposals that involve active end user manipulation have been considered; e.g.,
[Bolin et al., 2005]. Nonetheless, user-driven customization requires to perform
additional activities beyond the main purpose of using the application. Some
researchers [Arroyo et al., 2006; Atterer et al., 2006; Claypool et al., 2001] have
demonstrated that every user interaction can contribute to enhance the utility
of the system, therefore alternative adaptation approaches without burdening
the user can be derived. What is more, as stated by Gajos and Weld [2004], the
rendering of an interface should reflect the needs and usage patterns of their
users. This work is inspired by these ideas.

We propose a novel approach that is based on implicit HCI to weight the im-
portance of the information supplied with estimated priorities in user activity.
This way, by leveraging information that is submitted with little or no aware-
ness (e.g., mouse movements, clicks, keystrokes), elements (widgets from here
onwards) where users focus their interaction are incrementally mutated. Specif-
ically, due to the fact that exertions are preceded by attention most of the time
(see Section 1.1.1), the importance of an interaction toward a specific widget

72



Chapter 5. Adaptive User Interfaces

is measured as the proportion of UI-generated events on that widget between
consecutive sessions, as described in Section 5.3.

5.2 Related Work

The idea of adapting the UI of applications or even full websites according to
user interactions is not new (see, e.g., [Zhang, 2007]). However, practical exam-
ples have been too scarce so far. Despite considerable debate, automatic adap-
tation of UIs remains a contentious area [Gajos et al., 2008]. Commonly cited
issues with adaptive interfaces include lack of control, predictability, trans-
parency, privacy, and trust [Findlater and McGrenere, 2008].

It is commonly agreed that adaptive systems should accommodate the UI to
the user, but also that doing so automatically is a non-trivial problem. We
believe that adaptation should be both transparent and discreet, so that the
changes introduced to the UI do not confuse the user. We also believe that
adaptation should not interfere with the internal structure of the application.

Probably the major advances in the field of automatic adaptation of UIs are
the ones carried out by Gajos and co-authors [Gajos and Weld, 2004; Gajos
et al., 2007, 2008], where adaptation is approached as an optimization problem.
However, their experiments were performed on form-based layouts, by modeling
widget constraints, and choosing the best alternatives from a defined set of
UI elements (e.g., sliders, combo boxes, radio buttons, etc.). Other types of
applications such as web pages are nevertheless a completely different matter.
Their dynamic nature per se makes the automatic adaptation a challenging
task.

On the Web, with the exception of customizing font preferences, browsers do
not provide end users with substantial control over how web pages are rendered.
This way, researchers have proposed different approaches to layout adaptation
that mainly involve user’s manual work. Ivory and Hearst [2002] employed
learned statistical profiles of award-winning websites to suggest improvements
to existing designs; however, changes would be manually implemented. Tsandi-
las and Schraefel [2003] introduced an adaptive link annotation technique, al-
though it required the user to perform direct manipulation of a middleware
application. Notable approaches in this direction include the work of Bila
et al. [2007], where the user must actively modify the layout contents. Kurni-
awan et al. [2006] proposed to override the visual tier of a web page with custom
style sheets, but unfortunately updates had to be performed by hand. Now that
web standards have minimized browser inconsistencies, this approach can be
automatically exploited to automate the adaptation of web design (and other
applications, as discussed later) without disrupting users’ interaction habits.

73



Chapter 5. Adaptive User Interfaces

(a) Original page (b) Automatically adapted design

Figure 5.1: An example of website design modifications. Changed parts are numbered in
Figure 5.1b. ❶ headline text: font-size, padding-top; ❷ navigation menu: font-size; ❸

welcome paragraphs: font-size; ❹ ‘read more’ links: color; ❺ ‘online booking’ heading:
color; ❻ submit button: font-weight; and ❼ ‘special menu’ div: margin-top.

5.3 ACE: An Adaptive CSS Engine

Our approach, being based on implicit interaction, allows to gather much usage
data without burdening the user. On the other hand, though, collected data
are potentially noisy and prone to some errors if not treated adequately. For
that reason, the novelty of this approach is two-fold: 1) to let the webmaster
decide which elements are going to be adapted; and 2) to automatically apply
slight modifications to the rendering of UI elements based on how the user has
interacted with them. This way, the system will try to invisibly improve the
user-perceived performance toward a UI (Figure 5.1).

The main difference with other state-of-the-art interface adaptation techniques
is ours relies on the developer (or webmaster) control to accommodate the
appearance of the UI (or page) to the users in a transparent way. This way,
our approach aims to focus rather than distract the user.

5.3.1 Rationale

With the growing popularity of web-based applications, the Cascading Style
Sheets (CSS) paradigm has been widely adopted by several programming envi-
ronments beyond the browser. For instance, it is possible to use CSS in Java1,
GTK+2, and Qt3. CSS allows attaching styles to the application, decoupling

1http://weblogs.java.net/blog/2008/07/17/introducing-java-css
2http://gnomejournal.org/article/107/styling-gtk-with-css
3http://doc.qt.nokia.com/4.3/stylesheet.html

74

http://weblogs.java.net/blog/2008/07/17/introducing-java-css
http://gnomejournal.org/article/107/styling-gtk-with-css
http://doc.qt.nokia.com/4.3/stylesheet.html


Chapter 5. Adaptive User Interfaces

the data model and its presentation. This motivated us to develop ACE, an
Adaptive CSS Engine in which adaptation operates by automatically overriding
the rendering of widgets, by simply modifying their CSS. The technique was
first introduced by Leiva [2011], and has been now reformulated to generalize
to structured applications (e.g., document object models and scene graphs).

5.3.2 Overview

ACE leverages implicit interactions to incrementally mutate the appearance of
interacted widgets (e.g., DOM elements). The importance of an interaction
toward a specific widget is measured as the proportion of UI-generated events
on that widget between consecutive sessions. Implicit interaction is used thus
as a proxy of user attention. The idea is to introduce ephemeral changes that
can be easily incorporated and do not alter the UI design in a way that it might
confuse the user [Leiva, 2011, 2012a].

ACE

elems evts

app

CSS

Developer User

XPath

Figure 5.2: Workflow diagram. ACE tracks elements indicated by the developer. When
the user access an application, UI events translate interacted elements into XPath notation
(or a similar representation) for later storing. On returning to the application, the CSS
properties of such stored elements are restyled accorded to computed scores.

ACE was written as a completely self-contained JavaScript (JS) program that
restyles numerical CSS properties, i.e., those related to:

• Dimensions (e.g., font-size, margin-top). These properties often do
have a unit of measure, e.g., 16px, 2.5em, or 20%, which is preserved once
they are adapted.

• Colors (e.g., background-color, border-color). These properties do
have an hexadecimal representation,which is specified either by a key-
word (e.g., "red") or by a numerical RGB specification (e.g., #RRGGBB or
rgb(R,G,B)).

The main features of ACE are summarized in the following list:

• Does not require end user intervention.

• Supports desktop, touch, and mobile web clients.

75



Chapter 5. Adaptive User Interfaces

(a)

ACE.adapt({
"div a": ["font-size", "color"], ➊

"p ul" : ["font-weight, "margin"]
});

➊

➊

DIV

STRONGLILI

H1 ULHR EM

P

INPUT INPUT

DIVIMG

A AAAA

PP LI LILI

UL

BODY

DIV DIV

DIV

(b) pattern: E F

ACE.adapt({
"div + a": ["font-size", "color"],
"p + ul" : ["font-weight, "margin"] ➋

});

A AA

LI LILI

UL

BODY

DIV

➋DIV

A STRONGA LILI

H1 PP ULHR EM

P

DIV

DIV

INPUT INPUT

DIVIMG

(c) pattern: E + F

Figure 5.3: Original page design (5.3a) with an overlaid mouse behavior that may cause
different adaptation possibilities, according to the following CSS combinator patterns:
[5.3b] F elements that are descendants of E elements; [5.3c] F elements immediately pre-
ceded by E elements; Top row : Sample JSON syntax. Middle: Corresponding page
changes. Bottom row : DOM tree traversals, highlighting in bold the matched paths. Any
combination of CSS selectors is supported, e.g., "div + p.foo > span a:first-child".

• Any combination of CSS selectors can be used.

• Modifications are incrementally applied, ensuring that they are not in-
trusive for the user.

• Adaptation can be performed once the DOM is parsed or the application
is fully loaded, so that third party or JS-controlled modifications are also

76



Chapter 5. Adaptive User Interfaces

supported.

• Since the system has a user interaction history, it can populate adaptation
to other widgets that share a similar structure.

5.3.3 Adaptation Protocol

Initially, the developer indicates which widgets and which properties can be
restyled by the system, by means of straightforward JSON notation (see sample
code snippets in Figure 5.3). Later, when the application is loaded, event
listeners will track such widgets in the background. While using the application,
the system “learns” from user interactions, so that the next time the application
is loaded, the visual appearance of the widgets the user has interacted most with
is subtly modified. Finally, when the user leaves the application, interaction
data are serialized and stored into a local database. Figure 5.4 summarizes the
architecture of this framework.

USER INTERFACE

JSON parser

event observer database

serializer

widget

CSS engine

interactionswidgets
Application

Figure 5.4: System architecture. Adaptable widgets are indicated by the developer,
which will be modified according to how users interact with the application.

5.3.4 Implementation

A very simple API was designed to invoke the system. ACE exposes two public
methods: listen() and adapt(). The former allows the developer to prioritize
the importance of UI events (e.g., Should a mousemove event be assigned lower
priority over a click event?). The latter takes two arguments (Figure 5.5): a
configuration object and a context (the whole application by default).

Under the hood, the elements that were specified in the configuration object
as CSS selectors are retrieved by means of the querySelectorAll() method
or a similar alternative (depending on the programming language). Interaction
data are then classified into different event lists, e.g., hovered, typed, scrolled,
or tapped elements; where each list member is composed of a serialized widget
representation as a key (to allow retrieving them later on subsequent user visits,
see bottom rows of Figure 5.3) and an interaction score as a value. The scoring

77



Chapter 5. Adaptive User Interfaces

interface ACE {

void listen(Object eventList , Boolean keepOtherPriorities );

void adapt(Object config , Object context );

}

Figure 5.5: ACE’s API definition in Interface Description Language (IDL).

Figure 5.6: Weighting interactions ex-
ample. Hovering is weighted according to
w = tanh(λϑ), while clicking is weighted
as w = sinh(λϑ). The parameter λ al-
lows to tune the slope of both curves.

−1 1

ϑ ∝ ∆t

w

hovering
clicking

scheme is described in the next section. Basically, a score is proportional to
the number of browser-generated events, or, in other words, how many times
the user has interacted with UI elements.

Finally, data are persistently stored on the client side by means of an abstrac-
tion layer of different storage backends (e.g., localStorage, IndexedDB, or
equivalents), so that the users’ privacy is completely under their control; e.g.,
they may opt to configure their application or browser to restrict access to the
storage context, or automatically delete stored data after some time.

5.3.5 Interaction Scoring Scheme

As commented above, each interacted element is assigned a score s, which
depends on the event type. For instance, mousemove events are triggered in
much more quantity than mousedown or keyup events, and as such they should
be weighted accordingly. Let ni be the number of times an event of type i was
fired for a certain widget, and let N be the number of all fired events during
application usage. The assigned score for that event is

si = ζ(ni/N) (5.1)

where ζ(·) is a symmetric sigmoid function. The idea is to get scores follow a
non-linear distribution, in order to ensure that adaptation is smoothly applied.

Note that if an element receives different types of interactions (e.g., an input

text field can listen to click, focus, or keydown events) then its scores need
to be fused in order to compute a single value. ACE uses the weighted mean

78



Chapter 5. Adaptive User Interfaces

as a fusion scoring method:

s =

m
∑

i=1

wisi with
∑

wi = 1 (5.2)

where m is the number of computed scores for that element.

The value v of a CSS property is then modified based on the following style
function:

v = v(1 + s) (5.3)

On subsequent access to the UI, the new scores s′
i
and how they will affect the

CSS properties are both updated as follows:

s′
i
= ζ(n′

i
/N)− si

v′ = v(1 + s′) (5.4)

According to equations (5.3) and (5.4), when a user loads an application for
the first time, elements are rendered as they were designed, as the system has
no information about previous interactions (si = 0 ∀i). Then, when returning
to the application the system will react accordingly, i.e., modifying the value
of those CSS properties specified by the webmaster based on the amount of
user’s interactions.

Given that scores are bounded to the interval (−1, 1), a score of, say, 0.05 for a
margin-top property will be interpreted as “increasing by 5% the value of the
top margin.” Conversely, a score of −0.1 for a color property will be inter-
preted as “decreasing by 10% (the contrast or saturation of) the font color.”
This way, it is not possible to alter the visual properties significantly, since
adaptations are incrementally applied. Event lists are the only user informa-
tion stored in the local database.

5.4 Fostering Creativity

ACE also introduces an interesting framework to find inspirational examples
for redesigning UIs. Typically, the primary purpose of prototyping tools is
to provide feedback to define a design earlier, when there is inadequate infor-
mation to choose one solution over another. However, once the design of an
application or website leaves the testing phase and moves to production, it
hardly ever gets substantially modified. Rather, it follows a cycle of subtle it-
erative improvements. At this stage, surprisingly, few methods seldom support
incrementally revisiting different versions of the same solution.

In this line, some work has been done in generating design alternatives to
assist the user in the design process, i.e., to get the “right design”, for instance,

79



Chapter 5. Adaptive User Interfaces

(a)
(b)

Figure 5.7: Some redesign considerations. [5.7a] Widening the central column of a web
page allows the browser to display more information at a glance. [5.7b] Some parts of the
UI can be altered according to its importance; e.g., changing the font sizes and colors of
headings and text paragraphs.

Design Gallery [Marks et al., 1997], Side Views [Terry and Mynatt, 2002], or
Adaptive Ideas [Lee et al., 2010]. However, there is little research toward tools
that allow designers to explore design refinements, i.e., to get the “design right”.
Traditionally, current techniques to suggest improvements to an existing design
imply a manual implementation (see Section 5.2). What would be interesting,
though, is being able to automate the process to a greater or a lesser extent. In
this regard, Masson et al. [2010] proposed using interactive genetic algorithms
to add permutations to an existing design. The downside of this approach
is that it relies on a user-task model and therefore it must be learned. In
contrast, we propose to use ACE, which is model-free, and lets all users take
part in the design process. However, instead of adapting a UI to an individual,
the interactions of all users can be exploited to alter the design of an application
or a whole website. Among other benefits, this may allow designers to:

1. Avoid having to recruit users for testing each time the application is
updated: what you see is what users do.

2. Discover visually what behavioral patterns are consensus.

3. Find inspirational examples, by looking at how the appearance of the UI
gets modified over time.

If subtle design modifications are needed to refine an existing layout—as it often
happens when iterating over a design solution—then implicit user interaction
can be valuable to this end [Leiva, 2012b]. For instance, on websites, if all
users spend most of their browsing time on the home page ‘above the fold’, the
designer could consider make wider the main body content, so that some parts
could be accessed faster (Figure 5.7a). Similarly, if there is some paragraph
that is commonly selected, if would be interesting to make such text more
prominent, probably by increasing the font size or the color contrast, so that
in subsequent visits users could realize easily where is the popular information
(Figure 5.7b).

We believe therefore that ACE can exploit the collective users’ behavior as an
inspirational source for UI redesign. Implicit interactions can be gathered at
scale on a daily basis, and without burdening the user. What is more, on the

80



Chapter 5. Adaptive User Interfaces

Web, independent feedback is received from hundreds or thousands of remote
anonymous users rather than being produced and interpreted in a small group
or individuals working in isolation. This may help to achieve (hopefully) better
design decisions, since it is possible to empirically validate how users react to
a particular design update; e.g., by carrying out A/B tests. Additionally, this
has the notable advantage that data acquisition and later processing can be
both completely automated.

5.5 Evaluation

In terms of system performance, ACE takes a few milliseconds to complete
the adaptation process. A series of JavaScript benchmarks were performed on
the sample page shown in Figure 5.3 with different configuration objects and
CSS properties. The machine was an i686 @ 2 GHz with 1 GB of RAM. The
adaptation code was executed 100 times and benchmark results were averaged.
Concretely, for 10 items (that were specified by different CSS level 3 selectors4)
having at most 5 properties each, in all tested browsers (Firefox 7, Chrome 15,
Opera 11, Internet Explorer 9, and Dolphin 2.2) the average times were below
20 ms, with standard deviations below 0.1 in all cases.

Regarding human evaluation, devising the most suitable evaluation method
is still not completely clear. As a preliminary approximation, an informal
study involving 12 users was carried out, in which participants where told to
freely browse a mockup site (Figure 5.1) with the ACE system on an HTC
Desire [Leiva, 2011]. At the end of the test, users answered three questions
(see Figure 5.8); Q1: Do you think page elements are well laid out? Q2: Did
you notice any change on the page, regarding the first time you visited it?
Q3: If so, did you find distracting those changes?

No

Yes

Q1 Q2 Q3

11/12 9/12 12/12

Figure 5.8: Results of the informal user questionnaire.

Overall, users’ acceptability toward the method was perceived as positive. As
observed, nine of them did not notice the automatic modifications, and none
found distracting those changes while browsing. The informal pilot study,
although being not conclusive, revealed that this adaptation technique has an
interesting potential in building adaptive user interfaces.

4http://www.w3.org/TR/css3-selectors/

81

http://www.w3.org/TR/css3-selectors/


Chapter 5. Adaptive User Interfaces

Regarding using ACE as a source of creative redesign, previous informal meet-
ings with web designers have shown that this tool is perceived as a useful
help [Leiva, 2012b]. People commented that they often want to determine how
changes to a few page elements will affect the final appearance of the website.
ACE satisfies this need, by letting them to inspect how user behavior would
influence CSS rendering. Moreover, automatic redesign frees the web designer
from the need to know what changes are possible, or how they can be effec-
tively performed. Also, design refinements can offer pragmatic value as well
as inspirational value. Figure 5.9 depicts some examples that this tool can
produce.

5.6 Discussion

Automatically mining implicit interactions for UI adaptation and redesign is
a promising direction for future research. However, some work still remains to
be done.

First of all, we feel that evaluating this kind of adaptation strategy is quite
challenging, since no objective metrics can be consistently computed; e.g., in
the absence of labeled samples, we cannot apply well-known measures such as
precision and recall; and having to interrupt the normal navigation flow of users
to ask them to vote is certainly not an option. We strongly believe, though,
that implicit interactions inherently encode performance. Thus, if an adapted
design works better than a previous iteration, it should be reflected somehow in
the traces of movements, gestures, etc. Nevertheless, one needs to be cautious
with this hypothesis, since learnability and familiarity with the UI could be
introducing a serious bias. Therefore, an immediate follow-up work will consist
in carrying out a formal in-lab evaluation study.

On the other hand, since content is automatically generated, it is likely to be
of less quality than human-generated content. Thus, we believe that it would
be interesting to assess the influence of such variations in layout design, or
use different evaluation viewpoints; e.g., measure the reduction of user effort,
compare to other adaptive systems, etc.

ACE has some implications for participatory design as well, since it aims to
create applications that are more appropriate to their users. As previously
commented, this frees the UI designer from the need to know what changes
are possible; but more importantly, it helps to determine how such changes
can be effectively performed. Also, system suggestions are expected to offer
pragmatic value as well as inspirational value to the designer. ACE also can
contribute to find “interaction agreements” between all users, which may be
useful to detect whether if a design works as expected; e.g., how designs change
through time according to the heterogeneous behavior of the users. Addition-
ally, non-experienced designers can gain insights about what is going on with

82



C
h
a
p
te
r
5
.

A
d
a
p
tiv

e
U
se
r
In
te
rfa

c
e
s

(a) Original design (b) Movements + Clicks (c) Redesign suggestion #1 (d) Redesign suggestion #2

Figure 5.9: Redesign examples produced by ACE, taking into account multiple interaction logs and overriding a few CSS rules.

83



Chapter 5. Adaptive User Interfaces

their designs, from the user interactions’ point of view. This suggests implica-
tions for design practices from which the HCI community may well be able to
benefit. Finally, collected data can be reused to support design decision mak-
ing, or to improve understanding of how users interact at scale. Data can also
be used for complementary analytics in traditional usability tests, or applied
to infer new knowledge for future users.

A known limitation of ACE is that currently it can adapt only those properties
that vary in a numerical range; e.g., max-height or padding. However, in a
future it is expected to be able to map semantic properties. For instance, to
adapt the text-align property of a text paragraph one could use:

v =











"left" if s ∈ (−1,−0.5]

"center" if s ∈ (−0.5, 0.5)

"right" if s ∈ [0.5, 1)

Finally, redesign decisions are (by now) based on modifications of shape, posi-
tion, and/or color attributes. Therefore, more advanced adaptation strategies
such as re-arranging several page elements (beyond alignment) or inserting/re-
moving content would require a technically more sophisticated approach.

All in all, this technology enables a straightforward means to invisibly enhance
the utility of regular applications and web pages; e.g., in terms of usability,
accessibility, readability, interactivity, or performance. Systems like ACE may
allow applications to be flexible enough to meet different user needs, prefer-
ences, and situations.

5.7 Conclusions and Future Work

Dynamic and continuously changing environments like the Web demand new
means of building UIs that are aligned to the skills of the users. We have pre-
sented an alternative to redesign interface widgets that operates unobtrusively
for both the user and the application structure. Substantial improvements can
be made at no cost, since the system is the only responsible of performing the
adaptation, being delimited by the (implicit) user interactions and the restric-
tions imposed by the developer, so that not all events affect all styling.

Finally, we believe that this work opens a door to a wealth of applications that
can be developed by tracking the user activity and dynamically restyling the
appearance of the UI in response. For instance, integrating ACE with an eye-
tracker would provide a finer-grained and potentially more focused analysis of
user interactions. Moreover, other biometric inputs such as electrocardiogram
signals would allow developers create “organic” UIs that are able to react to
the emotions of the users.

84



Bibliography of Chapter 5

Further research will pursue more ambitious results, such as inferring high-
level behaviors from low-level events—for instance, reporting if a certain design
causes users to get lost or incites them to being more active.

Bibliography of Chapter 5

E. Arroyo, T. Selker, and W. Wei. Usability tool for analysis of web designs using mouse
tracks. In Proceedings of extended abstracts on Human factors in computing systems (CHI
EA), pp. 484–489, 2006.

R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move – user activity
tracking for website usability evaluation and implicit interaction. In Proceedings of the
15th international conference on World Wide Web (WWW), pp. 203–212, 2006.

N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and E. de Lara. PageTailor: reusable
end-user customization for the mobile web. In Proc. MobySys, pp. 16–29, 2007.

M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller. Automation and cus-
tomization of rendered web pages. In Proceedings of the 18th annual ACM symposium on
User interface software and technology (UIST), pp. 163–172, 2005.

M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. In Proceedings
of the 6th international conference on Intelligent user interfaces (IUI), pp. 33–40, 2001.

L. Findlater and J. McGrenere. Impact of screen size on performance, awareness, and
user satisfaction with adaptive graphical user interfaces. In Proceeding of the twenty-sixth
annual SIGCHI conference on Human factors in computing systems (CHI), pp. 1247–
1256, 2008.

K. Z. Gajos and D. S. Weld. SUPPLE: Automatically generating user interfaces. In
Proceedings of the 9th international conference on Intelligent user interfaces (IUI), pp.
93–100, 2004.

K. Z. Gajos, J. O. Wobbrock, and D. S. Weld. Automatically generating user interfaces
adapted to users’ motor and vision capabilities. In Proceedings of the 20th annual ACM
symposium on User interface software and technology (UIST), pp. 231–240, 2007.

K. Z. Gajos, K. Everitt, D. S. Tan, M. Czerwinski, and D. S. Weld. Predictability and
accuracy in adaptive user interfaces. In Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems (CHI), pp. 1271–1274, 2008.

M. Y. Ivory and M. A. Hearst. Statistical profiles of highly-rated web sites. In Proceedings
of the SIGCHI conference on Human factors in computing systems (CHI), pp. 367–374,
2002.

S. Kurniawan, A. King, D. Evans, and P. Blenkhorn. Personalising web page presentation
for older people. Interacting with Computers, 18(3):457–477, 2006.

B. Lee, S. Srivastava, R. Kumar, R. Brafman, and S. R. Klemmer. Designing with in-
teractive example galleries. In Proceedings of the 28th international conference on Human
factors in computing systems (CHI), pp. 2257–2266, 2010.

L. A. Leiva. Restyling website design via touch-based interactions. In Proceedings of the
13th International Conference on Human Computer Interaction with Mobile Devices and
Services (MobileHCI), pp. 91–94, 2011.

85



Bibliography of Chapter 5

L. A. Leiva. Interaction-based user interface redesign. In Proceedings of the 17th interna-
tional conference on Intelligent User Interfaces (IUI), pp. 311–312, 2012a.

L. A. Leiva. Automatic web design refinements based on collective user behavior. In Pro-
ceedings of the 2012 annual conference extended abstracts on Human factors in computing
systems (CHI EA), pp. 1607–1612, 2012b.

J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins,

T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber.
Design galleries: A general approach to setting parameters for computer graphics and
animation. In Proceedings of the 24th annual conference on Computer graphics and in-
teractive techniques (SIGGRAPH), pp. 389–400, 1997.

D. Masson, A. Demeure, and G. Calvary. Magellan, an evolutionary system to foster
user interface design creativity. In Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems (EICS), pp. 87–92, 2010.

M. Terry and E. D. Mynatt. Side views: Persistent, on-demand previews for open-ended
tasks. In Proceedings of the 15th annual ACM symposium on User interface software and
technology (UIST), pp. 71–80, 2002.

T. Tsandilas and M. C. Schraefel. User-controlled link adaptation. In Proceedings of the
fourteenth ACM conference on Hypertext and hypermedia (HT), pp. 152–160, 2003.

D. Zhang. Web content adaptation for mobile handheld devices. Communications of the
ACM, 50(2):75–79, 2007.

86


	5 Adaptive User Interfaces
	5.1 Introduction
	5.2 Related Work
	5.3 ACE: An Adaptive CSS Engine
	5.4 Fostering Creativity
	5.5 Evaluation
	5.6 Discussion
	5.7 Conclusions and Future Work
	Bibliography of Chapter 5


