
Chapter 3

Behavioral Clustering

Behavioral clustering is a broad term that refers to the task of automatically
labeling and classifying user behavior. In a general context, clustering allows
to identify sub-populations in a dataset, so that they can be represented by
more compact structures for, e.g., classification and retrieval purposes. To this
end, implicit interaction can provide current clustering methods with additional
information. For instance, on the Web, clustering is usually deployed by using
a single data source, which is often browsing usage information derived from
server access logs. However, when it comes to getting deep information about
user behavior, this representation is inadequate in such a dynamic environment.

In this chapter, two opportunities are identified to enhance behavioral cluster-
ing through implicit interaction research. First, fine-grained interactions can
reveal valuable information that is not available in typical access logs; e.g.,
cursor movements, hesitations before clicking, etc. Second, user behavior has
an intrinsic sequential nature, which is not considered on current clustering
analysis, that can be exploited to simplify the structure of the data. There-
fore, we propose two approaches for both opportunities: 1) a novel method-
ology to model the website, i.e., finding interaction profiles according to how
users behave while browsing, and 2) a novel clustering algorithm to deal with
sequentially-distributed data, whose suitability is illustrated in a human action
recognition task.

Chapter Outline

3.1 Introduction 33

3.2 Revisiting the K-means Algorithm 34

3.3 Evaluation 40

3.4 Conclusions and Future Work 52

Bibliography of Chapter 3 53

32

Chapter 3. Behavioral Clustering

3.1 Introduction

A pervasive problem in science is to construct meaningful classifications of
observed phenomena. Clustering can be seen as a compression technique to
simplify the structure of the data, so that original objects can be represented
by more compact structures that are better tailored for classification, storage,
and retrieval purposes. The motivation to using these simplified structures
can be as elemental as reducing the number of data samples to save space in
large databases, such as web access logs, to more complex applications, such as
detecting actions in hours of sensor data. The importance and interdisciplinary
nature of clustering is evident through its vast literature; c.f. [Jain, 2010; Jain
et al., 1999].

Two broad categories of clustering can be distinguished. In the first one, we
have data from known groups as well as observations from entities whose group
membership is unknown initially and has to be determined through the analysis
of the data. On the other hand, the groups are themselves unknown a priori
and the primary purpose of data analysis is to determine the groupings from
the data, so that entities within the same group are in some sense more similar
than those that belong to different groups. The latter category is the one we
are tackling in this chapter.

We explore two novel approaches to (unsupervised) behavioral clustering, with
a special emphasis on web page classification and human action recognition.
On the one hand, in the context of page classification, currently the task of
clustering web pages is approached in a similar way for both web documents
and plain text documents. Even if it is known that web pages contain richer
and implicit information associated to them [Poblete and Baeza-Yates, 2008],
like the interactions that users perform while browsing. Thus, when facing
a finer-grained understanding of user behavior and document analysis, server
analytics are anything but accurate, being necessary to move toward the client
side. As pointed out later, the first core contribution of this chapter is focused
on this task.

On the other hand, the task of detecting actions from user behavior is not an
easy one. Actions (or activities) are sequential by definition, and, while there
are many works that solve sequential supervised machine learning problems
(e.g. [Dietterich, 2002]), the unsupervised case had remained posing new chal-
lenges in the research community for years (e.g. [Trahanias and Skordalakis,
1989]). The second core contribution of this chapter consists in solving this
problem.

3.1.1 Background

Cluster analysis provides an unsupervised classification scheme to efficiently
organize large datasets [Duda et al., 2001]. Additionally, cluster analysis can

33

Chapter 3. Behavioral Clustering

supply a means for assessing dimensionality [Agrawal et al., 1998] or identifying
outliers [Leiva, 2011]. The fundamental data clustering problem may be defined
as discovering “natural” groups, or clubbing similar objects together.

In this chapter, data clustering is seen as a data partitioning problem [Dubes,
1993; MacQueen, 1967; Yu, 2005] as opposed to the hierarchical approach [Fra-
ley, 1996; Murtagh, 1984; Ward, 1963], since we are interested in a partition of
the data and not in a structure (dendrogram) thereof.

Partitional clustering divides a dataset X = {x1, . . . ,xn} of n d-dimensional
feature vectors into a set

∏
= {C1, . . . , Ck} of k disjoint homogeneous classes

with 1 < k ≪ n. It is worth pointing out that the task of finding the optimum
partition is formidable even for a computer, since this is an NP-hard problem.
For example, if k = 3, we need to look at 3n−1 combinations. One way to
tackle this problem is to define a criterion function that measures the quality
of the clustering partition and then find a partition

∏∗
that extremizes such a

criterion function.

The most popular algorithm for partitional clustering in scientific and indus-
trial applications is by far the K-means (or C-means) algorithm, which can be
considered as a simplified case of Expectation-Maximization (EM) clustering,
and is described in the next section.

3.2 Revisiting the K-means Algorithm

The K-means algorithm is known for its simplicity, relative robustness, and
fast convergence to local minima. K-means, including its multiple variants
such as Fuzzy C-Means [Dunn, 1973], K-Medoids [Kaufman and Rousseeuw,
1990], etc., is based on the firm foundation of variance analysis. It requires
the number of clusters k to be an input parameter, which is tightly coupled to
the nature of the involved task, though there are many studies for choosing k
automatically [Bezdek and Pal, 1998; Davies and Bouldin, 1979; Dunn, 1974;
Hamerly and Elkan, 2001; Hubert and Arabie, 1985; Milligigan and Cooper,
1985; Sugar, 1998; Tibshirani et al., 2001]. The rough but usual approach is to
try clustering with several values of k and choose the one that contributes most
to the minimization criterion. Nonetheless, a simple rule of thumb is setting
the number of clusters to [Mardia et al., 1979]:

k ≈ (n/2)1/2 (3.1)

The criterion function that K-means tries to minimize is the Sum of Quadratic
Errors (SQE), denoted simply as Energy or J in the literature, which empha-
sizes the local structure of the data [Veenman et al., 2002]:

34

Chapter 3. Behavioral Clustering

J =

k∑

j=1

Hj (3.2)

where
Hj =

∑

x∈Cj

‖ x− µj ‖
2 (3.3)

represents the heterogeneity (or distortion) of cluster Cj , and

µj =
1

nj

∑

x∈Cj

x (3.4)

is the cluster mean, with nj = |Cj | being the number of samples in such cluster.

The most common implementation of this algorithm, generally attributed to
Lloyd [1982], uses a minimum distance criterion, where in each iteration all
samples are assigned to their closest cluster mean and convergence is achieved
when the assignments no longer change. There exists, however, a more inter-
esting version, often attributed to Duda and Hart [1973], which uses a sample-
by-sample iterative optimization refinement scheme. At each step, the SQE
is evaluated and the considered sample is reallocated to a different cluster if
and only if that reassignment decreases J . Clearly, such a greedy optimization
guarantees that the resulting partition corresponds always to a local minimum
of the SQE. This refined version is explained as follows.

The variation in the SQE produced when moving a sample x from cluster j to
cluster l can be obtained in a single computational step as [Duda et al., 2001]:

∆J(x, j, l) =
nl

nl + 1
‖ x− µl ‖

2 −
nj

nj − 1
‖ x− µj ‖

2 (3.5)

If this increment is negative, the new means, µ′
j , µ

′
l and the SQE, J ′, can then

be incrementally computed as follows [Duda et al., 2001]:

µ
′
j = µj −

x− µj

nj − 1

µ
′
l = µl +

x− µl

nl + 1
(3.6)

J ′ = J +∆J(x, j, l)

3.2.1 Sequential Clustering

When clustering sequential data there exists a strong constraint, often related
to time, that can be exploited to a great advantage. Nonetheless, by ignoring
this constraint, classical clustering techniques fail to cope with the underlying

35

Chapter 3. Behavioral Clustering

sequential data structure, as illustrated in Figure 3.1. What is more, previous
research on sequential data clustering considered the objects to cluster as whole
data sequences or previously determined subsequences thereof; c.f., Guralnik
and Karypis [2001]; Lee et al. [2007]. Instead, we are interested in discovering
subtrajectories within a single trajectory, so that we can obtain a simplified data
structure preserving the underlying data sequentiality. From this point of view,
approaches based on Hidden Markov Models (HMMs) have been proposed;
e.g., [Bashir et al., 2007]. The downside of HMMs, however, is that they require
complex training, and also can be prohibitive if processing power is a restriction,
e.g., working on mobile devices. As such, we propose here a closed-form solution
having a low computational cost in terms of performance, which translates
to really fast convergence times, and provides consistent results in terms of
accuracy: each run for a given number of classes always yields the same (well-
formed) sequential clustering configuration.

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: A 2D example. An arbitrary shape (3.1a) is digitized (3.1b) and reduced to
5 elemental units. Classical clustering algorithms do not deal with temporal information
and, therefore, resulting units are ill-defined (3.1c), leading to an inconsistent configuration
(3.1d). Our approach, however, provides a simple framework to easily cope with the
sequentiality of the data (3.1e, 3.1f).

If the data in a dataset X are sequentially given, it can be said that such data
describe a trace or trajectory in the d-dimensional vector space where samples
are represented:

X = x1, . . . ,xn (3.7)

36

Chapter 3. Behavioral Clustering

We define a sequential clustering into k classes as the mapping

b : {1, . . . , k} 7→ {1, . . . , n}

where bj is the (left) boundary of cluster j; i.e., the index of the first sample
in that cluster. See Figure 3.2 for a graphical example.

Using this convenient notation, the j-th (sequential) cluster ofX can be written
as follows:

Cj = {xbj
,xbj+1, . . . ,xbj+nj−1} (3.8)

where nj can now be trivially computed as

nj = bj+1 − bj (3.9)

This way, (3.3) and (3.4) can be rewritten as

Hj =

bj+1−1∑

i=bj

‖ xi − µj ‖
2 (3.10)

µj =
1

nj

bj+1−1∑

i=bj

xi (3.11)

and (3.5) and (3.6) can be directly used as such with this new formulation.

3.2.2 Warped K-Means

We propose a novel algorithm namedWarped K-Means (WKM), inspired by the
idea that the original data structure is delusively distorted, or “unfolded” (see
Figure 3.2) to cope with the sequentiality restrictions. Our proposal is based on
the trace segmentation (TS) technique for partition initialization (Figure 3.3),
followed by a K-means-like optimization procedure (Figure 3.4).

As in classical K-means, WKM reallocates samples based on the analysis of
effects on the objective function J , caused by moving a sample from its current
cluster to a potentially better one. But now a hard sequentiality constraint
is imposed. The first half of samples in cluster j are only allowed to move to
cluster j−1, and, respectively, the last half of samples are only allowed to move
to cluster j + 1. A sample will be reallocated if and only if the corresponding
SQE increment is beneficial (i.e., negative). This process is iterated until no
transfers are performed.

Because of this constraint, along with the sequential ordering of samples within
each cluster, typically only the samples close to the cluster boundaries get
reallocated. To take advantage of this observation, we introduce an optional
parameter δ ∈ [0, 1] which allows us to fine-tune the WKM behavior and at the

37

Chapter 3. Behavioral Clustering

same time achieve further reductions in computational cost. It allows testing
only those samples that are more or less close to cluster boundaries. In the
extreme case of δ = 0 the algorithm is conservative: all samples in a cluster
are visited to see if they should be reallocated. In the other extreme, if δ = 1
WKM is optimistic: only the boundary and the last sample in each cluster will
be checked. In general, the effect of δ is illustrated in Figure 3.2.

C1 C2 C3 C5

δ
b1 b2 b3 b4 b5

C4

Figure 3.2: The basis of WKM. The algorithm provides an optional parameter δ which
specifies the maximum amount of samples that will be inspected in each iteration. This
way, if δ = 1 only two samples are considered per iteration, while if δ = 0 full search is
carried out.

In sum, three key features differentiate our approach from other K-means based
algorithms: initialization, visiting order, and sequentiality constraints.

Algorithm: TS Boundary Initialization

Input: Trajectory X = x1, . . . ,xn; No. Clusters k ≥ 2
Output: Boundaries b1, . . . , bk

L1 = 0
for i = 2 to n do // Accumulated trace length

Li = Li−1 + ‖ xi − xi−1 ‖
λ = Ln

k
// Segment length

i = 1
for j = 1 to k do

while λ (j − 1) > Li do // Interpolate

i++
bj = i // Define boundaries

Figure 3.3: Boundaries initialization. Each boundary is evenly allocated according to
a piecewise linear interpolation on accumulated distances, resulting in a non-linearly dis-
tributed boundary allocation.

Algorithm Overview

In each cluster j, the samples close to its boundary bj are first visited to
see if they can be advantageously reallocated to the previous cluster, j − 1
(“reallocate backwards” loop). Then, the samples close to the boundary of
the next cluster, j + 1, are similarly considered (“reallocate forwards” loop).
It is worth noting that with δ < 1 the proportion of samples processed in
each backward or forward sequential chunk is typically less than the number
corresponding to the given value of δ. This is because the reallocation process

38

Chapter 3. Behavioral Clustering

Algorithm: WKM

Input: Trajectory X; No. Clusters k ≥ 2 [; Proportion δ = 0.0]
Output: Boundaries b1, . . . , bk; Centroids µ1, . . . ,µk; Distortion J

Initialize boundaries b1, . . . , bk // Use TS (Figure 3.3)

for j = 1 to k do

Compute µj , nj , J // Use Eq. (3.2), (3.9), (3.10), and (3.11)

repeat

transfers = false

for j = 1 to k do

if j > 1 then // Reallocate backwards 1st half

first = bj ; last = first+ ⌊
nj

2
(1− δ)⌋

for i = first up to last do

if nj−1 > 1 and ∆J(xi, j, j − 1) < 0 then

transfers = true

bj += 1; nj += 1; nj−1 −= 1
Update µj , µj−1, J // According to Eq. (3.6)

else break
if j < k then // Reallocate forwards 2nd half

last = bj+1 − 1; first = last− ⌊
nj

2
(1− δ)⌋

for i = last down to first do

if nj > 1 and ∆J(xi, j, j + 1) < 0 then

transfers = true

bj+1 −= 1; nj −= 1; nj+1 += 1
Update µj , µj+1, J // According to Eq. (3.6)

else break
until ¬transfers

Figure 3.4: Warped K-Means. A sample x ∈ Cj is only allowed to move either to cluster
Cj−1 or Cj+1. If a move proves advantageous, that is, the increment in SQE is negative,
the sample is reallocated and the two cluster means involved in such a reallocation are
incrementally recomputed according to (3.6). Otherwise, the next cluster is inspected, in
order to preserve the clustering sequentiality.

is aborted as soon as the SQE does not improve for that chunk, in order to
preserve the sequentiality of our clustering procedure.

Note also that if some samples are reallocated during the forward processing
of cluster j, then we do not need to re-check them in the backward processing
of cluster j + 1. This is easily verifiable with an auxiliary variable that stores
the index of the last reallocated sample. This detail, however, is not shown in
the WKM pseudo-code for the sake of clarity.

The computational cost of a complete iteration of WKM over the whole se-
quence X, depends on the number of samples n, the sample vector dimension
d, and the number of clusters k. As previously discussed, it can also depend on
the value of δ. On the one hand, if δ = 1, the complexity of WKM is reduced to
Θ(kd) per iteration, in comparison to Θ(nkd) in the case of classical K-means.

39

Chapter 3. Behavioral Clustering

~x1

~xn

(a)

c11 c12

ck1

ck2

(b) (c) (d)

Figure 3.5: Graphical overview of Figure 3.4 for k = 3 clusters. [3.5a] Key points
identification: the first and last key points always match the first and last data points
(x1 and xn). [3.5b] Initial segmentation: crosses mark the k segments’ middle points.
[3.5c] Point visiting order for reallocation: notice that chunks c11 and ckn do not need
to be inspected. [3.5d] Final clustering configuration: circles represent each segment’s
centroid.

On the other hand, if δ = 0, the best- and worst-case complexities are Ω(kd)
and O(nd), respectively. Therefore, for all values of δ and in all cases, each
iteration of WKM is expected to be (much) faster than conventional K-means
algorithms. Moreover, according to empirical observations, the convergence
tends to require less iterations than such classical K-means algorithms.

Overall, the main advantages of our proposal can be summarized as follows:

• Consistent results: It always guarantees the convergence to a good
local minimum, i.e., a low distorted partition of the original dataset that
preserves sequence ordering.

• Robust solution: Each run for a given k always yields the same clus-
tering configuration—thanks to the initialization algorithm and the min-
imization criterion for sample reallocation.

• Low computational cost: Much lower than that of classical K-means
algorithms since, instead of the usual all-against-all search strategy, we
only need to check two clusters in each step.

• No extra mandatory parameters: Our solution requires the same
input data and parameters as in K-means, though an optional δ threshold
can be specified to tune both the algorithm behavior and its cost.

As discussed by Leiva and Vidal [2011], the WKM algorithm is also suitable
for online learning tasks over large datasets, due to the following facts: 1) the
computational cost of updating the centroids is independent of the number of
samples and 2) the final partition can be updated while new samples arrive
without affecting too much the previous data structure.

3.3 Evaluation

In this section we evaluate behavioral clustering on two different tasks: web
page classification and action recognition. In the former task, we are interested

40

Chapter 3. Behavioral Clustering

in describing a website by how users interact within their contents. To this
end, a classical clustering methodology is intuitively quite useful: different
pages that trigger different behaviors should lie in different clusters, while pages
with similar interactions are likely to be assigned to the same cluster. In
the latter task, we are interested in characterizing human actions from raw
sensor data. To this end, we look for data compression methods to reduce the
number of samples for later action recognition. Here, a clustering methodology
might also be quite useful, although preserving data sequentiality is of utmost
importance—something that classical clustering methods fail to achieve.

Notice that the goal of the page classification task is to describe the website
as a whole, so there is no need to preserve data sequentiality. However, the
goal of the action recognition task is to discover the most informative number
of elementary samples that define a human action. Therefore, in this case it
is clear that a better outcome is expected if we employ our WKM algorithm
instead of classical methods.

3.3.1 Clustering Browsing Interactions

In the same way as web clustering engines organize search results by topic or
document relevance, our method aims to organize websites by users’ interac-
tion semantics. Such semantics of interaction are characterized by a series of
metrics (16 in total), which are computed by our mouse tracking tool and were
described in Section 2.3.6, say, 1D metrics: browsing time, number of clicks,
motion activity, and path length; and 2D metrics (with X and Y components):
distance, range, entry point, exit point, centroid, and scroll reach. We hy-
pothesize that if such metrics are consistent, they should generate clusters of
(approximately) same precision for a given typology of pages. In addition, it is
important to remark that metrics should be normalized. For instance, time and
scrolling are often reported as relevant metrics [Claypool et al., 2001; Holub
and Bielikova, 2010]. However, it is clear that longer/bigger pages will require
both more time and scrolling, and hence they could lead to misleading results
if one does not consider data normalization. Usually whitening the data (i.e.,
ensuring a distribution of each metric with mean 0 and variance 1) may be
enough.

Method

We gathered interaction data for approximately a month on three informational
websites (Figure 3.6), i.e., they are dedicated to the purpose of providing infor-
mation to the users (like, e.g., news portals or corporate blogs). Most websites
could fit in this type of website to some extent, so evaluating our approach on
this typology should ensure a broad generalization scope. The characteristics
of each corpus are summarized in Table 3.1.

41

Chapter 3. Behavioral Clustering

(a) OTH (habitat trends) (b) NM (rice company) (c) LAKQ (social club)

Figure 3.6: Example screenshots from the corresponding websites of each evaluated
dataset (see also Table 3.1).

Codename Size (MB) # Logs # URLs

OTH 25.5 4803 63
NM 33.5 5601 43

LAKQ 7.4 1232 28

Table 3.1: Overview of evaluated datasets (see also Figure 3.6).

Procedure

Users were selected by random sampling, which means that only a fraction of
all visitors (with equal probability of selection) was collected. We set a tracking
frequency of 24 fps. Each interaction log was stored in a MySQL database and
then exported in XML format. Logs were modeled as normalized interaction-
based 16-d feature vectors (see Section 3.3.1). We took into account visits
that lasted 0.5 hours at most, in order to discard bogus or spurious logs be-
forehand. Then, we applied the classical K-means algorithm to automatically
group the logs in each corpus, using random convex combination as initializa-
tion method [Leiva and Vidal, 2010] to accelerate convergence. The optimal
number of clusters for each corpus was determined as the marginally less dis-
torted grouping in terms of the SQE, which is proportional to the intra-cluster
(or within-class) variance; see, e.g., Figure 3.7. Once we had each log assigned
to a cluster, we extracted the mean and standard deviation for the tracked
interaction features, for later comparison and further analysis.

Results

To illustrate the usefulness of the proposed framework we start by describing
the profiles found in the OTH corpus. Table 3.2 summarizes the clustering
results for this dataset. Then we discuss the main observations that relate to
the other evaluated corpora.

42

Chapter 3. Behavioral Clustering

Figure 3.7: Clustering the OTH
dataset. The intra-cluster vari-
ance (or energy, or SQE) decreases
with increasing number of classes
k. However, at some point the
marginal gain will be smaller. In-
tuitively, this can be chosen as the
number of clusters that better sum-
marizes the dataset.

2 6 10 14 18

2

4

6

8

·109

6

k = 6

Clusters (k)

S
Q
E

(∝
in
tr
a
-c
lu
st
er

va
ri
a
n
ce
)

Cluster # Population % Energy (SQE) % Variance

2 698 14 3.6·108 16 5.1·105

3 1347 28 4.7·108 22 3.5·105

6 2220 46 5.4·108 25 2.4·105

Avg. Total 4748 100 2.1·109 100 4.5·105

Table 3.2: Clusters found in the OTH dataset. Outliers were classified into three clusters
(#1, #4, and #5), not reported here because they all represent near 10% of sample
population.

Profiles in OTH corpus According to the ‘elbow’ criterion1 (Figure 3.7), we
found k = 6 to be the number of classes that better summarizes this dataset.
However, three cluster were identified as outliers, which accounted for near
10% of the population. So actually we found three meaningful groups in this
dataset. This fact reinforced the idea of using behavioral clustering for isolating
sub-populations. Looking at these outliers we found that logs belonging to
these clusters had unusual behaviors; e.g., 11.5 clicks on average (SD = 19.5),
extremely long cursor trajectories of 12797.4 px (3130.9), and so on.

Pages in cluster #6 concentrated the biggest sub-population (46% of the data).
We found short-term sessions of M = 30 s (SD = 132.9) with “one-click” brows-
ing patterns of 1.1 clicks (0.6). Scrolling reached 40% (20) of the users’ browser
viewport and mouse range comprised 181.8 px (128.9) and 120.7 px (105.6) in
horizontal and vertical axes, respectively. Thus, logs belonging to this cluster
could be classified as “basic presence” pages, supporting somehow the evidence
of the typology of the tracked pages (i.e., an informational website).

1In the literature, it is also mentioned as the ‘gap statistic’ [Tibshirani et al., 2001].

43

Chapter 3. Behavioral Clustering

Figure 3.8: Clustering LAKQ
and NM datasets, following the
same criterion depicted in Fig-
ure 3.7. We identified 5 and 6
clusters to be the most informative
number of classes to describe the
pages in each dataset, respectively.

2 6 10 14 18
0

0.5

1

1.5
·1010

k = 6

5

Clusters (k)

S
Q
E

(∝
in
tr
a
-c
lu
st
er

va
ri
a
n
ce
)

LAKQ

NM

The population of cluster #3 was the least dispersed overall (16% of energy).
In-page interactions lasted 45.7 s (125.96), issuing 1.5 clicks (1.6) per session on
average. Pages belonging to this group were found to be browsed by relatively
active users, e.g., mouse distance: 7.1 px (6.7), mouse motion: 16% (13),
vertical scroll of 65% (23). Therefore, we hypothesize that these pages were be
the most familiar for the users. Although we do not have such ground truth
data to back up this claim.

Pages in cluster #2 showed metrics related to cluster #3, with similar power-
law distributions. However, users in this cluster spent more browsing time,
which was also more dispersed overall: 1.3 min (3.5), and clicked more: 2.33
(2.34). Pages were scrolled considerably more than the half of their browser’s
viewport: 76% (22). Together with the rest of considered metrics, this fact led
us to conclude that pages in this cluster were the most interesting for the users.

Profiles in NM and LAKQ corpora Instead of performing a detailed
analysis of each cluster found akin the OTH corpus as described above, we
shall depict some interesting observations.

Cluster Population % Energy (SQE) % Variance

1 159 13 2.5·108 15 1.6·106

4 632 53 4.1·108 24 6.4·105

5 346 29 4.5·108 27 1.3·106

Avg. Total 1178 100 1.6·109 100 1.3·106

Table 3.3: Clusters found in the LAKQ dataset. Two outliers (clusters #2 and #3) were
identified.

Regarding Table 3.3, the biggest cluster (#4, 53% of the data) was surprisingly

44

Chapter 3. Behavioral Clustering

not the most distorted overall. We observed that all meaningful clusters found
were more or less similar in terms of dispersion, which is a convenient feature of
K-means. What is specially interesting, however, is that vertical scrolling often
overpassed 100% of the browser viewport. Taking also into account the mouse
ranges, centroids, and entry/exit coordinates in these groups, we speculate that
most visitors were using (moderately) large displays. This hypothesis was then
verified by observing that the average screen resolution was 1208.9 (203.5) x
860.7 (118.8) px.

Cluster Population % Energy (SQE) % Variance

2 1697 30 8.9·108 26 5.2·105

3 968 17 5.8·108 17 6.1·105

6 2132 38 9.1·108 26 4.2·105

Avg. Total 5557 100 3.4·109 100 6.1·105

Table 3.4: Clusters found in the NM dataset. Three outliers (clusters #1, #4, and #5)
were identified.

As observed in Table 3.4, similar to the OTH dataset, we found three clus-
ters (#2) in the NM dataset that were clear outliers. Again, we remark the
usefulness of using behavioral clustering for isolating sub-populations in large
datasets. On the other hand, though, the remaining clusters showed more
consistent behaviors, comprising between 17% and 26% of the overall cluster
energy. Overall, it was interesting to observe that the proposed metrics lead
classical clustering to find the same number of classes as in the previously
studied datasets. We elaborate more on this below.

Discussion

Our study threw some interesting suggestions. First, using this clustering
framework allows to focus on a small number of groups to describe the vast
majority of the pages of a website. For instance, in the OTH corpus the 3 main
clusters found represent 95% of the browsed pages. Similarly, by looking at the
same number of clusters, we can explain 89% and 93% of the pages in LAKQ
and NM datasets, respectively. Second, as previously commented, our method
allows to describe web pages in a completely different way, i.e., from the user
interactions’ point of view, instead of the usual structure/content/usage triad.
This knowledge has an interesting potential to be used to compare cross-site
browsing behaviors, or predict interest of non-browsed pages. Third, using the
information implicitly embedded in user’s interactions may help webmasters
to redesign the most important pages, in terms of in-page interactions. This
way, if individual personalization is not possible, users could browse the site at
the same performance level to a greater or a lesser extent. Fourth, we found

45

Chapter 3. Behavioral Clustering

that the user sample we tracked at each website was often a mixture of dis-
tributions. This evidence encourages to be cautious in using logging tools or
intuitions that assume a normal distribution for all users.

As observed, exploiting the browsing context from user behavior may serve
as a useful complement to current web mining techniques. Further suitability
of this work relates to any system that taps knowledge about the user, e.g.:
information retrieval, relevance feedback, document organization, or usage in-
ference, just to name a few. Armed with this awareness, one could carry out
novel research studies on user modeling and related applications.

3.3.2 Classifying Human Actions

In this case, we chose a straightforward classification task to test the WKM
algorithm in isolation. We wanted to test how data sequentiality may affect
the performance of a recognizer. To this end, we used the Localization Data for
Person Activity dataset [Kaluža et al., 2010] form the UCI Machine Learning
Repository [Asuncion and Newman, 2007]. In this corpus, 164860 data points
were captured from 5 people wearing 5 active RFID tags (both ankles, belt,
and chest). Up to 11 human actions were represented as a time series of x,y,z
coordinates of such 5 body parts.

Note that, while there is an important number of works tackling the problem
of classifying human actions, we chose this corpus to show the capabilities of
WKM as a simple and accurate compression tool for a complex, real-world task.
To this end, each human action is represented as a vector of a fixed number of
“elementary actions”, where each elementary action is, in turn, a cluster mean
vector obtained by clustering the original sequence of action samples (x,y,z
coordinates). Once each action is represented as a fixed dimension vector, many
simple classifiers can be adequately used, among which we chose the well-known
Nearest-Neighbor (NN) classifier.

Method

To characterize each activity, the x,y,z coordinates of all sensors were merged

into a single 12-dimensional feature vector sample x = (x1, y1, z1, . . . , x4, y4, z4)
T
.

So a trajectory was defined as the sequence X = x1, . . . ,xn, where n is the
number of samples in X.

Unfortunately, the dataset did not include the same number of instances per
sensor. Therefore some of the composed trajectories had extremely different
number of 12-dimensional vectors (e.g., some had just two vectors and others
had more than 800). We needed thus to build a more comparable dataset; so,
while composing each trajectory we verified that it had at least 10 samples.

46

Chapter 3. Behavioral Clustering

Eventually we obtained 125 trajectories of 162 samples on average (SD=138.6),
belonging to one of the following 5 classes: ‘falling’, ‘lying’, ‘on-all-fours’, ‘sit-
ting’, and ‘walking’. There were 25 trajectories per class. The features of the
dataset used in the experiments are depicted in Table 3.5.

Trajectories 125
Mean samples per trajectory 162
Dimension of sample vectors 12
Classes (actions) 5
Number of trajectories per class 25

Table 3.5: Features of the dataset used in the WKM experiments.

Vector Representation We ran our implementation of WKM to cluster
each trajectory into a variable number of segments (k ∈ {2, 4, . . . , 20}) and
with different cluster proportions (δ ∈ {0, 0.2, . . . , 1}). We also compared
WKM with two well-known versions of K-means: the classical Duda&Hart ’s
algorithm [Duda and Hart, 1973] and the popular Lloyd ’s version [Lloyd, 1982],
using both random and TS initializations. When initializing randomly we per-
formed up to 5 times each experiment, in order to mitigate the effects of chance,
and computed the average values.

The cluster means obtained by k-clustering each action data sequence were
stacked into a 3 · 4 · k dimensional feature vector, i.e., a 12 k-dimensional vec-
tor. For those trajectories with less samples than the desired number of seg-
ments, (i.e., when k > n) we used singleton clusters instead (i.e., k = n) and
the missing dimensions were filled with zeros. As we will see below, this fact
had clear repercussions when classifying some trajectories with k > 10 (ten
was the minimum number of vectors in all trajectories), specially in terms of
classification error.

Nearest Neighbor Classifier The simple and well-known 1-NN classifier
with Euclidean distance was adopted to classify vector-represented action tra-
jectories. As previously pointed out, each class was represented by a number
of prototype trajectories. Each test trajectory was classified into the class of
its nearest neighbor prototype.

In these experiments, we employed the C++ ANN library [Mount and Arya,
1998] for NN searching, with its basic, exact search option. Given the relatively
small number of available trajectories overall, we adopted the leaving-one-out
training and testing procedure.

Results

The first experiment was aimed at studying the behavior of different algorithms
when minimizing SQE and increasing the number of clusters. Results are shown

47

Chapter 3. Behavioral Clustering

in Figure 3.9. As expected, in all cases SQE decreases monotonically with
increasing number of clusters. It is interesting to note that K-means algorithms
achieve a (slightly) lower SQE than WKM, which is explained by the lack of
sequentiality restrictions, that otherwise WKM imposes on the data.

In the next experiment we studied the ability of different clustering algorithms
to behave as data preprocessors, in order to obtain simplified vector-represented
trajectories for classification purposes. We considered the case when a sensor
trajectory is segmented into just one single cluster (k = 1) as the baseline; that
is, each trajectory is represented by a 12-dimensional vector corresponding to
the average of all its trajectory samples. In that case, the classification error was
as low as 9.6%, which is reasonable given the nature of the activities involved
(e.g., the position of “lying” and “sitting” should differ greatly at least in the
average z coordinate of each sensor).

Results for other values of k are shown in Figure 3.10. As expected, certain
segmentations performed better than others for each algorithm, but a partic-
ularly adequate number of elementary actions seems to be 6 in most cases.
Interestingly, WKM is the method that better puts this fact forward. We ob-
served that accuracy degraded noticeably for k > 10, to the point that for
k = 20 error rates were above 50% for all classifiers—for the reason explained
in Section 3.3.2. Also, as observed, the randomly initialized versions were the
worst performers.

In order to better understand the impact of the δ threshold of WKM, we
repeated the previous experiment for different values of this threshold. Fig-
ure 3.11 shows the influence of δ in the recognition accuracy. We see that by
tuning this parameter WKM results can be further improved, with a best result
of 3.2% error rate for six elementary actions. Finally, regarding the computa-
tional cost of each algorithm, as shown in Figure 3.12, WKM behaves much
better than its peers.

Table 3.6 summarizes the results discussed so far. Classical K-means algo-
rithms do not help overcoming the trivial baseline (just one cluster). In con-
trast, WKM achieved a recognition accuracy of 97%, which represents a 66%
improvement over the baseline. WKM is borderline statistically significantly
better than all compared methods [χ2

(7,N=125) = 4.44, p = .07]. Most inter-
estingly, the improvements introduced by WKM are achieved along a huge
computational cost reduction (more than one order of magnitude) with respect
to K-means algorithms. We can conclude that WKM was the best performer
among its peers, and that results confirmed our expectations.

Discussion

As can be observed in the figures, WKM gives very competitive error rates at a
low computational cost. Therefore, our experimental results show that WKM is

48

Chapter 3. Behavioral Clustering

Figure 3.9: Sum of squared er-
rors against number of segments.
Each value is averaged for all
trajectories (activity × person ×

trial). As expected, the segmen-
tations achieved by WKM have
higher distortion than those of
classical K-means, since the for-
mer imposes a strong sequential
restriction, while the latter does
not.

2 4 6 8 10 12

0

0.2

0.4

·103

Segments

S
Q
E

Lloyd random Lloyd TS

Duda&Hart random Duda&Hart TS

WKM (δ = 0) WKM (δ = 1)

Figure 3.10: We performed
variations to three alternatives
for clustering trajectories: The
Duda&Hart ’s algorithm and the
Lloyd version, using both ran-
dom initialization and trace seg-
mentation, and the WKM algo-
rithm using two extreme distor-
tion thresholds.

2 4 6 8 10 12

0

10

20

30

40

Segments

%
C
la
ss
ifi
ca
ti
on

E
rr
or

Lloyd random Lloyd TS

Duda&Hart random Duda&Hart TS

WKM (δ = 0) WKM (δ = 1)

49

Chapter 3. Behavioral Clustering

Figure 3.11: WKM classification
error. We used different δ thresh-
olds for each tested number of seg-
ments. The best accuracy was
achieved when using k = 6 for all
threshold values.

2 4 6 8 10 12

0

10

20

Segments

%
C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

δ = 0.0 δ = 0.2 δ = 0.4

δ = 0.6 δ = 0.8 δ = 1.0

Figure 3.12: Computational
cost against number of segments.
Cost is estimated as number of
times Eq. (3.5) is executed. For
Lloyd versions, cost was com-
puted as the number of times
each algorithm tested if cluster
means did change.

2 4 6 8 10 12

0

0.5

1

1.5
·103

Segments

C
om

p
u
ta
ti
on

al
C
os
t

Lloyd random Lloyd TS

Duda&Hart random Duda&Hart TS

WKM (δ = 0) WKM (δ = 1)

50

Chapter 3. Behavioral Clustering

Algorithm Best k % Error Cost

Baseline 1 9.6 —

Lloyd random 2 9.8 796
Lloyd TS 6 11.2 1080

Duda&Hart random 2 10.6 448
Duda&Hart TS 6 9.6 778

WKM δ = 0.0 6 5.6 54
WKM δ = 0.8 6 3.2 71
WKM δ = 1.0 6 4.0 135

Table 3.6: Summary of sequential clustering results. Bold value indicates that it is the
best result among all methods being compared.

an interesting approach for lowering both classification error and computational
cost regarding to using other comparable clustering alternatives.

It is worth pointing out that all algorithms initialized with TS allow to find the
“natural” number of classes. However, as shown in Figure 3.10, for WKM this
number in turn corresponds to the lowest classification error rate in all cases
(see also Table 3.6).

Additionally, we have shown that WKM ensures monotonic improvement and
finite assignments in a sequential fashion, which translates to convergence to a
good local minimum in which trajectory segments are well-defined. This can
be leveraged in some interesting applications, as we shall expose as follows.

Online Handwriting Our clustering technique can be used as a preprocess-
ing step for online text recognition. As illustrated in Figure 3.1, the obtained
(well-formed) segments capture pen-stroke regularities which can be advanta-
geously exploited by existing handwritten recognition approaches to increase
character recognition accuracy [Leiva and Vidal, 2012].

Eye/Mouse Tracking This algorithm entails a reliable contribution to clus-
tering eye movements on aggregated data; e.g., both heatmaps and areas of
interets (AOIs) are computed by distance-based clusters, and therefore they
do not distinguish between long-time fixations of a single person or short-time
fixations of a group of people.

Motion Segmentation The storage and transmission of motion tracking
content is a problem due to their tremendous size and the noise caused by
imperfections in the capture process. Thus, one could use our method for a
more compact representation of these (large) data.

51

Chapter 3. Behavioral Clustering

In general, any discipline that would handle ordered data sequences could ben-
efit from our approach; e.g., human motion classification from surveillance
cameras or automatic video key frame extraction.

3.4 Conclusions and Future Work

This chapter has covered behavioral clustering, a broad term that refers to
the task of automatically labeling and classifying user behavior, which was
evaluated on two different tasks with a series of real-world datasets.

In the first task we were able to discover “hidden” profiles on websites, ac-
cording to how users behave while browsing. We have demonstrated that this
technique can be used to organize and describe websites from the user interac-
tions’ point of view. This technique can also be used as a measure of similarity
between web pages, to evaluate their design in an automated fashion, or to dis-
cover outliers. We believe that this work opens a new door to novel approaches
on web behavior studies.

Lines of future work regarding web page classification according to (implicit)
interaction metrics include inferring behavior of non-browsed pages and finding
related websites based on user interactions. The metrics we used for clustering
are related to cursor activity, because cursor data are easy to collect and no
special instrumentation is required on client side. However, user interaction
is inherently multimodal. Thus, other related input signals such as eye move-
ments could (and should) be taken into consideration, and be incorporated to
more sophisticated web profiles. This way, one may complement studies of
quantitative/qualitative nature, improving thus the usability and usefulness of
websites, and being able to extend this methodology to related fields such as
web applications or software products.

In the second task, we have presented a novel revisitation of the K-means algo-
rithm, specially suited for sequentially distributed data. We have successfully
used this approach to automatically identify human actions derived from raw
sensor data. By taking into account that data are sequentially given, our pro-
posal, WKM, behaves much better than classical clustering algorithms. One
obvious reason why using a cluster representation may have advantages over
working with raw sensor data is the evident size reduction, which in turn may
enhance the ease of storage, transmission, analysis, and indexing. Moreover,
extending this notion to the analysis of trajectories reverts in another signifi-
cant advantage: having a good and compact representation of a data sequence
makes it more invariant to noise or distortions in such data. This fact has been
backed up by our experimental results, lowering both classification error and
computational cost regarding to using other comparable clustering alternatives.

As stated in this chapter, a critical step for (adequately) clustering sequential
data with WKM is the initialization of segment boundaries. We used the TS

52

Bibliography of Chapter 3

technique, although other algorithms that ensure a sequential distribution may
be also helpful. For instance, we could use an equispaced boundary initializa-
tion instead. Future work will be focused on removing the (optional) δ param-
eter from the algorithm, and instead learning automatically the best value for
a given cluster configuration. Further research on WKM will be leaned toward
an optimum procedure of choosing the number of clusters. We hope that our
work may encourage researchers and practitioners to apply this algorithm to a
wealth of new problems and/or domains.

Bibliography of Chapter 3

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. In Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, pp. 94–105, 1998.

A. Asuncion and D. J. Newman. UCI machine learning repository, 2007. Available at
http://www.ics.uci.edu/~mlearn/MLRepository.html.

F. I. Bashir, A. A. Khokhar, and D. Schonfeld. Object trajectory-based activity clas-
sification and recognition using Hidden Markov Models. IEEE Transactions on Image
Processing, pp. 1912–1919, 2007.

J. C. Bezdek and N. R. Pal. Some new indexes of cluster validity. IEEE Transactions on
System, Man and Cybernetics, 28(3):301–315, 1998.

M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. In Proceedings
of the 6th international conference on Intelligent user interfaces (IUI), pp. 33–40, 2001.

D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1(4):224–227, 1979.

T. G. Dietterich. Machine learning for sequential data: A review. In Proceedings of
the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, pp. 15–30, 2002.

R. Dubes. Handbook of Pattern Recognition & Computer Vision, chap. Cluster analysis and
related issues, pp. 3–32. World Scientific Publishing Co., Inc., 1993.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley &
Sons, 1973.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, chap. Unsupervised
Learning and Clustering, pp. 517–599. John Wiley & Sons, 2001.

J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters. Journal of Cybernetics, 3:32–57, 1973.

J. C. Dunn. A cluster separation measure. Journal of Cybernetics, 4:95–104, 1974.

C. Fraley. Algorithms for model-based gaussian hierarchical clustering. Tech. Report 311,
Department of Statistics, University of Washington, 1996.

V. Guralnik and G. Karypis. A scalable algorithm for clustering sequential data. In
Proceedings of IEEE International Conference on Data Mining, pp. 179–186, 2001.

53

http://www.ics.uci.edu/~mlearn/MLRepository.html

Bibliography of Chapter 3

G. Hamerly and C. Elkan. Learning the k in k-means. In Proceedings of the seventeenth
annual conference on neural information processing systems (NIPS), pp. 281–288, 2001.

M. Holub and M. Bielikova. Estimation of user interest in visited web page. In Proceedings
of the 19th international conference on World wide web (WWW), pp. 1111–1112, 2010.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218,
1985.

A. K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8):
651–666, 2010.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):1–60, 1999.

B. Kaluža, V. Mirchevska, E. Dovgan, M. Luštrek, and M. Gams. An agent-based ap-
proach to care in independent living. In Proceedings of the International Joint Conference
on Ambient Intelligence (AmI), pp. 177–186, 2010.

L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, 1990.

J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group frame-
work. In Proceedings of the 2007 ACM SIGMOD international conference on Management
of data (SIGMOD), pp. 593–604, 2007.

L. A. Leiva. Mining the browsing context: Discovering interaction profiles via behavioral
clustering. In Adjunct Proceedings of the 19th conference on User Modeling, Adaptation,
and Personalization (UMAP), pp. 31–33, 2011.

L. A. Leiva and E. Vidal. Assessing users’ interactions for clustering web documents:
a pragmatic approach. In Proceedings of the 21st ACM conference on Hypertext and
Hypermedia (HT), pp. 277–278, 2010.

L. A. Leiva and E. Vidal. Revisiting the K-means algorithm for fast trajectory segmen-
tation. In Proceedings of the 38th International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH), 2011.

L. A. Leiva and E. Vidal. Simple, fast, and accurate clustering of data sequences. In
Proceedings of the 17th international conference on Intelligent User Interfaces (IUI), pp.
309–310, 2012.

S. Lloyd. Least squares quantization in PCM. IEEE Transations on Information Theory,
28(2):129–137, 1982.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297, 1967.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press, 1979.

G. W. Milligigan and M. C. Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

D. Mount and S. Arya. ANN: library for approximate nearest neighbor searching, 1998.
Available at http://www.cs.umd.edu/~mount/ANN/.

F. Murtagh. A survey of recent advances in hierarchical clustering algorithms which use
cluster centers. Computing Journal, 26(1):354–359, 1984.

54

http://www.cs.umd.edu/~mount/ANN/

Bibliography of Chapter 3

B. Poblete and R. Baeza-Yates. Query-sets: Using implicit feedback and query patterns
to organize web documents. In Proceedings of the 17th International Conference on World
Wide Web (WWW), pp. 41–50, 2008.

C. Sugar. Techniques for Clustering and Classification with Applications to Medical Prob-
lems. PhD thesis, Department of Statistics, Stanford University, 1998.

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data
set via the gap statistic. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 63(2):411–423, 2001.

P. Trahanias and E. Skordalakis. An efficient sequential clustering method. Pattern
Recognition, 22(4):449–453, 1989.

C. J. Veenman, M. J. T. Reinders, and E. L. Baker. A maximum variance cluster
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1273–
1280, 2002.

J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of American
Statistics Association, 58(301):235–244, 1963.

J. Yu. General C-means clustering model. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(8):1197–1211, 2005.

55

	3 Behavioral Clustering
	3.1 Introduction
	3.2 Revisiting the K-means Algorithm
	3.3 Evaluation
	3.4 Conclusions and Future Work
	Bibliography of Chapter 3

