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ABSTRACT
Back-of-device (BoD) interaction using current smartphone
sensors (e.g. accelerometer, microphone, or gyroscope) has
recently emerged as a promising novel input modality. Re-
searchers have used a different number of features derived
from these commodity sensors, however it is unclear what
sensors and which features would allow for practical use,
since not all sensor measurements have an equal value for
detecting BoD interactions reliably and efficiently.

In this paper, we primarily focus on constructing and select-
ing a subset of features that is a good predictor of BoD tap-
based input while ensuring low energy consumption. As a
result, we build several classifiers for a variety of use cases
(e.g. single or double taps with the dominant or non-dominant
hand). We show that a subset of just 5 features provides high
discrimination power and results in high recognition accu-
racy. We also make our software publicly available, so that
others can build upon our work.
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INTRODUCTION
Current smartphones have enough capabilities to serve for
many tasks. Increases in mobile performance, along with
their high availability and range, are expanding further their
capabilities and uses. One prominent use case is back-of-
device (BoD) interaction, which enables eyes-free indirect
input. BoD interaction can address severe occlusion prob-
lems on small touchscreens [1], has shown to be useful in
increasing privacy by preventing shoulder-surfing attacks [3,
13], and can be used to control screen sharing apps such as
multi-player games [2] or even to predict users’ intention by
the way they hold the device [15].
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BoD interactions are largely dependent on sensors. Recently,
it has been shown that this input modality can be accom-
plished on today’s mobile devices with their built-in hard-
ware like accelerometers, microphones, or gyroscopes [21,
24]. For this, many different features derived from sensor
readings have been proposed, like sound volume, device mo-
tion, or frequency analysis. However, it is unclear which
features would allow for practical use, since not all sensor
measurements have an equal value for detecting BoD interac-
tions reliably and efficiently. And while modern smartphones
are incorporating low-power coprocessors for managing the
built-in sensors, energy consumption is still a matter of great
concern [20, 22, 24]. Our technique is the first to address
this concern for BoD tap-based input detection, by analyz-
ing which sensor features are most appropriate and remov-
ing thus unnecessary computations that could drain battery
life after extended periods of use. Further, our technique is
segmentation-free and provides high accuracy, which allows
for practical, real-world use cases such as gaming or casual
applications; see some examples below.

Today, one-handed input is widely recognized as a desirable
property for mobile interaction [6, 9, 13], as the other hand
is often occupied with a primary or secondary task [10]. For
this reason, we mainly focus on detecting BoD taps with one
hand. Some common scenarios of BoD tap-based interaction
on smartphones include e.g. scroll a web page, take a pic-
ture, stop/resume a video, mute an incoming call, or play one-
button games like Badland or FlappyBird. In sum, BoD taps
enable an alternative set of interactions to augment (rather
than replace) touchscreen input.

This paper presents a detection technique grounded on ma-
chine learning principles that enables highly accurate and
practical BoD tap-based interaction using current hardware
and sensors, without the need to instrument the mobile de-
vice. Concretely, this paper offers the following contribu-
tions:

• Feature engineering. We construct and select a subset of
features that is a good predictor of BoD tap-based input,
showing that a small subset thereof provides high discrim-
ination power and results in high recognition accuracy.

• BoD tap modeling. We build several classifiers for a vari-
ety of real-world use cases; e.g. single or double taps with
the dominant or non-dominant hand.

• Release of the software. We believe that making our soft-
ware publicly available will be useful for others to enable
efficient BoD interaction on current smartphones.
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RELATED RESEARCH
Overall, sensing the mobile device with additional hardware
has been very popular for enabling BoD interactions. For ex-
ample, using a touchpad [1] or touch-sensitive surface [11],
a stethoscope [14], tactile landmarks [2], or an external ac-
celerometer attached to the device [12]. However, today’s
smartphones already include sophisticated built-in sensors,
such as gyroscope, accelerometer, or gravity sensors. There-
fore, in the remainder of this section we discuss previous
works that focus on BoD interaction using current hardware
and sensors.

ForceTap [8], JerkTilts [16], and TimeTilt [19] investigated
motion as input using built-in accelerometers. However,
these techniques seem unsuitable for continuous input. Tap-
Back [18] relies on the sound created when tapping on the
case of the phone, although recognition rates were found to be
insufficient for practical use. BackPat [21] added frequency
analysis and was primarily focused on finger differentiation,
concluding that users preferred interacting with the index fin-
ger. Finally, BackTap [25] used sound volume and device
motion for classifying BoD taps on a tablet’s corners. This
work was extended in BeyondTouch [24] to support more in-
teractions, achieving encouraging results.

Altogether, previous works have relied on an unknown or a
relatively arbitrary choice of sensors and features. For exam-
ple, TimeTilt [19] looks at jerk movements over the Z axis
(6 features), BackPat [21] uses an unknown number of fea-
tures derived from gyroscope and sound frequency analysis,
and BeyondTouch [24] uses 241 features sampled at 100 Hz.
It is thus unclear how many features and what sensors would
actually perform better for detecting BoD taps reliably. Our
work is the first systematic examination in this regard.

On the other hand, researchers have been mainly concerned
with accurate BoD tap event segmentation, and have ap-
proached this problem either from manual or ad-hoc perspec-
tives. For example, relying on the user long-tapping on the
screen for activation [21], waiting for a stable frame of 300 ms
in the acceleration variation [19], or examing all available
sensors and looking for a predefined threshold [22, 24]. In
contrast, our technique is segmentation-free, based on solid
machine learning procedures, so no previous knowledge is re-
quired to detect BoD tap-based input. Further, previous works
were tested on a single smartphone, which calls into question
how they would work across devices; as the position of sen-
sors and thus the sensing values can differ from one device to
another. In this regard, we have analyzed 9 different smart-
phones (Table 4), contributing thus with new knowledge on
the feasibility and applicability of BoD tap input detection.

METHOD
Taking into account the sensors already included in most of
today’s smartphones, and considering the previous work on
BoD interactions as well, we analyzed the accelerometer, gy-
roscope, gravity, and microphone. Altogether, these sensors
measure, respectively: device acceleration, device angular
speed, influence of the gravity acceleration, and environmen-
tal loudness.

Sensor Signals
We considered different signals derived from the sensors
mentioned above. First, we computed the triaxial values and
magnitude from accelerometer, gyroscope, and gravity sen-
sors. Second, we measured environmental loudness with and
without a “no tap” reference, in order to consider the influ-
ence of background noise while interacting. As in previ-
ous works [24, 25] the sound signal was treated in a decibel
scale, by computing the logarithmic ratio between the mea-
sured value P and a reference value Pref. Concretely, Pref was
set to 1 for the signal without “no tap” reference, whereas for
the signal with “no tap” reference Pref was set to the mean
value of the first second previous to the tap acquisition. Fi-
nally, we computed the fraction of the acceleration attributed
to the user’s force, by subtracting the gravity acceleration to
the measured device acceleration. This signal thus accounts
for the actual force applied by the user while tapping. In sum,
we eventually considered 18 different sensor signals for anal-
ysis, as listed in Table 1.

No. Signal sources

4 Device acceleration (triaxial + magnitude)
4 Device angular velocity (triaxial + magnitude)
4 Gravity acceleration (triaxial + magnitude)
2 Environmental loudness (with and without “no tap” reference)
4 User acceleration (triaxial + magnitude)

Table 1: We analyzed 18 different signals derived from the smartphone
sensors.

Sampling and Labeling
We conducted a preliminary experiment with 4 users to gain
insights about the data we would collect afterward. Users
were simply told to tap on the back of the device with their
index finger within 1 second, followed by 3 seconds to rest.
This was repeated up to 10 times. The Experimental Evalua-
tion section provides more details of the procedure.

First of all, we should decide an appropriate sampling rate
that would aim for lowering both computational cost and en-
ergy consumption. Based on the preliminary experiment, we
observed that a BoD tap usually occurs in a time span of
around 200 ms of duration (M=198, SD=11). Therefore, we
measured the power consumption [26] of acquiring the sen-
sor signals (Table 1) with the usual sampling rate of 100 Hz
and by using the minimum rate that satisfies the Nyquist fre-
quency, which in this case is a sampling rate of 10 Hz. Table 2
shows the results.

Sampling Rate (Hz) Power Consumption (mW/s)

10 29.3 ± 6.6
100 126.3 ± 14.7

Table 2: Power consumption in the signal acquisition using different
sample rates.

Together with the observed pattern of BoD taps (see an exam-
ple in Figure 1), we conclude that a sampling rate of 10 Hz is
enough to detect a BoD tap while ensuring minimum power
consumption. Notice that this sampling rate is one order of
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magnitude lower than in previous works; e.g. [21, 24]. Even-
tually, the obtained signals were sampled using a fixed-width
sliding window of 300 ms with 50% of overlapping context.
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Figure 1: Sampling the accelerometer magnitude signal at 100 and 10 Hz
for 1 second. When a BoD tap occurs, the detection pattern is equivalent
in both cases.

Initially, during data acquisition, all samples were automat-
ically labeled, at the frame level. That is, the samples in-
cluded in the 1-second window were automatically labeled as
tap frames, and the samples included in the 3-second window
were automatically labeled as no-tap frames. Nonetheless,
these labels were not accurate enough as not all frames in the
1-second window are actual tap frames. Thus, in order to
provide a solid ground truth (i.e., the gold standard), all tap
frames were ultimately supervised and manually annotated
(10 814 out of 32 130 frames in total).

Feature Computation
Finally, a set of 24 functions was applied to each windowed
sample. Eight of them were in the temporal domain, ac-
cording to the research literature: root mean squared (RMS)
and its derivative (RMS’), mean, median (Mdn), variance
(σ2), maximum (Max) and minimum (Min) values, and the
Max/Min ratio. The other 16 functions were in the frequency
domain, based on a Discrete Fourier Transform (DFT) [17] of
9 bins with a bandwidth of 0.625 Hz in the 0–5 Hz frequency
range.1 Table 3 depicts the functions used to parameterize
each signal (both in time and frequency domains) listed in
Table 1. In sum, we are considering an overall set of 18 sen-
sors × 24 functions = 432 features for analysis.

Feature Description

RMS Root mean squared value
RMS’ Derivative of the RMS
Mean Mean value
Mdn Median value
σ2 Variance
Max Largest value
Min Smallest value
Max/Min Ratio between largest and smallest values
DFT Discrete Fourier Transform (16 functions)

Table 3: Functions used as features of each signal sample.

1Regarding our frame size, the DFT input was padded with zeros.

Feature Selection
The purpose of feature selection is three-fold [5]: improving
the prediction performance of the features, providing faster
and more cost-effective features, and providing a better un-
derstanding of the underlying process that generated the data.
In general, feature selection methods are used to identify and
remove unneeded, irrelevant and redundant attributes from
data that do not contribute to the accuracy of a predictive
model or may in fact decrease it because of overfitting.

Step-wise, recursive strategies seem to be particularly compu-
tationally advantageous for feature selection. They come pri-
marily in two flavors: forward selection and backward elimi-
nation. In forward selection, features are progressively incor-
porated into larger and larger subsets, whereas in backward
elimination one starts with the set of all features and pro-
gressively eliminates the least promising ones. Both methods
yield nested subsets of features, although backward elimina-
tion is usually preferred because in forward selection a feature
added early may become redundant afterward. Therefore, in
order to select the best subset of features for BoD tap-based
input, we used backward feature elimination.

Recursive Backward Feature Elimination Algorithm
Formally, the algorithm for backward feature elimination is
described as follows. Let S = {S1, . . . , Sn} be a sequence of
candidates for the number of features to retain (S1 > S2, . . . ).
First, the algorithm fits a chosen model to all features (S1)
and each feature is ranked according to its importance to the
model, using a normalized score that accounts for prediction
errors and correlations between features. Then, at each itera-
tion, the top Si ranked features are retained, the model is refit,
and performance is assessed. At the end of the algorithm, a
consensus ranking is used to determine the best features to
retain.

EXPERIMENTAL EVALUATION
To begin, we acquired sensor data from different users, who
tested different conditions of BoD tap-based input on differ-
ent smartphones. Then, several algorithms for feature selec-
tion were tested; among which we chose random forests, an
ensemble learning method for classification that is well suited
to non-linear modeling and has been proved robust against
noise and overfitting [7]. Finally, we compared different clas-
sifiers for the most promising feature subset found.

Participants
We recruited 9 participants aged 25–35 (M=28, SD=2.3) us-
ing our University’s mailing lists. We intentionally wanted
users with rather broad backgrounds and so we recruited par-
ticipants from e.g. Mechanical Engineering, Computer Sci-
ence, or Physics. There was no economic compensation for
the participants, who just provided us with raw sensor data.

Apparatus
Each participant tested two devices: their own smartphone
and another participant’s smartphone. This way, we can cover
a range of usage scenarios. First, by using each partici-
pant’s own smartphone, we ensure that the user is familiar
with the device itself. Second, by using other participant’s
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smartphone, we can gather insights about first-time usage of a
BoD-capable device. Table 4 describes the smartphones used
in our experiments. No smartphone was equipped with a pro-
tection case. We developed for Android, since it currently
dominates the smartphone market.

Manufacturer Device model Size (mm) Weight (g) Android ver.

Samsung Galaxy Note 3 151 x 79 x 8 168 4.4.4
Galaxy S3 mini 122 x 63 x 10 112 5.0.2
Galaxy S6 edge+ 154 x 76 x 7 153 5.1.1

Google/LG Nexus 4 134 x 69 x 9 139 5.1.1
Nexus 5 138 x 69 x 9 130 6.0.0

Sony Xperia Z 139 x 71 x 8 146 4.4.4
OnePlus One 153 x 76 x 9 162 5.1.1
BQ Aquaris M5 69 x 143 x 8 144 5.0.2
Motorola Moto G2 141 x 71 x 11 149 5.0.2

Table 4: Smartphones used in our experiments. The ‘Size’ column de-
notes height x width x thickness.

Design
We acquired sensor readings for one-handed BoD tap input
with the index finger, considering 2 factors: Tap (2 levels: sin-
gle, double) and Hand (2 levels: dominant, non-dominant).
This choice of factors and levels is motivated by previous
works which suggested that users generally prefer tapping
with the index finger and using one hand; c.f. Introduction
section.

Both classification accuracy and the kappa statistic were con-
sidered the main outcome for analysis. The kappa statis-
tic [23] gives a strong indicator of how a classifier performed
across all instances, as compared to merely using accuracy
for comparison. Further, the kappa statistic for one model is
directly comparable to the kappa statistic for any other model
used for the same classification task; akin the effect sizes used
in statistical testing.

Procedure
We conducted the study in an open office environment; i.e.,
there were no fixed partitions or private rooms. Participants
were seated during the whole study in the center of the office,
surrounded by 15 employees. This way, we could strive for
a balance between a carefully controlled setting and a real-
world setting, where environmental noise and distractions
may happen. In fact, different types of distractions actually
happened, as reported by the participants. For instance, some
participants found distracting the environmental noise com-
ing from computer fans and people talking or laughing. One
participant pointed out that the occasional movement of office
chairs prevented him from being fully concentrated in the ac-
quisition study. Finally, another participant mentioned that
the mobile phone fell off his hands once. All these eventual
distractions therefore reduced cognitive performance, which
mimic a range of typical everyday scenarios. In sum, we
acquired both positive (taps) and negative samples (ambient
data) reflecting everyday smartphone usage.

We used a repeated measures within-subjects design, i.e., all
participants tested all combinations (4 conditions in total).
We ensured we would collect the same amount of data for

each user: each participant had to perform 10 BoD taps with
their index finger (both hands) on 2 smartphones, resulting
in 40 session logs per participant and smartphone, 720 logs
in total, 32 130 annotated frames overall (with tap or no-tap
labels). As mentioned in the previous section, all tap-labeled
data (10 814 frames) were manually supervised.

We used Latin squares to counterbalance the order of the con-
ditions and mitigate learning effects between trials. This pro-
cedure reduces learning effects as well as asymmetrical skill
transfer across conditions. We also used Latin squares to de-
cide which device would be used by each user (both their own
phone and another participant’s phone).

Participants were able to practice and get accustomed to each
condition before actually testing it. We developed an An-
droid application that requested participants to enter a BoD
tap within 1 second, followed by 3 seconds to prepare for the
next BoD tap acquisition. We used a Wizard of Oz proce-
dure, which informed participants only that they advanced to
the next BoD tap acquisition.

Data Preprocessing and Analysis
We normalize the feature values (zero mean and unit vari-
ance) so that values that fall in greater numeric ranges do not
dominate those in smaller numeric ranges. We consider user-
independent tests, aiming at producing a subset of features
that is a good predictor of BoD tap-based input for general
use. We use 80% of the data for training (feature selection)
and the remaining 20% for testing different classifiers. We
balance the training data of positive (tap) and negative (no-
tap) samples to avoid negatively skewing the classifiers.

To get performance estimates that incorporate the variation
attributed to feature selection, we use the Area Under the
ROC Curve (AUC) as the measure to optimize. The Receiver
Operating Characteristic (ROC) curve is a plot of the true pos-
itive rate (TPR, also called specificity or recall) against the
false positive rate (FPR, also called sensivity or fallout) of a
classifier. In Section 4.6 we conduct a follow-up analysis in
this regard.

By optimizing for the AUC (with regularization) we prevent
overfitting and also exclude noisy features that do not con-
tribute to the accurate discrimination of our classes (tap/no-
tap). Next, we perform a 10-fold cross-validation using strat-
ified sampling, to create balanced splits of the data that pre-
serve the overall class distributions. We then choose the most
promising feature subset and evaluate its performance against
several classifiers on the testing partition.

Results
We report the results of detecting either single or double BoD
taps. Actually, a double tap is detected when two consecu-
tive taps are separated by a short amount of time; concretely,
less than 300 ms according to our observations (M=287.52,
SD=94.10). We first split the results by hand (dominant
and no-dominant) and then analyze the different classifiers
over the full testing partition (considering the data from both
hands).
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All experiments were performed in a user-independent set-
ting, since user-independent tests allow us to generalize the
results to potentially any user. In contrast, user-dependent
tests are harder to deploy for real-world use, since each user
would require a dedicated model, with a dedicated number of
training and testing samples.

As observed in Figure 2, a small number of features is able
to achieve competitive results. For example, using 5–10 fea-
tures it is possible to achieve 98% of accuracy, which is an
excellent result for real-world use. Furthermore, the Kappa
statistics for subsets of 5 features and above suggest a high
practical importance of the results.

1 2 5 10 20 50 100 200 300432
20

40

60

80

100

No. Features

Accuracy (D) Kappa (D)

Accuracy (N) Kappa (N)

Figure 2: Results of BoD tap input detection, either single or double taps
with the dominant (D) and non-dominant (N) hand.

Interestingly, slightly better results were observed for the
BoD taps performed with the non-dominant hand. This is
explained by the fact that users proceed a bit more carefully
in comparison to their dominant hand, a well-known observa-
tion that has been reported in the research literature [4].

Surprisingly, we observed that the top-5 features were the
same in all experiments; see Table 5. This is an interesting
result, since a single general model can be implemented to de-
tect BoD taps with either hand. More interestingly, the top-10
features are all related to the Fourier transform, which proves
advantageous since they are really fast to compute. Also in-
terestingly, we can conclude that the values of the higher fre-
quency bins of the DFT from user acceleration are the fea-
tures with most discriminative power overall.

In light of these observations, we decided to use the top-5
feature subset and build several classifiers. The choice of
these classifiers was informed by previous works and their
popularity in machine learning experiments. Concretely, we
tested Partial Least Squares (PLS), Linear Discriminant Anal-
ysis (LDA), Generalized Linear Models (GLM), General-
ized Boosted Models (GBM), and Support Vector Machines
(SVM). We processed the data for both the dominant and non-
dominant hand, aiming for general-purpose classifiers. Ta-
ble 6 shows the classification results.

By way of baseline, in these experiments we include a PLS
classifier that takes into account all the 432 features (PLS0).
We also include SVMb, which is the same classifier with the

Rank Feature Signal Importance

1 ℜ(DFT4.375) |User acc. | 14.95

2 ℜ(DFT5) |User acc. | 13.82

3 ℜ(DFT3.75) |User acc. | 12.56

4 ℑ(DFT3.125) |User acc. | 12.09

5 ℑ(DFT2.5) |User acc. | 9.95

6 ℑ(DFT2.5) User acc. Z axis 9.75

7 ℑ(DFT3.75) |User acc. | 9.48

8 ℑ(DFT2.5) |Acc. | 8.15

9 ℑ(DFT4.375) |User acc. | 8.12

10 ℑ(DFT3.125) Gyro X axis 7.85

Table 5: Rank of the top-10 most discriminative features. ℜ(DFTi) and
ℑ(DFTi) represent the real and imaginary parts of the bin centered
in the ith frequency (in Hz), | · | denotes the magnitude of the triaxial
signals, and “acc.” stands for “acceleration.”

Classifier Accuracy (%) 95% Conf. Interval

PLS0 95.12 [93.87, 96.19]
PLS 96.75 [95.69, 97.61]
GLM 97.10 [96.09, 97.91]
LDA 97.10 [96.09, 97.91]
SVM 97.53 [96.58, 98.27]
SVMb 97.10 [96.09, 97.91]
GBM 97.46 [96.50, 98.21]

Table 6: Classification accuracy for BoD tap input with either hand,
using the set of top-5 features. PLS0 indicates a PLS classifier trained
with all the 432 features. SVMb denotes the BeyondTouch classifier.

same feature set used in BeyondTouch [24], by way of com-
parison with the most recent approach to detecting BoD taps.

As can be observed, using all features proves disadvantageous
in many senses. Not only recognition accuracy is significantly
degraded, but also a classifier that uses all features will re-
sult in less discriminative power (Table 7) and will require
more computational resources than e.g. a GLM that uses just
the top-5 discriminative features. This is an important result
because selecting the right features can mean a difference be-
tween low performance with long computation times and high
performance with short computation times.

Also an interesting result is the fact that BeyondTouch could
perform a bit better if our set of discriminant features were
used. More important, we should note that BeyondTouch uses
241 features sampled at 100 Hz and the equivalent SVM we
tested uses 5 features sampled at 10 Hz.

ROC Analysis
One of the harder parts of implementing BoD taps is not about
detecting the tap itself, but rather about not raising false posi-
tives. These false positives could happen when the user is do-
ing any other activity with the mobile device that may shake
it. For this reason, we decided to conduct an additional study
on this matter.

The ROC curve (true positive rate vs. false positive rate) has
many interesting properties:
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1. It shows the tradeoff between sensitivity and specificity:
any increase in sensitivity will be accompanied by a de-
crease in specificity.

2. The area under the curve is a measure of classification ac-
curacy.

3. The closer the curve follows the left-hand border and then
the top border of the ROC space, the more accurate the
classifier.

4. The closer the curve comes to the 45-degree diagonal of
the ROC space, the less accurate the classifier.

Classifier PLS0 PLS GLM LDA SVM SVMb GBM
AUC 0.500 0.704 0.782 0.831 0.805 0.768 0.833

Table 7: Testing the discriminative power of different classifiers with
the Area Under the ROC Curve (AUC). PLS0 indicates a PLS classi-
fier trained with all the 432 features. SVMb denotes the BeyondTouch
classifier.
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Figure 3: ROC curves of the different classifiers. The PLS0 curve is the
45-degree diagonal, so it is omitted.

A perfect ROC curve will be shaped with a sharp bend. As
observed in Figure 3, the performance achieved by most of
the tested classifiers is near perfect separation, with GBM
and LDA achieving the best results. PLS0 achieved the worst
results (its ROC curve is the 45-degree diagonal line). We
should mention that the angle-shape elbow appears in logis-
tic regression, i.e., when both the ground truth output and the
prediction are binary (tap, no-tap).

Taken together, our results suggest that GLM, LDA, SVM,
and GBM are the most competitive classifiers overall, given
their accuracy (Table 6) and discriminative power (Table 7
and Figure 3). We hope this evaluation, together with the
rest of the paper, will inform researchers and developers in-
terested in incorporating robust BoD tap-based interactions to
their prototypes or applications.

SOFTWARE IMPLEMENTATION
We have developed a background service that abstracts the
logic for BoD tap input detection. The service implements a
GLM-based classifier and does not provide a user interface,
this way developers simply have to instantiate the service in

their own apps. Moreover, the service runs in a single back-
ground thread. This allows it to detect BoD tap input without
affecting the user interface’s responsiveness.

In order to avoid interfering with unintended motion data, the
service does not read the device sensors unless some appli-
cation requests using the service. This also helps to reduce
energy consumption to a great extent, since BoD tap detec-
tion is performed only when an app explicitly requires it.

Our implementation provides single and double BoD taps de-
tection off-the-shelf. Therefore, the service can be used to
handle basic interactions such as controlling a music player or
selecting text onscreen. The service can also be used to com-
plement traditional interactions such as muting an incoming
call or playing one-button games. At the moment, the soft-
ware is available for the Android operating system and can
be downloaded from https://btap.tech.

LIMITATIONS
Apart from the “usual suspects” in lab-based studies (num-
ber of participants, age, etc.), we should mention a number
of limitations worth discussing about this work. We believe
that understanding these will be useful to researchers and de-
velopers interested in detecting BoD tap-based interactions
reliably.

Firstly, we decided that our technique should detect only two
location-unaware BoD taps (namely, single and double BoD
taps anywhere on the smartphone’s case). This decision was
informed by previous works; see Related Research section.
Eventually, considering more tap locations (1) requires the
user positioning his hand more precisely [15] and, most im-
portant, (2) decreases accuracy to a great extent [24]. We
believe that this would deter real-world use, however it is an
interesting research avenue to consider in future work; see
next section.

Secondly, we have not tested the use of protection cases,
which are relatively common among smartphone users. It is
expected that different case materials and thicknesses would
have an impact on recognition accuracy. However, this is es-
sentially the subject of a different paper.

Lastly, we should mention that the frequency range we con-
sidered was aimed at minimizing energy consumption (see
Table 2) and thus it precludes the use of more advanced BoD
interactions. For example, any tap can be decomposed into
much shorter events (e.g., onset of contact, application of
force, release of contact) that unfortunately are hard to detect
within a sampling rate of 10 Hz.

FUTURE WORK
At present, we plan to explore how our BoD taps detec-
tion technique could be applied in other interaction do-
mains. Namely, off-screen interactions such as patting with
the thumb on the side of the device [21] and around-device
interactions such as detecting slide gestures on a nearby sur-
face [24].

On the other hand, we only considered sound frequencies in
the subaudible range of 0–5 Hz, therefore the microphone
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sensor seems irrelevant in our experiments, discriminative
wise. Nevertheless, richer interactions can be considered if
we incorporate features derived from this sensor. For exam-
ple, the above-mentioned around-device sliding gestures for
scroll, zoom, etc. Although it is important to notice that the
microphone, despite being an excellent sensor to detect BoD
taps alone, is very sensible to ambient noise and thus it often
raises many false positives. Therefore, it must be intelligently
combined with other features to ensure a practical use.

CONCLUSION
We have proposed an efficient and reliable technique for de-
tecting BoD tap-based input on current smartphones using
commodity sensors. The value of our technique lies in the
fact that we use low-cost yet highly discriminative features.
We have made our software public so that others can build
upon our work. The software can be easily incorporated into
production-ready applications, as developers simply have to
instantiate a background activity that abstracts the logic for
BoD tap input detection.

Device manufacturers can benefit from this work by select-
ing an appropriate BoD tap detection feature subset that is
performance-friendly and relatively easy to implement. Over-
all, BoD interaction can be used either as a means of direct
input or as a complementary input aid. Ultimately, our work
provides designers, researchers, and practitioners with new
understanding on robust and efficient BoD tap input detec-
tion.
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